en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈畅子,男,1983年出生,博士。主要研究方向为材料表面等离子体改性。E-mail:ccz198311@163.com

通讯作者:

冷永祥,男,1972年出生,博士,教授,博士研究生导师。主要研究方向为材料表面等离子体改性。E-mail:yxleng@263.net

中图分类号:TG179

DOI:10.11933/j.issn.1007−9289.20211231001

参考文献 1
KOUZNETSOV V,MACA K,SCHNEIDER J M.A novel pulsed magnetron sputters technique utilizing very high target power densities [J].Surface and Coatings Technology,1999,122(2-3):290-293.
参考文献 2
LI Yantao,WANG Chunting,MA Donglin et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface and Coatings Technology,2021,420:127325.
参考文献 3
贵宾华,周晖,郑军,等.脉冲峰值电流对 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响 [J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS[J].China Surface Engineering,2016,29(5):56-65.(in Chinese)
参考文献 4
BNNINGHOFF N,DIYATMIKA W,CHU J P,et al.ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering [J].Surface and Coatings Technology,2021,412:127029.
参考文献 5
吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering [J].China Surface Engineering,2012,25(5):15-20.(in Chinese)
参考文献 6
MA Donglin,DENG Qiaoyuan,SILINS K,et al.Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering [J].Vacuum,2019,160:410-417.
参考文献 7
夏飞,张栋,邹长伟,等.脉冲电压对HPPMS制备CrN薄膜的组织结构与力学性能的影响[J].真空科学与技术学报,2014,34(10):1035-1039.XIA Fei,ZHANG Dong,ZOU Changwei,et al.Synthesis and characterization of magnetron sputtered CrN coatings [J].Journal of Vacuum Science and Technology,2014,34(10):1035-1039.(in Chinese)
参考文献 8
WU Jian,WU Baohua,MA Donglin,et al.Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering [J].Surface and Coatings Technology,2017,315:258-267.
参考文献 9
王愉,陈畅子,吴艳萍,等.峰值功率对高功率脉冲磁控溅射氮化铬薄膜力学性能的影响[J].表面技术,2017,46(1):15-22.WANG Yu,CHEN Changzi,WU Yanping,et al.Influence of Peak power on mechanical property of CrN films deposited by high power impulse magnetron sputtering [J].Surface Technology,2017,46(1):15-22.(in Chinese)
参考文献 10
WU Baohua,WU Jian,JIANG Fan,et al.Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering[J].Vacuum,2017,135:93-100.
参考文献 11
屈亚哲.高功率脉冲磁控溅射沉积硬Cr涂层残余应力控制研究[D].大连:大连理工大学,2019.QU Yazhe.Study on residual stress control of hard Cr coatings deposited by High Power Impulse Magnetron Sputtering[D].Dalian:Dalian University of Technology,2019.(in Chinese)
参考文献 12
李春伟,田修波,刘天伟,等.直流偏压对铝合金表面高功率脉冲磁控溅射沉积钒薄膜耐蚀性的影响[J].稀有金属材料与工程,2013,42(1):110-112.LI Chunwei,TIAN Xiubo,LIU Tianwei,et al.Influence of DC bias on corrosion resistance of vanadium films on aluminum fabricated by high power pulsed magnetron sputtering method [J].Rare Metal Materials and Engineering,2013,42(1):110-112.(in Chinese)
参考文献 13
EISEN B R E,VELTEN D,MÜLLER M,et al.Biocompatibility of β-stabilizing elements of titanium alloys [J].Biomaterials,2004,25(26):5705-5713.
参考文献 14
BOCIAGA D,KAMIŃSKA M,SOBCZYK-GUZENDA A,et al.Surface properties and biological behavior of Si-DLC coatings fabricated by a multi-target DC-RF magnetron sputtering method for medical applications [J].Diamond and Related Materials,2016,67:41-50.
参考文献 15
ZDENĚK T,VLADIMÍR S,LADISLAV C,et al.Growth of a TiNb adhesion interlayer for bioactive coatings [J].Materials Science and Engineering:C,2017,80:652-658.
参考文献 16
VLADIMÍR S,LADISLAV C,STANISLAV D,et al.Characterization of TiNb films on Ti alloys for hard tissue replacement[J].Solid State Phenomena,2017,258:345-359.
参考文献 17
严东旭,沟引宁,张厚亮,等.离子束增强沉积铌(钛)薄膜实验[M]//中国工程物理研究院.中国工程物理研究院科技年报.成都:四川科学技术出版社,2001:195-196.YAN Dongxu,GOU Yinning,ZHANG Houliang,et al.Experiment on niobium(Ti)thin films deposited by ion beam enhancement[M]//China Academy of Engineering Physics.Annual Report of China Academy of Engineering Physics.Chengdu:Sichuan Science and Technology Press,2001:195-196.(in Chinese)
参考文献 18
JING Fengjuan,YIN Tailei,YUKIMURA K,et al.Titanium film deposition by high-power impulse magnetron sputtering:influence of pulse duration[J].Vacuum,2012,86(12):2114-2119.
参考文献 19
CHEN Changzi,MA Donglin,LI Yantao,et al.Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target [J].Acta Phys.Sin.,2021,70(18):180701.
参考文献 20
WU Zhongzhen,SHU Xiao,MA Zhengyong,et al.Discharge current modes of high power impulse magnetron sputtering [J].AIP Advances,2015,5(9):097178.
参考文献 21
ROSS A E,GANESAN R,BILEK M M M,et al.A feedback model of magnetron sputtering plasmas in HIPIMS [J].Plasma Sources Science & Technology,2015,24(2):015018.
参考文献 22
SANSONETTI J E,MARTIN W C.Handbook of basic atomic spectroscopic data[J].Journal of Physical and Chemical Reference Data,2005,34:1559.
参考文献 23
LIU Yuan,ROMERO-ROMERO E,GARAND D,et al.Three-step resonance ionization of zirconium with Ti:Sapphire lasers [J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,158:105640.
参考文献 24
吴忠振,田修波,李春伟,等.高功率脉冲磁控溅射的阶段性放电特征[J].物理学报,2014,63(17):175201.WU Zhongzhen,TIAN Xiubo,LI Chunwei,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering [J].Acta Phys.Sin.,2014,63(17):175201.(in Chinese)
参考文献 25
ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:A global plasma model and experiments [J].Journal of Applied Physics,2015,117(20):290.
参考文献 26
ABADIAS G,CHASON E,KECKES J,et al.Review article:stress in thin films and coatings:current status,challenges,and prospects [J].Journal of Vacuum Science & Technology A,2018,36(2):020801.
参考文献 27
HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications [J].Thin Solid Films,2006,513(1-2):1-24.
参考文献 28
LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):1-11.
参考文献 29
WANG Junjun,KUANG Shaofu,YU Xu,et al.Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering [J].Surface and Coatings Technology,2020,403:126374.
目录contents

    摘要

    为了研究高功率脉冲磁控溅射 TiNb 靶材等离子特性及其对薄膜结构性能的影响,采用高功率脉冲磁控溅射技术 (HiPIMS),通过改变 TiNb 靶材的峰值溅射功率在 Si(100)和 316L 基体上沉积 TiNb 薄膜,利用等离子发射光谱(OES) 研究峰值功率对基片前离子原子比的影响,采用 X 射线衍射技术(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、纳米硬度计、球盘往复摩擦机以及电化学工作站等试验设备,研究 Ti、Nb 离子原子比对 TiNb 薄膜微观结构、力学性能及耐腐蚀性能的影响。结果表明,Ti 和 Nb 离子原子比率随峰值功率增加而增加,在峰值功率为 59.42 kW 时 Ti 的离子原子比达到 60%,Nb 的离子原子比达到 56.9%,离化原子比相对于峰值功率 35.98 kW 时增加 1 倍。不同峰值功率下制备的薄膜均出现 BCC 结构的 β-TiNb(110),β-TiNb(200)和 β-TiNb(211)衍射峰,薄膜以纳米晶存在,高的 Ti、Nb 离子原子比可以增加晶粒尺寸,降低 TiNb 薄膜残余压应力,引起薄膜的硬度、耐磨性以及耐腐蚀性能下降。低的峰值功率下可以得到力学性能及耐腐蚀性能更好的薄膜。

    Abstract

    In order to study the plasma characteristics of high power impulse magnetron sputtering TiNb target and its effect on the structure and properties of thin films. TiNb thin films are deposited on Si(100) and 316L substrates by high-power impulse magnetron sputtering (HiPIMS). Optical emission spectroscopy (OES) is used to study the effect of peak power on the ratio of ions to atoms in front of the substrate. X-ray diffraction (XRD),ioscope (SEM),ioscope (SEM), the effects of Ti and Nb ion atom ratio on the microstructure, mechanical properties and corrosion resistance of TiNb thin films are investigated by TEM, nano-hardness tester, spherical disc reciprocating friction machine and electrochemical workstation. The results show that the ratio of Ti and Nb ion atom ratio increases with the increase of peak power. When the peak power is 59.42 kW, the ion atom ratio of Ti and Nb reaches 60% and 56.9%, respectively. The ratio of ionized atoms increases one times compared with the peak power of 35.98 kW. The diffraction peaks of β-TiNb (110), β-TiNb (200) and β-TiNb (211) of BCC structure are observed in the films prepared at different peak powers, and the films exist as nano-crystals. The high Ti and Nb ion atom ratio can increase the grain size and reduce the residual stress of TiNb films, resulting in the decrease of the hardness, wear resistance and corrosion resistance of the films. And the films with better mechanical properties and corrosion resistance can be obtained at lower peak power.

  • 0 前言

  • 近年来,高功率脉冲磁控溅射(High-power impulse magnetron sputtering,HiPIMS)技术因其具有高的峰值功率和高的靶材原子高度离化等离子特性[1]被广泛用于薄膜的制备[2-5]。沉积氮化物薄膜时,基片离子原子到达比增加,离子轰击基片使薄膜的微观结构发生变化,残余压应力增加,薄膜硬度提高[6-8]。例如,夏飞等[7]通过改变脉冲电压、增加靶材离化率以及离子能量,使得沉积的 CrN 薄膜组织结构更加致密,晶粒逐渐细化,硬度提高。WU 等[8]通过降低磁场强度,提高了基片前 Ti 离子原子到达比,增加了 TiN 薄膜残余压应力,增强 TiN 薄膜结合力及硬度。

  • 然而,当基片离子原子到达比过高时,出现了残余压应力降低、薄膜硬度降低的现象。王愉等[9] 通过调整溅射靶材峰值功率来调控基片前的 Cr 离子原子到达比,当峰值功率增大时,Cr+ / Cr0 到达比达到 12.5%,CrN 薄膜压应力降低和硬度降低。研究发现,该现象在沉积金属薄膜时尤为明显,吴保华等[10]研究 HiPIMS 沉积 Cu 薄膜时,随着基片离子原子到达比增加,薄膜会由压应力向拉应力转变,应力降低,从而影响薄膜其他性能。屈亚哲[11]研究 HiPIMS 沉积 Cr 涂层的残余应力和性能影响,发现通过调控轰击能量,薄膜表现出压应力减小的趋势,薄膜结合力会发生变化。李春伟等[12]在研究HiPIMS 沉积 V 薄膜时,认为过高的离子轰击导致热效应,使薄膜晶粒变得粗大、疏松,影响耐腐蚀性能。因此,利用 HiPIMS 沉积薄膜时,不同的基片离子原子到达比能够产生不同的轰击效果,影响薄膜的残余应力,从而影响薄膜的硬度、结合力以及耐腐蚀性能。

  • TiNb 薄膜由于良好的生物相容性,被用来作为植入性医疗器械的改性层[13],不仅可以提高器械的耐磨耐腐蚀性能,还可以阻止金属毒性离子如 Al、 V、Co 等的释放[14]。低模量 TiNb 薄膜[15](BCC 结构)的Nb含量为40%,弹性模量可以减小到60 GPa,它作为钛合金材料的改性层,促进了成骨细胞生长[15]。研究者主要采用直流或射频磁控溅射方法制备 TiNb 薄膜。VLADIMIR 等[16] 利用磁控溅射在 Ti、Fe、TC4 等基体上制备 TiNb 薄膜,沉积时间 2.5 h,薄膜厚度 2.4 μm,晶粒尺寸达到微米级,硬度最高达到 4.3 GPa。严东旭等[17]利用离子束增强沉积技术,制备出非晶态 TiNb 薄膜,薄膜耐腐蚀性能更好。 HiPIMS 作为离子束溅射技术的一种,利用 HiPIMS 技术制备 TiNb 薄膜时,基片前离子原子到达比将会对薄膜的结构和性能产生影响。为了研究 Ti、Nb 离子原子到达比与残余应力的影响,同时进一步研究薄膜其他力学性能及耐腐蚀性能。本文采用 HiPIMS 制备 TiNb 薄膜,研究不同峰值功率下(通过改变触发电压 700 V、800 V 和 900 V 实现)离子原子到达比对残余应力的影响及其对薄膜力学及耐腐蚀性能的影响。

  • 本文通过等离子发射光谱法(Optical emission spectroscopy,OES)采集各粒子的光谱强度,研究峰值功率对 Ti、Nb 离子原子比的影响。采用 X 射线衍射技术(X-ray diffraction,XRD)、扫描电子显微镜(Scanning electron microscope,SEM)、透射电镜 (Transmission electron microscope,TEM)表征薄膜的微观结构,研究 Ti、Nb 离子原子到达比对薄膜微观结构的影响。最后,采用纳米硬度计、摩擦磨损试验机和电化学工作站评价了薄膜的硬度、耐磨性及耐腐蚀性能。

  • 1 试验准备

  • 1.1 样品制备

  • 采用非平衡磁控溅射设备[18]在 Si(100)和 316L 不锈钢基片上沉积 TiNb 薄膜。真空室尺寸 φ500×500,二元金属靶由高纯度 Ti(≥99.9%)、Nb (≥99.9%)片拼接而成,TiNb 呈周期性排列,拼接靶材采用的面积比是 1∶1,同时考虑有效溅射区域影响,拼接时候也保证了溅射区域的比例是 1∶1。靶材尺寸为 150 mm×125 mm。

  • 沉积薄膜前,将清洗好的 Si 和 316 不锈钢基片安装在真空室中的基板支架上,真空室气压达到 1.0 mPa 后,通入标况 60 cm3 / min 氩气(99.999%),靶基距 60 mm,靶和样品分别用 Ar 离子清洗 5 min 和 10 min。试验中采用 HPPMS 电源(HPS-450D,Chengdu Pulse Tech Electrical,China)为靶供电。其他具体工艺参数见表1。

  • 表1 TiNb 薄膜的沉积参数

  • Table1 Deposition parameters of the TiNb films

  • 1.2 薄膜表征与测试

  • 为了研究高功率脉冲磁控溅射电源的放电特性,放电过程中的电压和电流采用电压探针 (Tektronix,P-5100)和电流互感器(Pearson,411) 进行监测,并通过示波器(Tektronix,TDS-220)记录[19]。采用发射光谱仪(Avantes,AvaSpec-2048-7-USB2)监测基片前 10 mm 等离子体组分变化,其光栅规格配置为 2 400 条/ mm,狭缝宽度为 10 μm,可测试波长范围为 200~1 100 nm。利用台阶仪 (AMBIOS XP-2 型)测量薄膜的厚度和残余应力。采用 X 射线衍射仪(XRD,Philips X’Pert,荷兰)和透射电子显微镜(TEM,美国 FEI 公司)对 Si 基体上 TiNb 薄膜的结构进行表征。X 射线衍射仪采用常规 Cu 靶衍射,X 射线管电压为 40 kV,电流为 40 mA。薄膜成分通过能谱仪(EDS,Oxford,UK) 表征。采用场发射扫描电子显微镜(SEM,Zeiss SIGMA 300,德国)观察薄膜样品的表面和断面形貌。采用纳米硬度计(Anton-paar CSM 超纳米压痕仪 UNHT,瑞士)评价薄膜硬度和薄膜韧性,最大载荷 20 mN,加载卸载速率 40 mN / min。采用球盘往复摩擦机(CSEM,Switzerland)在 55% RH 的相对湿度和 12±1℃的温度下评价 TiNb 薄膜的耐磨性,对磨副选用 GCr15 球(φ6 mm),载荷 0.5 N, 3.77 cm/ s,1 000 转(往复行程 40 m);分别使用台阶仪(AMBIOS XP-2 型)和光学显微镜(SDPTOP MX6R 正置显微镜)观察磨痕深度和磨损形貌。采用电化学工作站(上海辰华 CHI660I 系列,中国) 评价 TiNb 薄膜的耐腐蚀性能,极化曲线的测试条件是溶液体系为 3.5% NaCl 溶液,扫描速率为 0.005 V / S,测试电位为−0.8~2 V。

  • 2 结果与讨论

  • 2.1 靶材放电及等离子体特性

  • 不同峰值功率下 TiNb 靶材放电电压、电流随时间变化曲线见图1。从图1a 和图1b 中可以看出,当峰值功率为 35.98 kW、48.14 kW、59.42 kW 时,靶材峰值电流分别为 62 A、82 A、92 A,峰值电流随着峰值功率增加而增大,这是因为随着电压的增加,大量氩离子轰击靶材,靶材附近大量的电子与中性粒子、粒子之间发生碰撞的概率增加,产生大量的二次电子和离子[20],靶材的放电电流由各离子流组成,导致峰值电流增加。从图1b 可以看出 59.42 kW(900 V)时,电流上升沿斜率最大。这是由于峰值功率增加,产生大量二次电子,离化区的电子密度与电流波形上升沿的斜率正相关[21],导致电流增加速度变大。

  • 图1 不同峰值功率下 TiNb 靶材放电电压和放电电流

  • Fig.1 Discharge voltage and discharge current of the TiNb target at different peak power

  • 采用 HPPMS 技术沉积 TiNb 薄膜时,不同峰值功率下等离子体发射光谱强度值和 Ti、Nb 的离子原子比,见图2。基片前 10 mm 处等离子体发射光谱主要由 Ti+ 、Ti0、Nb+ 、Nb0、Ar+ 和 Ar0 组成。从图2 可以看出,随着峰值功率的增加,峰值电流不断增加,各粒子的发射强度逐渐增加。选取波长为 Ti+(334.83 nm、334.89 nm、336.09 nm),Ti0 (498.2 nm、 499.13 nm、499.97 nm),Nb+ (313.06 nm、314.55 nm、 316.33 nm)和 Nb0 (405.9 nm、407.94 nm、410.08 nm) 等 12 个主特征峰光谱强度计算离子原子比[22-23]。峰值功率为 35.98 kW、48.14 kW、59.42 kW 时,Ti 的离子原子到达比为 28.9%、50.20%和 60%;Nb 的离子原子到达比为 32.7%、38.4%和 57.0%。这表明随着峰值功率的增加,TiNb 的离子原子到达比逐渐增加。HiPIMS 离化主要是电子与中性原子的碰撞、潘宁离化[1],通过电子与金属原子碰撞、亚稳态氩原子与金属原子碰撞,产生大量的 Ti+ 和 Nb+。随峰值功率增加,靶附近产生大量的二次电子,增加了碰撞离化的概率,使离子原子比上升。根据电流波形的放电机制[24],放电会发生了大量的 Ti+ 和 Nb+ 替代 Ar+ 溅射靶材,大量的金属离子返回靶材附近产生自溅射[25],也会使离子原子比得到提高。

  • 图2 不同峰值功率下等离子体各组分发射光谱强度值

  • Fig.2 Emission spectral intensity values of plasma components at different peak power

  • 2.2 薄膜的微观结构和成分

  • 不同峰值功率下薄膜的晶体结构如图3 所示。从图中可以看出,薄膜均出现 BCC 结构的 β-TiNb(110),β-TiNb(200)和 β-TiNb(211)衍射峰,这与文献[15]报道是一致的,分别位于 38.41°、55.48° 和 69.72°,在 83.07°位置还出现了一个较弱的 ω 相的衍射峰。峰值功率为 35.98 kW 时,衍射峰均发生小角度左移,衍射角的偏移是由薄膜中的残余应力导致的,压应力促使衍射角向小角度偏移,拉应力导致向大角度偏移[26],峰值功率为 35.98 kW 时,残余压应力最大达到 1103 MPa。应用谢乐公式,选取衍射强度最大的(110)晶面,估算不同峰值功率下 TiNb 薄膜的晶粒大小,结果如表2 所示,随着峰值功率增加,TiNb 薄膜晶粒有增大的趋势。

  • 图3 不同峰值功率下沉积 TiNb 薄膜的 XRD 图谱

  • Fig.3 XRD patterns of TiNb films deposited at different peak power

  • 表2 不同峰值功率下 TiNb 薄膜的晶粒尺寸

  • Table2 Grain size of TiNb thin films deposited at different Peak power

  • 不同峰值功率下沉积 TiNb 薄膜的表面形貌见图4。薄膜致密,随着峰值功率增加,薄膜表面由不规则的的“谷粒状”形貌(图4a)逐渐呈现“枝状”形貌(图4c),这是因为峰值功率增加,离子原子到达比增加,导致薄膜的表面扩散加剧,薄膜的晶粒尺寸变大,同时,高能离子的轰击,会改变晶粒的形核和长大方式,造成了薄膜形貌发生改变[27]。图5 为不同峰值功率下制备 TiNb 薄膜的截面形貌,具有明显的柱状晶特征。

  • 图4 不同峰值功率下沉积 TiNb 薄膜的表面形貌

  • Fig.4 Surface morphology of TiNb thin films deposited at different peak power

  • 采用透射电镜(TEM)对峰值功率为 59.42 kW 时沉积的 TiNb 薄膜进行了结构和成分上的进一步分析,如图6 所示。图6a 所示薄膜结构致密。图6 b 为圆形虚线区域电子衍射 SAED 花样,经过晶面间距计算,对应的衍射花样分别为 TiNb(110)、 (200)和(211)面,与 XRD 中得到的结果相符合。进一步放大图6a 中圆形左边区域和圆形内部区域,如图6c、6d 所示,图6c 中原子排列短程无序,对选定区域(方形虚线区域)进行傅里叶变换(FFT),可发现选区存在非晶结构,图6d 中原子排列连续且整齐,对选定区域进行傅里叶变换,对应的不同晶面的衍射环,表明选区为纳米晶结构。因此,中心区域 TiNb 薄膜结构主要为纳米晶,伴有少量非晶。从膜-基界面到表面,薄膜含有一定的氧,如图6e、 6f 所示,图6e 为膜基界面处的 EDS 能谱,薄膜含氧量达 35%,图6f 为中心区域 EDS 能谱,薄膜氧含量为 10%左右。

  • 图5 不同峰值功率下沉积 TiNb 薄膜的断面形貌

  • Fig.5 Section morphology of TiNb films deposited at different peak power

  • 图6 峰值功率为 59.42kW 时 HPPMS 沉积 TiNb 薄膜的断面 TEM

  • Fig.6 TEM of section of TiNb films deposited by HPPMS at 59.42 kW

  • 2.3 薄膜力学性能

  • 采用曲率法测量 Si(100)基体上沉积薄膜后的曲率变化,并计算不同电压下 TiNb 薄膜的残余应力,结果见图7。从图7 可以看出,随着离子原子到达比增加,薄膜残余压应力表现出压应力,并伴有下降趋势,从 1 103 MPa 降至 544 MPa,这可能是金属离子原子到达比增加,高能离子在基片上的迁移增强,导致原子重排,释放部分应力,使得应力变小[10]

  • TiNb 薄膜的硬度和弹性模量如图8 所示,从图8a 可以看出,在峰值功率分别为 35.98 kW、48.14 kW、 59.42 kW 时,TiNb 薄膜硬度分别为 11.10 GPa、7.78 GPa、6.62 GPa,弹性模量分别为 175 GPa、169.82 GPa、 139.04 GPa。随着峰值功率增加,硬度值有减小的趋势,这不仅与薄膜中的残余压应力略微降低有关,也与薄膜晶粒尺寸变大相关。

  • 图7 不同峰值功率下沉积 TiNb 薄膜的残余应力

  • Fig.7 Residual stress of TiNb films deposited at different peak power

  • 图8 不同峰值功率下 HPPMS 沉积 TiNb 薄膜的硬度及模量

  • Fig.8 Hardness and modulus andthe calculated values of TiNb films deposited at different peak power

  • H / EH3 / E2 常用来表征薄膜的韧性[28-29]H / E 与弹性恢复能力成正比,H3 / E2 与抗塑性变形能力成正比。从图8b 中得到不同电压下硬度与模量的比值:H / E 分别为 0.06、0.045、0.047,H3 / E2 分别为 0.045、0.016、0.015,说明随着峰值功率的增加,薄膜抵抗塑性变形的能力变弱,抵抗塑性变弱,韧性会变好。峰值功率为 59.42 kW,Ti、Nb 离子原子比较高时,薄膜的韧性较好。

  • 2.4 薄膜摩擦学性能

  • 图9 所示为不同峰值功率下 TiNb 薄膜的摩擦因数。从图中可以看出,随着峰值功率增加,摩擦因数逐渐增加,最终达到 0.48。峰值功率为 35.98 kW 时,摩擦因数较小。图10 所示为不同峰值功率下沉积 TiNb 薄膜的磨痕形貌,从图中可以看出,峰值功率越大,磨痕宽度越大。另外,当峰值功率为 59.42 kW时,磨痕周围还存在不同程度的磨屑堆积。

  • 图9 不同峰值功率下 TiNb 薄膜的摩擦因数

  • Fig.9 Friction coefficient of TiNb film at different peak power

  • 图10 不同峰值功率下沉积 TiNb 薄膜的磨痕形貌

  • Fig.10 Wear morphology of TiNb thin films deposited at different peak power

  • 为了进一步分析磨损的宽度和深度,利用台阶仪对磨痕的深度和宽度进行扫描测量,如图11a 所示。通过对图11a 进行积分得出磨痕截面积,见图11b,从图中可以看出峰值功率越高,离子原子到达比越大,磨痕截面积最大,即在相同磨痕长度下,磨痕体积是最大的,这表明峰值功率 35.98 kW 时,磨痕体积小,薄膜比较耐磨。这是因为 H3 / E2 对薄膜的力学性能有重要影响,可以用来评价薄膜的耐磨性[9]H3 / E2 比值越大,表明薄膜抵抗塑性变形的能力越大,薄膜越耐磨。峰值功率为 59.42 kW 时制备的薄膜硬度与弹性模量最低,H3 / E2 仅为 0.015。

  • 图11 不同峰值功率下沉积 TiNb 薄膜

  • Fig.11 Deposition of TiNb thin films at different peak power

  • 2.5 薄膜耐腐蚀性能

  • 采用动电位极化测试研究不同峰值功率下制备的 TiNb 薄膜在 NaCl(质量分数 3.5%)溶液中的抗腐蚀性能。根据自腐蚀电位和自腐蚀电流密度大小评价 TiNb 薄膜耐腐蚀性能[2]。图12 为不同电压下 316L 表面沉积 TiNb 薄膜的极化曲线,其中 316L 为对照样。根据极化曲线,采用塔菲尔外推法计算得到样品的自腐蚀电位(Ecorr)和自腐蚀电流密度 (Icorr),相应数值如表3 所示。

  • 图12 不同峰值功率下沉积 TiNb 薄膜的极化曲线

  • Fig.12 Polarization curves of TiNb films deposited at different peak power

  • 表3 不同峰值功率下沉积 TiNb 薄膜的自腐蚀电压和自腐蚀电流密度

  • Table3 Self-etching voltage and self-etching current density of TiNb thin films deposited at different voltages

  • 从表3 中可以看出,随着峰值功率增加,TiNb 薄膜的自腐蚀电位相差不大(30~50 mV),均比不锈钢基体的自腐蚀电位低。当腐蚀发生后,材料的自腐蚀电流密度可以表征材料腐蚀的速率的大小,自腐蚀电流密度越大,则说明材料的腐蚀速率越快,表3 中可以看出,自腐蚀电流密度成一定规律性,随着峰值功率增加,自腐蚀电流逐渐变大。峰值功率为 35.98 kW 时,自腐蚀电流密度最小,离子原子比较低,材料的腐蚀越慢。峰值功率为 59.42 kW 时离子原子到达比高,材料腐蚀越快,这可能是离化程度高,基片轰击过高,应力减小,薄膜不致密,影响了薄膜的耐腐蚀性能。以上结果显示,峰值功率为 35.98 kW 时,制备的 TiNb 薄膜自腐蚀电位为 −0.384 V,自腐蚀电流密度为 24.5 nA / cm2,具有相对最佳的耐腐蚀性能。

  • 3 结论

  • 本文利用 HPPMS 通过改变溅射触发电压进而改变溅射功率,制备了一系列 TiNb 薄膜。系统研究了 TiNb 等离子特性、薄膜结构、力学性能及耐腐蚀性能,获得如下结论。

  • (1)当峰值功率从 35.98 kW 增加到 59.42 kW 时,峰值电流逐渐增大,基片附近 Ti 的离子原子到达比由 28.9%增加到 60%;Nb 的离子原子到达比由 32.7%增加到 57%。

  • (2)TiNb 薄膜由纳米晶组成,晶体结构为 BCC-βTiNb,并含有少量非晶相,随着峰值功率增加,晶粒有增大的趋势。

  • (3)随着 Ti、Nb 离子原子到达比增加,TiNb 薄膜的压应力降低,硬度和模量降低,韧性增加,耐磨性降低,腐蚀速率加快。

  • 参考文献

    • [1] KOUZNETSOV V,MACA K,SCHNEIDER J M.A novel pulsed magnetron sputters technique utilizing very high target power densities [J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [2] LI Yantao,WANG Chunting,MA Donglin et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface and Coatings Technology,2021,420:127325.

    • [3] 贵宾华,周晖,郑军,等.脉冲峰值电流对 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响 [J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS[J].China Surface Engineering,2016,29(5):56-65.(in Chinese)

    • [4] BNNINGHOFF N,DIYATMIKA W,CHU J P,et al.ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering [J].Surface and Coatings Technology,2021,412:127029.

    • [5] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering [J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [6] MA Donglin,DENG Qiaoyuan,SILINS K,et al.Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering [J].Vacuum,2019,160:410-417.

    • [7] 夏飞,张栋,邹长伟,等.脉冲电压对HPPMS制备CrN薄膜的组织结构与力学性能的影响[J].真空科学与技术学报,2014,34(10):1035-1039.XIA Fei,ZHANG Dong,ZOU Changwei,et al.Synthesis and characterization of magnetron sputtered CrN coatings [J].Journal of Vacuum Science and Technology,2014,34(10):1035-1039.(in Chinese)

    • [8] WU Jian,WU Baohua,MA Donglin,et al.Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering [J].Surface and Coatings Technology,2017,315:258-267.

    • [9] 王愉,陈畅子,吴艳萍,等.峰值功率对高功率脉冲磁控溅射氮化铬薄膜力学性能的影响[J].表面技术,2017,46(1):15-22.WANG Yu,CHEN Changzi,WU Yanping,et al.Influence of Peak power on mechanical property of CrN films deposited by high power impulse magnetron sputtering [J].Surface Technology,2017,46(1):15-22.(in Chinese)

    • [10] WU Baohua,WU Jian,JIANG Fan,et al.Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering[J].Vacuum,2017,135:93-100.

    • [11] 屈亚哲.高功率脉冲磁控溅射沉积硬Cr涂层残余应力控制研究[D].大连:大连理工大学,2019.QU Yazhe.Study on residual stress control of hard Cr coatings deposited by High Power Impulse Magnetron Sputtering[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [12] 李春伟,田修波,刘天伟,等.直流偏压对铝合金表面高功率脉冲磁控溅射沉积钒薄膜耐蚀性的影响[J].稀有金属材料与工程,2013,42(1):110-112.LI Chunwei,TIAN Xiubo,LIU Tianwei,et al.Influence of DC bias on corrosion resistance of vanadium films on aluminum fabricated by high power pulsed magnetron sputtering method [J].Rare Metal Materials and Engineering,2013,42(1):110-112.(in Chinese)

    • [13] EISEN B R E,VELTEN D,MÜLLER M,et al.Biocompatibility of β-stabilizing elements of titanium alloys [J].Biomaterials,2004,25(26):5705-5713.

    • [14] BOCIAGA D,KAMIŃSKA M,SOBCZYK-GUZENDA A,et al.Surface properties and biological behavior of Si-DLC coatings fabricated by a multi-target DC-RF magnetron sputtering method for medical applications [J].Diamond and Related Materials,2016,67:41-50.

    • [15] ZDENĚK T,VLADIMÍR S,LADISLAV C,et al.Growth of a TiNb adhesion interlayer for bioactive coatings [J].Materials Science and Engineering:C,2017,80:652-658.

    • [16] VLADIMÍR S,LADISLAV C,STANISLAV D,et al.Characterization of TiNb films on Ti alloys for hard tissue replacement[J].Solid State Phenomena,2017,258:345-359.

    • [17] 严东旭,沟引宁,张厚亮,等.离子束增强沉积铌(钛)薄膜实验[M]//中国工程物理研究院.中国工程物理研究院科技年报.成都:四川科学技术出版社,2001:195-196.YAN Dongxu,GOU Yinning,ZHANG Houliang,et al.Experiment on niobium(Ti)thin films deposited by ion beam enhancement[M]//China Academy of Engineering Physics.Annual Report of China Academy of Engineering Physics.Chengdu:Sichuan Science and Technology Press,2001:195-196.(in Chinese)

    • [18] JING Fengjuan,YIN Tailei,YUKIMURA K,et al.Titanium film deposition by high-power impulse magnetron sputtering:influence of pulse duration[J].Vacuum,2012,86(12):2114-2119.

    • [19] CHEN Changzi,MA Donglin,LI Yantao,et al.Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target [J].Acta Phys.Sin.,2021,70(18):180701.

    • [20] WU Zhongzhen,SHU Xiao,MA Zhengyong,et al.Discharge current modes of high power impulse magnetron sputtering [J].AIP Advances,2015,5(9):097178.

    • [21] ROSS A E,GANESAN R,BILEK M M M,et al.A feedback model of magnetron sputtering plasmas in HIPIMS [J].Plasma Sources Science & Technology,2015,24(2):015018.

    • [22] SANSONETTI J E,MARTIN W C.Handbook of basic atomic spectroscopic data[J].Journal of Physical and Chemical Reference Data,2005,34:1559.

    • [23] LIU Yuan,ROMERO-ROMERO E,GARAND D,et al.Three-step resonance ionization of zirconium with Ti:Sapphire lasers [J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,158:105640.

    • [24] 吴忠振,田修波,李春伟,等.高功率脉冲磁控溅射的阶段性放电特征[J].物理学报,2014,63(17):175201.WU Zhongzhen,TIAN Xiubo,LI Chunwei,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering [J].Acta Phys.Sin.,2014,63(17):175201.(in Chinese)

    • [25] ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:A global plasma model and experiments [J].Journal of Applied Physics,2015,117(20):290.

    • [26] ABADIAS G,CHASON E,KECKES J,et al.Review article:stress in thin films and coatings:current status,challenges,and prospects [J].Journal of Vacuum Science & Technology A,2018,36(2):020801.

    • [27] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications [J].Thin Solid Films,2006,513(1-2):1-24.

    • [28] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):1-11.

    • [29] WANG Junjun,KUANG Shaofu,YU Xu,et al.Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering [J].Surface and Coatings Technology,2020,403:126374.

  • 参考文献

    • [1] KOUZNETSOV V,MACA K,SCHNEIDER J M.A novel pulsed magnetron sputters technique utilizing very high target power densities [J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [2] LI Yantao,WANG Chunting,MA Donglin et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering [J].Surface and Coatings Technology,2021,420:127325.

    • [3] 贵宾华,周晖,郑军,等.脉冲峰值电流对 HIPIMS/DCMS 共沉积制备AlCrTiN涂层性能的影响 [J].中国表面工程,2016,29(5):56-65.GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Effects of peak target current on properties of AlCrTiN coatings prepared by HIPIMS/DCMS[J].China Surface Engineering,2016,29(5):56-65.(in Chinese)

    • [4] BNNINGHOFF N,DIYATMIKA W,CHU J P,et al.ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering [J].Surface and Coatings Technology,2021,412:127029.

    • [5] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering [J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [6] MA Donglin,DENG Qiaoyuan,SILINS K,et al.Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering [J].Vacuum,2019,160:410-417.

    • [7] 夏飞,张栋,邹长伟,等.脉冲电压对HPPMS制备CrN薄膜的组织结构与力学性能的影响[J].真空科学与技术学报,2014,34(10):1035-1039.XIA Fei,ZHANG Dong,ZOU Changwei,et al.Synthesis and characterization of magnetron sputtered CrN coatings [J].Journal of Vacuum Science and Technology,2014,34(10):1035-1039.(in Chinese)

    • [8] WU Jian,WU Baohua,MA Donglin,et al.Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering [J].Surface and Coatings Technology,2017,315:258-267.

    • [9] 王愉,陈畅子,吴艳萍,等.峰值功率对高功率脉冲磁控溅射氮化铬薄膜力学性能的影响[J].表面技术,2017,46(1):15-22.WANG Yu,CHEN Changzi,WU Yanping,et al.Influence of Peak power on mechanical property of CrN films deposited by high power impulse magnetron sputtering [J].Surface Technology,2017,46(1):15-22.(in Chinese)

    • [10] WU Baohua,WU Jian,JIANG Fan,et al.Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering[J].Vacuum,2017,135:93-100.

    • [11] 屈亚哲.高功率脉冲磁控溅射沉积硬Cr涂层残余应力控制研究[D].大连:大连理工大学,2019.QU Yazhe.Study on residual stress control of hard Cr coatings deposited by High Power Impulse Magnetron Sputtering[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [12] 李春伟,田修波,刘天伟,等.直流偏压对铝合金表面高功率脉冲磁控溅射沉积钒薄膜耐蚀性的影响[J].稀有金属材料与工程,2013,42(1):110-112.LI Chunwei,TIAN Xiubo,LIU Tianwei,et al.Influence of DC bias on corrosion resistance of vanadium films on aluminum fabricated by high power pulsed magnetron sputtering method [J].Rare Metal Materials and Engineering,2013,42(1):110-112.(in Chinese)

    • [13] EISEN B R E,VELTEN D,MÜLLER M,et al.Biocompatibility of β-stabilizing elements of titanium alloys [J].Biomaterials,2004,25(26):5705-5713.

    • [14] BOCIAGA D,KAMIŃSKA M,SOBCZYK-GUZENDA A,et al.Surface properties and biological behavior of Si-DLC coatings fabricated by a multi-target DC-RF magnetron sputtering method for medical applications [J].Diamond and Related Materials,2016,67:41-50.

    • [15] ZDENĚK T,VLADIMÍR S,LADISLAV C,et al.Growth of a TiNb adhesion interlayer for bioactive coatings [J].Materials Science and Engineering:C,2017,80:652-658.

    • [16] VLADIMÍR S,LADISLAV C,STANISLAV D,et al.Characterization of TiNb films on Ti alloys for hard tissue replacement[J].Solid State Phenomena,2017,258:345-359.

    • [17] 严东旭,沟引宁,张厚亮,等.离子束增强沉积铌(钛)薄膜实验[M]//中国工程物理研究院.中国工程物理研究院科技年报.成都:四川科学技术出版社,2001:195-196.YAN Dongxu,GOU Yinning,ZHANG Houliang,et al.Experiment on niobium(Ti)thin films deposited by ion beam enhancement[M]//China Academy of Engineering Physics.Annual Report of China Academy of Engineering Physics.Chengdu:Sichuan Science and Technology Press,2001:195-196.(in Chinese)

    • [18] JING Fengjuan,YIN Tailei,YUKIMURA K,et al.Titanium film deposition by high-power impulse magnetron sputtering:influence of pulse duration[J].Vacuum,2012,86(12):2114-2119.

    • [19] CHEN Changzi,MA Donglin,LI Yantao,et al.Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target [J].Acta Phys.Sin.,2021,70(18):180701.

    • [20] WU Zhongzhen,SHU Xiao,MA Zhengyong,et al.Discharge current modes of high power impulse magnetron sputtering [J].AIP Advances,2015,5(9):097178.

    • [21] ROSS A E,GANESAN R,BILEK M M M,et al.A feedback model of magnetron sputtering plasmas in HIPIMS [J].Plasma Sources Science & Technology,2015,24(2):015018.

    • [22] SANSONETTI J E,MARTIN W C.Handbook of basic atomic spectroscopic data[J].Journal of Physical and Chemical Reference Data,2005,34:1559.

    • [23] LIU Yuan,ROMERO-ROMERO E,GARAND D,et al.Three-step resonance ionization of zirconium with Ti:Sapphire lasers [J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,158:105640.

    • [24] 吴忠振,田修波,李春伟,等.高功率脉冲磁控溅射的阶段性放电特征[J].物理学报,2014,63(17):175201.WU Zhongzhen,TIAN Xiubo,LI Chunwei,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering [J].Acta Phys.Sin.,2014,63(17):175201.(in Chinese)

    • [25] ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:A global plasma model and experiments [J].Journal of Applied Physics,2015,117(20):290.

    • [26] ABADIAS G,CHASON E,KECKES J,et al.Review article:stress in thin films and coatings:current status,challenges,and prospects [J].Journal of Vacuum Science & Technology A,2018,36(2):020801.

    • [27] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications [J].Thin Solid Films,2006,513(1-2):1-24.

    • [28] LEYLAND A,MATTHEWS A.On the significance of the H/E ratio in wear control:a nanocomposite coating approach to optimised tribological behaviour[J].Wear,2000,246(1):1-11.

    • [29] WANG Junjun,KUANG Shaofu,YU Xu,et al.Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering [J].Surface and Coatings Technology,2020,403:126374.

  • 手机扫一扫看