en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高方圆,女,1984年出生,博士,副研究员。主要研究方向为材料表面科学。E-mail:gaofangyuan@imech.ac.cn

通讯作者:

夏原,男,1963年出生,博士,研究员。主要研究方向为材料表面科学。E-mail:Xia@imech.ac.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211230004

参考文献 1
OLARINOYE I O,OGUNDARE F O.Optical and microstructural properties of neutron irradiated RFsputtered amorphous alumina thin films[J].Optik,2017,134:66-77.
参考文献 2
HANBY B V,STUART B W,GIMENO-FABRA M,et al.Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength,deposited by pulsed direct current and radio frequency magnetron sputtering[J].Applied Surface Science,2019,492:328-336.
参考文献 3
MARES P,KADLEC S,DUBAU M,et al.Long-term stability and disappearing anode effects during reactive DC and pulsed bipolar magnetron sputtering of Al2O3[J].Vacuum,2020,173:109161.
参考文献 4
HOM-ONA C,TRIROJB N,HORPRATHUMC M,et al.Hydrolysis corrosion of alumina thin films produced by pulse DC reactive magnetron sputtering at various operating pressures[J].Ceramics International,2021,47:9691-9700.
参考文献 5
NAYAR P,KHANNA A,KABIRAJ D,et al.Structural,optical and mechanical properties of amorphous and crystalline alumina thin films[J].Thin Solid Films,2014,568:19-24.
参考文献 6
程奕天,邱万奇,周克崧等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al+ α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)
参考文献 7
PEARCE S J,CHARLTON M D B,HILTUNEN J,et al.Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications[J].Surface and Coatings Technology,2012,206(23):4930-4939.
参考文献 8
MA Chao,ZHAO Changjiang,FAN Xiaowei,et al.Preparation of non-stoichiometric Al2O3 film with broadband antireflective by magnetron sputtering[J].Chemical Physics Letters,2021,764:138299.
参考文献 9
NERALLA S,KOTOKA R,FIALKOVA S,et al.Effect of Fe and Ni nanoparticles on the structure and mechanical properties of alumina thin films[J].Composites Part B:Engineering,2016,96:255-263.
参考文献 10
ZEMAN P,ZUZJAKOVA S,BLAZEK J,et al.Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering[J].Surface and Coatings Technology,2014,240(3):7-13.
参考文献 11
雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积 Al2O3 薄膜研究[J].无机材料学报,2002,17(4):887-890.LEI Ming kai,YUAN Li jiang,ZHANG Zhong lin.Al2O3 films deposited by plasma source enhanced magnetron sputtering[J].Journal of Inorganic Materials,2002,17(4):887-890.(in Chinese)
参考文献 12
DING Jicheng,ZHANG Tengfei,MANE R S,et al.Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering[J].Vacuum,2018,149:284-290.
参考文献 13
SCHNEIDER J M,SPROUL W D,VOEVODIN A A,et al.Crystalline alumina deposited at low temperatures by ionized magnetron sputtering[J].Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films,1997,15(3):1084-1088.
参考文献 14
LI Quan,YU Yuan-Hsin,BHATIA C S,et al.Low-temperature magnetron sputter-deposition,hardness,and electrical resistivity of amorphous and crystalline alumina thin films[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces,and Films.2000,18(5):2333-2338.
参考文献 15
KHANNA A,BHAT D G.Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering[J].Surface and Coatings Technology,2006,201(1-2):168-173.
参考文献 16
ZHANG Xiaopeng,ZHU Jiaqi,ZHANG Lixia,et al.Crystallization of alumina films deposited by reactive magnetron sputtering with re-sputtering technique at low temperature[J].Surface and Coatings Technology,2013,228:S393-S396.
参考文献 17
YANG Yuchen,TANAKA K,LIU Jason,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):053304.
参考文献 18
DANIEL L,MARTIN C,ZDENEK H.Ionization of sputtered Ti,Al,and C coupled with plasma characterization in HiPIMS[J].Plasma Sources Science and Technology,2015,24(3):35018-35028.
参考文献 19
KLUG H P,ALEXANDER L E.X-ray diffraction procedures for polycrystalline and amorphous materials[M].New York:Wiley & Sons,1974.
参考文献 20
XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.
参考文献 21
ČAPEK J,KADLEC S.Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering:experiment[J].Journal of Applied Physics,2017,121:171911.
参考文献 22
ZHOU Guangxue,WANG Liangping,WANG Xiaofeng,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.
参考文献 23
KOHARA T,TAMAGAKI H,IKARI Y,et al.Deposition of alpha-Al2O3 hard coatings by reactive magnetron sputtering[J].Surface and Coatings Technology,2004,185(2-3):166-171.
参考文献 24
SRIDHARAN M,SILLASSEN M,BOTTIGER J,et al.Pulsed DC magnetron sputtered Al2O3 films and their hardness[J].Surface and Coatings Technology,2007(202):920-924.
参考文献 25
CREMER R,WITTHAUT M,NEUSCHUTZ D,et al.Comparative characterization of alumina coatings deposited by RF,DC and pulsed reactive magnetron sputtering[J].Surface and Coatings Technology,1999(120-121):213-218.
目录contents

    摘要

    晶态氧化铝薄膜与非晶态相比,具有更加优良的力学性能和宽波段光学透过性能。基于等离子体发射光谱(OES)反馈控制方法(PEM),引入高能脉冲磁控溅射(HiPIMS)技术,实现了室温条件下晶态 γ-Al2O3薄膜的快速制备。采用高压探针、电流探针传感器和数字示波器监测 HiPIMS 的放电特性,采用等离子体发射监测器进行时间平均的 OES 研究,采用 X 射线衍射仪和扫描电镜分析薄膜的晶相结构、晶粒尺寸及断面形貌,采用纳米压痕仪测试薄膜的纳米硬度和模量。结果表明, HiPIMS 条件下的成膜环境出现大量的离子态,主要包括 AlⅡ、ArⅡ甚至高价态粒子 OⅣ参与反应。随着溅射电压由 650 V 增加至 800 V,晶粒逐渐细化,由 18 nm 减小到 8 nm,同时沉积速率从 27 nm / min 增加到 55 nm / min。基体偏压对薄膜的沉积速率,微结构以及力学性能等方面均有显著的影响。随着基体偏压的增加,γ-Al2O3 的择优取向由(422)转变为(311),薄膜在偏压 Us= −100 V 条件下获得了最高硬度 19.3 GPa。通过对成膜粒子能量的设计与调控,进一步优化了薄膜的结构和性能,为功能薄膜氧化铝的大规模产业化奠定良好的应用基础。

    Abstract

    Compared with amorphous alumina film, crystalline alumina film has better mechanical properties and wide band optical transmittance. Based on the PEM feedback control method, the HiPIMS technology is introduced to realize the rapid preparation of crystalline γ-Al2O3 films at room temperature. The discharge characteristics of HiPIMS are monitored by high voltage probe, current probe sensor and digital oscilloscope. The time-averaged OES study is carried out by plasma emission monitor. The crystal structure, grain size and cross-sectional morphology of the film are analyzed by X-ray diffractometer and scanning electron microscope. The nanohardness and modulus of the film are measured by nanoindentation instrument. The results show that a large number of ionic states appeared in the film-forming environment under HiPIMS conditions, mainly including AlII, ArII and even high-valent particle OIV participating in the reaction. With the increase of sputtering voltage from 650 V to 800 V, the grain size gradually decreases from 18 nm to 8 nm, and the deposition rate increases from 27 nm / min to 55 nm / min. The substrate bias has a significant effect on the deposition rate, microstructure and mechanical properties of the films. With the increase of substrate bias, the preferred orientation of γ-Al2O3 changes from (422) to (311), and the highest hardness of 19.3 GPa is obtained under bias Us = −100 V. Through the design and regulation of film-forming particle energy, the structure and properties of the film are further optimized, which laid a good foundation for the large-scale industrialization of functional film alumina.

  • 0 前言

  • 氧化铝(Al2O3)薄膜具有透光性、化学稳定性、绝缘性、耐高温和高硬度等优异的物理化学性能,因而在机械、光学、微电子、医学、化工等诸多领域有着广泛的应用[1-4]。晶态氧化铝薄膜与非晶态相比,具有更加优良的力学性能和宽波段光学透过性能,可以更好地用于高速切削刀具涂层[5-6]及红外窗口透明保护膜[7-8]等。采用磁控溅射方法制得的氧化铝薄膜通常呈非晶态,而为了获得晶态的氧化铝薄膜,一般需要在高于 500℃温度下采用适当的制备工艺进行沉积或者在沉积后进行高温热处理[9-11]。工艺过程中的高温环境限制了基底材料的使用类型,同时大规模工业化生产也面临着沉积温度高、过程难控制以及成本昂贵等问题,严重制约了氧化铝薄膜作为多功能复合材料的应用范围。因此,如何在较低温度下制备晶态氧化铝薄膜成为目前研究的热点。

  • 较低沉积温度下制备晶态氧化铝薄膜,国内外学者主要是采用等离子体辅助沉积技术,增加沉积粒子中的离子含量,通过基底偏压等获得较高的粒子轰击能量。DING 等[12]基于离子源辅助沉积的双极脉冲反应磁控溅射技术,在 300℃温度下制备了纳米晶氧化铝(Al2O3)薄膜。随着离子源功率的增加,薄膜的显微硬度从 7 GPa 增加到 13 GPa。 SCHNEIDER 等[13]使用射频线圈增强沉积粒子的离化程度,通过调节轰击基底表面的离子流能量,在 320℃和 180℃的低温下分别制得了含有 κ-Al2O3 和 θ-Al2O3 的氧化铝薄膜。LI 等[14]利用螺线圈在基底附近形成一个磁场,采用-400 V 的基底偏压在 250℃的低温下制得了晶态氧化铝。KHANNA等[15] 采用空心阴极磁控溅射方法,在不对基底加热的条件下制得了 γ-Al2O3,但由于溅射过程处于靶中毒模式下,沉积速率低至 0.09 nm / s。ZHANG 等[16]在薄膜制备过程中,间歇利用反溅射技术进行辅助,实现了氧化铝薄膜的低温晶化(≤300℃)。因此,等离子体辅助沉积是低温制备晶态氧化铝薄膜的有效手段,高能离子的轰击增加了表面原子的动能,促进了成膜粒子的迁移与扩散。但离子源的作用范围存在区域性,无法实现大面积的均匀成膜,同时,又显著增加了制备成本和沉积系统的复杂性。

  • 高能脉冲磁控溅射( High power impulse magnetron sputtering,HiPIMS)作为一项极具发展前途的物理气相沉积新技术,能够获得淹没性的 1019 m−3 量级的高离化率等离子体,将金属等离子体的离化率由 5 %提高到 80 %以上[17-18],使成膜粒子能量的可控性明显增加,辅以基底高脉冲偏压技术,即可实现对原子排列结构的人为有效干预,为超高性能薄膜的探索奠定良好的基础。

  • 本文基于等离子体发射光谱(Optical emission spectroscopy,OES)反馈控制方法,引入 HiPIMS 技术,实现了室温环境下氧化铝薄膜的晶态化。系统研究氧化铝薄膜生长环境下 HiPIMS 溅射靶的放电特性,以及等离子体特征参量的分布与演变;探讨基底偏压与成膜粒子轰击能量的关联,以及能量对薄膜结构及择优取向的影响规律;提出粒子能量对氧化铝薄膜晶态化生长的作用机制,进一步优化薄膜的结构和性能,为功能薄膜氧化铝的大规模产业化奠定良好的应用基础。

  • 1 试验与方法

  • 1.1 薄膜的制备

  • 采用配有 HiPIMS(HighPulse4002,Huttinger Electronic)和 DCMS(MSP-20D,Pulse Tech)电源的自主研制 PVD 设备反应溅射沉积氧化铝薄膜。工作气体为高纯度氩气(99.999 %)和氧气(99.999 %) 的混合物,溅射靶为高纯铝靶(99.999 %),尺寸为 φ76.2 mm。薄膜沉积在抛光和超声波清洗的硅片上,旋转样品架位于真空室的中心。

  • 将真空室抽真空至 1.0 mPa 的背底压力。设定基体偏压为−950 V,在工作气压 2 Pa 条件下进行氩-氢等离子体清洗 30 min,有效去除基板上的污染物和氧化层。通过调节真空室挡板阀控制总溅射气压为 0.4 Pa,进行氧化铝薄膜的制备,薄膜的制备时间为 30 min。

  • 氧化铝的反应沉积过程通过等离子体发射光谱监测反馈系统(PEM,Nava Fabrica-FlotronTM)闭环控制,动态地实时精确调整反应气体氧气的通入量。本文以阴极靶的溅射 Al 原子为监测对象,选取谱线 396 nm 处,将未开启溅射电源时的谱线强度标定为极小(0 %),开启电源但不通入氧气,溅射纯铝时的谱线强度标定为极大(100 %),然后设定该区间的任意相对强度(如 20%、30%和 40%等) 进行薄膜的沉积。整个制备过程是一个对氧气通入量不断反馈调节的动态平衡,实现了成膜粒子成分的设计与控制。详细的沉积工艺条件如表1 所示。

  • 表1 高能脉冲磁控溅射(HiPIMS)制备 Al2O3 薄膜的沉积参数

  • Table1 Deposition parameters for Al2O3 thin films by HiPIMS

  • 1.2 等离子体放电特性

  • HiPIMS 放电的电压-时间特性由高压探针 (IHVP250,泰克)检测, HiPIMS 放电的电流-时间特性由电流探针传感器(CWT1B)测量,沉积过程中的电参数波形由数字示波器(TDS1002B,泰克) 监测。为了对 HiPIMS 和 DCMS 放电中激发的中性和电离粒子进行定性分析,基于等离子体发射监测器(FT-H5,Nava Fabrica Flo,tronTM)进行了时间平均的光学发射光谱(OES)研究。信号采集器位于溅射靶的右侧,径向距离为 100 mm,法向距离为 10 mm,记录光波长范围为 200~900 nm 的发射光谱,积分时间设定为 30 ms。

  • 1.3 薄膜的结构与性能

  • 利用高分辨率场发射扫描电子显微镜(Field emission scanning electron microscope,FESEM)研究了氧化铝薄膜的横截面形貌和厚度。采用能量色散 X 射线光谱法(Energy dispersive X-ray spectrometry,EDXS)测定薄膜的化学成分。使用 X’ Pert PRO MPD 型 X 射线衍射仪的掠入射小角衍射模式 (GIXRD)对氧化铝薄膜的组织结构进行分析。此外,根据最大半高宽,通过 Debye Scherrer 公式计算了薄膜的平均晶粒尺寸[19]。采用 MTS Nano Indenter XP 型纳米压痕仪测试氧化铝薄膜的纳米硬度和弹性模量,负载精度为 50 nN,使用连续刚度模式(CSM),测试 10 次取平均。测试时的压入深度限于薄膜厚度的 1 / 10,以尽量减少基底对薄膜硬度测量的影响。

  • 2 结果与讨论

  • 2.1 HiPIMS 的放电与等离子体演变特性

  • 图1 给出了在基体偏压−75V 条件下,HiPIMS 制备氧化铝薄膜过程中的靶电压特性以及随着溅射电压变化的电流波形图。图1 中可以看出,由于电子的雪崩效应,在脉冲开始后放电电流迅速增加。与此同时,靶材表面区域大量被磁场束缚的电子因与中性粒子发生离化碰撞而产生大量热量,使靶材表面区域惰性气体膨胀,带来了靶材表面气体的“被稀释”,放电电流随即达到峰值。对于 650 V 电压时的溅射靶放电,溅射电流峰值为 75 A。随着电压进一步升高,放电的峰值电流有显著上升,在电压 800 V 时急剧增加到 135 A。

  • 图1 高能脉冲磁控溅射(HiPIMS)下溅射靶的放电特性

  • Fig.1 Discharge characteristics of sputtering target under HiPIMS

  • 进一步的,对 HiPIMS 溅射下的等离子体特性参量进行了表征,如图2 所示,表述了不同溅射技术下沉积氧化铝薄膜的等离子体种类及分布。对比可知,中频磁控溅射制备薄膜时,等离子体环境主要由成膜元素的中性粒子构成,而在 HiPIMS 溅射下,出现大量的离子态,主要包括 AlⅡ、ArⅡ甚至有氧元素的高价态粒子 OⅣ参与成膜反应。较高的离化率使得成膜粒子的能量更为可控,为低温制备晶态氧化铝薄膜提供了可能。

  • 图2 与中频磁控溅射对比 HiPIMS 技术沉积氧化铝薄膜的等离子体发射光谱图

  • Fig.2 Plasma emission spectrum of alumina film deposited by HiPIMS compared with medium frequency magnetron sputtering

  • 较大的放电电流是高能粒子增加的宏观表现,这也意味着等离子体密度的增加和高的离子中性比。事实上,溅射靶电流主要由靶面收集到的离子电流、等离子体电子电流、二次发射电子电流及位移电流组成[20]。如图3 所示,离子态成膜粒子的特征峰强度随着溅射电压的增加而增加,因此,观察到的放电电流增加归因于带电溅射粒子与高能电子之间碰撞能量及频率的增加。

  • 图3 不同 HiPIMS 溅射电压下沉积氧化铝薄膜的等离子体发射光谱图

  • Fig.3 Plasma emission spectra of alumina films deposited under different HiPIMS sputtering voltages

  • 2.2 室温制备晶态氧化铝薄膜

  • 图4 给出 Al 含量为 40%时,不同溅射电压下室温制备氧化铝薄膜的相结构。由图可以看出, XRD 图谱中只有一个相对较强的衍射峰,对应于 γ-Al2O3 的(422)晶面。研究结果表明,基于稳定的等离子体成膜环境,室温条件下采用 HiPIMS 方法可以获得晶态的 γ-Al2O3 薄膜。HiPIMS 下成膜粒子的高离化率及高能量带来沉积通量与生长薄膜之间的轰击增加,随等离子体密度增加而增强的轰击效应使得晶粒尺寸进一步减小。经计算,随着溅射电压由650 V增加至800 V,晶粒逐渐细化,由18 nm 减小到 8 nm。

  • 图4 不同 HiPIMS 溅射电压下沉积氧化铝薄膜的相结构

  • Fig.4 Phase structure of alumina films deposited under different HiPIMS sputtering voltages

  • 在不同 HiPIMS 溅射电压下沉积氧化铝薄膜的截面形貌如图5 所示。薄膜的截面结构致密光滑,没有观察到孔洞或空隙。这是由于 HiPIMS 工艺中高的离子沉积通量,促进生长薄膜表面吸附原子的迁移,显著降低柱内和柱间的孔隙率。

  • 图5 不同 HiPIMS 溅射电压下沉积氧化铝薄膜的截面形貌

  • Fig.5 Cross sectional morphology of alumina films deposited under different HiPIMS sputtering voltages

  • 表2 给出不同 HiPIMS 溅射电压下氧化铝薄膜的沉积速率。可见沉积速率随着溅射电压的增加,从 27 nm / min 增加到 55 nm / min,沉积速率的显著增加主要是由于高功率带来的高的等离子体密度及高的沉积通量。此外,基于 OES 反馈控制方法, HiPIMS 下薄膜的沉积速率较常规的中频溅射而言,没有明显的下降,反而有一定的增加。这与通常报道的 HiPIMS 技术会导致沉积速率显著下降的研究结论有显著的差别[21-22],进一步说明了本研究的先进性。

  • 表2 不同 HiPIMS 溅射电压下氧化铝薄膜的沉积速率

  • Table2 Deposition rates of alumina films under different HiPIMS sputtering voltages

  • 图6 描绘了在不同 HiPIMS 溅射电压下,室温沉积氧化铝薄膜的硬度和弹性模量。氧化铝薄膜的硬度和弹性模量均在溅射电压 700 V 时达到峰值,分别为 18.3 GPa 和 223 GPa。随着溅射电压的进一步增加,硬度和弹性模量呈下降趋势。分析原因,主要是随着等离子体密度的增加,成膜离子输运过程中的碰撞次数增加,使得高通量的等离子体能量有所下降,薄膜在快速生长的同时,缺陷也会同时增加。但当功率的增加占据较大优势时,碰撞不会造成能量的绝对降低,则不会对沉积薄膜的力学性能带来显著影响。此外,HiPIMS 技术沉积的氧化铝薄膜比传统磁控溅射沉积的薄膜获得了更高的硬度,这与薄膜晶粒的进一步细化有关。该数据与其他文献中在 300~500℃下沉积的氧化铝薄膜的性能相当[23-25],由此再次说明了该方法的先进性。

  • 图6 不同 HiPIMS 溅射电压下沉积氧化铝薄膜的硬度与模量

  • Fig.6 Hardness and modulus of alumina films deposited under different HiPIMS sputtering voltages

  • 2.3 成膜离子的能量调控

  • 采用 HiPIMS 方法制备氧化铝薄膜,在基体上施加负偏压,是对高离化的带电粒子进行有效加速、提高和改变成膜粒子轰击能量的主要方法。图7 示出了溅射靶电压 700 V 时,不同基体偏压下沉积氧化铝薄膜的等离子体发射光谱图。可以看出靶电压不变时,成膜离子的峰值无明显差异,反而 Al 原子 (310 nm;396 nm)的峰值存在一个明显的变化,随着负偏压的增加,峰值先增加后降低,在−75 V 时达到极值。

  • 图7 不同基体偏压下沉积氧化铝薄膜的等离子体发射光谱

  • Fig.7 Plasma emission spectra of alumina films deposited under different bias voltages

  • 在不同的基体偏压条件下,获得的氧化铝薄膜的相结构如图8 所示。由图可以看出,基体偏压对薄膜的结构有显著影响。当不施加基体偏压时,衍射峰强度较弱,表现为(311)和(400)取向。当偏压由−75 V 增加到−150 V 时,γ-Al2O3(422)衍射峰强度逐渐减弱,(311)和(400)衍射峰强度逐渐增加,衍射峰逐渐锐化,并在偏压 Us =−200 V 时强度达到最大。

  • 图8 不同基体偏压下沉积氧化铝薄膜的相结构

  • Fig.8 Phase structure of alumina films deposited under different bias voltages

  • 图9 给出不同基体偏压下沉积氧化铝薄膜的截面形貌。可以看出,薄膜生长致密,膜层厚度均匀,表面的平整度较好。

  • 图9 不同基体偏压下沉积氧化铝薄膜的截面形貌

  • Fig.9 Cross sectional morphology of alumina film deposited under different bias voltages

  • 由于高的离化率,HiPIMS 技术使得在基体上加载偏压能够对成膜离子有良好的导向作用。随着基体偏压的增加,成膜离子的轰击能量逐渐增强,促进表面的迁移扩散和化合作用,薄膜结构均匀致密。当基体偏压进一步增加,高能粒子对薄膜的“再溅射”作用显著增强,对晶粒的成核生长起到破坏性作用,薄膜的晶格畸变增强,缺陷增加。

  • 表3 给出不同基体偏压下氧化铝薄膜的沉积速率。可以看出,当不施加基体偏压(U = 0 V)时,薄膜的沉积速率较低,在施加偏压(Us = −75 V)后,薄膜的沉积速率有较大提高。但随着基体偏压的不断增加,薄膜的沉积速率逐渐降低,并在增加至−150 V 时达到极小值。

  • 表3 不同基体偏压下氧化铝薄膜的沉积速率

  • Table3 Deposition rate of alumina film under different bias voltages

  • 沉积速率主要由成膜速率和已沉积薄膜的溅射剥离速率共同决定,而基体偏压正是通过改变成膜速率和溅射剥离速率来影响薄膜最终的沉积速率。当在基板上加载脉冲负偏压时,等离子体中的大量成膜离子在电场的作用下被导向基体表面,显著提高了成膜速率。偏压增加的初始阶段,沉积速率的提高主要是由于偏压对成膜离子的导向作用;但随着偏压的进一步增加,成膜离子对基体表面的轰击能量逐渐增大,离子对基体表面己沉积薄膜的“再溅射”作用增强,因此,沉积速率逐渐下降。而当偏压增加至−150 V 到−200 V 时,轰击能量的进一步增加,使得“再溅射”的剥离作用显著增强,影响远远大于对成膜离子的导向作用,使沉积速率有所下降。因此,薄膜的沉积是膜层生长与二次溅射相互制约直至平衡的动力学过程。

  • 不同基体偏压下沉积氧化铝薄膜的力学特性如图10 所示。可以看出,随着基体偏压的增加,薄膜的硬度与弹性模量有着相似的变化规律,其中硬度由不施加偏压 Us = 0 V 时的 11.2 GPa 逐渐增加,在 Us =−100 V 时达到峰值 19.3 GPa,继而又有所降低。弹性模量则是由不施加偏压 Us = 0 V 时的 178.5 GPa 逐渐增加,在 Us = −100 V 时达到峰值 223.4 GPa。

  • 随着基体偏压的增加,成膜离子的轰击能量逐渐增强,并在偏压 Us = −100 V 条件下获得了最高的硬度。偏压进一步增加,高能量粒子轰击产生具有破坏性的溅射作用,内应力逐渐增加,薄膜的成膜质量显著降低,使其硬度有所下降。

  • 图10 不同基体偏压下沉积氧化铝薄膜的硬度与模量

  • Fig.10 Hardness and modulus of alumina films deposited under different bias voltages

  • 综上所述,在不同基体偏压条件下制备的氧化铝薄膜,在沉积速率、微结构以及力学性能等方面受到成膜近表面等离子体能量分布状态的显著影响。研究表明,在薄膜的生长过程中,轰击能量的增加有助于成膜粒子在表面的迁移和化合;但过高的粒子能量反而不利于薄膜的沉积,会显著增强薄膜的二次溅射过程,增加薄膜的内应力和缺陷,对薄膜的质量和性能都有不良的影响。因此,只有选择合适的轰击能量、最优的基体偏压,才能获得性能较优的氧化铝纳米晶薄膜。

  • 3 结论

  • 重点围绕室温溅射氧化铝薄膜沉积过程中成膜粒子的能量调控,在薄膜生长环境的等离子体参量演变、结构分析以及力学特性等方面开展研究,获得的主要结论归纳如下。

  • (1)与中频磁控溅射相比,在 HiPIMS 条件下的成膜环境出现大量的离子态,主要包括 AlⅡ、 ArⅡ甚至高价态粒子 OⅣ参与成膜反应,较高的离化率使成膜粒子的能量更为可控。离子态成膜粒子的特征峰强度随着溅射电压的增加而增加,放电电流也随之增加,主要归因于带电溅射粒子与高能电子之间碰撞能量及频率的增加。

  • (2)基于元素稳定的等离子体成膜环境,室温条件下采用 HiPIMS 方法成功制备晶态的 γ-Al2O3 薄膜。随着溅射电压由 650 V 增加至 800 V,晶粒逐渐细化,由 18 nm 减小到 8 nm,同时沉积速率从 27 nm / min 增加到 55 nm / min。较常规的中频溅射而言,HiPIMS 下薄膜的沉积速率没有明显的下降,进一步说明了先进性。

  • (3)基体偏压对薄膜的沉积速率、微结构以及力学性能等方面均有显著的影响,随着基体偏压的增加,沉积通量与生长薄膜之间的轰击逐渐增强, γ-Al2O3 (422)衍射峰强度逐渐减弱,(311)和(400) 衍射峰强度逐渐增加;薄膜在偏压 Us = −100 V 条件下获得了最高硬度,达到峰值 19.3 GPa。

  • 参考文献

    • [1] OLARINOYE I O,OGUNDARE F O.Optical and microstructural properties of neutron irradiated RFsputtered amorphous alumina thin films[J].Optik,2017,134:66-77.

    • [2] HANBY B V,STUART B W,GIMENO-FABRA M,et al.Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength,deposited by pulsed direct current and radio frequency magnetron sputtering[J].Applied Surface Science,2019,492:328-336.

    • [3] MARES P,KADLEC S,DUBAU M,et al.Long-term stability and disappearing anode effects during reactive DC and pulsed bipolar magnetron sputtering of Al2O3[J].Vacuum,2020,173:109161.

    • [4] HOM-ONA C,TRIROJB N,HORPRATHUMC M,et al.Hydrolysis corrosion of alumina thin films produced by pulse DC reactive magnetron sputtering at various operating pressures[J].Ceramics International,2021,47:9691-9700.

    • [5] NAYAR P,KHANNA A,KABIRAJ D,et al.Structural,optical and mechanical properties of amorphous and crystalline alumina thin films[J].Thin Solid Films,2014,568:19-24.

    • [6] 程奕天,邱万奇,周克崧等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al+ α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)

    • [7] PEARCE S J,CHARLTON M D B,HILTUNEN J,et al.Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications[J].Surface and Coatings Technology,2012,206(23):4930-4939.

    • [8] MA Chao,ZHAO Changjiang,FAN Xiaowei,et al.Preparation of non-stoichiometric Al2O3 film with broadband antireflective by magnetron sputtering[J].Chemical Physics Letters,2021,764:138299.

    • [9] NERALLA S,KOTOKA R,FIALKOVA S,et al.Effect of Fe and Ni nanoparticles on the structure and mechanical properties of alumina thin films[J].Composites Part B:Engineering,2016,96:255-263.

    • [10] ZEMAN P,ZUZJAKOVA S,BLAZEK J,et al.Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering[J].Surface and Coatings Technology,2014,240(3):7-13.

    • [11] 雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积 Al2O3 薄膜研究[J].无机材料学报,2002,17(4):887-890.LEI Ming kai,YUAN Li jiang,ZHANG Zhong lin.Al2O3 films deposited by plasma source enhanced magnetron sputtering[J].Journal of Inorganic Materials,2002,17(4):887-890.(in Chinese)

    • [12] DING Jicheng,ZHANG Tengfei,MANE R S,et al.Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering[J].Vacuum,2018,149:284-290.

    • [13] SCHNEIDER J M,SPROUL W D,VOEVODIN A A,et al.Crystalline alumina deposited at low temperatures by ionized magnetron sputtering[J].Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films,1997,15(3):1084-1088.

    • [14] LI Quan,YU Yuan-Hsin,BHATIA C S,et al.Low-temperature magnetron sputter-deposition,hardness,and electrical resistivity of amorphous and crystalline alumina thin films[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces,and Films.2000,18(5):2333-2338.

    • [15] KHANNA A,BHAT D G.Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering[J].Surface and Coatings Technology,2006,201(1-2):168-173.

    • [16] ZHANG Xiaopeng,ZHU Jiaqi,ZHANG Lixia,et al.Crystallization of alumina films deposited by reactive magnetron sputtering with re-sputtering technique at low temperature[J].Surface and Coatings Technology,2013,228:S393-S396.

    • [17] YANG Yuchen,TANAKA K,LIU Jason,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):053304.

    • [18] DANIEL L,MARTIN C,ZDENEK H.Ionization of sputtered Ti,Al,and C coupled with plasma characterization in HiPIMS[J].Plasma Sources Science and Technology,2015,24(3):35018-35028.

    • [19] KLUG H P,ALEXANDER L E.X-ray diffraction procedures for polycrystalline and amorphous materials[M].New York:Wiley & Sons,1974.

    • [20] XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [21] ČAPEK J,KADLEC S.Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering:experiment[J].Journal of Applied Physics,2017,121:171911.

    • [22] ZHOU Guangxue,WANG Liangping,WANG Xiaofeng,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.

    • [23] KOHARA T,TAMAGAKI H,IKARI Y,et al.Deposition of alpha-Al2O3 hard coatings by reactive magnetron sputtering[J].Surface and Coatings Technology,2004,185(2-3):166-171.

    • [24] SRIDHARAN M,SILLASSEN M,BOTTIGER J,et al.Pulsed DC magnetron sputtered Al2O3 films and their hardness[J].Surface and Coatings Technology,2007(202):920-924.

    • [25] CREMER R,WITTHAUT M,NEUSCHUTZ D,et al.Comparative characterization of alumina coatings deposited by RF,DC and pulsed reactive magnetron sputtering[J].Surface and Coatings Technology,1999(120-121):213-218.

  • 参考文献

    • [1] OLARINOYE I O,OGUNDARE F O.Optical and microstructural properties of neutron irradiated RFsputtered amorphous alumina thin films[J].Optik,2017,134:66-77.

    • [2] HANBY B V,STUART B W,GIMENO-FABRA M,et al.Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength,deposited by pulsed direct current and radio frequency magnetron sputtering[J].Applied Surface Science,2019,492:328-336.

    • [3] MARES P,KADLEC S,DUBAU M,et al.Long-term stability and disappearing anode effects during reactive DC and pulsed bipolar magnetron sputtering of Al2O3[J].Vacuum,2020,173:109161.

    • [4] HOM-ONA C,TRIROJB N,HORPRATHUMC M,et al.Hydrolysis corrosion of alumina thin films produced by pulse DC reactive magnetron sputtering at various operating pressures[J].Ceramics International,2021,47:9691-9700.

    • [5] NAYAR P,KHANNA A,KABIRAJ D,et al.Structural,optical and mechanical properties of amorphous and crystalline alumina thin films[J].Thin Solid Films,2014,568:19-24.

    • [6] 程奕天,邱万奇,周克崧等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering Al+ α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)

    • [7] PEARCE S J,CHARLTON M D B,HILTUNEN J,et al.Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications[J].Surface and Coatings Technology,2012,206(23):4930-4939.

    • [8] MA Chao,ZHAO Changjiang,FAN Xiaowei,et al.Preparation of non-stoichiometric Al2O3 film with broadband antireflective by magnetron sputtering[J].Chemical Physics Letters,2021,764:138299.

    • [9] NERALLA S,KOTOKA R,FIALKOVA S,et al.Effect of Fe and Ni nanoparticles on the structure and mechanical properties of alumina thin films[J].Composites Part B:Engineering,2016,96:255-263.

    • [10] ZEMAN P,ZUZJAKOVA S,BLAZEK J,et al.Thermally activated transformations in metastable alumina coatings prepared by magnetron sputtering[J].Surface and Coatings Technology,2014,240(3):7-13.

    • [11] 雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积 Al2O3 薄膜研究[J].无机材料学报,2002,17(4):887-890.LEI Ming kai,YUAN Li jiang,ZHANG Zhong lin.Al2O3 films deposited by plasma source enhanced magnetron sputtering[J].Journal of Inorganic Materials,2002,17(4):887-890.(in Chinese)

    • [12] DING Jicheng,ZHANG Tengfei,MANE R S,et al.Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering[J].Vacuum,2018,149:284-290.

    • [13] SCHNEIDER J M,SPROUL W D,VOEVODIN A A,et al.Crystalline alumina deposited at low temperatures by ionized magnetron sputtering[J].Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films,1997,15(3):1084-1088.

    • [14] LI Quan,YU Yuan-Hsin,BHATIA C S,et al.Low-temperature magnetron sputter-deposition,hardness,and electrical resistivity of amorphous and crystalline alumina thin films[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces,and Films.2000,18(5):2333-2338.

    • [15] KHANNA A,BHAT D G.Nanocrystalline gamma alumina coatings by inverted cylindrical magnetron sputtering[J].Surface and Coatings Technology,2006,201(1-2):168-173.

    • [16] ZHANG Xiaopeng,ZHU Jiaqi,ZHANG Lixia,et al.Crystallization of alumina films deposited by reactive magnetron sputtering with re-sputtering technique at low temperature[J].Surface and Coatings Technology,2013,228:S393-S396.

    • [17] YANG Yuchen,TANAKA K,LIU Jason,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):053304.

    • [18] DANIEL L,MARTIN C,ZDENEK H.Ionization of sputtered Ti,Al,and C coupled with plasma characterization in HiPIMS[J].Plasma Sources Science and Technology,2015,24(3):35018-35028.

    • [19] KLUG H P,ALEXANDER L E.X-ray diffraction procedures for polycrystalline and amorphous materials[M].New York:Wiley & Sons,1974.

    • [20] XU Yi,LI Liuhe,LUO Sida,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [21] ČAPEK J,KADLEC S.Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering:experiment[J].Journal of Applied Physics,2017,121:171911.

    • [22] ZHOU Guangxue,WANG Liangping,WANG Xiaofeng,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.

    • [23] KOHARA T,TAMAGAKI H,IKARI Y,et al.Deposition of alpha-Al2O3 hard coatings by reactive magnetron sputtering[J].Surface and Coatings Technology,2004,185(2-3):166-171.

    • [24] SRIDHARAN M,SILLASSEN M,BOTTIGER J,et al.Pulsed DC magnetron sputtered Al2O3 films and their hardness[J].Surface and Coatings Technology,2007(202):920-924.

    • [25] CREMER R,WITTHAUT M,NEUSCHUTZ D,et al.Comparative characterization of alumina coatings deposited by RF,DC and pulsed reactive magnetron sputtering[J].Surface and Coatings Technology,1999(120-121):213-218.

  • 手机扫一扫看