en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周定伟,男,1996年出生。主要研究方向为金属材料表面改性。E-mail:zhoudingwei@nimte.ac.cn

通讯作者:

汪爱英,女,1975年出生,博士,研究员,博士研究生导师。主要研究方向为表面强化防护涂层与功能改性研究。E-mail:aywang@nimte.ac.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20220104004

参考文献 1
BARSOUM M W.The M(N+1)AX(N) phases:A new class of solids thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.
参考文献 2
SOKOL M,NATU V,KOTA S,et al.On the chemical diversity of the MAX phases[J].Trends in Chemistry,2019,1(2):210-223.
参考文献 3
SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.
参考文献 4
NAGUIB M,MOCHALIN V N,BARSOUM M W,et al.MXenes:A new family of two-dimensional materials[J].Advanced Materials,2014,26(7):992-1005.
参考文献 5
EKLUND P,BECKERS M,JANSSON U,et al.The M(n+1)AX(n) phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.
参考文献 6
EKLUND P,ROSEN J,PERSSON P O Å.Layered ternary M n +1AX n phases and their 2D derivative MXene:An overview from a thin-film perspective[J].Journal of Physics D:Applied Physics,2017,50(11):113001.
参考文献 7
MICHAËL O,ALEXANDRE M,FERNANDO L,et al.High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy[J].Journal of Nuclear Materials,2020,528:151855.
参考文献 8
ZHANG Z,LIM S H,CHAI J,et al.Plasma spray of Ti2AlC MAX phase powders:Effects of process parameters on coatings' properties[J].Surface and Coatings Technology,2017,325:429-436.
参考文献 9
ZHANG T F,XIA Q,WAN Z,et al.Microstructures and properties of amorphous,polycrystalline,and Mn+1AXn phase Ti-Al-N films synthesized from an Mn+1AXn phase Ti2AlN compound target[J].Ceramics International,2019,45(3):3940-3947.
参考文献 10
WANG Z Y,LIU J Z,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.
参考文献 11
DE H,BABEN M T,HALLSTEDT B,et al.Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 °C[J].Surface & Coatings Technology,2011,206(4):591-598.
参考文献 12
王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influence of N2 flow rate on the structure and mechanical properties of TiSiN coatings prepared by HIPIMS method [J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)
参考文献 13
REOLON L W,AGUIRRE M H,YAMAMOTO K,et al.A comprehensive study of Al0.6Ti0.4N coatings deposited by cathodic arc and HiPIMS PVD methods in relation to their cutting performance during the machining of an inconel 718 alloy[J].Coatings,2021,11(6):723.
参考文献 14
LI C,TIAN X,GONG C,et al.Electric and magnetic fields synergistically enhancing high power impulse magnetron sputtering deposition of vanadium coatings[J].Vacuum,2017,144:125-134.
参考文献 15
REED A N,LANGE M A,MURATORE C,et al.Pressure effects on HiPIMS deposition of hafnium films[J].Surface & Coatings Technology,2012,206(18):3795-3802.
参考文献 16
BOBZIN K,BAGCIVAN N,IMMICH P,et al.Mechanical properties and oxidation behaviour of(Al,Cr)N and(Al,Cr,Si)N coatings for cutting tools deposited by HPPMS[J].Thin Solid Films,2008,517(3):1251-1256.
参考文献 17
MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.
参考文献 18
WANG Z Y,ZHANG D,KE P L,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].Journal of Materials Science & Technology,2015,31(1):37-42.
参考文献 19
YANG W J,WANG W L,LIN Y H,et al.Effect of target-substrate distance on the quality of AlN films grown on Si(110)substrates by pulsed laser deposition[J].Materials Letters,2015,160:20-30.
参考文献 20
王国宁,杨宇,孔令德,等.溅射功率和气压对CdTe薄膜结晶性的影响[J].硅酸盐通报,2007(4):715-719.WANG Guoning,YANG Yu,KONG Lingde,et al.The influence of sputtering power and pressure on CdTe film’s crystallinity [J].Bulletin of the Chinese Ceramic Society,2007(4):715-719.(in Chinese)
参考文献 21
王玲.W18Cr4V 高速钢基体金刚石薄膜的研究[D].长沙:中南大学,2011.WANG Ling.Research on diamond film on W18Cr4V high-speed steel substrate [D].Changsha:Central South University,2011.(in Chinese)
参考文献 22
李文涛,王振玉,张栋,等.电弧复合磁控溅射结合热退火制备 Ti2AlC 涂层[J].金属学报,2019,55(5):647-656.LI Wentao,WANG Zhenyu,ZHANG Dong,et al.Preparation of Ti2AlC coating by the combination of a hybrid cathode arc/magnetron sputtering with post-annealing[J].Acta Metallurgica Sinica,2019,55(5):647-656.(in Chinese)
参考文献 23
WANG Z Y,LI W T,LIU Y R,et al.Diffusion-controlled intercalation approach to synthesize the Ti2AlC MAX phase coatings at low temperature of 550 ℃[J].Applied Surface Science,2020,502:144130.
参考文献 24
BARSOUM M W,ALI M,EL-RAGHY T.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials transactions A-Physical Metallurgy and Materials Science,2000,31(7):1857-1865.
参考文献 25
PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC max phase thin films by low-rate layer-by-layer PVD[J].Materials Research letters,2019,7(6):244-250.
参考文献 26
BAI Y L,HE X D,ZHU C C,et al.Microstructures,electrical,thermal,and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the American Ceramic Society,2012,95(1):358-364.
参考文献 27
BARSOUM M W,BRODKIN D,EL-RAGHY T.Layered machinable ceramics for high temperature applications[J].Scripta Materialia,1997,36(5):535-541.
参考文献 28
FRODELIUS J,SONESTEDT M,BJRKLUND S,et al.Ti2AlC coatings deposited by high velocity oxy-fuel spraying[J].Surface and Coatings Technology,2008,202(24):5976-5981.
参考文献 29
LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi-scale tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface and Coatings Technology,2018,334:384-393.
目录contents

    摘要

    Ti2AlC MAX 相涂层是一类兼具金属和陶瓷特性的具有密排六方结构的高性能陶瓷涂层,在电接触、高温防护、宽温域摩擦等领域具有广阔的应用前景。然而 MAX 相涂层的成相成分窗口窄,性能受杂质相影响大,实现高纯、致密 Ti2AlC MAX 相涂层的制备目前仍存在挑战。考虑沉积气压与溅射等离子体能量密切相关,采用高功率脉冲复合直流磁控溅射技术在钛合金基体上制备了 TiAl / Ti-Al-C 涂层,经后续热处理退火得到高纯 Ti2AlC MAX 相涂层,重点研究不同沉积气压对涂层退火前后的成分、微观结构以及力学性能的影响和作用机制。结果表明,随着气压不断增大,沉积态涂层厚度先增加后减少。其中低沉积气压下沉积态涂层退火后,结构中除了 Ti2AlC MAX 相外,还含有一定量杂质相;而在高气压下沉积态涂层退火后几乎全部转变为 Ti2AlC MAX 相,呈现高纯、表面光滑致密的 MAX 相涂层特征。相较于沉积态涂层,退火后的涂层硬度变化不大,但由于生成了 Ti2AlC MAX 相,涂层弹性模量有所提高。

    Abstract

    Ti2AlC MAX phase coating is a kind of high-performance ceramic coating with dense hexagonal structure, which benefits the combined superior properties from metals and ceramics and the promising applications in electric contact, high temperature protection etc. However, due to the narrow formation and the high deposition temperature of MAX phase, it is still an open challenge to realize the Ti2AlC MAX phase coating with high purity and dense structure. Therefore, the TiAl / Ti-Al-C coating is firstly deposited on titanium alloy substrate by a home-made high-power pulsed magnetron sputtering technology, where the subsequent heat treatment is performed to fabricate the high-purity Ti2AlC MAX phase coating. In particularly, the composition, structure and mechanical properties of the Ti2AlC MAX phase coating is investigated as a function of working pressure during deposition. The results show that increasing the pressure lead to the first increase and then the decrease of deposited coating thickness. After annealing, the coating obtained under low deposition pressure except Ti2AlC MAX phase, the structure also contains a certain amount of impurity phase. However, the coating prepared under high deposition pressure presents the high purity Ti2AlC MAX phase and the compact smooth surface after annealing. Note that the hardness of coating is slightly deteriorated after annealing, while the elastic modulus is improved due to the laminar structural formation of Ti2AlC MAX phase coatings.

  • 0 前言

  • Mn+1AXn相(其中 n=1、2 或 3,简称 MAX 相) 是一类具有层状密排六方晶体结构的三元碳化物和氮化物材料。其中“M”是一种前过渡金属,IIIA 或 IVA 和“X”的元素是碳或氮(例如 Ti2AlC、Ti3SiC2 和 Ti4AlN3[1-3]。自 MAX 相被提出以来,独特的层状结构和成键特征使其兼具金属和陶瓷的性质,如可逆的位错变形、高比刚度、可加工性,以及优良的导热率和导电率等而备受关注,在热屏障、电接触、高温防护涂层和高温加热元件等领域有着较大应用潜力。此外,MAX 相还可在摩擦过程中生成具有润滑作用的氧化物而具有低摩擦特性[4-6]。近年来 MAX 相家族成员不断增多,目前已达 100 多种。在众多 211 材料体系中,Ti2AlC 密度最低(4.11 g / cm3),无论是以涂层还是块体材料存在,在中 / 高温应用中均可以形成致密 Al2O3保护层,表现出优异的氧化腐蚀性能,是目前 MAX 相材料的研究热点体系[7]

  • Ti2AlC 涂层多以电弧、热喷涂、冷喷涂等技术得到,但喷涂等技术制备的涂层表面粗糙,结构疏松,这些缺陷为腐蚀离子提供了快速扩散通道;并且涂层相纯度低[8],存在较多杂相,易引发电偶腐蚀,进而降低涂层在实际应用过程中的氧化 / 腐蚀寿命。电弧离子镀沉积效率高,沉积涂层致密且一般无柱状晶存在,是工业化首选物理气相沉积技术 (Physical vapor deposition,PVD)。但现阶段电弧法在制备 MAX 相(A=Al)涂层时,基本选用 MAX 相复合靶[9]或 M-A1 金属间化合物靶,MAX 相复合靶加工困难,大大降低 MAX 相涂层应用经济性; 且采用单一电弧法结合后续热处理制备的 MAX 相 (A=A1)涂层的表面大颗粒较多[10],孔洞和微裂纹等缺陷不利于 MAX 相涂层的应用。因此,发展新型制备技术,实现表面光滑、结构致密、相纯度较高的 Ti2AlC 涂层可控制备尤为迫切。

  • 高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)是近年来发展起来的一种新型物理气相沉积技术,原理是在一个脉冲周期内,短时间施加一个高的脉冲峰值功率密度 (1~3 kW / cm2,约为传统直流磁控溅射技术的 2~3 个数量级)[11-12],从而获得高的离化率和等离子体密度,这有助于调控涂层微结构,促进吸附原子在涂层表面的迁移扩散,进而减小涂层微结构缺陷,增加涂层致密性,提高涂层防护性能,已成为未来PVD 涂层沉积的重要手段[13-16]。结合 MAX 相涂层在航空航天、核电等领域的高性能长寿命服役需求,采用 HiPIMS 技术实现高纯致密且表面光滑的 Ti2AlC MAX 相涂层,有望解决当前 MAX 相涂层领域的上述关键问题。

  • 偏压和气压等沉积工艺参数直接影响 HiPIMS 制备涂层中溅射粒子的能量,进而决定涂层组分、结构和性能。迄今,国内外研究主要集中在偏压上,如 MA 等[17]研究偏压对 HiPIMS 沉积 TiAlSiN 涂层结构和性能影响时,发现随着偏压的增大,涂层择优取向由(220)向(200)转变,表面粗糙度和晶粒尺寸由 14.1 nm 和 10.5 nm 降低至 10.5 nm 和 7.4 nm,涂层硬度由 30 GPa 增大至 42 GPa。WANG 等[18]研究偏压-50~-400 V 对 TiN 涂层沉积速率、结构和性能的影响,结果发现,由于涂层结构致密化和反溅射作用增强,随偏压增大,涂层沉积速率单调递减,在偏压−300 V 时获得了最低的表面粗糙度、结合力和硬度。与偏压相比,关于沉积气压对沉积涂层影响的研究较少[19]。尤其是对于 MAX 相而言,成相成分窗口窄,相纯度与气压关系密切,迄今为止,与之相关文献报道较少。

  • 因此,本文采用 HiPIMS 复合直流磁控溅射(DC magnetron sputtering,DCMS)双靶溅射系统,在 Ar 气氛围下溅射高纯碳靶和 TiAl 合金靶。首先在钛合金基体上制备 TiAl 过渡层,其次沉积 Ti-Al-C 的涂层,镀膜过程中改变溅射气压(0.4~1.0 Pa),经退火后得到表面光滑且结构致密的MAX相涂层。通过对比不同气压下涂层厚度和元素组成,探讨气压对涂层沉积速度以及溅射原子数量的影响,进而分析元素比对于获得高纯 MAX 相的影响。

  • 1 材料与方法

  • 1.1 涂层的制备

  • HiPIMS 复合直流磁控溅射(DCMS)双靶沉积系统示意图如图1 所示,溅射电源为(德国,MELEC SPIK 3000 A),通过控制靶功率密度保证靶材的粒子溅射速率,设定恒定的偏压保证离子稳定沉积。溅射靶材选用纯度为 99.9%的 TiAl 合金靶(Ti∶ Al=1∶1;原子百分比)和纯度为 99.99%的高纯碳靶,尺寸均为φ50.8 mm×5 mm,其中,HiPIMS 电源与 TiAl 合金靶相连,DCMS 和高纯碳靶相连。基体材料选择单晶 Si 和 TC4(Ti6Al4V),镀膜前将钛合金基体样品用砂纸打磨抛光至镜面,然后将单晶 Si 和 TC4 样品依次放在丙酮、酒精中清洗 10 min,去除表面的可溶性杂质,干燥后用导电胶固定样品于基架上放置在溅射靶下方,靶基距设置为 7 cm。待腔体真空度达到 1.0 mPa 时,加热至 400℃,待真空度达到 2.0 mPa 以下,关闭加热。在涂层沉积之前,先通入标况下 50 cm3 / min 的 Ar 气,腔体压力控制在 2.0 Pa,给基体施加−400 V 脉冲偏压,产生辉光等离子体,通过 Ar 离子刻蚀清洗样品 30 min;其次,为保证涂层与基体具有较好的结合力,同时保证退火时涂层的相纯度,在基体引入 TiAl 过渡层,沉积时间为 30 min,厚度为 200±50 nm; 最后,在 TiAl 过渡层上镀 Ti-Al-C 涂层,沉积时间为 6 h,厚度为 4±0.5 µm。经后续 700℃退火处理得到MAX相涂层。其中,沉积TiAl过渡层和Ti-Al-C 层时施加−100 V 的脉冲偏压。脉冲偏压电源的频率为 350 kHz,占空比为 61.4%。沉积 TiAl 和 Ti-Al-C 涂层的沉积参数为Ar气流量为标况下20 cm3 / min,工作气压分别控制为 0.4 Pa、0.5 Pa、0.7 Pa、1.0 Pa。 HiPIMS 电源占空比设置为 5%,频率为 1 kHz,脉宽为 50 µs;沉积 Ti-Al-C 层时的连接碳靶的直流电源功率为 40 W。为了保证试验结果的准确性,除了工作气压,其他试验参数保持不变,具体试验参数如表1 所示。为了使沉积的涂层形成 MAX 相,对 TiAl / Ti-Al-C 涂层进行退火处理,退火温度为 700℃,退火时间 90 min,真空度为 2.0 mPa。

  • 图1 涂层沉积设备示意图

  • Fig.1 Diagram of coating deposition equipment

  • 表1 涂层沉积参数

  • Table1 The coating deposition parameters

  • 1.2 表征分析

  • 采用 FEI Quanta FEG 250 热场发射扫描电镜自带的能谱分析仪和 S4800 冷场发射扫描电镜,分别对样品进行元素组成分析和涂层的表面形貌观察; 采用 D8 Discover 高功率转靶多晶 X 射线衍射仪 90WEI 对涂层的相结构进行表征。其中,靶材选用 CuKα 靶,扫描角度为 5°~90°;采用 Dimension 3100 扫描探针显微镜对样品进行表面三维立体形貌和表面粗糙度分析;采用 Talos F200x 透射电子显微镜分析涂层内部显微结构;涂层的纳米硬度以及弹性模量采用 G200 纳米压痕仪利用动态实时加载卸载模式,压入深度为 500 nm,为了降低试验误差对测量结果的影响,硬度和弹性模量数值取涂层 6 个测点的平均值。

  • 2 结果与讨论

  • 2.1 沉积态涂层的结构与性能

  • 2.1.1 TiAl / Ti-Al-C 涂层的沉积速率

  • 如图2 所示,通过对不同气压下沉积在硅片表面的涂层进行截面形貌观察,可以看到,涂层呈明显两层结构,即 TiAl 过渡层和 Ti-Al-C 涂层。在低气压下(0.4~0.7 Pa),Ti-Al-C 层呈无明显特征的致密结构;在气压达 1.0 Pa 时,涂层呈柱状晶生长。分析原因是,涂层在低气压下沉积粒子的能量较高,在基体表面有足够的扩散迁移能力,涂层更倾向于形成等轴晶结构;但是,随着气压的增大,气体分子的平均自由程减小,沉积粒子碰撞几率增加,能量损失严重,在基体表面来不及扩散,呈柱状晶结构生长。随着气压的增大,沉积态 Ti-Al-C 涂层的厚度呈现先增加后降低的趋势。这是由于在较低气压时,气体数量少,靶材表面的溅射出的粒子数量少,等离子体密度低,涂层厚度较薄; 随着气压的不断增大,气体数量增多,相应的腔体内部靶材溅射原子也增多,涂层厚度逐渐增加; 当气压逐渐升到较高气压时,腔体内的气体数量增多,靶材溅射出的粒子数量也增多,但是原子在到达基体表面的过程中的有效碰撞次数增多,离子能量降低,到达且沉积到基体上的数量减少,涂层厚度降低[20]。因此,涂层厚度呈现这种类抛物线的趋势。涂层的沉积速率亦呈现先增大后降低的趋势。

  • 图2 不同沉积气压下的涂层截面形貌

  • Fig.2 Section morphology of coating under different deposition pressure

  • 2.1.2 表面形貌与原子百分比

  • 图3 给出了不同气压下沉积的 TiAl / Ti-Al-C 涂层表面形貌,由图3 可知,利用 HiPIMS 技术制备得到的涂层表面光滑,无明显的大颗粒缺陷,呈 “菜花状”团簇结构,相较于低气压的涂层,0.7 Pa 和 1.0 Pa 的涂层团簇更为细小,这是由于低气压下反应室内气体粒子的数量较少,从靶材中溅射出的离子或原子数量少,粒子对基体碰撞和扩散迁移能力较强,导致局部区域晶粒优先形核长大,容易出现团聚现象[21],因此,较低气压下的涂层晶粒较大。能谱仪(EDS)结果显示,与其他气压相比,在 0.4 Pa 气压下沉积的涂层,原子比例偏差较大,尤其是 Al 和 C 元素,这是由于 Al 元素和 C 元素的原子质量较小,在低气压下,原子受粒子轰击作用较强,质量较小的原子容易与质量较大的粒子发生碰撞而逸出等离子体均匀区,从而导致涂层中原子质量较小的原子比例降低。随着气压的增大,靶材溅射产额增多,尽管也会发生碰撞,但是概率大大减小,因此,质量较小的原子比例增加。从表2 可以看到,随着气压从 0.4 Pa 逐渐升高,Al 和 C 原子的比例也逐渐趋于稳定,Ti、Al 和 C 的整体比例趋于 4∶3∶2。

  • 图3 不同气压下的沉积态涂层的表面形貌

  • Fig.3 The surface morphology of the deposited coating under different air pressures

  • 表2 不同气压下沉积态涂层的原子百分比(at.%)

  • Table2 Element ratio of the deposited coating at different air pressures (at.%)

  • 图4表示不同沉积气压下的涂层经SPM观测到的涂层表面三维立体形貌及表面粗糙度值。由图4 可知,不同沉积气压下的 TiAl / Ti-Al-C 涂层的表面颗粒形貌以及表面粗糙度差异不大,表面粗糙度 Ra 在 9.06~10.8 nm 之间变化,表明涂层整体具有较好的表面光滑性,这得益于 HiPIMS 技术良好的抑弧能力,有效抑制因DCMS打弧而引入的大颗粒缺陷。但进一步分析发现,相较于高气压,低气压下的涂层的表面粗糙度相对较大,这与图3 所得的涂层表面形貌结果一致。较高气压下的涂层的表面更加光滑致密,形成上述结果的原因在于低气压下沉积时容易出现团聚现象,从而导致表面粗糙度增大[21],并且低气压下气体的平均自由程较大,对沉积涂层的轰击作用较强[20]

  • 图4 不同沉积气压的涂层的 AFM 图

  • Fig.4 AFM diagram of coatings at different deposition pressures

  • 2.2 涂层退火态的结构与性能

  • 2.2.1 晶体结构

  • 图5 为经相同退火参数得到的涂层的 XRD 图谱,可以看到,随着气压的增大,涂层退火后 Ti2AlC MAX 相的衍射峰增多,杂相逐渐减少,说明涂层中 MAX 相的纯度逐渐增加,当气压超过 0.7 Pa 时,涂层的相几乎无明显的变化,此时为纯度近 100%的 Ti2AlC MAX 相,这可能是与涂层中的各原子比例有关。从表2 中也可以看到,随着气压的增大,涂层中原子百分比逐渐趋于一个稳定的值,此时 Ti∶C 原子比接近 2∶1,相比于 Ti2AlC 化学式的 Ti∶Al∶C 理想原子计量比 2∶1∶1,Al 过量。有研究表明[22],沉积态涂层中适当过量的 Al 有利于获得更纯的 Ti2AlC MAX 相。为了了解退火对涂层中的元素比例的影响,对退火后的样品进行 EDS 分析。如表3 所示,经退火后不同沉积气压的涂层中的 Al 原子比发生明显的减小,这是由于 Al 的熔点较低,并具有较高的饱和蒸气压,元素在高温退火时会发生扩散和挥发[23]。所以,在退火过程中,Al 元素向浓度低的表面扩散,从而导致涂层中的 Al 原子比例下降。本文中,为了保证涂层中的相纯度,率先在 TC4 基体表面沉积一层 TiAl 过渡层,在保证良好的膜基结合力的同时,可以尽可能减少退火过程中Ti-Al-C涂层中的Al向基体方向扩散,从而使涂层的原子比趋于某一范围,以保证涂层中 MAX 相纯度。

  • 图5 不同气压的涂层退火后的 XRD 图谱

  • Fig.5 Coating XRD patterns after annealing at different pressure

  • 表3 不同气压下退火态涂层的原子百分比(at.%)

  • Table3 Element proportion of annealed coating at different air pressures (at.%)

  • 2.2.2 表面形貌

  • 图6 示出了不同气压下热处理退火后的样品表面形貌。由图发现,较低气压下,经退火处理后的样品表面存在微裂纹缺陷,这是由于在低气压下沉积时,涂层容易形成团聚[24],退火过程中,涂层发生再结晶,使得涂层中的原有的压应力得到释放,并且涂层结晶过程中伴随着体积收缩,应力状态转变为拉应力,从而导致涂层表面出现微裂纹。随着气压的增大,沉积涂层中的团聚现象减少,甚至消失,涂层表面更加光滑,得到的涂层内应力较小,在退火时形成的拉应力较小,因此,较高气压的涂层没有产生裂纹缺陷,并且从其高倍图(图6e、 6f、6g、6h)也可以看到相较于低气压下的样品,经退火后晶粒较大,甚至有明显的团聚,而高气压下的样品退火后晶粒尺寸更小,无明显的团聚现象。

  • 图6 不同沉积气压下退火态样品表面形貌

  • Fig.6 Surface morphology of the annealed samples under different deposition pressures

  • 2.2.3 TEM 微结构

  • 图7 所示为 0.7 Pa 气压下沉积经退火得到的 Ti2AlC 涂层 TEM 微结构图谱。由图7a 可知,退火后的 TEM 截面形貌呈等轴晶分布,与沉积态涂层截面形貌一致(图2c),非柱状晶结构,涂层结构致密,无明显的孔洞存在。对涂层进一步高分辨分析(图7b),发现 MAX 相的典型层状结构特征,因为 Ti2AlC 是一层 Al 和两层 Ti 原子沿(000l)方向交替排列的具有 P63 / mmc 空间群的六方结构。图7b 左上角插图为图中方框区域的 Fourier 变化图,可以更加清楚看出沿(0001)晶面生长的 Ti2AlC 相的纳米层状结构,其晶胞参数 c 为 1.36 nm,与理论数值一致,这进一步证明了所得到的涂层为 Ti2AlC MAX 相涂层。

  • 图7 在 0.7 Pa 气压下沉积经退火得到的 Ti2AlC 涂层 TEM 微结构图谱

  • Fig.7 TEM microstructure map of Ti2AlC coating deposited and annealed at 0.7 Pa pressure

  • 2.2.4 力学性能

  • 通过对比沉积态和退火态的涂层样品的力学性能可以发现,如图8 所示,相较于沉积态的涂层样品,经退火后的涂层的力学性能发生了明显的变化,沉积态的涂层硬度在 8.55~12.57 GPa 变化,弹性模量在 154.03~189.98 GPa 变化。其中以 0.7 Pa 的涂层的硬度和弹性模量最低,分别为 8.55 GPa 和 154.03 GPa。经退火后,除了 0.7 Pa 的样品,其他沉积气压下的涂层硬度都降低,弹性模量提高,这可能是由于在退火过程中涂层中的内应力释放,从而导致涂层硬度降低,而 MAX 相是一种高弹性的密排六方结构,因此,当涂层中有 MAX 相形成时,弹性模量增强。退火态的涂层硬度在 10.83~11.56 GPa 变化,弹性模量的变化范围为 206.80~211.54 GPa。相较于沉积态涂层,0.7 Pa 的沉积气压下得到的样品硬度得到提高,为 11.56 GPa,硬度值与文献报道的硬度值范围相同[24-29]。这可能是由于经退火后的涂层中 MAX 相含量增加,力学性能增强;从图9 的动态加载曲线也可以看到,0.7 Pa 的沉积气压下,相较于沉积态涂层,退火态涂层在相同载荷下的压入深度更低,说明退火态涂层的硬度优于沉积态涂层。

  • 图8 涂层的力学性能

  • Fig.8 Mechanical properties of coatings

  • 图9 0.7 Pa 沉积气压下涂层沉积态和退火态的动态加载曲线

  • Fig.9 Dynamic loading curves of deposited and annealed coatings at 0.7 Pa deposition pressure

  • 3 结论

  • 对比研究了不同的沉积气压(Ar 气压分别为0.4 Pa、0.5 Pa、0.7 Pa、1.0 Pa)对于涂层沉积速率、表截面形貌、粗糙度及相结构,以及退火后的 Ti2AlC MAX 相纯度及性能的影响。研究结果表明:

  • (1)随着气压的不断增大,涂层厚度先增加后减少,涂层沉积速度先增大后减少。

  • (2)在 0.4 Pa 和 0.5 Pa 沉积气压下得到的涂层,经退火后涂层表面出现微裂纹,得到了含有一定杂质相的 MAX 相涂层。在 0.7 Pa 和 1.0 Pa 沉积气压下得到的涂层,经退火后涂层表面光滑致密,得到了高纯的 Ti2AlC MAX 相涂层。

  • (3)退火后沉积态涂层应力释放,涂层发生元素扩散和再结晶,生成了 Ti2AlC MAX 相,涂层的硬度有所降低,弹性模量提高。

  • 参考文献

    • [1] BARSOUM M W.The M(N+1)AX(N) phases:A new class of solids thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.

    • [2] SOKOL M,NATU V,KOTA S,et al.On the chemical diversity of the MAX phases[J].Trends in Chemistry,2019,1(2):210-223.

    • [3] SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.

    • [4] NAGUIB M,MOCHALIN V N,BARSOUM M W,et al.MXenes:A new family of two-dimensional materials[J].Advanced Materials,2014,26(7):992-1005.

    • [5] EKLUND P,BECKERS M,JANSSON U,et al.The M(n+1)AX(n) phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.

    • [6] EKLUND P,ROSEN J,PERSSON P O Å.Layered ternary M n +1AX n phases and their 2D derivative MXene:An overview from a thin-film perspective[J].Journal of Physics D:Applied Physics,2017,50(11):113001.

    • [7] MICHAËL O,ALEXANDRE M,FERNANDO L,et al.High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy[J].Journal of Nuclear Materials,2020,528:151855.

    • [8] ZHANG Z,LIM S H,CHAI J,et al.Plasma spray of Ti2AlC MAX phase powders:Effects of process parameters on coatings' properties[J].Surface and Coatings Technology,2017,325:429-436.

    • [9] ZHANG T F,XIA Q,WAN Z,et al.Microstructures and properties of amorphous,polycrystalline,and Mn+1AXn phase Ti-Al-N films synthesized from an Mn+1AXn phase Ti2AlN compound target[J].Ceramics International,2019,45(3):3940-3947.

    • [10] WANG Z Y,LIU J Z,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.

    • [11] DE H,BABEN M T,HALLSTEDT B,et al.Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 °C[J].Surface & Coatings Technology,2011,206(4):591-598.

    • [12] 王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influence of N2 flow rate on the structure and mechanical properties of TiSiN coatings prepared by HIPIMS method [J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)

    • [13] REOLON L W,AGUIRRE M H,YAMAMOTO K,et al.A comprehensive study of Al0.6Ti0.4N coatings deposited by cathodic arc and HiPIMS PVD methods in relation to their cutting performance during the machining of an inconel 718 alloy[J].Coatings,2021,11(6):723.

    • [14] LI C,TIAN X,GONG C,et al.Electric and magnetic fields synergistically enhancing high power impulse magnetron sputtering deposition of vanadium coatings[J].Vacuum,2017,144:125-134.

    • [15] REED A N,LANGE M A,MURATORE C,et al.Pressure effects on HiPIMS deposition of hafnium films[J].Surface & Coatings Technology,2012,206(18):3795-3802.

    • [16] BOBZIN K,BAGCIVAN N,IMMICH P,et al.Mechanical properties and oxidation behaviour of(Al,Cr)N and(Al,Cr,Si)N coatings for cutting tools deposited by HPPMS[J].Thin Solid Films,2008,517(3):1251-1256.

    • [17] MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [18] WANG Z Y,ZHANG D,KE P L,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].Journal of Materials Science & Technology,2015,31(1):37-42.

    • [19] YANG W J,WANG W L,LIN Y H,et al.Effect of target-substrate distance on the quality of AlN films grown on Si(110)substrates by pulsed laser deposition[J].Materials Letters,2015,160:20-30.

    • [20] 王国宁,杨宇,孔令德,等.溅射功率和气压对CdTe薄膜结晶性的影响[J].硅酸盐通报,2007(4):715-719.WANG Guoning,YANG Yu,KONG Lingde,et al.The influence of sputtering power and pressure on CdTe film’s crystallinity [J].Bulletin of the Chinese Ceramic Society,2007(4):715-719.(in Chinese)

    • [21] 王玲.W18Cr4V 高速钢基体金刚石薄膜的研究[D].长沙:中南大学,2011.WANG Ling.Research on diamond film on W18Cr4V high-speed steel substrate [D].Changsha:Central South University,2011.(in Chinese)

    • [22] 李文涛,王振玉,张栋,等.电弧复合磁控溅射结合热退火制备 Ti2AlC 涂层[J].金属学报,2019,55(5):647-656.LI Wentao,WANG Zhenyu,ZHANG Dong,et al.Preparation of Ti2AlC coating by the combination of a hybrid cathode arc/magnetron sputtering with post-annealing[J].Acta Metallurgica Sinica,2019,55(5):647-656.(in Chinese)

    • [23] WANG Z Y,LI W T,LIU Y R,et al.Diffusion-controlled intercalation approach to synthesize the Ti2AlC MAX phase coatings at low temperature of 550 ℃[J].Applied Surface Science,2020,502:144130.

    • [24] BARSOUM M W,ALI M,EL-RAGHY T.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials transactions A-Physical Metallurgy and Materials Science,2000,31(7):1857-1865.

    • [25] PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC max phase thin films by low-rate layer-by-layer PVD[J].Materials Research letters,2019,7(6):244-250.

    • [26] BAI Y L,HE X D,ZHU C C,et al.Microstructures,electrical,thermal,and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the American Ceramic Society,2012,95(1):358-364.

    • [27] BARSOUM M W,BRODKIN D,EL-RAGHY T.Layered machinable ceramics for high temperature applications[J].Scripta Materialia,1997,36(5):535-541.

    • [28] FRODELIUS J,SONESTEDT M,BJRKLUND S,et al.Ti2AlC coatings deposited by high velocity oxy-fuel spraying[J].Surface and Coatings Technology,2008,202(24):5976-5981.

    • [29] LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi-scale tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface and Coatings Technology,2018,334:384-393.

  • 参考文献

    • [1] BARSOUM M W.The M(N+1)AX(N) phases:A new class of solids thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.

    • [2] SOKOL M,NATU V,KOTA S,et al.On the chemical diversity of the MAX phases[J].Trends in Chemistry,2019,1(2):210-223.

    • [3] SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.

    • [4] NAGUIB M,MOCHALIN V N,BARSOUM M W,et al.MXenes:A new family of two-dimensional materials[J].Advanced Materials,2014,26(7):992-1005.

    • [5] EKLUND P,BECKERS M,JANSSON U,et al.The M(n+1)AX(n) phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.

    • [6] EKLUND P,ROSEN J,PERSSON P O Å.Layered ternary M n +1AX n phases and their 2D derivative MXene:An overview from a thin-film perspective[J].Journal of Physics D:Applied Physics,2017,50(11):113001.

    • [7] MICHAËL O,ALEXANDRE M,FERNANDO L,et al.High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy[J].Journal of Nuclear Materials,2020,528:151855.

    • [8] ZHANG Z,LIM S H,CHAI J,et al.Plasma spray of Ti2AlC MAX phase powders:Effects of process parameters on coatings' properties[J].Surface and Coatings Technology,2017,325:429-436.

    • [9] ZHANG T F,XIA Q,WAN Z,et al.Microstructures and properties of amorphous,polycrystalline,and Mn+1AXn phase Ti-Al-N films synthesized from an Mn+1AXn phase Ti2AlN compound target[J].Ceramics International,2019,45(3):3940-3947.

    • [10] WANG Z Y,LIU J Z,WANG L,et al.Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique[J].Applied Surface Science,2017,396:1435-1442.

    • [11] DE H,BABEN M T,HALLSTEDT B,et al.Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 °C[J].Surface & Coatings Technology,2011,206(4):591-598.

    • [12] 王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influence of N2 flow rate on the structure and mechanical properties of TiSiN coatings prepared by HIPIMS method [J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)

    • [13] REOLON L W,AGUIRRE M H,YAMAMOTO K,et al.A comprehensive study of Al0.6Ti0.4N coatings deposited by cathodic arc and HiPIMS PVD methods in relation to their cutting performance during the machining of an inconel 718 alloy[J].Coatings,2021,11(6):723.

    • [14] LI C,TIAN X,GONG C,et al.Electric and magnetic fields synergistically enhancing high power impulse magnetron sputtering deposition of vanadium coatings[J].Vacuum,2017,144:125-134.

    • [15] REED A N,LANGE M A,MURATORE C,et al.Pressure effects on HiPIMS deposition of hafnium films[J].Surface & Coatings Technology,2012,206(18):3795-3802.

    • [16] BOBZIN K,BAGCIVAN N,IMMICH P,et al.Mechanical properties and oxidation behaviour of(Al,Cr)N and(Al,Cr,Si)N coatings for cutting tools deposited by HPPMS[J].Thin Solid Films,2008,517(3):1251-1256.

    • [17] MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [18] WANG Z Y,ZHANG D,KE P L,et al.Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method[J].Journal of Materials Science & Technology,2015,31(1):37-42.

    • [19] YANG W J,WANG W L,LIN Y H,et al.Effect of target-substrate distance on the quality of AlN films grown on Si(110)substrates by pulsed laser deposition[J].Materials Letters,2015,160:20-30.

    • [20] 王国宁,杨宇,孔令德,等.溅射功率和气压对CdTe薄膜结晶性的影响[J].硅酸盐通报,2007(4):715-719.WANG Guoning,YANG Yu,KONG Lingde,et al.The influence of sputtering power and pressure on CdTe film’s crystallinity [J].Bulletin of the Chinese Ceramic Society,2007(4):715-719.(in Chinese)

    • [21] 王玲.W18Cr4V 高速钢基体金刚石薄膜的研究[D].长沙:中南大学,2011.WANG Ling.Research on diamond film on W18Cr4V high-speed steel substrate [D].Changsha:Central South University,2011.(in Chinese)

    • [22] 李文涛,王振玉,张栋,等.电弧复合磁控溅射结合热退火制备 Ti2AlC 涂层[J].金属学报,2019,55(5):647-656.LI Wentao,WANG Zhenyu,ZHANG Dong,et al.Preparation of Ti2AlC coating by the combination of a hybrid cathode arc/magnetron sputtering with post-annealing[J].Acta Metallurgica Sinica,2019,55(5):647-656.(in Chinese)

    • [23] WANG Z Y,LI W T,LIU Y R,et al.Diffusion-controlled intercalation approach to synthesize the Ti2AlC MAX phase coatings at low temperature of 550 ℃[J].Applied Surface Science,2020,502:144130.

    • [24] BARSOUM M W,ALI M,EL-RAGHY T.Processing and characterization of Ti2AlC,Ti2AlN,and Ti2AlC0.5N0.5[J].Metallurgical and Materials transactions A-Physical Metallurgy and Materials Science,2000,31(7):1857-1865.

    • [25] PSHYK A,COY E,MATEUSZ K,et al.Low-temperature growth of epitaxial Ti2AlC max phase thin films by low-rate layer-by-layer PVD[J].Materials Research letters,2019,7(6):244-250.

    • [26] BAI Y L,HE X D,ZHU C C,et al.Microstructures,electrical,thermal,and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the American Ceramic Society,2012,95(1):358-364.

    • [27] BARSOUM M W,BRODKIN D,EL-RAGHY T.Layered machinable ceramics for high temperature applications[J].Scripta Materialia,1997,36(5):535-541.

    • [28] FRODELIUS J,SONESTEDT M,BJRKLUND S,et al.Ti2AlC coatings deposited by high velocity oxy-fuel spraying[J].Surface and Coatings Technology,2008,202(24):5976-5981.

    • [29] LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi-scale tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface and Coatings Technology,2018,334:384-393.

  • 手机扫一扫看