en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴正涛,男,1990年出生,博士,副教授,硕士研究生导师。主要研究方向为涂层技术。E-mail:ztwu@gdut.edu.cn

通讯作者:

王启民,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为涂层刀具与加工、气相沉积技术、等离子体性质测量。E-mail:qmwang@gdut.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220114001

参考文献 1
王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013,434(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Research progress of physical vapor deposition coatings on high speed cutting tools[J].Aeronautical Manufacturing Technology,2013,434(14):78-83.(in Chinese)
参考文献 2
ZHAO Jinfu,LIU Zhanqiang.Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage[J].Journal of Manufacturing Processes,2020,56:1155-1165.
参考文献 3
刘辞海,李季飞,吴正涛,等.脉冲电弧沉积TiAlSiN涂层及其干式切削性能[J].中国表面工程,2018,31(6):44-54.LIU Cihai,LI Jifei,WU Zhengtao,et al.Preparation and Cutting Performance of TiAlSiN Coatings by Pulsed Arc Ion Plating[J].China Surface Engineering,2018,31(6):44-54.(in Chinese)
参考文献 4
房丰洲,赖敏,纳米切削机理及其研究进展[J].中国科学:技术科学,2014,44(10):1052-1070.FANG Fengzhou,LAI Min.Development of nanometric cutting mechanism[J].SCIENTIA SINICA Technologica,2014,44:1052–1070.(in Chinese)
参考文献 5
贺涵,蒋业华,汝娟坚,等.ZTA 陶瓷颗粒表面 Ni-TiB2 镀层的制备及工艺优化[J].中国表面工程,2021,34(3):159-167.HE Han,JIANG Yehua,RU Juanjian,et al.Preparation and process optimization of Ni-TiB2 coating on ZTA particles[J].China Surface Engineering,2021,34(3):159-167.(in Chinese)
参考文献 6
HUANG Z H,ZHOU Y J,NGUYEN T T.Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB2,ZrB2 and TiC particles for improved wear and corrosion resistance[J].Surface and Coatings Technology,2019,364:323-329.
参考文献 7
NEDFORS N,VOZNIY O,ROSEN J.Effect of synchronized bias in the deposition of TiB2 thin films using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):031510.
参考文献 8
HELLGREN N,THÖRNBERG J,ZHIRKOV I,et al.High-power impulse magnetron sputter deposition of TiBx thin films:effects of pressure and growth temperature[J].Vacuum,2019,169:108884.
参考文献 9
NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.
参考文献 10
POLYAKOV M N,MORSTEIN M,MAEDER X,et al.Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering[J].Surface and Coatings Technology,2019,368:88-96.
参考文献 11
BAKHIT B,PETROV I,GREENE J E,et al.Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):030604.
参考文献 12
BAKHIT B,PALISAITIS J,THÖRNBERG J,et al.Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al[J].Acta Materialia,2020,196:677-689.
参考文献 13
THÖRNBERG J,BAKHIT B,PALISAITIS J,et al.Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films[J].Surface and Coatings Technology,2021,420:127353.
参考文献 14
NEIDHARDT J,MRÁZ S,STRUB E,et al.Experiment and simulation of the compositional evolution of Ti-B thin films deposited by sputtering of a compound target[J].Journal of Applied Physics,2008,104(6):063304.
参考文献 15
PETROV I,HALL A,BIRCH J,et al.Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):050601.
参考文献 16
ASEMPAH I,XU Junhua,YU Lihua,et al.The role of copper incorporation on the microstructure,mechanical and tribological properties of TiBN-Cu films by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2019,801:112-122.
参考文献 17
KAINZ C,SCHALK N,TKADLETZ M,et al.Thermo-physical properties of coatings in the Ti(B,N)system grown by chemical vapor deposition[J].Surface and Coatings Technology,2020,384:125318.
参考文献 18
ASEMPAH I,YU Lihua,JU Hongbo,et al.Corrosion,oxidation and high-temperature tribological properties of Ti–B–N coatings[J].Surface Engineering,2019,35(8):661-669.
参考文献 19
MAYRHOFER P H,MITTERER C,HULTMAN L,et al.Microstructural design of hard coatings[J].Progress in Materials Science,2006,51(8):1032-1114.
参考文献 20
PIERSON J F,BERTRAN F,BAUER J P,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.
参考文献 21
TIAN C X,WANG Z S,ZOU C W,et al.Ternary and quarternary TiBN and TiBCN nanocomposite coatings deposited by arc ion plating[J].Surface and Coatings Technology,2019,359:445-450.
参考文献 22
CHUKWUIKE V I,SHTANSKY D V,SUBRAMANIAN B.Biocompatibility study of nanocomposite titanium boron nitride(TiBN)thin films for orthopedic implant applications[J].Surface and Coatings Technology,2021,410:126968.
参考文献 23
MAYRHOFER P H,MITTERER C,CLEMENS H.Self-organized nanostructures in hard ceramic coatings[J].Advanced Engineering Materials,2005,7(12):1071-1082.
参考文献 24
MAYRHOFER P H,CLEMENS H,MITTERER C.Interfaces in nanostructured thin films and their influence on hardness[J].International Journal of Materials Research,2005,96(5):468-480.
参考文献 25
MOLLART T,BAKER M,HAUPT J,et al.Nanostructured titanium boron nitride coatings of very high hardness[J].Surface and Coatings Technology,1995,74:491-496.
参考文献 26
VEPŘEK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.
参考文献 27
HOLZSCHUH H.Deposition of Ti-B-N(single and multilayer)and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools[J].Thin Solid Films,2004,469-470:92-98.
参考文献 28
PIERSON J,BERTRAN F,BAUER J,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.
参考文献 29
YANG Yucheng,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102.
参考文献 30
WU Zhengtao,TENGSTRAND O,BAKHIT B,et al.Growth of dense,hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2020,38(2):023006.
参考文献 31
NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.
目录contents

    摘要

    高功率脉冲磁控溅射(HiPIMS)沉积制备 TiBx时,涂层化学计量比 x 随 HiPIMS 脉冲宽度的减小而降低。采用原位等离子体质谱仪研究 TiBx涂层的沉积等离子体性质,采用弹性反冲探测分析技术测量涂层元素组成,采用 X 射线衍射分析涂层相结构,采用 X 射线光电子能谱研究涂层键价结构,通过纳米压痕仪测试涂层力学性能。结果表明,减小 HiPIMS 脉冲宽度后出现气体稀释效应,加之 Ti 的一次离化能低于 B,即 Ti 优先 B 发生离化,导致 Ti+ / B+ 离子束流比增大,从而降低 TiBx涂层化学计量比 x,揭示了 TiBx涂层化学计量比演变机制。此外,在短 HiPIMS 脉冲宽度溅射 TiB2靶材条件下,引入 N2气体,当 N2流量为 10 mL / min、HiPIMS 脉冲宽度为 30 μs 时,成功制备出具有纳米晶 TiN、TiB2复合结构特征的新型 TiBN 涂层,此 TiBN 涂层硬度及弹性模量分别为 37.5 GPa、300 GPa,为具有优异力学性能纳米复合涂层的设计制备提供实验和理论指导。

    Abstract

    The stoichiometric ratio x of the TiBx prepared by high power pulsed magnetron sputtering (HiPIMS) decreases with reduction of pulse length. Plasma properties during TiBx deposition are investigated by In situ Mass Spectrometry. Elemental compositions, phase structure, chemical bonding state, and mechanical properties of the films are investigated by elastic recoil detection analysis, X-ray diffraction, X-Ray photoelectron spectroscopy, and nanoindentation tests, respectively. The results illustrate that gas rarefaction occurs when reducing the pulse length. In addition, the first ionization potential of Ti is lower compared to that of B, which leads to a preferential ionization of Ti atoms. Those produce an increase of Ti+ / B+ flux ratio and reduce of stoichiometric ratio x of the TiBx. Therefore, the primary mechanism behind the evolution of stoichiometric ratio x of the TiBx is indicated. Hardness and elastic modulus of the TiBN reach the largest recorded values of 37.5 GPa and 300 GPa when the N2 flow rate and the pulse length of the HiPIMS are set at 10 mL / min and 30 μs, respectively. TiBN nanocomposite films with TiN and TiB2 nanocrystals are fabricated by HiPIMS with N2 under a short HiPIMS pulse length. The above results will provide guidance on design and fabrication of nanocomposite hard coatings with excellent mechanical properties.

    关键词

    HiPIMSTiBN纳米复合等离子体离化能

  • 0 前言

  • 制造业是我国国民经济产业结构的核心。在制造加工行业中,高效、高速、高精度切削加工成为现代加工技术的主要发展方向[1],刀具的服役性能对加工过程起着决定性作用。刀具表面沉积硬质涂层是实现高速干式切削加工的关键技术之一[2]。硬质涂层按成分可分为氮化物、碳化物及氧化物,具有高硬度、强耐磨、抗氧化及耐腐蚀特性,可以有效提高刀具的加工效率、精度和质量,减少刀具磨损、提高寿命。因此,涂层技术、加工材料与切削加工工艺并称为切削刀具制造领域的三大关键技术[3]。面向金属材料高速切削加工的刀具涂层应具有良好的界面结合、高硬度、强韧性以及优异的高温性能[4]

  • TiB2 涂层具有高熔点(~3 100℃)、良好导热性和导电性、高硬度、高耐磨性及强耐腐蚀性等优异理化性能,在工具材料等领域中被广泛应用[5-6]。例如 TiB2 涂层刀具与 Al 合金等有色金属间化学亲和力低,切削加工时粘附少,不产生积屑瘤和冷焊,加工可靠性和生产效率高。磁控溅射因其成膜表面质量高、靶材适用性广等特性,常被用在 Ar 气环境中溅射 TiB2靶材制备 TiB2 涂层[7-10]。磁控溅射沉积 TiB2 涂层常呈现柱状晶结构,且为过化学计量比,过量的 B 易偏析于晶界处[11-13],导致 TiB2 涂层出现残余应力大、韧性较差的缺点。实现 TiB2 涂层化学计量比的可控调节是拓展其应用的关键。 NEIDHARDT等[14]揭示了溅射沉积TiBx易出现过化学计量比的机制,即 Ar+ 与 TiB2 靶溅射粒子之间存在质量差异,B+ 溢出角较 Ti+ 集中,B+ 优先沿靶材法线方向运动,但未提出可控调节 TiB2涂层化学计量比的方法策略。PETROV 等[15]提出了通过于基体与靶材之间施加外磁场以降低 TiBx 化学计量比的方法,即使用外加磁场牵引离子束流发生运动偏转,但此方法涉及设备磁场改造、等离子体运动模拟等,实际应用较为复杂且难度大。因此,如能直接通过沉积工艺参数调整,实现对 TiB2 涂层化学计量比简便、可控调节具有重要研究意义。

  • 此外,在 TiB2 中引入 N 组元制备 TiBN 纳米复合涂层可提高其韧性、抗氧化能力并降低其残余应力[16-19]。TiBN 纳米复合涂层其力学、化学、耐磨性和热稳定性能优异,具有广阔的应用潜力[20-22]。目前已有报道使用共溅射 TiB2、TiN 靶材制备 TiBN 涂层,硬度最高可达 44 GPa[23-24],然而其共溅射工艺存在 TiN 靶材生产成本高、基体不旋转等问题。随着 N 含量的增加,N 组元易与 B 结合、出现软质相 BN 析出,导致 TiBN 涂层力学性能急剧下降[25-28]。磁控溅射 TiB2靶材同时引入过量 N2工作气体制备 TiBN 硬质涂层时尚无法克服 BN 析出问题。如能在磁控溅射沉积 TiB2 涂层时创造原子比 B / Ti 小于 2 条件,出现 Ti 富余状态,富余 Ti 才有可能与 N 结合形成纳米晶 TiN,从而避免软质相 BN析出,这为制备具有纳米晶 TiN、纳米晶 TiB2复合结构特征的 TiBN 硬质涂层提供了新思路。

  • 1 试验方法与材料

  • 所用涂层由 CemeCon-AG-CC800 / 9 型磁控溅射镀膜设备沉积制备。该涂层设备装备 4 组直流磁控(direct current magnetron sputtering,dcMS)系统和 2 组高功率脉冲磁控溅射(High-power impulse magnetron sputtering,HiPIMS)系统,所搭配的阴极靶材尺寸均为 88 mm×500 mm。基体为(100)硅片 (用于相结构及成分分析)及 YG6 硬质合金块(用于力学性能测试),放置于中心转架上,可定速进行公转与自转。

  • TiBx、TiBN 涂层制备工艺如下:

  • (1)首先使用高纯(99.9%)TiB2 靶 HiPIMS 溅射制备 TiBx 涂层,其中,HiPIMS 电源平均功率恒定为 3 kW、峰值电压−600 V、频率恒为 500 Hz,脉冲宽度分别为 30 μs、40 μs、50 μs、60 μs、80 μs、 100 μs、150 μs 和 200 μs。使用同步脉冲偏压-60 V,脉冲宽度 200 μs。沉积温度~420℃,沉积腔压 0.4 Pa,沉积时间 60 min。

  • (2)采用 HiPIMS 技术制备 TiBN 涂层,其中, HiPIMS 电源平均功率 3 kW、峰值电压−600 V、脉冲宽度 30 μs。使用同步脉冲偏压-60 V,脉冲宽度 200 μs,沉积温度~420℃。沉积腔压 0.4 Pa,N2 流量为标况下 0、10 mL / min、15 mL / min、 20 mL / min,沉积时间 60 min。

  • 此外,采用时间及能量分辨等离子体质谱仪(Hiden Analytical PSM003)对 HiPIMS 沉积 TiBx、 TiBN 涂层时的沉积等离子体性质进行测量,检测离子包括 B+、Ti+、N+、N2 + 和 Ar+,能量限阈 8×10−18 J(50 eV)。采用弹性反冲探测分析技术(Elastic recoil detection analysis,ERDA)测量 TiBx、TiBN 涂层元素组成。该测试于 5-MV NEC-5SDH-2 串联加速器 (瑞典 Uppsala University)中完成,入射粒子束为 36-MeV 127I 8+,入射角为 67.5°,气体电离室探测器与入射粒子束夹角为 45°。采用 X 射线衍射仪 (X-ray diffraction,XRD)对涂层进行物相组成分析, X 射线波长为 0.154 nm、扫描速率为 10(°)/ min。采用 X 射线光电子能谱(X-Ray photoelectron spectroscopy,XPS)分析涂层键价结构,所用设备型号为 Quantum–2000 型 XPS 能谱仪。该仪器采用 Al Kα线作为入射 X 射线光源,操作功率为 24.9 W,X 射线束斑直径为~100 μm。Ar+ 离子刻蚀枪中 Ar+ 离子能量及束流分别为 2.4×10−16 J(1.5 keV)及 2.2 μA,刻蚀区域面积为 500 μm × 500 μm,Ar+ 离子束流入射角为 45°。采用透射电子显微镜 (Transmission electron microscopy,TEM,Tecnai G2 F20)对 TiBN 涂层微观结构进行观察,分别使用机械研磨抛光、Ar+ 离子束减薄抛光制备截面 TEM 样品,离子束减薄时 Ar+ 离子能量 8×10−16 J(5 keV)、入射角度 5°,离子束抛光时 Ar+ 离子能量 4×10−16 J(2.5 keV)、入射角度 3°。采用纳米压痕仪 (Anton-Paar TriTec NHT2)对涂层力学性能进行测试,设定针尖最大载荷为 5 mN,加载、保载、卸载时间分别为 30 s、10 s、30 s。

  • 2 结果与讨论

  • 2.1 HiPIMS 脉冲宽度对 TiBx化学计量比的影响

  • 图1 为不同脉冲宽度下 HiPIMS 制备的 TiBx 涂层的原子比 x = nB / nTi,HiPIMS 电源平均功率恒为 3 kW、频率恒为 500 Hz。从图中可以发现,随着脉冲宽度由 200 μs 减小至 30 μs,TiBx涂层的原子比 nB / nTi由 2.61 逐渐降低至 1.83。表明在使用 HiPIMS 制备 TiBx涂层时,固定平均功率、减小 HiPIMS 脉冲宽度可降低 TiBx涂层的化学计量比 x

  • 图1 不同 HiPIMS 脉冲宽度下沉积制备 TiBx涂层的 nB / nTi原子比值

  • Fig.1 nB / nTi atomic ratios of TiBx films deposited by HiPIMS with respect to pulse length

  • 为研究 TiBx涂层的化学计量比演变机理,对不同 HiPIMS 脉冲宽度下制备 TiBx 涂层过程中 Ti+ 和 B+ 离子能量分布(Ion energy distribution functions,IEDFs)及离子束流强度进行测试,同时记录靶材峰值电流密度及电压,结果如图2 所示。图2a、2b 分别为不同脉冲宽度 HiPIMS 制备 TiBx涂层时靶材峰值电流密度、电压(HiPIMS 电源平均功率、脉冲频率保持恒定)。随着脉冲宽度由 100 μs 减小至30 μs,靶材峰值电流密度由 0.27 A / cm2 连续增加至 0.87 A / cm2,而阴极电压峰值则保持恒定。图2c 表明采用短脉冲宽度 HiPIMS 制备 TiBx 涂层时, Ti+-IEDFs 呈现宽峰,表明束流增加[29]。增加脉冲宽度后,Ti+-IEDFs 呈现峰宽变窄、强度降低特征,表明高能 Ti+ 离子束流下降。图2d 表明降低 HiPIMS 脉冲宽度至 40~50 μs,B+-IEDFs 峰形面积有所增加,表明 B+ 束流也有所增加,但脉冲宽度降至 20~30 μs 时,B+ 束流大幅下降。上述结果表明,HiPIMS 制备 TiBx涂层时,降低脉冲宽度后,靶材峰值电流密度增加,脉冲发生时腔室内出现气体稀释现象,即气体不足。同时由于 Ti 一次离化能(First Ionization Potential,IP1)低于 B(Ti IP1:1.09×10−18 J(6.83 eV),B IP1:1.33×10−18 J(8.34 eV)),竞争导致 Ti 优先离化,造成 Ti+ / B+ 束流比增加,从而降低了 TiBx涂层 nB / nTi 原子比,甚至出现 nB / nTi 小于 2,即欠化学计量比状态。

  • 图2 不同脉冲宽度 HiPIMS 制备 TiBx涂层时靶材电源参数及离子能量及束流

  • Fig.2 Target power supply parameters, energy and flux of ions when preparing TiBx films by HiPIMS with varying pulse length

  • 2.2 短脉冲宽度下 HiPIMS 制备 TiBN 涂层

  • 根据第 2.1 节结果,研究使用基于 30 μs 短脉冲宽度 HiPIMS 沉积制备 TiBN 涂层的新方法。对不同 N2 气流量(标况下 0~20 mL / min)下制备的 TiBN 涂层进行物相结构分析,其 XRD 测试结果如图3 所示。结果表明,当 N2气流量为 0 时,涂层呈现单相 TiB2。当通入标况下 10 mL / min N2 气后,XRD 图谱中出现 TiN (200)衍射峰。当 N2 气流量为标况下 15~20 mL / min 时,TiBN 涂层结晶相均由 TiN、TiB2 组成。此外,当 N2 流量增加至标况下 20 mL / min 时,特征 XRD 衍射峰弱且宽,表明涂层内部晶粒(TiN、TiB2)细小、结晶度低。

  • 图3 不同 N2气流量下 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的 XRD 图谱

  • Fig.3 XRD patterns of the TiBN films deposited by 30-μs-pulse-length HiPIMS with respect to the N2 flow rate

  • 为研究 TiBN 涂层键价结构,选择当 N2 气流量为标况下 10 mL / min 时制备的 TiBN 涂层进行 XPS 检测,其结果如图4 所示。从 Ti2p 图谱可以发现,在 454.5 eV 和 460.4 eV 位置处出现 Ti2p3 / 2和 Ti2p1 / 2 峰,对应于 Ti-N 键;在 457.2 eV 和 462.8 eV 位置处分别出现 Ti2p3 / 2 和 Ti2p1 / 2的卫星峰[30]。从 N 1s 图谱可以发现,在 397.3 eV 位置处出现强峰,其对应于 Ti-N 键,未发现 B-N 键特征信号。由 B 1s 图谱可以发现,在 187.9 eV 位置处出现强峰,其对应于 Ti-B 键,同时未出现 B-N 键特征信号[31]。结合上述 XRD 及 XPS 分析结果,表明于 N2 气流量为标况下 10 mL / min、HiPIMS 脉冲宽度为 30 μs 下制备的 TiBN 涂层内存在 Ti-N 和 Ti-B 键合结构,无 B-N 键,即涂层由纳米晶 TiN、纳米晶 TiB2 组成。

  • 图4 N2气流量为标况下 10 mL / min 下 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的 XPS 图谱

  • Fig.4 XPS patterns of the TiBN films deposited by HiPIMS with 30 μs pulse length and 10 mL / min N2 flow

  • 图5 所示为使用 ERDA 测量不同 N2气流量下 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的元素组成。从图中可以发现,当 N2 气流量为标况下 10 mL / min 时,B / Ti 原子比为~1.81,且 N 含量为 5 at.%。当 N2 气流量由标况下 10 mL / min 增至 20 mL / min 时,TiBN 涂层中 N 含量迅速提高,B 和 Ti 元素所占比重有所下降,且 B / Ti 原子比为 2.31,表明该 TiBN 涂层为过化学计量比。造成 N 含量迅速提高的本质原因在于 N 一次离化能低于 Ar(N IP1:14.50 eV,Ar IP1:15.76 eV),竞争导致 N 优先离化,即 N2 充分参与薄膜成键、生长。

  • 为研究 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的结构,选择在 N2 气流量为标况下 10 mL / min 时制备的 TiBN 涂层进行 TEM 微观组织分析,结果如图6 所示,其中图6a 为该涂层截面形貌图,图6b 为该涂层高分辨率透射电镜图。从图6a 可以看出,TiBN 涂层截面呈现微柱状结构,且均匀致密。从图6b 可观察出,TiB2 纳米晶和 TiN 纳米晶,即涂层具有纳米晶复合结构,且未发现 BN 晶粒或非晶组织,与 XPS 测试结果一致。基于 XRD、XPS 和 TEM 测试结果,使用 30 μs 短脉冲宽度 HiPIMS 技术成功制备出具有纳米晶 TiN 与纳米晶 TiB2复合结构特征的 TiBN 涂层。

  • 图5 不同 N2气流量下 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的元素组成

  • Fig.5 Elemental compositions of the TiBN films deposited by 30-μs-pulse-length HiPIMS with respect to the N2 flow rate

  • 图6 N2气流量为 10 mL / min 时短脉冲宽度 HiPIMS 制备 TiBN 涂层的微观组织形貌

  • Fig.6 Microstructure morphology of the TiBN films deposited by HiPIMS with 30 μs pulse length and 10 mL / min N2 flow

  • 对不同 N2 气流量下使用 30 μs 短脉冲宽度 HiPIMS 制备的 TiBN 纳米复合涂层进行纳米压痕测试,结果如图7 所示。结果表明,当 N2 气流量由 0 增加至标况下 10 mL / min 时,涂层的硬度由 36.2 GPa 增加至 37.5 GPa,弹性模量由 288 GPa 增加至 300 GPa。由 TEM 观察结果可知,此 TiBN 涂层具有纳米晶 TiN 与纳米晶 TiB2复合结构特征,且晶粒细小(图6),因此纳米复合强化耦合细晶强化作用导致上述硬度、弹性模量上述现象。而当 N2 气流量由标况下 10 mL / min 增至 20 mL / min 时, TiBN 涂层的硬度由 37.5 GPa 降低至 31.1 GPa,弹性模量由300 GPa 降低至271 GPa。此TiBN 涂层(N2 气流量为标况下20 mL / min)中B / Ti原子比为2.31 且 N 含量为 29 at.%(图5),富足的 B、N 易结合产生 BN,从而导致力学性能下降。

  • 图7 不同 N2气流量下 30 μs 短脉冲宽度 HiPIMS 制备 TiBN 涂层的硬度和弹性模量

  • Fig.7 Indentation hardness and elastic modulus of the TiBN films deposited by 30-μs-pulse-length HiPIMS with respect to the N2 flow rate

  • 图8 为 N2 流量为标况下 10 mL / min、HiPIMS 脉冲宽度为30 μs 条件下制备 TiBN 涂层时沉积等离子体特性表征结果,即在 HiPIMS 脉冲发生后,基体表面上的 B+、Ti+、N+、N2 + 和 Ar+ 能量归一化束流强度随时间演变关系。横坐标中 0 μs 对应于 HiPIMS 脉冲发生时刻。从图中可以看出,在脉冲开始~30 μs 后,Ti+ 离子束流强度逐渐上升,并在脉冲开始~80 μs 后(即脉冲结束后~50 μs)达到峰值。B+ 离子束流强度在 HiPIMS 脉冲发生~45 μs 后达到峰值。图中 Ti+ 束流强度相较于 B+ 束流强度强,即基体表面 Ti+ 束流相较于 B+ 富足,富余 Ti 与 N 结合形成 Ti-N,从而最终得到具有纳米晶 TiN、纳米晶 TiB2 复合组织结构特征的 TiBN 涂层。

  • 图8 N2流量为标况下 10 mL / min、脉冲宽度为 30 μs 条件下 HiPIMS 溅射 TiB2靶材时基体表面 B+、Ti+、N+、N2 + 和 Ar+ 能量归一化束流强度

  • Fig.8 Time evolution of the energy-integrated B+, Ti+, N+, N2 +, and Ar+ ion fluxes incident at the substrate plane after HiPIMS pulses while sputtering a TiB2 target with 100 μs pulses and 10 mL / min N2 flow

  • 3 结论

  • 本文基于等离子体表征手段阐述了 HiPIMS 制备 TiBx涂层化学计量比的演变机制,并通过优化工艺参数,改变 HiPIMS 脉冲宽度和 N2流量,成功制备出具有纳米晶 TiN、纳米晶 TiB2复合结构特征的 TiBN 涂层。主要研究结论如下。

  • (1)调节 HiPIMS 脉冲宽度可调节所制备 TiBx 涂层化学计量比,短脉冲宽度下HiPIMS制备的TiBx 涂层的化学计量比可实现 x <2。降低脉冲宽度后,出现气体稀释效应,导致 Ti 优先 B 发生离化,竞争导致 Ti+ / B+ 束流比增加,造成 TiBx 化学计量比下降。

  • (2)使用 30 μs 脉冲宽度 HiPIMS 技术 N2、Ar 混合气氛下成功制备出具纳米晶 TiN、纳米晶 TiB2 复合的 TiBN 涂层,涂层中无 B-N 键合。主要形成机制为短脉冲宽度 HiPIMS 沉积条件下,基体表面 Ti+ 束流相较于 B+ 富足,富余 Ti 易与 N 结合形成 Ti-N,避免 B-N 出现。当 N2 流量为标况下 0~10 mL / min 时,TiBN 涂层成分 B / Ti 原子比小于 2,涂层相组成以 TiB2 为主;当 N2 气流量大于标况下 10 mL / min 时,涂层成分 B / Ti 原子比大于 2,涂层相结构由 TiB2、TiN 组成。当 N2 流量为标况下 10 mL / min 时,TiBN 涂层的硬度及弹性模量分别为 37.5 GPa、300 GPa,具有优异力学性能。

  • 参考文献

    • [1] 王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013,434(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Research progress of physical vapor deposition coatings on high speed cutting tools[J].Aeronautical Manufacturing Technology,2013,434(14):78-83.(in Chinese)

    • [2] ZHAO Jinfu,LIU Zhanqiang.Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage[J].Journal of Manufacturing Processes,2020,56:1155-1165.

    • [3] 刘辞海,李季飞,吴正涛,等.脉冲电弧沉积TiAlSiN涂层及其干式切削性能[J].中国表面工程,2018,31(6):44-54.LIU Cihai,LI Jifei,WU Zhengtao,et al.Preparation and Cutting Performance of TiAlSiN Coatings by Pulsed Arc Ion Plating[J].China Surface Engineering,2018,31(6):44-54.(in Chinese)

    • [4] 房丰洲,赖敏,纳米切削机理及其研究进展[J].中国科学:技术科学,2014,44(10):1052-1070.FANG Fengzhou,LAI Min.Development of nanometric cutting mechanism[J].SCIENTIA SINICA Technologica,2014,44:1052–1070.(in Chinese)

    • [5] 贺涵,蒋业华,汝娟坚,等.ZTA 陶瓷颗粒表面 Ni-TiB2 镀层的制备及工艺优化[J].中国表面工程,2021,34(3):159-167.HE Han,JIANG Yehua,RU Juanjian,et al.Preparation and process optimization of Ni-TiB2 coating on ZTA particles[J].China Surface Engineering,2021,34(3):159-167.(in Chinese)

    • [6] HUANG Z H,ZHOU Y J,NGUYEN T T.Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB2,ZrB2 and TiC particles for improved wear and corrosion resistance[J].Surface and Coatings Technology,2019,364:323-329.

    • [7] NEDFORS N,VOZNIY O,ROSEN J.Effect of synchronized bias in the deposition of TiB2 thin films using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):031510.

    • [8] HELLGREN N,THÖRNBERG J,ZHIRKOV I,et al.High-power impulse magnetron sputter deposition of TiBx thin films:effects of pressure and growth temperature[J].Vacuum,2019,169:108884.

    • [9] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

    • [10] POLYAKOV M N,MORSTEIN M,MAEDER X,et al.Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering[J].Surface and Coatings Technology,2019,368:88-96.

    • [11] BAKHIT B,PETROV I,GREENE J E,et al.Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):030604.

    • [12] BAKHIT B,PALISAITIS J,THÖRNBERG J,et al.Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al[J].Acta Materialia,2020,196:677-689.

    • [13] THÖRNBERG J,BAKHIT B,PALISAITIS J,et al.Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films[J].Surface and Coatings Technology,2021,420:127353.

    • [14] NEIDHARDT J,MRÁZ S,STRUB E,et al.Experiment and simulation of the compositional evolution of Ti-B thin films deposited by sputtering of a compound target[J].Journal of Applied Physics,2008,104(6):063304.

    • [15] PETROV I,HALL A,BIRCH J,et al.Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):050601.

    • [16] ASEMPAH I,XU Junhua,YU Lihua,et al.The role of copper incorporation on the microstructure,mechanical and tribological properties of TiBN-Cu films by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2019,801:112-122.

    • [17] KAINZ C,SCHALK N,TKADLETZ M,et al.Thermo-physical properties of coatings in the Ti(B,N)system grown by chemical vapor deposition[J].Surface and Coatings Technology,2020,384:125318.

    • [18] ASEMPAH I,YU Lihua,JU Hongbo,et al.Corrosion,oxidation and high-temperature tribological properties of Ti–B–N coatings[J].Surface Engineering,2019,35(8):661-669.

    • [19] MAYRHOFER P H,MITTERER C,HULTMAN L,et al.Microstructural design of hard coatings[J].Progress in Materials Science,2006,51(8):1032-1114.

    • [20] PIERSON J F,BERTRAN F,BAUER J P,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.

    • [21] TIAN C X,WANG Z S,ZOU C W,et al.Ternary and quarternary TiBN and TiBCN nanocomposite coatings deposited by arc ion plating[J].Surface and Coatings Technology,2019,359:445-450.

    • [22] CHUKWUIKE V I,SHTANSKY D V,SUBRAMANIAN B.Biocompatibility study of nanocomposite titanium boron nitride(TiBN)thin films for orthopedic implant applications[J].Surface and Coatings Technology,2021,410:126968.

    • [23] MAYRHOFER P H,MITTERER C,CLEMENS H.Self-organized nanostructures in hard ceramic coatings[J].Advanced Engineering Materials,2005,7(12):1071-1082.

    • [24] MAYRHOFER P H,CLEMENS H,MITTERER C.Interfaces in nanostructured thin films and their influence on hardness[J].International Journal of Materials Research,2005,96(5):468-480.

    • [25] MOLLART T,BAKER M,HAUPT J,et al.Nanostructured titanium boron nitride coatings of very high hardness[J].Surface and Coatings Technology,1995,74:491-496.

    • [26] VEPŘEK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.

    • [27] HOLZSCHUH H.Deposition of Ti-B-N(single and multilayer)and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools[J].Thin Solid Films,2004,469-470:92-98.

    • [28] PIERSON J,BERTRAN F,BAUER J,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.

    • [29] YANG Yucheng,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102.

    • [30] WU Zhengtao,TENGSTRAND O,BAKHIT B,et al.Growth of dense,hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2020,38(2):023006.

    • [31] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

  • 参考文献

    • [1] 王启民,黄健,王成勇,等.高速切削刀具物理气相沉积涂层研究进展[J].航空制造技术,2013,434(14):78-83.WANG Qimin,HUANG Jian,WANG Chengyong,et al.Research progress of physical vapor deposition coatings on high speed cutting tools[J].Aeronautical Manufacturing Technology,2013,434(14):78-83.(in Chinese)

    • [2] ZHAO Jinfu,LIU Zhanqiang.Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage[J].Journal of Manufacturing Processes,2020,56:1155-1165.

    • [3] 刘辞海,李季飞,吴正涛,等.脉冲电弧沉积TiAlSiN涂层及其干式切削性能[J].中国表面工程,2018,31(6):44-54.LIU Cihai,LI Jifei,WU Zhengtao,et al.Preparation and Cutting Performance of TiAlSiN Coatings by Pulsed Arc Ion Plating[J].China Surface Engineering,2018,31(6):44-54.(in Chinese)

    • [4] 房丰洲,赖敏,纳米切削机理及其研究进展[J].中国科学:技术科学,2014,44(10):1052-1070.FANG Fengzhou,LAI Min.Development of nanometric cutting mechanism[J].SCIENTIA SINICA Technologica,2014,44:1052–1070.(in Chinese)

    • [5] 贺涵,蒋业华,汝娟坚,等.ZTA 陶瓷颗粒表面 Ni-TiB2 镀层的制备及工艺优化[J].中国表面工程,2021,34(3):159-167.HE Han,JIANG Yehua,RU Juanjian,et al.Preparation and process optimization of Ni-TiB2 coating on ZTA particles[J].China Surface Engineering,2021,34(3):159-167.(in Chinese)

    • [6] HUANG Z H,ZHOU Y J,NGUYEN T T.Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB2,ZrB2 and TiC particles for improved wear and corrosion resistance[J].Surface and Coatings Technology,2019,364:323-329.

    • [7] NEDFORS N,VOZNIY O,ROSEN J.Effect of synchronized bias in the deposition of TiB2 thin films using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):031510.

    • [8] HELLGREN N,THÖRNBERG J,ZHIRKOV I,et al.High-power impulse magnetron sputter deposition of TiBx thin films:effects of pressure and growth temperature[J].Vacuum,2019,169:108884.

    • [9] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

    • [10] POLYAKOV M N,MORSTEIN M,MAEDER X,et al.Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering[J].Surface and Coatings Technology,2019,368:88-96.

    • [11] BAKHIT B,PETROV I,GREENE J E,et al.Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(3):030604.

    • [12] BAKHIT B,PALISAITIS J,THÖRNBERG J,et al.Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al[J].Acta Materialia,2020,196:677-689.

    • [13] THÖRNBERG J,BAKHIT B,PALISAITIS J,et al.Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films[J].Surface and Coatings Technology,2021,420:127353.

    • [14] NEIDHARDT J,MRÁZ S,STRUB E,et al.Experiment and simulation of the compositional evolution of Ti-B thin films deposited by sputtering of a compound target[J].Journal of Applied Physics,2008,104(6):063304.

    • [15] PETROV I,HALL A,BIRCH J,et al.Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):050601.

    • [16] ASEMPAH I,XU Junhua,YU Lihua,et al.The role of copper incorporation on the microstructure,mechanical and tribological properties of TiBN-Cu films by reactive magnetron sputtering[J].Journal of Alloys and Compounds,2019,801:112-122.

    • [17] KAINZ C,SCHALK N,TKADLETZ M,et al.Thermo-physical properties of coatings in the Ti(B,N)system grown by chemical vapor deposition[J].Surface and Coatings Technology,2020,384:125318.

    • [18] ASEMPAH I,YU Lihua,JU Hongbo,et al.Corrosion,oxidation and high-temperature tribological properties of Ti–B–N coatings[J].Surface Engineering,2019,35(8):661-669.

    • [19] MAYRHOFER P H,MITTERER C,HULTMAN L,et al.Microstructural design of hard coatings[J].Progress in Materials Science,2006,51(8):1032-1114.

    • [20] PIERSON J F,BERTRAN F,BAUER J P,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.

    • [21] TIAN C X,WANG Z S,ZOU C W,et al.Ternary and quarternary TiBN and TiBCN nanocomposite coatings deposited by arc ion plating[J].Surface and Coatings Technology,2019,359:445-450.

    • [22] CHUKWUIKE V I,SHTANSKY D V,SUBRAMANIAN B.Biocompatibility study of nanocomposite titanium boron nitride(TiBN)thin films for orthopedic implant applications[J].Surface and Coatings Technology,2021,410:126968.

    • [23] MAYRHOFER P H,MITTERER C,CLEMENS H.Self-organized nanostructures in hard ceramic coatings[J].Advanced Engineering Materials,2005,7(12):1071-1082.

    • [24] MAYRHOFER P H,CLEMENS H,MITTERER C.Interfaces in nanostructured thin films and their influence on hardness[J].International Journal of Materials Research,2005,96(5):468-480.

    • [25] MOLLART T,BAKER M,HAUPT J,et al.Nanostructured titanium boron nitride coatings of very high hardness[J].Surface and Coatings Technology,1995,74:491-496.

    • [26] VEPŘEK S,REIPRICH S.A concept for the design of novel superhard coatings[J].Thin Solid Films,1995,268(1-2):64-71.

    • [27] HOLZSCHUH H.Deposition of Ti-B-N(single and multilayer)and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools[J].Thin Solid Films,2004,469-470:92-98.

    • [28] PIERSON J,BERTRAN F,BAUER J,et al.Structural and electrical properties of sputtered titanium boronitride films[J].Surface and Coatings Technology,2001,142:906-910.

    • [29] YANG Yucheng,TANAKA K,LIU J,et al.Ion energies in high power impulse magnetron sputtering with and without localized ionization zones[J].Applied Physics Letters,2015,106(12):124102.

    • [30] WU Zhengtao,TENGSTRAND O,BAKHIT B,et al.Growth of dense,hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2020,38(2):023006.

    • [31] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

  • 手机扫一扫看