en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李延涛,男,1992年出生,博士研究生。主要研究方向为材料表面等离子体改性。E-mail:liyantao1992@126.com

通讯作者:

姜欣,男,1984年出生,博士,副教授,博士研究生导师。主要研究方向为材料表面等离子体改性。E-mail:jiangxin@swjtu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007-9289.20211216001

参考文献 1
MEDINA L Z,COSTA D M V T,PASCHALIDOU E M,et al.Enhancing corrosion resistance,hardness,and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon [J].Materials & Design,2021,205:109711.
参考文献 2
MALINOVSKIS P,FRITZE S,RIEKEHR L,et al.Synthesis and characterization of multicomponent(CrNbTaTiW)C films for increased hardness and corrosion resistance [J].Materials & Design,2018,149:51-62.
参考文献 3
BRAIC V,BALACEANU M,BRAIC M,et al.Characterization of multi-principal-element(TiZrNbHfTa)N and(TiZrNbHfTa)C coatings for biomedical applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205.
参考文献 4
BRAIC M,BALACEANU M,VLADESCU A,et al.Deposition and characterization of multi-principalelement(CuSiTiYZr)C coatings[J].Applied Surface Science,2013,284:671-678.
参考文献 5
JHONG Y S,HUANG C W,LIN S J,et al.Effects of CH4 flow ratio on the structure and properties of reactively sputtered(CrNbSiTiZr)Cx coatings[J].Materials Chemistry and Physics,2018,210:348-352.
参考文献 6
WU G,BALACHANDRAN S,GAULT B,et al.Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability[J].Advanced Materials,2020,32(34):2002619.
参考文献 7
LIU C,LI Z,LU W,et al.Reactive wear protection through strong and deformable oxide nanocomposite surfaces[J].Nature Communications,2021,12(1):1-8.
参考文献 8
TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current[J].Journal of Physics D:Applied Physics,2015,48(49):5204.
参考文献 9
贺贞,孙德恩,黄佳木,等.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu,et al.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)
参考文献 10
贾昆鹏,王雪,徐锋,等.调制比对HiPIMS制备多层DLC薄膜耐腐蚀性能的影响[J].中国表面工程,2021,34(2):35-40.JIA Kunpeng,WANG Xue,XU Feng,et al.Effects of modulation ratio on corrosion resistance of multilayer DLC films prepared by HiPIMS[J].China Surface Engineering,2021,34(2):35-40.(in Chinese)
参考文献 11
SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.
参考文献 12
NAKAO S,YUKIMURA K,OGISO H,et al.Effects of Ar gas pressure on microstructure of DLC films deposited by high-power pulsed magnetron sputtering[J].Vacuum,2013,89:261-266.
参考文献 13
LI J,HUANG Y,MENG X,et al.A review on high entropy alloys coatings:fabrication processes and property assessment[J].Advanced Engineering Materials,2019,21(8):1900343.
参考文献 14
MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
参考文献 15
XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.
参考文献 16
ZHAO D,JIANG X,WANG Y,et al.Microstructure evolution,wear and corrosion resistance of Cr-C nanocomposite coatings in seawater[J].Applied Surface Science,2018,457:914-924.
参考文献 17
WANG J,ZHANG H,YU X,et al.Insight into the structure and tribological and corrosion performance of high entropy(CrNbSiTiZr)C films:first-principles and experimental study[J].Surface and Coatings Technology,2021,421:127468.
参考文献 18
VARELA L,FERNANDES F,CAVALEIRO A,et al.NbC-Ni coatings deposited by DC reactive magnetron sputtering:effect of Ni content on mechanical properties,thermal stability and oxidation resistance[J].Surface and Coatings Technology,2018,349:1018-1031.
参考文献 19
NA SLUND L Å,PERSSON P O,ROSEN J.X-ray photoelectron spectroscopy of Ti3AlC2,Ti3C2Tz,and TiC provides evidence for the electrostatic interaction between laminated layers in max-phase materials[J].The Journal of Physical Chemistry C,2020,124(50):27732-27742.
参考文献 20
JANG D,GREER J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J].Nature Materials,2010,9(3):215-9.
参考文献 21
WANG J,ZHANG B,YU Y,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.
参考文献 22
BLINKOV I,BELOV D,VOLKHONSKIY A,et al.Hardening ion plasma coatings(Ti,Alx)N(x= 3 at.%)for carbide cutting tools[J].Journal of Physics:Conference Series,2020,1713:012011.
参考文献 23
ZHANG L,YANG H,PANG X,et al.Microstructure,residual stress,and fracture of sputtered TiN films[J].Surface and Coatings Technology,2013,224:120-125.
参考文献 24
赵彦辉,徐丽,于海涛,等.硬质多元氮化物薄膜研究进展[J].表面技术,2017,46(6):102-109.ZHAO Yanhui,XU Li,YU Haitao,et al.Study progress of hard multicomponent nitride films[J].Surface Technology.2017,46(6):102-109.(in Chinese)
参考文献 25
WU J M,Lin S J,Yeh J W,et al.Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J].Wear,2006,261:513-519.
参考文献 26
GUO Z,ZHANG A,HAN J,et al.Microstructure,mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2[J].Tribology International,2020,151:106436.
参考文献 27
CAI Z,WANG Z,HONG Y,et al.Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films[J].Tribology International,2021,163:107195.
参考文献 28
BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys[J].Tribology International,2021,160:107031.
目录contents

    摘要

    高熵碳化物薄膜的脆性限制了其在高承载、长周期服役条件下的应用。精细设计的纳米复合结构可以在不损失薄膜强度前提下显著提高薄膜的韧性。采用高功率脉冲磁控溅射技术制备以非晶为基体连续相,以碳化物陶瓷相为分散相的非晶-晶体的高熵碳化物(CuNiTiNbCr)Cx 薄膜,研究不同 C2H2 气体流量(FC)对薄膜成分、结构、力学性能和摩擦学性能的影响。采用能谱仪、扫描电子显微镜、X 射线衍射仪、透射电子显微镜、X 射线光电子能谱分析薄膜的成分、形貌、结构及各元素的化学状态,进一步采用纳米压痕以及球-盘式摩擦磨损试验机对薄膜的硬度、模量和摩擦磨损性能进行表征。结果表明,随着乙炔气体流量的增加,薄膜中碳含量逐渐增加,结构从非晶转变为非晶-晶体的纳米复合结构。纳米复合结构薄膜的硬度随着乙炔流量的增加逐渐增加,这是因为薄膜中生成大量碳化物陶瓷相,薄膜硬度最高为 20 GPa。纳米复合薄膜呈现优异的摩擦学性能,在 FC = 3 mL / min 时,薄膜的摩擦性能达到最优,其磨损量为 2.9×10−6 mm3 / Nm。综上,采用高功率脉冲磁控溅射技术可以精细调控薄膜结构,制备出强韧一体化、耐磨减摩的纳米复合结构 (CuNiTiNbCr)Cx 薄膜。

    Abstract

    The brittleness of high-entropy carbide films limits its application under high-load, long-period service conditions. The film toughness can be significantly improved by the finely designed nanocomposite structure without losing the film strength. Amorphous-crystalline nanocomposite high-entropy carbide (CuNiTiNbCr)Cx films with amorphous as the matrix and the carbide ceramic phase as the dispersed phase are prepared by high power pulsed magnetron sputtering (HiPIMS) at different C₂H₂ flow rate, and the effects of C₂H₂ gas flow (FC) on the film composition, structure, mechanical properties and tribological properties are studied. The composition, morphology, microstructure and chemical state of elements of the films are analyzed using energy spectrometer, scanning electron microscope, X-ray diffractometer, transmission electron microscope, and X-ray photoelectron spectroscopy. The hardness, modulus and wear properties of the films are further characterized by nanoindentation and ball-disc friction and wear tester. As the flow rate of acetylene gas increases, the carbon content in the film gradually increases, and the film structure changes from an amorphous structure to an amorphous-crystalline nanocomposite structure. The hardness of the nanocomposite film gradually increases with the increase of the acetylene flow rate, due to a large amount of carbide ceramic phase formed in the film, and the hardness reaches the maximum of 20 GPa. The nanocomposite film exhibits excellent tribological properties. The nanocomposite film exhibits excellent tribological properties. At FC = 3 mL / min, the friction performance of the film reaches the best, and the wear rate is 2.9×10−6 mm3 / Nm. The HiPIMS can finely control film structure, and fabricate the nanocomposite (CuNiTiNbCr)Cx film, which achieves the combination of high strength and toughness, and significantly improved tribological properties.

  • 0 前言

  • 高熵合金碳化物薄膜因其高硬度[1-2]、高耐腐蚀性[1-4]和良好的耐磨性[13-4]而受到广泛关注。目前磁控溅射制备的高熵合金碳化物膜结构多为面心立方(FCC)或非晶结构,如(CrNbSiTiZr)Cx [5] 与(CrNbTaTiW)C[2]为 FCC 结构,(CoCrFeMnNi)Cx 为非晶结构。FCC 结构的高熵碳化物薄膜与传统陶瓷薄膜相似,呈现柱状结构,这使得它仍然具有很高的脆性,而非晶薄膜最大的缺点是室温脆性。因此,高熵碳化物薄膜的应用受到一定的限制,在高冲击、长期使用条件下存在失效风险。

  • 非晶-晶体的纳米复合结构材料具有强韧一体化的特性。 WU 等 [6] 采用磁控共溅射法制备 CrCoNi-Fe-Si-B 晶体-非晶纳米复合材料。这种高熵纳米复合材料实现高强度和高韧性的结合。LIU 等[7]设计一种 TiNbZrAg 高熵合金,在干滑动时形成非晶氧化物包裹 Ag 纳米晶(非晶态-晶体)的纳米复合表面层,由于这层非晶态-晶体纳米复合表面氧化层具有高强度和韧性,高熵合金的磨损率降低了一个数量级。然而,高熵薄膜本身的高熵效应和制备过程中的快速冷效应使高熵合金薄膜难以获得非晶态-晶态的双相结构。

  • 高功率脉冲磁控溅射技术(High power impulse magnetron sputtering,HiPIMS)作为一种新型的薄膜沉积技术,以低占空比向靶材施加高能量脉冲,具有等离子体密度高、溅射粒子离化率高和溅射粒子能量分布广泛的特点[8-10]。溅射粒子高的离化率使其得以控制薄膜的相组成、微观结构甚至元素组成[11]。离化率可以通过峰值放电电流进行调节,其受沉积参数的影响,例如沉积压力、靶电压、磁场和脉宽[812]。上述特性使通过 HiPIMS 制备纳米复合结构高熵碳化物薄膜成为可能。本文采用 HiPIMS 制备非晶-晶体纳米复合结构(CuNiTiNbCr)Cx 高熵碳化物薄膜,并系统地研究 C2H2 流量(FC)对薄膜成分、结构、力学性能与摩擦学性能的影响。

  • 1 试验与方法

  • 1.1 样品制备

  • 使用非平衡磁控溅射设备在 Si(100)和 316 不锈钢基片上沉积(CuNiTiNbCr)Cx 薄膜。五元金属靶由高纯度 Cu(≥99.9%)、Ni(≥99.9%)、Ti (≥99.9%)、Nb(≥99.9%)、Cr(≥99.9%)片拼接而成,呈周期性排列(Cu-Ni-Ti-Nb-Cr)1,(Cu-Ni-TiNb-Cr)2 ...(Cu-Ni-Ti-Nb-Cr)n。Si 和 316 不锈钢基片分别在丙酮和酒精中超声清洗 15 min,然后,将它们安装在真空室中的基板支架上,靶基距为 80 mm。在真空室气压达到 2.0 mPa 后,靶和样品分别用 Ar 离子清洗 5 min 和 20 min。在开始沉积之前,先在样品上沉积约 100 nm 的 CuNiTiNbCr 金属过渡层以增强薄膜的附着力。在沉积过程中,Ar(99.999%)气体流速固定为 40 mL / min,而 C2H2(99.999%)气体流速(表示为 Fc)为变量,分别设置为 0 mL / min、 1 mL / min、2 mL / min、3 mL / min 和 4 mL / min。试验中采用 HiPIMS 电源(HPP12S1,Chengdu Zhongxinda,China)为靶供电,基片电压设定为 −60 V,更多试验细节见表1。

  • 表1(CuNiTiNbCr)Cx 薄膜的沉积参数

  • Table1 Deposition parameters of the (CuNiTiNbCr) Cx films

  • 1.2 表征与分析

  • 在薄膜沉积过程中,靶放电电压和电流波形通过示波器(TDS-220,Tektronix,America)测量。(CuNiTiNbCr)Cx 薄膜的成分通过能谱仪(EDS, Oxford,UK)表征。薄膜的厚度采用台阶仪(XP-2,AMBIOS,USA)测量。通过场发射扫描电子显微镜 (SEM,JSM-7800F,Japan)观察薄膜的断面形貌。薄膜的晶体结构通过 X 射线衍射(XRD,Empyrean, Netherlands)表征。为了进一步研究薄膜的晶体结构,对样品进行透射电子显微镜(TEM,JEM-2100F, Japan)分析。(CuNiTiNbCr)Cx薄膜的硬度通过纳米压痕测试仪(Nano Indenter@G200,Agilent,USA) 使用连续刚度模式(CSM)测量。(CuNiTiNbCr)Cx 薄膜的韧性通过使用维氏压头的压痕测试进行检测,最大载荷为 500 g。(CuNiTiNbCr)Cx薄膜的磨损性能通过球盘往复摩擦机(CSEM,Switzerland)在大约 55% RH 的相对湿度和 12±1℃的温度下进行评估。采用直径为 6 mm 的碳化钨(WC)球作为对磨副。所有摩擦学测试均在施加 2 N 的法向载荷、 12 mm / s 的速度、6 mm 的振幅和 5 000 s 的滑动时间下进行。通过光学显微镜(Zeiss Axio A1,Germany)与场发射扫描电子显微镜(SEM, JSM-7800F,Japan)观察磨损痕迹。通过 SEM 中的 EDS 附件分析磨痕处元素分布。通过触针式轮廓仪 (XP-2,USA)测量薄膜的磨损轨迹轮廓。然后通过 μ=V / LS 计算薄膜的磨损率,其中 μVLS 分别代表磨损率、磨损量、载荷和滑动距离。

  • 2 结果与讨论

  • 2.1 靶放电分析

  • 图1 为靶的放电电压与放电电流图。电压为输入值,恒定为 800 V,而电流随着 C2H2 流量的增加逐渐增加。靶电流值主要与到达靶的正离子以及靶表面的二次电子发射相关。陶瓷的二次电子发射系数高于金属,C2H2 流量的增加会使靶表面产生中毒现象,形成一层碳化物陶瓷层,进而导致靶表面发射更多的二次电子。另一方面,C2H2 流量的增加会使真空室内气压的增加,这会导致靶表面产生更高密度的等离子体,使到达靶的离子流增加。

  • 图1 不同 C2H2 流量下靶的放电电压与放电电流

  • Fig.1 Discharge voltage and discharge current of the target at different C2H2 flow rates

  • 2.2 薄膜成分与结构

  • 表2 为不同 C2H2流量下沉积的(CuNiTiNbCr)Cx 薄膜的能谱分析结果。可以看到五种金属元素的组成范围 5 at.%~35 at.%,符合高熵薄膜的定义[13-14]。随着 C2H2 流量的增加,薄膜中的碳含量逐渐增加,在 FC = 4 mL / min 时最高达到 37.20 at.%。这表明本文成功制备了不同 C 含量的(CuNiTiNbCr)Cx高熵碳化物薄膜。随着乙炔流量的增加,薄膜的厚度呈下降趋势,分别为 1 850 nm、1 820 nm、1 745 nm、 1 632 nm 和 1 518 nm。薄膜厚度的下降与靶表面产生“中毒”效应后溅射速率的下降有关。另外,乙炔流量增加会导致气压增加,这会使溅射粒子的平均自由程降低,溅射粒子更易发生散射,进而导致到达基片的粒子数量降低。

  • 表2 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的成分(at. %)

  • Table2 Composition and thickness of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates (at. %)

  • 图2为不同C2H2流量下(CuNiTiNbCr)Cx薄膜的 XRD 图谱和 Raman 光谱。从 XRD 图谱可以看出,在 FC = 0 mL / min,FC = 1 mL / min 以及 FC = 2 mL / min 时,薄膜仅有一个宽峰(在 32.9°、61.6° 与 69.2°的峰为 Si 基底的峰),所以薄膜的结构为非晶结构。随着 C2H2 流量的进一步增加,在 FC = 3 mL / min 时,薄膜中出现 FCC 结构,并且具有 (111)择优取向。在 FC = 4 mL / min 时,薄膜同样为 FCC 结构,并且具有明显的(200)择优取向。随着 C2H2 流量的增加,峰的半高宽减小,说明薄膜的晶粒尺寸增加。FCC 结构的产生与 C2H2 流量的增加相关,所以推测 FCC 结构为高熵碳化物陶瓷相。从拉曼谱可以观察到,在 FC = 1 mL / min 与 FC= 2 mL / min 时图谱中没有非晶碳的 D 峰和 G 峰,而在 FC = 3 mL / min 与 FC = 4 mL / min 时可以在图谱中观察到微弱的 D 峰和 G 峰信号。这表明在 FC= 3 mL / min 与 FC = 4 mL / min 时,(CuNiTiNbCr)Cx 薄膜中含有非晶碳相,但是其比例非常低。

  • 图2 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的 XRD 和 Raman 图谱

  • Fig.2 XRD patterns and Raman spectra of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 图3 为不同 C2H2 流量下(CuNiTiNbCr)Cx 薄膜的横截面形貌图,可以看到在 FC = 0 mL / min 以及 FC = 1 mL / min 时制备的(CuNiTiNbCr)Cx薄膜的横截面呈现为致密、均匀的特征,而随着乙炔流量的进一步增加,制备的(CuNiTiNbCr)Cx 薄膜出现明显的分层结构,下层为致密、均匀的无特征形貌,上层为典型柱状结构。高功率脉冲磁控溅射制备薄膜的过程中分层现象可能对应着晶体结构的变化,在采用 HiPIMS 制备的(AlCrTiVZr)Nx中也观察到类似的现象[15],并且下层无特征层对应着非晶结构,上层柱状结构对应着 FCC 的高熵陶瓷相。在 CuNiTiNbCr 体系中,原子半径相差较大,并且在开始沉积时温度较低,这些因素都有利于非晶结构的生成。而上层结构虽有结晶的碳化物陶瓷相生成,但是 Cu、Ni 等非碳化物形成元素的存在会使(CuNiTiNbCr)Cx 薄膜难以形成单一的 FCC 碳化物相。为了进一步分析(CuNiTiNbCr)Cx 薄膜的物相结构,选择对 FC = 3 mL / min 的(CuNiTiNbCr)Cx薄膜进行 TEM 表征。

  • 图3 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的横截面形貌

  • Fig.3 Cross-sectional morphologies of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 图4 为 FC = 3 mL / min 时(CuNiTiNbCr)Cx 薄膜的 TEM 图像。图4a 为薄膜的低倍 TEM 图,显示离子减薄样品边缘薄区,作电子选区衍射(图4b)。从电子衍射花样(图4b)可以看到中心较宽的非晶环与外部的 FCC 相(220)、(311)与(331)晶面对应的衍射环。对应 XRD 中的 FCC(111)与(200) 晶面的衍射环与非晶区域重合,所以没有标出。从图4c 和 4d 的 EM 高分辨像可以直接观察到大量晶格条纹被无序结构包裹。图4d 中标记了 FCC 的碳化物纳米晶,可以观察到其尺寸在 5 nm 左右。从 TEM 高分辨图谱与电子衍射图像可以判断处薄膜中存在非晶相与 FCC 碳化物相的双相结构。选择图4d 中的两个区域作傅里叶-反傅里叶变换,得到图4e和4f。通过测量,两者的晶面间距分别为0.253 nm 与 0.224 nm,对应 FCC 相的(111)与(200)晶面。这表明在(CuNiTiNbCr)Cx 薄膜的 TEM 图像观察到的纳米晶相与 XRD 中观察到的物相结构一致。

  • 图4 FC = 3 mL / min 时(CuNiTiNbCr)Cx薄膜的 TEM 图像:(a)低倍 TEM 图像;(b)选区电子衍射图案;(c)与(d)高分辨 TEM 图像;(e)与(f)为图(d)选区的反傅里叶变换图

  • Fig.4 TEM images of (CuNiTiNbCr) Cx films deposited at FC = 3 mL / min (a) Low magnification TEM image; (b) SAED pattern; (c) , (d) High resolution TEM image; (e) , (f) Inverse Fourier transform of the selected area in (d)

  • 为了进一步研究(CuNiTiNbCr)Cx薄膜中各元素的化学状态,对不同碳含量的薄膜进行 XPS 测试,并且通过 NIST XPS 数据库以及部分文献[16-19]对五种金属元素以及碳的化学态进行标定,结果如图5 所示。图5a 为(CuNiTiNbCr)Cx薄膜的 Ti2p 的高分辨谱,从图中可以看出在 FC = 0 mL / min 与 FC = 1 mL / min 时薄膜表面的 Ti 主要以氧化物的形式存在,也有部分 Ti 以金属态存在。而随着 FC 增加,Ti2p3 / 2 峰向高结合能偏移,这说明 Ti 与 C 结合形成 TiC。从 Nb3d(图5b)和 Cr 2p(图5c) 的高分辨图可以观察到,与 Ti 类似,Nb 和 Cr 在 FC =0 mL / min 与 FC =1 mL / min 时主要以金属态 (Nb 和 Cr)与氧化物(Nb2O5 和 Cr2O3)的形式存在。随着 FC的增加,Nb3d5 / 2 峰和 Cr 2p3 / 2 峰都向高结合能移动,表明它们与碳反应并且化学价态增加。而 Cu 2p 峰(图5d)和 Ni2p(图5e)峰没有随着碳的引入而产生偏移,表明它们不与碳反应,以金属态存在。从 C 1s 峰(图5f)可以看出,在 FC = 0 mL / min 时薄膜表面只有吸附的碳,而随着 FC 的增加出现金属碳化物(MeC),并且伴随部分 sp 3 态 C-C 与 sp 2 态 C=C。这说明随着 C 含量的增加,薄膜中出现碳化物陶瓷相以及非晶碳相。由上述结果可以推测由于 C 与五种金属元素之间混合焓的差异,混合焓作为驱动力,促使 Ti、Nb、Cr 与 C 结合形成 FCC 陶瓷相,造成薄膜中成分波动,而 Cu、Ni 与部分剩余的 Ti、Nb、Cr、C 形成非晶相。

  • 图5 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的 XPS Ti2p、Nb3d、Cr2p、Cu2p、Ni2p 以及 C1s 谱图

  • Fig.5 XPS Ti2p, Nb3d, Cr2p, Cu2p, Ni2p and C1s spectra of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 2.3 薄膜力学性能

  • 图6a 为不同乙炔流量下沉积的(CuNiTiNbCr)Cx 薄膜的硬度和模量。随着 Fc 的增加,薄膜的硬度与模量呈上升趋势,并且在FC = 3 mL / min时显著增加。从 XRD 结果可以看出,薄膜在 FC = 0,1,2 mL / min 时,薄膜均为非晶态,而在 FC = 3 mL / min 时,薄膜出现陶瓷相。碳化物陶瓷相的形成是薄膜硬度与模量发生显著增加的主要因素。另外,非晶-晶体的纳米复合结构也会通过界面强化增加薄膜的硬度[20]。图6b 为薄膜的 H / EH3 / E2 值。通常 H / EH3 / E2 被用来表征薄膜的韧性[2122]H / E 与弹性恢复能力成正比,H3 / E2 与抗塑性变形能力成正比。如图6b 所示,随着 FC 的增加,H / EH3 / E2 均呈现先上升趋势。H / EH3 / E2 的值在 FC = 4 mL / min 处达到最大值,说明在 FC = 4 mL / min 处沉积的薄膜具有最好的弹性恢复性能和抗塑性变形能力。

  • 图6 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的硬度 H 及模量 EH3 / E2H / E

  • Fig.6 Hardness and modulus and the calculated H3 / E2, H / E values of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 为了更直接的评价薄膜的韧性,我们采用压痕法测试薄膜的断裂韧性(KIC)和径向裂纹长度之间的关系,如下[23]

  • KIC=αEH1/2PC3/2
    (1)
  • 式中,α 是经验常数,与压头的几何形状有关(维氏压头的 α = 0.016),EH 是薄膜的弹性模量和硬度,P 是压痕峰值载荷,C 是裂纹长度。(CuNiTiNbCr)Cx薄膜的压痕形貌如图7 所示。径向裂纹长度和计算的断裂韧度列在表3 中。计算的薄膜的断裂韧性值与 H3 / E2 具有相似的趋势,均随着FC的增加而增加。在FC = 3 mL / min与4 mL / min 沉积的(CuNiTiNbCr)Cx 薄膜具有较优异的断裂韧性 (0.67±0.03 MPa·m 1/2 与 0.71±0.13 MPa·m 1/2),且两者没有显著性差异。优异的断裂韧性与薄膜的非晶-晶体的纳米复合结构有关,分散在非晶基体中的硬质碳化物纳米晶会阻碍裂纹的扩展,并且能够改变裂纹扩展的路径,最终使裂纹扩展长度显著缩短。

  • 图7 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的压痕形貌

  • Fig.7 Indentation morphology of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 表3 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的裂纹长度 C 和断裂韧性(KIC

  • Table3 Crack length and fracture toughness, KIC at different C2H2 flow rates

  • 2.4 薄膜摩擦学性能

  • 图8 为磨痕形貌与磨痕轮廓图。从图中可以看到随着 FC的增加,磨痕宽度逐渐减小,并且在 FC = 3 mL / min 时薄膜显示最小的磨痕深度(1.17 μm)。磨痕宽度的减小与薄膜硬度的增加相关。图9a 中给出不同 FC制备的(CuNiTiNbCr)Cx薄膜的摩擦因数。在 FC = 0,1,2 mL / min 时沉积的(CuNiTiNbCr)C 薄膜的摩擦因数较为相近,约为 0.48。而随着 FC 增加到 3 mL / min 与 4 mL / min,摩擦因数降低到 0.41,并且观察到两者的摩擦因数均发生从 0.2 快速增加到 0.4 的现象。FC = 3 mL / min 与 4 mL / min 样品的摩擦因数一开始较低,之后薄膜发生黏着磨损与氧化磨损,薄膜表面存在块状氧化层剥落,导致摩擦界面粗糙度上升,摩擦因数发生突变,接近 FC= 0、1 与 2 mL / min 样品的摩擦因数。

  • (CuNiTiNbCr)Cx薄膜的磨损率如图9b 所示。随着乙炔流量的增加,(CuNiTiNbCr)Cx 薄膜的磨损率逐渐降低。在 FC = 3 mL / min 时,(CuNiTiNbCr)Cx 薄膜的磨损率达到最低 2.9×10−6 mm 3 /(Nm)。随着 FC 的进一步增加,薄膜的磨损率增加到 4.9× 10−6 mm 3 /(Nm)。薄膜的摩擦性能与薄膜的硬度和韧性相关[24]。一般薄膜的硬度越高其耐磨损性能越优异,而高的韧性可以防止薄膜在磨损过程中在薄膜内部产生疲劳裂纹,进而导致薄膜块状剥落失效。所以,在 FC = 3 mL / min 时,沉积的纳米复合薄膜的优异摩擦磨损性能与其高硬度和高韧性的结合相关。

  • 图8 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的磨痕轮廓

  • Fig.8 Wear scar profiles of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 图9 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的摩擦因数及磨损速率薄膜

  • Fig.9 Friction coefficient and wear rate of (CuNiTiNbCr) Cx films deposited at different C2H2 flow rates

  • 为了进一步分析薄膜的摩擦磨损机制,通过扫描电镜研究(CuNiTiNbCr)Cx 薄膜的磨损表面的形貌和成分分布,结果如图10 所示。所有样品都存在坑、斑块或横向裂纹,这些是黏着磨损的典型特征[25-26]。在这一过程中,磨损表面经历表面层的周期性局部断裂以及磨屑的周期性堆积和清除。并且,在磨痕中没有观察到明显的沟纹与刮擦痕迹,表明磨粒磨损不是薄膜的主要磨损机制。另外,通过分析磨痕表面的化学成分,证明磨痕处存在大量的氧,这表明是摩擦与变形过程产生的大量热导致磨痕表面发生氧化。上述结果表明薄膜存在氧化磨损机制,而究其原因,是薄膜中存在大量的金属相,金属相在摩擦过程中非常容易被氧化形成氧化物结构[27-28]。这种氧化层的形成可以阻止薄膜与对磨球之间的直接接触,可以提高耐磨损性能。从图10e 的高倍 SEM 图中可以看到在 FC = 4 mL / min 时,薄膜的氧化层破损严重,这可能是其磨损率相比于 FC = 3 mL / min 样品上升的原因。

  • 图10 不同 C2H2流量下(CuNiTiNbCr)Cx薄膜的磨痕形貌及成分分布

  • Fig.10 Wear track morphologies and composition distribution of (CuNiTiNbCr) Cx films deposited at different C2H2 flow

  • 3 结论

  • (1)通过在 CuNiTiNbCr 体系中引入 C 原子,原位诱导形成高熵合金 / 陶瓷双相结构的(CuNiTiNbCr)Cx 纳米复合薄膜。薄膜中的物相主要包括非晶合金相与(TiNbCr)C 碳化物纳米晶相。

  • (2)随着碳含量的增加(CuNiTiNbCr)Cx 薄膜的硬度与韧性增加,摩擦系数与磨损量下降。在 FC=3 mL / min 时,由于优异的强韧性与表面完整氧化层的减磨作用,(CuNiTiNbCr)Cx 薄膜磨损率达到最低。

  • (3)强韧一体化纳米复合结构高熵碳化物(CuNiTiNbCr)Cx 薄膜具备在高频高载等严苛工况下长期服役的潜力,具有良好的应用前景,但是其性能与物相结构的关系仍需通过模拟等手段进一步探索与研究。

  • 参考文献

    • [1] MEDINA L Z,COSTA D M V T,PASCHALIDOU E M,et al.Enhancing corrosion resistance,hardness,and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon [J].Materials & Design,2021,205:109711.

    • [2] MALINOVSKIS P,FRITZE S,RIEKEHR L,et al.Synthesis and characterization of multicomponent(CrNbTaTiW)C films for increased hardness and corrosion resistance [J].Materials & Design,2018,149:51-62.

    • [3] BRAIC V,BALACEANU M,BRAIC M,et al.Characterization of multi-principal-element(TiZrNbHfTa)N and(TiZrNbHfTa)C coatings for biomedical applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205.

    • [4] BRAIC M,BALACEANU M,VLADESCU A,et al.Deposition and characterization of multi-principalelement(CuSiTiYZr)C coatings[J].Applied Surface Science,2013,284:671-678.

    • [5] JHONG Y S,HUANG C W,LIN S J,et al.Effects of CH4 flow ratio on the structure and properties of reactively sputtered(CrNbSiTiZr)Cx coatings[J].Materials Chemistry and Physics,2018,210:348-352.

    • [6] WU G,BALACHANDRAN S,GAULT B,et al.Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability[J].Advanced Materials,2020,32(34):2002619.

    • [7] LIU C,LI Z,LU W,et al.Reactive wear protection through strong and deformable oxide nanocomposite surfaces[J].Nature Communications,2021,12(1):1-8.

    • [8] TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current[J].Journal of Physics D:Applied Physics,2015,48(49):5204.

    • [9] 贺贞,孙德恩,黄佳木,等.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu,et al.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)

    • [10] 贾昆鹏,王雪,徐锋,等.调制比对HiPIMS制备多层DLC薄膜耐腐蚀性能的影响[J].中国表面工程,2021,34(2):35-40.JIA Kunpeng,WANG Xue,XU Feng,et al.Effects of modulation ratio on corrosion resistance of multilayer DLC films prepared by HiPIMS[J].China Surface Engineering,2021,34(2):35-40.(in Chinese)

    • [11] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.

    • [12] NAKAO S,YUKIMURA K,OGISO H,et al.Effects of Ar gas pressure on microstructure of DLC films deposited by high-power pulsed magnetron sputtering[J].Vacuum,2013,89:261-266.

    • [13] LI J,HUANG Y,MENG X,et al.A review on high entropy alloys coatings:fabrication processes and property assessment[J].Advanced Engineering Materials,2019,21(8):1900343.

    • [14] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [15] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [16] ZHAO D,JIANG X,WANG Y,et al.Microstructure evolution,wear and corrosion resistance of Cr-C nanocomposite coatings in seawater[J].Applied Surface Science,2018,457:914-924.

    • [17] WANG J,ZHANG H,YU X,et al.Insight into the structure and tribological and corrosion performance of high entropy(CrNbSiTiZr)C films:first-principles and experimental study[J].Surface and Coatings Technology,2021,421:127468.

    • [18] VARELA L,FERNANDES F,CAVALEIRO A,et al.NbC-Ni coatings deposited by DC reactive magnetron sputtering:effect of Ni content on mechanical properties,thermal stability and oxidation resistance[J].Surface and Coatings Technology,2018,349:1018-1031.

    • [19] NA SLUND L Å,PERSSON P O,ROSEN J.X-ray photoelectron spectroscopy of Ti3AlC2,Ti3C2Tz,and TiC provides evidence for the electrostatic interaction between laminated layers in max-phase materials[J].The Journal of Physical Chemistry C,2020,124(50):27732-27742.

    • [20] JANG D,GREER J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J].Nature Materials,2010,9(3):215-9.

    • [21] WANG J,ZHANG B,YU Y,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.

    • [22] BLINKOV I,BELOV D,VOLKHONSKIY A,et al.Hardening ion plasma coatings(Ti,Alx)N(x= 3 at.%)for carbide cutting tools[J].Journal of Physics:Conference Series,2020,1713:012011.

    • [23] ZHANG L,YANG H,PANG X,et al.Microstructure,residual stress,and fracture of sputtered TiN films[J].Surface and Coatings Technology,2013,224:120-125.

    • [24] 赵彦辉,徐丽,于海涛,等.硬质多元氮化物薄膜研究进展[J].表面技术,2017,46(6):102-109.ZHAO Yanhui,XU Li,YU Haitao,et al.Study progress of hard multicomponent nitride films[J].Surface Technology.2017,46(6):102-109.(in Chinese)

    • [25] WU J M,Lin S J,Yeh J W,et al.Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J].Wear,2006,261:513-519.

    • [26] GUO Z,ZHANG A,HAN J,et al.Microstructure,mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2[J].Tribology International,2020,151:106436.

    • [27] CAI Z,WANG Z,HONG Y,et al.Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films[J].Tribology International,2021,163:107195.

    • [28] BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys[J].Tribology International,2021,160:107031.

  • 参考文献

    • [1] MEDINA L Z,COSTA D M V T,PASCHALIDOU E M,et al.Enhancing corrosion resistance,hardness,and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon [J].Materials & Design,2021,205:109711.

    • [2] MALINOVSKIS P,FRITZE S,RIEKEHR L,et al.Synthesis and characterization of multicomponent(CrNbTaTiW)C films for increased hardness and corrosion resistance [J].Materials & Design,2018,149:51-62.

    • [3] BRAIC V,BALACEANU M,BRAIC M,et al.Characterization of multi-principal-element(TiZrNbHfTa)N and(TiZrNbHfTa)C coatings for biomedical applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2012,10:197-205.

    • [4] BRAIC M,BALACEANU M,VLADESCU A,et al.Deposition and characterization of multi-principalelement(CuSiTiYZr)C coatings[J].Applied Surface Science,2013,284:671-678.

    • [5] JHONG Y S,HUANG C W,LIN S J,et al.Effects of CH4 flow ratio on the structure and properties of reactively sputtered(CrNbSiTiZr)Cx coatings[J].Materials Chemistry and Physics,2018,210:348-352.

    • [6] WU G,BALACHANDRAN S,GAULT B,et al.Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability[J].Advanced Materials,2020,32(34):2002619.

    • [7] LIU C,LI Z,LU W,et al.Reactive wear protection through strong and deformable oxide nanocomposite surfaces[J].Nature Communications,2021,12(1):1-8.

    • [8] TIRON V,VELICU I L,VASILOVICI O,et al.Optimization of deposition rate in HiPIMS by controlling the peak target current[J].Journal of Physics D:Applied Physics,2015,48(49):5204.

    • [9] 贺贞,孙德恩,黄佳木,等.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu,et al.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)

    • [10] 贾昆鹏,王雪,徐锋,等.调制比对HiPIMS制备多层DLC薄膜耐腐蚀性能的影响[J].中国表面工程,2021,34(2):35-40.JIA Kunpeng,WANG Xue,XU Feng,et al.Effects of modulation ratio on corrosion resistance of multilayer DLC films prepared by HiPIMS[J].China Surface Engineering,2021,34(2):35-40.(in Chinese)

    • [11] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.

    • [12] NAKAO S,YUKIMURA K,OGISO H,et al.Effects of Ar gas pressure on microstructure of DLC films deposited by high-power pulsed magnetron sputtering[J].Vacuum,2013,89:261-266.

    • [13] LI J,HUANG Y,MENG X,et al.A review on high entropy alloys coatings:fabrication processes and property assessment[J].Advanced Engineering Materials,2019,21(8):1900343.

    • [14] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [15] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [16] ZHAO D,JIANG X,WANG Y,et al.Microstructure evolution,wear and corrosion resistance of Cr-C nanocomposite coatings in seawater[J].Applied Surface Science,2018,457:914-924.

    • [17] WANG J,ZHANG H,YU X,et al.Insight into the structure and tribological and corrosion performance of high entropy(CrNbSiTiZr)C films:first-principles and experimental study[J].Surface and Coatings Technology,2021,421:127468.

    • [18] VARELA L,FERNANDES F,CAVALEIRO A,et al.NbC-Ni coatings deposited by DC reactive magnetron sputtering:effect of Ni content on mechanical properties,thermal stability and oxidation resistance[J].Surface and Coatings Technology,2018,349:1018-1031.

    • [19] NA SLUND L Å,PERSSON P O,ROSEN J.X-ray photoelectron spectroscopy of Ti3AlC2,Ti3C2Tz,and TiC provides evidence for the electrostatic interaction between laminated layers in max-phase materials[J].The Journal of Physical Chemistry C,2020,124(50):27732-27742.

    • [20] JANG D,GREER J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J].Nature Materials,2010,9(3):215-9.

    • [21] WANG J,ZHANG B,YU Y,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.

    • [22] BLINKOV I,BELOV D,VOLKHONSKIY A,et al.Hardening ion plasma coatings(Ti,Alx)N(x= 3 at.%)for carbide cutting tools[J].Journal of Physics:Conference Series,2020,1713:012011.

    • [23] ZHANG L,YANG H,PANG X,et al.Microstructure,residual stress,and fracture of sputtered TiN films[J].Surface and Coatings Technology,2013,224:120-125.

    • [24] 赵彦辉,徐丽,于海涛,等.硬质多元氮化物薄膜研究进展[J].表面技术,2017,46(6):102-109.ZHAO Yanhui,XU Li,YU Haitao,et al.Study progress of hard multicomponent nitride films[J].Surface Technology.2017,46(6):102-109.(in Chinese)

    • [25] WU J M,Lin S J,Yeh J W,et al.Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J].Wear,2006,261:513-519.

    • [26] GUO Z,ZHANG A,HAN J,et al.Microstructure,mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2[J].Tribology International,2020,151:106436.

    • [27] CAI Z,WANG Z,HONG Y,et al.Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films[J].Tribology International,2021,163:107195.

    • [28] BHARDWAJ V,ZHOU Q,ZHANG F,et al.Effect of Al addition on the microstructure,mechanical and wear properties of TiZrNbHf refractory high entropy alloys[J].Tribology International,2021,160:107031.

  • 手机扫一扫看