en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴厚朴,男,1995年出生,博士研究生。主要研究方向为低温等离子体。E-mail:wuhoupu0108@163.com

通讯作者:

田修波,男,1969年出生,博士,教授,博士研究生导师。主要研究方向为低温等离子体。E-mail:xiubotian@163.com

参考文献 1
王志宏,曹云明,吴刚.水电联产低温多效海水淡化换热管腐蚀泄漏与结垢研究[J].冶金动力,2017,2(204):37-40.WANG Zhihong,CAO Yunming,WU Gang.Research on corrosion leakage and scaling of heat exchange tubes in LT-MED seawater desalination evaporator[J].Metallurgical Power,2017,2(204):37-40.(in Chinese)
参考文献 2
陈严飞,董绍华,敖川,等.含单腐蚀和群腐蚀缺陷高强钢管道失效压力[J].船舶力学,2018,22(1):73-79.CHEN Yanfei,DONG Shaohua,AO Chuan,et al.Failure pressure for high strength pipeline with single corrosion and corrosion clusters[J].Journal of Ship Mechanics,2018,22(1):73-79.(in Chinese)
参考文献 3
QIU H R,PENG YL,G L,et al.Pore channel surface modification for enhancing anti-fouling membrane distillation[J].Applied Surface Science,2018,443:217-226.
参考文献 4
SHUKLA P,AWASTHI S,RAMKUMAR J,et al.Protective trivalent Cr-based electrochemical coatings for gun barrels[J].Journal of Alloys and Compounds,2018,768:1039-1048.
参考文献 5
ASCHWANDEN R,KOTHEMANN R,ALBERT M,et al.Optical properties of silicon oxynitride films grown by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2021,736:138887.
参考文献 6
KAUNE G,HAGEDORN D,LOFFLER F.Magnetron sputtering process for homogeneous internal coating of hollow cylinders[J].Surface & Coatings Technology,2016,308:57-61.
参考文献 7
HAGEDORN D,LOFFLER F,MEEB R.Magnetron sputter process for inner cylinder coatings[J].Surface & Coatings Technology,2008,203:632-637.
参考文献 8
赵彦辉,贾莹,于宝海,等.管状构件内表面真空镀膜方法研究进展[J].表面技术,2014,43(2):118-125.ZHAO Yanhui,JIA Ying,YU Baohai,et al.Progress on the study of vacuum coating methods for the inner surface of tubular workpiece[J].Surface Technology,2014,43(2):118-125.(in Chinese)
参考文献 9
KOUZNETSOV V,MACA´K K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122:290-293.
参考文献 10
ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface & Coatings Technology,2014,257:308-325.
参考文献 11
田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)
参考文献 12
BURTON A W,ONG K,REA T,et al.On the estimation of average crystallite size of zeolites from the Scherrer equation:A critical evaluation of its application to zeolites with one-dimensional pore systems[J].Microporous and Mesoporous Materials,2009,117:75-90.
参考文献 13
WU Z Z,XIAO S,MA Z Y,et al.Dynamic transition in the discharge current between gas-dominant discharge and self-sputtering in high-power impulse magnetron sputtering [J].Surface & Coatings Technology,2016,306:319-322.
参考文献 14
ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface & Coatings Technology,2011,205:S1-S9.
参考文献 15
FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.
参考文献 16
OLIVEIRA J C,FERNANDES F,SERRA R,et al.On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2[J].Thin Solid Films,2018,645:253-264.
参考文献 17
KATHERINE D D,MASANOBU K,MASASHI M,et al.Effect of deposition rate on the surface morphology of CeO2 films deposited by pulsed laser deposition[J].Physica C,1999,320:21-30.
参考文献 18
VELICU I L,IANOŞ G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,359:97-107.
参考文献 19
LIN J L,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface & Coatings Technology,2010,204:2230-2239.
参考文献 20
FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2014,258:249-256.
参考文献 21
MA Q sS,LI L H,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.
参考文献 22
徐星,苏峰华,李助军.脉冲偏压对直流磁控溅射沉积MoN薄膜结构及性能的影响[J].中国表面工程,2019,32(2):54-62.XU Xing,SU Fenghua,LI Zhujun.Effects of pulse bias on structure and properties of MoN film deposited by DC magnetron sputtering[J].China Surface Engineering,2019,32(2):54-62.(in Chinese)
参考文献 23
KUMAR D D,KUMAR N,KALAISELVAM S,et al.Film thickness effect and substrate dependent tribomechanical characteristics of titanium nitride films[J].Surfaces and Interfaces,2018,12:78-85.
目录contents

    摘要

    由于管腔空间限制,物理气相沉积领域中管内壁沉积薄膜的均匀性和质量有待研究和改善。采用高功率脉冲磁控溅射技术(HiPIMS)在直径 40 mm、长度 120 mm 的 20 #碳钢管内表面进行 Cr 薄膜沉积,并探究管内不同位置沉积 Cr 薄膜的结构和力学性能。采用 SEM 分析薄膜的截面形貌和厚度变化,采用 AFM 分析薄膜的表面形貌和表面粗糙度变化,采用 XRD 分析薄膜的晶相结构和晶粒尺寸,采用球-盘式旋转摩擦磨损试验机对薄膜的耐摩擦磨损性能进行测试。结果表明,随着管内深度的增加,距管口距离为 15 mm(位置 1)、45 mm(位置 2)、75 mm(位置 3)和 105 mm(位置 4)位置的膜层厚度分别为 1690 nm、827 nm、210 nm 和 0 nm。从位置 1 到位置 3,所沉积的 Cr 薄膜表面粗糙度由 12.6 nm 下降到 4.8 nm,晶粒尺寸由 15 nm 增加到 38 nm,摩擦因数由 0.68 上升到 0.89。

    Abstract

    Due to the limitation of lumen space, the uniformity and quality of films deposited on inner surface of tube by physical vapor deposition need to be studied and improved. Cr films are deposited by high power impulse magnetron sputtering on the inner surface of 20 # carbon steel tube with diameter of 40 mm and length of 120 mm. And the microstructure and mechanical properties of Cr films deposited at different positions in the tube are studied. The cross-sectional morphology and thickness changes of Cr films are analyzed by SEM. The crystalline phase and the grain size of Cr films are analyzed by XRD. The friction factors of Cr films are evaluated on ball-on-disc wear apparatus. The results show that, with the increase of the depth in the tube, the film thickness with the distance of 15 mm (Position 1), 45 mm (Position 2), 75 mm (Position 3) and 105 mm (Position 4) from the tube orifice is 1690 nm, 827 nm, 210 nm and 0 nm respectively. With the increase of the depth in the tube, from Position 1 to Position 3, the surface roughness of the Cr films decreases from 12.6 nm to 4.8 nm, the grain size of the Cr films increases from 15 nm to 38nm, and the friction factor of the Cr films increase from 0.68 to 0.89.

  • 0 前言

  • 管筒件广泛应用于石油、化工、冶金、机械、建筑、交通工程、电力工程、海洋工程及国防领域[1-2]。然而,在实际应用中,由于腐蚀、磨损和烧蚀等,管状工件的内表面往往会严重损坏,导致使用寿命缩短,在管内璧沉积保护薄膜是解决此问题的重要手段[3]。然而,在管内壁薄膜沉积技术中,由于内腔形状和尺寸的限制,一些处理方法很难实施,或者是即使能实施也很难获得好的薄膜均匀性和膜层质量。因此,如何提高内表面涂层的质量和均匀性是管道防护研究的重点。

  • 关于管内壁镀膜方法,最早电镀方法由于其成本低、镀层致密被广泛应用,但存在膜基结合力较差而易剥落的问题,且电解液造成严重的环境污染[4],而化学气相沉积由于气源的限制,沉积的薄膜种类有限[5]。物理气相沉积(Physical vapor deposition,PVD)方法具有沉积温度低、膜层质量高和环境友好等优势,在管内璧沉积领域具有大的应用潜力。 KAUNE 等[6]利用放置在管内轴心的靶材细杆作为阴极,并且在管外施加线圈磁场以增强等离子体强度并控制沉积过程,在内径为 17.6 mm 的玻璃管内表面制备了铜薄膜。HAGEDORN 等[7]研究磁场分布对管内壁磁控溅射薄膜沉积的影响,多种磁场分布发现,在管底施加强环形磁场获得最高的沉积速率。赵彦辉等[8]使用双电弧离子镀装置从管道两端向内进行管内壁沉积工艺,通过在基体施加负偏压,以及通过设置磁场等方法引导等离子体束流向管内扩散。1999 年 KOUZNETSOV 等[9]首次提出高功率脉冲磁控溅射 (High power impulse magnetron sputtering,HiPIMS)以来,其获得研究者的广泛关注,通过低占空比(<10 %) 和低频率(<10 kHz)的高电压脉冲产生脉冲高峰值靶功率密度(可达到 10 kW·cm−2),从而获得高等离子体密度和高金属离化率。这种被离化的溅射粒子相比于传统直流磁控溅射中溅射的原子具有更高的能量,结合基体偏压的应用有利于获得更加光滑、致密和高性能膜层。同时,HiPIMS 技术中高离化率、高密度的等离子体,在电磁场作用下,具有更好的绕镀性和可控性[10],且对其放电波形的调制可有效改变等离子体分布状态,有利于对复杂构件条件下(如管筒内表面) 等离子体的状态和分布进行控制和改善,从而可在复杂构件表面沉积高质量的均匀膜层,因此 HiPIMS 技术在未来工业镀膜领域的应用将具有非常大的潜力。然而,利用 HiPIMS 技术进行管内璧镀膜的研究还很少被报道。

  • 基于此,本文利用 HiPIMS 的上述优势,将 HiPIMS 技术应用于管内璧沉积中,并通过靶后线圈磁场推动等离子体进入管内更深处,同时在所镀管筒尾部附近设置辅助阳极引导等离子体进入管内深处,以期在一定程度上提高管内膜层质量,研究管内各位置处沉积膜层的结构和性能差异,为管内璧沉积技术提供借鉴。本研究采用 HiPIMS 技术在直径 40 mm、长度 120 mm 的 20 #碳钢管内表面进行 Cr 薄膜沉积,并探究管内不同位置沉积 Cr 薄膜的结构和力学性能。

  • 1 试验准备

  • 1.1 样品制备

  • 试验采用自行研制的附加辅助阳极的管内表面沉积系统。其圆柱形真空室的腔内尺寸为φ 400 mm× 400 mm,本底真空为 3 mPa,该设备包括置于真空室内的平面磁控靶、位于磁控靶后的励磁线圈、固定管筒件的支架,以及位于所镀管道管尾处的辅助阳极装置,其中励磁线圈-磁控靶-管筒件-阳极片的轴心水平对齐。

  • 试验靶材使用纯金属 Cr 靶(纯度 99.9 %),靶材尺寸为φ 50 mm×4 mm,磁控靶供电电源为哈尔滨工业大学先进涂层技术课题组自行研制的直流复合高功率脉冲磁控溅射电源[11],在 Cr 靶放电中,利用电压探针和电流传感器分别对靶电压和靶电流进行监测,采用 GWINSTEK GDS-1102A-U 示波器输出波形。工作气体为氩气(纯度为 99.999 %),由标准质量流量控制器控制,氩气流量保持为 30 mL / min。在管筒件尾部附近设置辅助阳极,靶后的励磁线圈采用兆信直流电源的恒流模式供电,电流 0~6 A 可调。管筒件通过转架连接脉冲偏压电源,电压 0~900 V 可调,占空比为 75%,频率为 40 kHz。在管筒件轴心设置接地的 304 不锈钢细杆作为地电极。

  • 试验管筒件使用内径为φ 40 mm×120 mm 的 20 号碳钢管,其主要成分(质量分数)如下:0.17%~0.24 % C、0.17%~0.37 % Si、0.35%~0.65% Mn、 ≤ 0.25% Cr、≤ 0.25% Ni、≤0.25% Cu、≤0.035% S 和≤ 0.035% P,其余为 Fe;以正对靶面的管一侧为管口侧,管筒件的轴线正对 Cr 靶的中心,管口距 Cr 靶靶面 50 mm。为了检测管内各位置处沉积 Cr 膜的厚度、结构和力学性能等,分别在管筒件内部 4 个等距位置放置尺寸为 10 mm×10 mm 的(100) 硅片和同样大小的 304 不锈钢片,硅片和不锈钢片并排直接放置在管内表面上。管内样品位置示意图如图1 所示,4 个不同位置分别标注为位置 1、位置 2、位置 3 和位置 4,其每个位置的中心处分别距管口距离为 15 mm、45 mm、75 mm 和 105 mm。

  • 图1 管内样品位置示意图

  • Fig.1 Schematic diagram of sample position in tube

  • (100)硅片 / 304 不锈钢片试样片在装入真空室之前,在乙醇和丙酮中超声清洗 30 min,吹干后装入真空室。管内壁沉积 Cr 薄膜过程中,首先将管筒加热至约 150℃。薄膜沉积过程主要包含三步:① Ar 等离子体清洗;② Cr 等离子体清洗;③ Cr 薄膜沉积,相关参数如表1 所示。

  • 表1 管内壁 Cr 薄膜的沉积参数

  • Table1 Deposition parameters of the Cr films on inner surface of tube

  • Vaa : Auxiliary anode voltage; Iec: Electro-magnetic coils current; Vp: HiPIMS pulse voltage of target; Ft: HiPIMS pulse frequency of target; Wt: HiPIMS pusle width of target; Ih: Hybrid DC current; Vb: Bias voltage of tube; P: Working pressure; T: Processing time.

  • 1.2 结构表征及力学性能测试

  • 采用 FEI Helios NanoLab600i 场发射扫描电子显微镜,观察 Cr 薄膜的截面微观形貌。采用原子力显微镜(AFM,Bruker,AXS Dimension Icon)对 Cr 薄膜的纳米尺度的表面形貌进行表征,扫描区域为 2 μm × 2 μm。采用 D8 ADVANCE X 射线衍射仪(XRD)的小角掠入射模式对生长在(100) Si 片上的 Cr 薄膜进行结构分析,并根据 Scherrer 公式计算薄膜的平均晶粒尺寸[12],Scherrer 公式如式(1)所示。

  • d=0.9λ/(Bcosθ)
    (1)
  • 式中,d 为晶粒尺寸;λ为 X 射线波长,此处采用 CuKα 射线,λ为 0.15406 nm, B为衍射峰半宽高; θ 为衍射角。

  • 采用兰州华汇仪器科技有限公司生产的 MS-T3001球-盘式旋转摩擦磨损试验机对304不锈钢上沉积的 Cr 薄膜的耐摩擦磨损性能进行了测试。摩擦副为 ZrO2球,载荷为 20 g,电机速度为 100 r / min,时间为 30 min。

  • 2 结果与讨论

  • 2.1 Cr 靶放电特性

  • 图2 为管内壁薄膜沉积 Cr 靶 HiPIMS 放电电压和电流波形。由图2 可见,在 HiPIMS 脉冲开始后,靶电流迅速上升至峰值电流 80 A,随后靶电流缓慢下降至一平台值,并在脉冲结束时迅速归为 0 A。其靶电流波形符合 WU 等[13]指出的 HiPIMS 放电模式中自溅射主导的放电模式。显示出该放电模式下 Cr 靶将产生高密度的等离子体和高的金属离化率[14]

  • 图2 管内壁薄膜沉积 Cr 靶 HiPIMS 放电电压和电流波形

  • Fig.2 Voltage and current waveforms of Cr target HiPIMS discharge during film deposition on inner wall of tube

  • 2.2 薄膜微观结构

  • 图3 为管内不同位置沉积 Cr 薄膜截面形貌的 SEM 像。可见,随着管筒内深度的增加,薄膜厚度逐渐下降,位置 4 处已基本没有薄膜沉积,图4 为管内不同位置沉积 Cr 薄膜的厚度变化,位置 1、位置 2、位置 3 和位置 4 的 Cr 薄膜厚度分别为 1 690 nm、827 nm、210 nm 和 0 nm。这是由于在 Cr 靶放电过程中,靶面附近形成等离子体,在等离子体受扩散及管内的电磁场作用(靶后线圈磁场的推动和管尾辅助阳极的吸引作用),等离子体向管内深处运动,并管内壁沉积形成 Cr 薄膜。但是随着管内深度增加,管内壁沉积的 Cr 薄膜厚度明显下降,分析认为,虽然在辅助阳极和励磁线圈作用下,管内深处等离子体密度得到提高,但用于成膜的中性 Cr 原子和 Cr 离子数量较小,使所沉积膜层厚度下降。

  • 由图3a、3b、3c 可以看出,管内沉积的 Cr 薄膜均为柱状晶结构,对于在位置 1 沉积的 Cr薄膜,其柱状晶致密细小,显示出薄膜高的致密性,这是由于 HiPIMS 条件下产生的高密度等离子体和高的离化率,对膜层产生强的离子轰击强度,薄膜致密度高[15]。而随着管内深度的增加,薄膜柱状晶形貌逐渐变得不再明显,分析认为,随着管内深度增加,膜层沉积速率明显下降,导致膜层生长过程中阴影效应减弱,使柱状晶变得更加细小而不明显。

  • 图3 管内不同位置沉积 Cr 薄膜截面形貌的 SEM 像

  • Fig.3 Cross-sectional SEM images of Cr films deposited at different position of the tube

  • 图4 管内不同位置沉积 Cr 薄膜的厚度变化

  • Fig.4 Film thickness varieties of Cr films deposited at different position of the tube

  • 图5为管内不同位置沉积Cr薄膜的表面形貌的 AFM 像,使用 2 μm × 2 μm 的扫描范围进行 AFM 测试,以探究管内不同位置沉积 Cr 薄膜的表面粗糙度变化。图6为管内不同位置Cr薄膜的表面粗糙度,位置 1、位置 2、位置 3 和位置 4 处表面粗糙度 Ra 分别为 12.6 nm、7.5 nm 和 4.8 nm。分析认为,一方面,随着膜层厚度的降低,膜层沉积过程中阴影效应减弱,导致薄膜表面柱顶尺寸减小,薄膜表面粗糙度减小[16];另一方面,随着管内深度的增加,管内更深位置处沉积薄膜受到的离子轰击强度下降,原子在薄膜表面的表面迁移率下降,低的表面迁移率会阻止表面高丘和岛状结构的生长,使薄膜表面高丘和岛状结构尺寸降低,导致薄膜的表面粗糙度下降[17]

  • 图5 管内不同位置沉积 Cr 薄膜的表面形貌的 AFM 像

  • Fig.5 Surface AFM images of Cr films deposited at different position of the tube

  • 图6 管内不同位置沉积 Cr 薄膜的表面粗糙度

  • Fig.6 Surface roughness of Cr films deposited at different position of the tube

  • 图7 为管内不同位置沉积 Cr 薄膜的 XRD 谱。如图7 所示,各位置沉积的 Cr 薄膜的 XRD 谱主衍射峰均为体心立方(bcc)的 Cr(110)峰,随着管内深度增加,Cr(110)峰强度明显下降。图7 中虚线标注为 Cr 各衍射峰的标准 PDF 卡片的衍射峰峰位,可以看到各位置沉积 Cr 薄膜的 Cr(110)峰均向小角度偏移,表明薄膜中存在一定的残余压应力[18-19]。且随着管内深度的增加,薄膜的(110)峰向小角度偏移量减少,压应力降低。分析认为,随着管内深度的增加,膜层厚度明显下降,导致膜层中的应力积累减少,另一方面,离子对薄膜的轰击强度降低也会导致残余应力降低[20]

  • 图7 管内不同位置沉积 Cr 薄膜的 XRD 谱

  • Fig.7 XRD spectra of Cr films deposited at different position of the tube

  • 使用 Scherrer 公式可由 Cr(110)衍射峰计算 Cr 薄膜晶粒尺寸,图8 所示为由(110)衍射峰计算的管内不同位置沉积 Cr 薄膜晶粒尺寸。随着管内深度的增加,Cr 薄膜晶粒尺寸逐渐变大,由 15 nm 增加到 38 nm。这与管内不同位置处的应力变化相对应,在薄膜中,如位置 1 处沉积的 Cr 薄膜,更高的压应力一定程度上能够反映出薄膜中点缺陷的增加,缺陷会阻止晶界的迁移,从而使晶粒尺寸减小[21]

  • 图8 由(110)衍射峰计算的管内不同位置沉积 Cr 薄膜晶粒尺寸

  • Fig.8 Grain size calculated from the (110) diffraction peaks of Cr films deposited at different position of the tube

  • 2.3 薄膜的摩擦学性能

  • 图9为管内不同位置沉积Cr薄膜的摩擦因数曲线。对于位置 1 处沉积的 Cr 薄膜,其摩擦曲线的磨合期较短,随着摩擦的进行,摩擦因数很快上升到稳定磨损阶段[22],且在稳定磨损阶段其摩擦因数波动较大。而随着管内深度的增加,不同位置沉积的Cr 薄膜在稳定磨损阶段的这种摩擦因数的波动逐渐减小。这种现象与图5 所示的位置 1 处沉积的膜层表面形貌较大起伏和更高的表面粗糙度有关。图10 所示为管内不同位置沉积 Cr 薄膜的平均摩擦因数。如图10 所示,随着管内深度的增加,摩擦因数逐渐增大,这主要是由于在靠近管口的位置 1 处,薄膜厚度较大,接触应力无法到达薄膜 / 基底界面,从而利于获得稳态摩擦,摩擦因数较小,而随着管内深度的增加,所沉积 Cr 薄膜厚度明显减小,不锈钢钢基体的韧性和较高的球 / 膜接触应力会导致薄膜在不锈钢钢基体上摩擦因数的增加[23]

  • 图9 管内不同位置沉积 Cr 薄膜的摩擦因数曲线

  • Fig.9 Friction coefficient curves of Cr films deposited at different position of the tube

  • 图10 管内不同位置沉积 Cr 薄膜的平均摩擦因数

  • Fig.10 Mean friction factors of Cr films deposited at different position of the tube

  • 3 结论

  • (1)采用高功率脉冲磁控溅射技术(HiPIMS),并施加靶后线圈磁场和管尾设置辅助阳极,在直径 40 mm、长度 120 mm 的 20 #碳钢管内表面进行了 Cr 薄膜的沉积。随着管内深度的增加,薄膜厚度明显下降,位置 1、2、3 和 4 的 Cr 薄膜厚度分别为 1 690 nm、827 nm、210 nm 和 0 nm。膜层厚度的明显变化会带来管内各位置沉积薄膜的结构和性能变化。

  • (2)随着管内深度增加,膜层生长过程中的阴影效应减弱,管内璧沉积 Cr 薄膜表面粗糙度(Ra) 逐渐下降,位置 1、2 和 3 处分别为 12.6 nm、7.5 nm 和 4.8 nm。

  • (3)随着管内深度增加,由于膜层厚度的降低和离子轰击强度的减弱,管内璧沉积的 Cr 薄膜中 (110)衍射峰向小角度的偏移量减少。使用 Scherrer 公式从 Cr(110)衍射峰计算出的 Cr 薄膜晶粒尺寸由位置 1 处的 15 nm 增加到位置 3 处的 38 nm。

  • (4)靠近管口的位置 1 处所沉积 Cr 薄膜,由于更厚的膜层厚度使接触应力无法到达薄膜 / 基底界面,而具有最小的摩擦因数。

  • 参考文献

    • [1] 王志宏,曹云明,吴刚.水电联产低温多效海水淡化换热管腐蚀泄漏与结垢研究[J].冶金动力,2017,2(204):37-40.WANG Zhihong,CAO Yunming,WU Gang.Research on corrosion leakage and scaling of heat exchange tubes in LT-MED seawater desalination evaporator[J].Metallurgical Power,2017,2(204):37-40.(in Chinese)

    • [2] 陈严飞,董绍华,敖川,等.含单腐蚀和群腐蚀缺陷高强钢管道失效压力[J].船舶力学,2018,22(1):73-79.CHEN Yanfei,DONG Shaohua,AO Chuan,et al.Failure pressure for high strength pipeline with single corrosion and corrosion clusters[J].Journal of Ship Mechanics,2018,22(1):73-79.(in Chinese)

    • [3] QIU H R,PENG YL,G L,et al.Pore channel surface modification for enhancing anti-fouling membrane distillation[J].Applied Surface Science,2018,443:217-226.

    • [4] SHUKLA P,AWASTHI S,RAMKUMAR J,et al.Protective trivalent Cr-based electrochemical coatings for gun barrels[J].Journal of Alloys and Compounds,2018,768:1039-1048.

    • [5] ASCHWANDEN R,KOTHEMANN R,ALBERT M,et al.Optical properties of silicon oxynitride films grown by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2021,736:138887.

    • [6] KAUNE G,HAGEDORN D,LOFFLER F.Magnetron sputtering process for homogeneous internal coating of hollow cylinders[J].Surface & Coatings Technology,2016,308:57-61.

    • [7] HAGEDORN D,LOFFLER F,MEEB R.Magnetron sputter process for inner cylinder coatings[J].Surface & Coatings Technology,2008,203:632-637.

    • [8] 赵彦辉,贾莹,于宝海,等.管状构件内表面真空镀膜方法研究进展[J].表面技术,2014,43(2):118-125.ZHAO Yanhui,JIA Ying,YU Baohai,et al.Progress on the study of vacuum coating methods for the inner surface of tubular workpiece[J].Surface Technology,2014,43(2):118-125.(in Chinese)

    • [9] KOUZNETSOV V,MACA´K K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122:290-293.

    • [10] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface & Coatings Technology,2014,257:308-325.

    • [11] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [12] BURTON A W,ONG K,REA T,et al.On the estimation of average crystallite size of zeolites from the Scherrer equation:A critical evaluation of its application to zeolites with one-dimensional pore systems[J].Microporous and Mesoporous Materials,2009,117:75-90.

    • [13] WU Z Z,XIAO S,MA Z Y,et al.Dynamic transition in the discharge current between gas-dominant discharge and self-sputtering in high-power impulse magnetron sputtering [J].Surface & Coatings Technology,2016,306:319-322.

    • [14] ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface & Coatings Technology,2011,205:S1-S9.

    • [15] FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.

    • [16] OLIVEIRA J C,FERNANDES F,SERRA R,et al.On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2[J].Thin Solid Films,2018,645:253-264.

    • [17] KATHERINE D D,MASANOBU K,MASASHI M,et al.Effect of deposition rate on the surface morphology of CeO2 films deposited by pulsed laser deposition[J].Physica C,1999,320:21-30.

    • [18] VELICU I L,IANOŞ G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,359:97-107.

    • [19] LIN J L,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface & Coatings Technology,2010,204:2230-2239.

    • [20] FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2014,258:249-256.

    • [21] MA Q sS,LI L H,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [22] 徐星,苏峰华,李助军.脉冲偏压对直流磁控溅射沉积MoN薄膜结构及性能的影响[J].中国表面工程,2019,32(2):54-62.XU Xing,SU Fenghua,LI Zhujun.Effects of pulse bias on structure and properties of MoN film deposited by DC magnetron sputtering[J].China Surface Engineering,2019,32(2):54-62.(in Chinese)

    • [23] KUMAR D D,KUMAR N,KALAISELVAM S,et al.Film thickness effect and substrate dependent tribomechanical characteristics of titanium nitride films[J].Surfaces and Interfaces,2018,12:78-85.

  • 参考文献

    • [1] 王志宏,曹云明,吴刚.水电联产低温多效海水淡化换热管腐蚀泄漏与结垢研究[J].冶金动力,2017,2(204):37-40.WANG Zhihong,CAO Yunming,WU Gang.Research on corrosion leakage and scaling of heat exchange tubes in LT-MED seawater desalination evaporator[J].Metallurgical Power,2017,2(204):37-40.(in Chinese)

    • [2] 陈严飞,董绍华,敖川,等.含单腐蚀和群腐蚀缺陷高强钢管道失效压力[J].船舶力学,2018,22(1):73-79.CHEN Yanfei,DONG Shaohua,AO Chuan,et al.Failure pressure for high strength pipeline with single corrosion and corrosion clusters[J].Journal of Ship Mechanics,2018,22(1):73-79.(in Chinese)

    • [3] QIU H R,PENG YL,G L,et al.Pore channel surface modification for enhancing anti-fouling membrane distillation[J].Applied Surface Science,2018,443:217-226.

    • [4] SHUKLA P,AWASTHI S,RAMKUMAR J,et al.Protective trivalent Cr-based electrochemical coatings for gun barrels[J].Journal of Alloys and Compounds,2018,768:1039-1048.

    • [5] ASCHWANDEN R,KOTHEMANN R,ALBERT M,et al.Optical properties of silicon oxynitride films grown by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2021,736:138887.

    • [6] KAUNE G,HAGEDORN D,LOFFLER F.Magnetron sputtering process for homogeneous internal coating of hollow cylinders[J].Surface & Coatings Technology,2016,308:57-61.

    • [7] HAGEDORN D,LOFFLER F,MEEB R.Magnetron sputter process for inner cylinder coatings[J].Surface & Coatings Technology,2008,203:632-637.

    • [8] 赵彦辉,贾莹,于宝海,等.管状构件内表面真空镀膜方法研究进展[J].表面技术,2014,43(2):118-125.ZHAO Yanhui,JIA Ying,YU Baohai,et al.Progress on the study of vacuum coating methods for the inner surface of tubular workpiece[J].Surface Technology,2014,43(2):118-125.(in Chinese)

    • [9] KOUZNETSOV V,MACA´K K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122:290-293.

    • [10] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface & Coatings Technology,2014,257:308-325.

    • [11] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [12] BURTON A W,ONG K,REA T,et al.On the estimation of average crystallite size of zeolites from the Scherrer equation:A critical evaluation of its application to zeolites with one-dimensional pore systems[J].Microporous and Mesoporous Materials,2009,117:75-90.

    • [13] WU Z Z,XIAO S,MA Z Y,et al.Dynamic transition in the discharge current between gas-dominant discharge and self-sputtering in high-power impulse magnetron sputtering [J].Surface & Coatings Technology,2016,306:319-322.

    • [14] ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface & Coatings Technology,2011,205:S1-S9.

    • [15] FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.

    • [16] OLIVEIRA J C,FERNANDES F,SERRA R,et al.On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2[J].Thin Solid Films,2018,645:253-264.

    • [17] KATHERINE D D,MASANOBU K,MASASHI M,et al.Effect of deposition rate on the surface morphology of CeO2 films deposited by pulsed laser deposition[J].Physica C,1999,320:21-30.

    • [18] VELICU I L,IANOŞ G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,359:97-107.

    • [19] LIN J L,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface & Coatings Technology,2010,204:2230-2239.

    • [20] FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2014,258:249-256.

    • [21] MA Q sS,LI L H,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [22] 徐星,苏峰华,李助军.脉冲偏压对直流磁控溅射沉积MoN薄膜结构及性能的影响[J].中国表面工程,2019,32(2):54-62.XU Xing,SU Fenghua,LI Zhujun.Effects of pulse bias on structure and properties of MoN film deposited by DC magnetron sputtering[J].China Surface Engineering,2019,32(2):54-62.(in Chinese)

    • [23] KUMAR D D,KUMAR N,KALAISELVAM S,et al.Film thickness effect and substrate dependent tribomechanical characteristics of titanium nitride films[J].Surfaces and Interfaces,2018,12:78-85.

  • 手机扫一扫看