en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张辉,男,1998年出生,硕士研究生。主要研究方向为表面改性、冷喷涂。E-mail:m17863109872@163.com

通讯作者:

巩春志,男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为表面改性、冷喷涂。E-mail:chunzhigong@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210623001

参考文献 1
凌文,刘玮,李育磊,等.中国氢能基础设施产业发展战略研究[J].中国工程科学,2019,21(3):76-83.LING Wen,LIU Wei,LI Yulei,et al.Research on the development strategy of China's hydrogen energy infrastructure industry[J].China Engineering Science,2019,21(3):76-83.(in Chinese)
参考文献 2
董健.铁铝合金/氧化锆/磷酸盐复合阻氢涂层制备及其性能研究[D].北京:北京科技大学,2020.DONG jian.Preparation and properties of Fe Al alloy/zirconia/phosphate composite hydrogen barrier coating[D].Beijing:Beijing University of Science and Technology,2020.(in Chinese)
参考文献 3
周池楼,何默涵,肖舒,等.不锈钢表面阻氢涂层研究进展[J].化工进展,2020,39(9):3458-3468.ZHOU Chilou,HE Mohan,XIAO Shu,et al.Research progress of hydrogen barrier coatings on stainless steel [J].Progress in Chemical Industry,2020,39(9):3458-3468.(in Chinese)
参考文献 4
王玫,牛栋华,胡琪,等.二维材料调控阻氢涂层研究进展[J].化工学报,2017,68(S1):9-17.WANG Mei,NIU Donghua,HU Qi,et al.Research progress of hydrogen barrier coating controlled by two-dimensional materials[J].Journal of Chemical Engineering,2017,68(S1):9-17.(in Chinese)
参考文献 5
GOLUBEVA A V,Cherkez D I.Hydrogen retention in tungsten alloys developed for fusion facilities[J].Physics of Atomic Nuclei,2019,82(7):996-1004.
参考文献 6
LI W Z,CHEN Q Z,POLCAR T,et al.Influence of Zr alloying on the mechanical properties,thermal stability and oxidation resistance of Cr-Al-N coatings[J].Applied Surface Science,2014,317:269-277.
参考文献 7
夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN coating under different working conditions[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)
参考文献 8
WANG D Y,WENG K W.Deposition of CrN coatings by current-modulating cathodic arc evaporation[J].Surface & Coatings Technology,2001,137(1):31-37.
参考文献 9
HOFMANN S,JEHN H A.Oxidation behavior of CrNx and(Cr,Al)Nx hard coatings[J].Materials and Corrosion,1990,41(12):756-760.
参考文献 10
宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/Crn and Cr/Crn/Craln coatings[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)
参考文献 11
OHTA R,GERILE N,KAGA M,et al.Composite Si-Ni nanoparticles produced by plasma spraying physical vapor deposition for negative electrode in Li-ion batteries.[J].Nanotechnology,2021.
参考文献 12
NAKAHARA R,SAKAI M,KIMURA T,et al.Lasing action of ZnO nanowires grown by mist chemical vapor deposition using thin Au layer on-plane sapphire substrate[J].Japanese Journal of Applied Physics,2021,60(5):62-73.
参考文献 13
张新宇.直流、射频磁控溅射制备 Al2O3薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Process exploration and performance study of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)
参考文献 14
MASAHIRO G,MICHIKO S,XU Yibin,et al.Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology[J].Applied Surface Science,2017,407:405-411.
参考文献 15
金浩,张莹莹,时卓,等.磁控溅射技术制备CrAlN涂层的研究进展[J].材料导报,2016,30(3):54-59.JIN Hao,ZHANG Yingying,SHI Zhuo,et al.Research progress of CrAlN coating prepared by magnetron sputtering[J].Material Guide,2016,30(3):54-59.(in Chinese)
参考文献 16
LI Yang,YANG Li,XIA Hong,et al.Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites[J].Materials Research Express,2020,7(10):105602-.
参考文献 17
VLADIMIR K,KAROL M,JOCHEN M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2):290-293.
参考文献 18
张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Research progress of ZnO thin films prepared by high power pulsed magnetron sputtering[J].Vacuum,2021,58(1):72-77.(in Chinese)
参考文献 19
PARK S H,CHANG J H,MINEGISHI T,et al.Investigation on the ZnO:N films grown on(0001)and(0001¯)ZnO templates by plasma-assisted molecular beam epitaxy[J].Joumal of Crystal Growth,2009,311(7):2167-2171.
参考文献 20
付英英,李红轩,吉利,等.CrN 和CrAlN薄膜的微观结构及在不同介质中的摩擦学性能[J].中国表面工程,2012,25(6):34-41.FU Yingying,LI Hongxuan,JI L,et al.Microstructure and tribological properties of CrN and CrAlN films in different media[J].China Surface Engineering,2012,25(6):34-41.(in Chinese)
参考文献 21
郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.Study on CrAlN thin films co sputtered by high power pulsed and pulsed DC magnetron[J].Surface Technology,2019,48(4):137-144.(in Chinese)
参考文献 22
王宇星,张侠.基体偏压对磁控溅射制备CrAlN纳米多层薄膜微观结构和力学性能的影响[J].机械工程材料,2021,45(3):41-45.WANG Yuxing,ZHANG Xia.Effect of substrate bias on Microstructure and mechanical properties of CrAlN nano multilayer films prepared by magnetron sputtering[J].Mechanical Engineering Materials,2021,45(3):41-45.(in Chinese)
参考文献 23
LIU Jia,MA Cuiying,DU Huiling.A Comparative study of TiAlN and CrAlN coatings deposited on sialon ceramic cutting inserts by physical vapor deposition[C]//Science and Engineering Research Center.Proceedings of 2017 2nd International Conference on Applied Mechanics,Electronics and Mechatronics Engineering(AMEME 2017).DEStech Publications,2017:316-324.
参考文献 24
刘孟奇,郭惠霞,王永欣,等.CrN/CrAlSiN 涂层海水环境下的摩擦学性能[J].中国表面工程,2017,30(2):63-70.LIU Mengqi,GUO Huixia,WANG Yongxin,et al.Tribological properties of CrN/CrAlSiN coating in seawater[J].China Surface Engineering,2017,30(2):63-70.(in Chinese)
参考文献 25
朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及 CrAlN 涂层的性能[J].材料热处理学报 2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by hipims technology[J].Journal of Material Heat Treatment,2019,40(4):127-135.(in Chinese)
参考文献 26
LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface & Coatings Technology,2010,205(10):3226-3234.
参考文献 27
吕艳红,孔庆花,吉利,等.氮气流量对中频非平衡反应磁控溅射制备CrAlN薄膜性能的影响[J].中国表面工程,2011,24(4):7-12.LÜYanhong,KONG Qinghua,JI Li,et al.Effect of nitrogen flow rate on properties of CrAlN thin films prepared by medium frequency unbalanced reactive magnetron sputtering[J].China Surface Engineering,2011,24(4):7-12.(in Chinese)
参考文献 28
张辉,王晓波,张炜鑫,等.基体偏压对高功率脉冲磁控溅射CrN薄膜结构及阻氢性能的影响[J].真空科学与技术学报,2021,41(11):1046-1052.ZHANG Hui,WANG Xiaobo,ZHANG Weixin,et al.Effect of substrate bias on the structure and hydrogen barrier properties of CrN films prepared by high power pulsed magnetron sputtering[J].Journal of Vacuum Science and Technology,2021,41(11):1046-1052.(in Chinese)
参考文献 29
张炜鑫.高功率磁控溅射CrN基薄膜的制备及其阻氢性能研究[D].哈尔滨:哈尔滨工业大学,2019.ZHANG Weixin.Preparation of CrN based thin films by high power magnetron sputtering and their hydrogen barrier properties[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)
参考文献 30
GUIMARAES M C R,NOSSA T D S,AVILA P R T,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings Technology,2018,340:112-120.
参考文献 31
瞿全炎,邱万奇,曾德长,等.划痕法综合评定膜基结合力[J].真空科学与技术学报,2009,29(2):184-187.QU Quanyan,QIU Wanqi,ZENG Dechang,et al.Measurement of TIN film substrate interfacial adhesion by scratching[J].Chinese Journal of Vacuum Science and Technology,2009,29(2):184-187.(in Chinese)
参考文献 32
吴雁,肖礼军,王冰,等.TiAlSiN 多层梯度涂层力学及摩擦磨损性能试验研究[J].中国陶瓷,2020,56(9):36-42.WU Yan,XIAO Lijun,WANG Bing,et al.Experimental study on mechanical and friction and wear properties of TiAlSiN multilayer gradient coating[J].China Ceramics,2020,56(9):36-42.(in Chinese)
参考文献 33
ZHANG Xin,TIAN Xiubo,ZHAO Zhiwei,et al.Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates[J].Surface and Coatings Technology,2019,364:135-143.
目录contents

    摘要

    为了防止氢扩散导致金属材料的失效,通常在其表面制备一层 CrN 阻氢薄膜。但是 CrN 涂层的热稳定性较差,抗氧化温度低于 600 ℃。采用高功率脉冲磁控溅射技术,利用 Cr 和 Al 双靶共沉积 CrAlN 薄膜来提高其高温抗氧化性能。试验变量为基体负偏压的大小,分别为-100 V、-200 V、-300 V 和-400 V。结果表明,四组 CrAlN 薄膜均为柱状晶结构,随着基体偏压提高,膜层的致密度提高,但同时薄膜沉积速率下降;CrAlN 薄膜的择优生长方向为 Cr(200)晶面法线方向。四组 CrAlN 薄膜的氢抑制率均超过 70%,氢原子扩散系数最低比 316L 不锈钢基体低 3 个数量级。当基体偏压为-300 V 时,可以同时获得最优的氢抑制率(87.4%)和最低的氢原子扩散系数(6.188×10−10 cm2 / s)。600 ℃、氧气气氛下保温 60 min,CrAlN 膜基结合面处氧含量仅为表面处的 30%左右。相比于 CrN 薄膜,在相同基体偏压下,CrAlN 薄膜的氢原子扩散系数更小;高偏压下制备的 CrAlN 薄膜氧增重量仅为 316L 不锈钢基体的 10%,抗氧化性能更好。

    Abstract

    In order to prevent the failure of metal materials caused by hydrogen diffusion, a layer of CrN hydrogen barrier film is usually prepared on its surface. However, the thermal stability of CrN thin film is poor, and the oxidation resistance temperature is lower than 600 ℃. CrAlN thin films are co deposited by high power pulsed magnetron sputtering with Cr and Al targets to improve high temperature oxidation resistance. The experimental variable is the negative bias voltage of the matrix, which is -100 V, -200 V, -300 V and -400 V respectively. The results show that the four groups of CrAlN films are columnar crystal structure. With the increase of substrate bias voltage, the density of the films increases, but the deposition rate decreases; The preferred growth direction of CrAlN film is the normal direction of Cr(200) crystal plane. The hydrogen inhibition rate of the four groups of CrAlN films is more than 70%, and the diffusion factor of hydrogen atom is three orders of magnitude lower than that of 316L stainless steel. When the substrate bias is -300 V, the optimal hydrogen inhibition rate (87.4%) and the lowest hydrogen diffusion factor (6.188×10−10 cm2 / s) can be obtained simultaneously. The oxygen content at the interface of CrAlN film substrate is only about 30% of that at the surface when it is kept at 600 ℃ for 60 min in oxygen atmosphere. Compared with CrN films, the hydrogen diffusion factor of CrAlN films is smaller under the same substrate bias; The weight gain of oxygen of CrAlN films prepared at high bias voltage is only 10% of that of 316L stainless steel substrate, and its oxidation resistance is better.

  • 0 前言

  • 氢能由于具备无污染、热值高和可再生循环等优点,广泛应用于工业、建筑、交通、电力等行业[1]。此外,热核聚变反应堆也釆用氢同位素氘、氚作为燃料。但氢及其同位素在金属中以间隙原子的形式扩散,具有很强的渗透能力。在聚变堆中,结构材料直接暴露于高温高压的氢及其同位素气氛中,容易造成材料氢脆、核燃料泄露以及环境污染[2],氢在储运过程中也会因为扩散而造成材料失效[3]。因此关于高性能阻氢涂层的研究受到广泛的关注。

  • 阻氢涂层主要分为氧化物涂层、碳化物涂层和氮化物涂层等[4-5]。其中 CrN 涂层具有较优异的耐腐蚀性和摩擦磨损性能,且与基体结合良好,可以在各种工业用基体上沉积厚度大于 40 μm 的薄膜[6-7]。但是 CrN 涂层的热稳定性较差,抗氧化温度低于 600℃[8]。通过在 CrN 涂层中掺入 Al 元素,在高温时反应生成致密的 Al2O3 保护膜,减少氧元素进一步的内扩散,大幅提高 CrAlN 的高温抗氧化性能[9-10]

  • 涂层的沉积方法主要有物理气相沉积 [11] (Physical vapor deposition,PVD)和化学气相沉积[12] (Chemical vapor deposition,CVD)两种。物理气相沉积法较化学气相沉积法所需沉积温度低,能够制备出不同成分配比的功能薄膜且不会改变薄膜的成分,薄膜种类不受气体源的限制[13]。目前高性能薄膜的制备一般由溅射镀膜技术(SD)[14]来沉积。利用磁控溅射技术可在涂层基体上沉积各种难熔材料,且不存在废水等污染环境的问题,是一种绿色技术,具有沉积速度快,膜基结合力好,膜层致密、均匀等优点[15-16]。1999 年瑞典的 VLADIMIR 等[17] 提出了高功率脉冲磁控溅射技术(High power impulse magnetron sputtering,HIPIMS)。这是一种在较高脉冲峰值功率、较低脉冲占空比条件下,产生高离化率溅射靶材,沉积薄膜的一种磁控溅射技术[18]。HiPIMS 可以在保持平均功率不变的情况下,降低脉冲作用时间,从而获得高峰值功率。因此,薄膜沉积过程中靶材温升低,等离子体密度高(达 1019 m−3 量级),溅射的靶材电离率可高达 50%~90 %[19]

  • 国内学者付英英等[20]研究了 CrAlN 薄膜在不同介质中的摩擦学性能;郭玉垚等[21]分别比较了高功率脉冲和直流脉冲两种方法制备 CrAlN 薄膜结构和性能的差异;王宇星等[22]研究了基体偏压对磁控溅射 CrAlN 薄膜结构和力学性能的影响。国外学者 LIU 等[23]分别在陶瓷刀片上沉积 TiAlN 和 CrAlN 薄膜,对比硬度、膜基结合力等参数。但关于 CrAlN 薄膜阻氢性能的研究很少,因此本文利用高功率脉冲磁控溅射技术在 316L 不锈钢基体上制备 CrAlN 薄膜,通过改变基体偏压的大小,研究基体负偏压对 CrAlN 薄膜微观结构和阻氢性能、高温抗氧化性能等的影响。

  • 1 试验材料和试验步骤

  • 1.1 试验材料及设备

  • 试验用靶材为纯 99.99% 的 Cr 靶和纯度 99.999%的 Al 靶。靶材均为圆形双层结构,固定层厚度 2 mm,直径 60 mm,表面层厚度 3 mm,直径 50 mm。试验用基体材料为 316L 不锈钢,阻氢测试用的是 20 mm×20 mm×0.05 mm 的正方形薄片,膜基结合力测试用的是 25 mm×25 mm×1 mm 的正方形板材片。

  • 试验设备为真空磁控溅射镀膜机,其真空室腔体的结构示意图如图1 所示。真空室腔体中心部门为可转动转架,连接电极可进行匀速自传。试验变量为基体负偏压,为方便阐述,用其绝对值表示其大小。

  • 图1 真空室腔体的结构示意图

  • Fig.1 Structure diagram of vacuum chamber

  • 1.2 试验步骤

  • CrAlN 阻氢薄膜的制备主要包括:

  • (1)自辉光清洗。主要利用基体辉光放电产生 Ar+,通过 Ar+ 轰击基体去除表面污染物[24],工艺参数如表1 所示。

  • 表1 自辉光清洗工艺参数

  • Table1 Self glow cleaning process parameters

  • (2)Cr 离子轰击。Cr 靶外接直流复合脉冲式 HiPIMS 电源,溅射出大量高能 Cr 离子轰击基体,去除样品表面原子级杂质,工艺参数如表2 所示。

  • 表2 Cr+ 轰击的工艺参数

  • Table2 Process parameters of Cr+ bombardment

  • (3)过渡层沉积。为了缓解 CrAlN 薄膜与基体的应力,采用直喷膜式预先沉积 Cr+CrN 过渡层。 Cr 层为打底层,工艺参数如表3 所示。CrN 过渡层沉积时工作气体为 Ar+N2,流量均为 15 mL / min,分压均为 0.25 Pa,其余参数不变。

  • 表3 过度层 Cr 的沉积工艺参数

  • Table3 Deposition process parameters of transition layer Cr

  • (4)薄膜沉积。Al 靶外加 0.4 A 直流电源,Cr 靶外接 HiPIMS 电源,靶后缠绕励磁线圈来约束电子 (线圈电流为 3 A);控制 Cr 靶靶面法线与 Al 靶靶面法线呈 45°夹角;工作气体为 Ar 与 N2,流量均为 15 mL / min,分压均为 0.25 Pa;靶基距固定为 80 mm。为使 Al 元素均匀掺入 CrN 晶格中,薄膜沉积过程中控制基体以转架为轴匀速自转,转速为 30 r / min,薄膜沉积时间 100 min。控制基体偏压分别为 100 V、 200 V、300 V 和 400 V,详细工艺参数如表4 所示。

  • 表4 CrAlN 阻氢薄膜沉积工艺参数

  • Table4 Process parameters of CrAlN hydrogen barrier film deposition

  • 1.3 分析测试方法

  • 膜层截面形貌和厚度:采用 SUPPA 55 SAPPHIRE 型号的场发射扫描电子显微镜观察 CrAlN 薄膜的截面形貌并测量其厚度。设置为二次电子增强模式,加速电压 20 kV。

  • 高温抗氧化测试:利用 SX2 型马弗炉保证样品在 600℃、大气环境下保温 60 min,随炉冷却后通过能谱仪测量膜层不同深度处的氧原子含量。

  • 膜基结合力测试:通过对比压痕形貌来表征膜基结合力。洛氏硬度计采用 120°圆锥形金刚石压头,施加载荷 1 470 N,保荷时间 10 s。

  • 阻氢性能测试:薄膜的氢扩散系数利用 CS2350 双恒电位工作站和双电解池进行测量,两侧电解池均以样品作为工作电极,饱和甘汞电极作为参比电极,铂电极作为辅助电极。充氢侧电解液为 0.1 mol / L NaOH + 0.01 mol / L Na2S 混合溶液,出氢侧电解液为 0.2 mol / L NaOH 溶液,充氢侧外加恒定极化电流 10 mA。阴极发生还原反应 H2O+e-OH-+HS2S2-作用使氢原子吸附于材料表面,并随时间向材料内部迁移。氢原子到达阳极室后再发生氧化反应 HH++e-,生成 H+。最后通过测量阳极室氧化电流密度得出氢渗透电流密度。

  • 2 结果与讨论

  • 2.1 基体偏压大小对 CrAlN 薄膜截面形貌和沉积速率的影响

  • 图2 为基体偏压值分别为 100 V、200 V、300 V 和 400 V 时 CrAlN 薄膜的截面形貌。四组 CrAlN 薄膜均为纵向柱状晶结构[25],基体偏压为 100 V 时, CrAlN 柱状晶较为粗大,致密度低;随基体偏压增大,柱状晶尺寸减小,致密度提高;基体偏压为400 V 时,膜层受离子轰击作用最强,致密度显著提高,同时薄膜厚度也最薄。基体偏压小于 200 V 时,膜层中以完整贯穿式柱状晶结构为主;当基体偏压上升到 300 V 之后,CrAlN 柱状晶出现部分生长中断的现象。这主要是随着基体偏压的提高,正离子在移动到基体表面的过程中获得更高的动能,对基体的轰击作用变强,从而使得部分柱状晶来不及生长而破碎。

  • 经测量,四组 CrAlN 薄膜的厚度分别为 1.28 μm、1.27 μm、1.24 μm 和 1.07 μm,由此计算出 CrAlN 薄膜的沉积速率约为 10 nm·min−1。绘制薄膜沉积速率与基体偏压的关系如图3 所示。旋转模式下,当基体转至与靶面超过一定角度(90°) 后金属离子就难以到达基体表面,另一半旋转周期内,基体表面的膜层生长以已有粒子的表面扩散和结晶生长为主,因此薄膜沉积速率相对于直喷沉积时大大降低。但由于粒子表面扩散和形核结晶的时间充分,膜层的均匀性提高[26]。随着基体偏压增加,薄膜沉积速率逐渐减小,尤其是基体偏压从 300 V 增加至 400 V 时,CrAlN 薄膜沉积速率下降明显。结合扫描电子显微镜(Scanning electron microscope, SEM)图像以及上文的分析,这主要是随着基体偏压增大,获得更高动能的离子轰击膜层,使得部分柱状晶在生长过程中破碎,沉积速率降低。

  • 图2 四组不同基体偏压下 CrAlN 薄膜的截面形貌

  • Fig.2 Cross section morphology of CrAlN films under four different substrate bias voltages

  • 图3 CrAlN 薄膜沉积速率和偏压的关系

  • Fig.3 Relationship between deposition rate and bias voltage of CrAlN film

  • 2.2 基体偏压大小对 CrAlN 晶体结构的影响

  • 四组不同基体偏压下制备的CrAlN薄膜的X射线衍射图谱如图4 所示。CrAlN 实际上是 CrN 和 AlN 的固溶体,在 Al 含量较低时,表现为 Al 原子置换 CrN 中的 Cr 原子得到的具有面心立方结构的 CrAlN,因此 CrAlN 会表现出 CrN 的晶体学特征[15]。根据 X 射线衍射图谱,可以发现 CrAlN 薄膜沿 CrN (200)择优生长,这与付英英等[20]、吕艳红等[27] 的研究结果相符合。当基体偏压为 100 V 时还存在很弱的 CrN(111)衍射峰。此外还有 AlN(012) 衍射峰,但强度低于 CrN(200),原因可能是薄膜中 Al 含量相对较低。

  • 图4 不同基体偏压下 CrAlN 阻氢薄膜的 XRD 图谱

  • Fig.4 XRD patterns of CrAlN films with different substrate bias

  • 对比 CrN 阻氢薄膜的 X 射线衍射图谱,可以发现不同基体偏压下 CrN(200)衍射峰对应的衍射角均出现向大角度偏移的情况[24]。结合布拉格方程,衍射角 θ 与晶面间距 d 成反比,说明 Al 原子的掺入使得晶面间距减小。由此可以推断 Al 原子主要是以置换的方式取代晶格中 Cr 原子的位置,其原子半径相对 Cr 较小,导致产生晶格畸变时晶格收缩,最终在 X 射线衍射图谱上表现为衍射角向大角度偏移[15]

  • 2.3 基体偏压大小对 CrAlN 薄膜阻氢性能的影响

  • 将基体偏压为 100 V、200 V、300 V 和 400 V 时获得的 CrAlN 薄膜+316L 不锈钢样品置于 CS2350 电化学工作站中,CrAlN 薄膜位于阴极充氢侧,不锈钢基体位于出氢侧,四组样品的氢渗透电流密度变化曲线如图5 所示。氢渗透平衡电流密度分别为 5.261×10−7 A / cm2、6.923×10−7 A / cm2、 5.280×10−7 A / cm2 和 7.943×10−7 A / cm2。根据式(1) 可以计算出氢原子的扩散系数分别为 7.576× 10−8 cm 2 / s、8.865×10−8 cm 2 / s、2.354×10−8 cm 2 / s 和 3.157×10−8 cm 2 / s。

  • D=L2/6tL
    (1)
  • 式中,L 为样品厚度(cm);tL为氧化电流密度曲线中的滞后时间(s)。

  • 图5 不同基体偏压下样品的氢渗透电流密度曲线

  • Fig.5 Hydrogen permeation current density curves of samples under different substrate bias

  • 试验测得 316L 不锈钢中的氢原子扩散系数为 4.166×10−7 cm 2 / s[28]。根据式(2)可计算求得基体偏压为 100 V、200 V、300 V 和 400 V 下获得的 CrAlN 薄膜中的氢原子扩散系数分别为 2.371×10−9 cm 2 / s、 2.860×10−9 cm 2 / s、6.188×10−10 cm 2 / s 和 7.310×10−10 cm 2 / s。由不锈钢基体和镀膜后样品的平衡氢渗透电流密度,根据式(3)可求得基体偏压为 100 V、 200 V、300 V 和 400 V 下获得的 CrAlN 薄膜的渗氢抑制率分别为 87.4%、79.6%、87.3%和 74.9%。

  • Df=dLDsubDsub-DsDs
    (2)
  • η=isub -i0-i-i0isub -i0×100%
    (3)
  • 式中,Df 为薄膜的氢原子扩散系数,d 为薄膜厚度(m),L 为基体厚度(m),Dsub 为不锈钢基体的氢原子扩散系数(cm 2 / s),Ds 为样品(基体+薄膜)的等效氢原子扩散系数(cm 2 / s),η 为渗氢抑制率,i0 为样品残余氧化电流密度(A / cm2),isub 为不锈钢基体的平衡氢渗透电流密度(A / cm2),i 为样品的平衡氢渗透电流密度(A / cm2)。

  • 图6 为 CrAlN 薄膜的氢原子扩散系数及渗氢抑制率随基体偏压变化的关系曲线。四组薄膜的氢抑制率均超过 70%,氢原子扩散系数最低比 316L 不锈钢基体低 3 个数量级。其中基体偏压为 300 V 时,阻氢效果最好。一方面,此时薄膜的致密度大于偏压为 100 V 和 200 V 时制备的 CrAlN 薄膜,对氢扩散的阻碍作用增强;另一方面,由于此时膜层中存在晶粒碎化区,产生大量晶界,俘获氢原子,降低扩散; 基体偏压为 400 V 时,氢抑制率最低,为 74.9%,但氢原子扩散系数却很小。原因可能是基体偏压为 400 V 时,膜层沉积过程受到了强烈的轰击作用,致密度提高,从而氢原子不易扩散;同时由于离子轰击效应及自溅射效应存在,薄膜最薄,从而导致此时氢原子扩散系数很小但是氢抑制率较低。

  • 图6 CrAlN 薄膜氢原子扩散系数和渗氢抑制率随基体偏压的变化曲线

  • Fig.6 Variation curve of hydrogen atom diffusion factor and hydrogen permeation inhibition rate of CrAlN film with substrate bias voltage

  • 相同试验条件下制备的四组 CrN薄膜氢原子扩散系数分别为 3.505×10−9 cm 2 / s、 4.192×10−9 cm 2 / s、7.598×10−10 cm 2 / s 和 1.147×10−9 cm 2 / s。相比之下 CrAlN 阻氢薄膜的氢原子扩散系数均有所减小。根据 X 射线衍射结果分析可知,掺入的 Al 原子主要以置换形式取代晶格中的 Cr 原子,使得 CrN 的晶格间距减小,氢元素从中跃迁需要克服更大的的能垒,同时少部分以填充形式存在于 CrN 晶格间隙中的 Al 原子也会成为氢元素在晶格中迁移的障碍[29]。因此 CrAlN 薄膜的氢原子扩散系数明显小于 CrN 薄膜。考虑到旋转基体模式下,制备的 CrAlN 阻氢薄膜厚度较小,但氢抑制率与 CrN 阻氢薄膜相差较小,因此说明 CrAlN 薄膜的阻氢效果大大提高。

  • 2.4 基体偏压大小对 CrAlN 薄膜高温抗氧化性能的影响

  • 通过对比 316L 不锈钢基体(25 mm×25 mm× 1 mm)和 CrAlN 薄膜+基体在相同时间和温度下进行高温氧化反应后的质量,来测试薄膜的高温抗氧化性。将四组 CrAlN 薄膜在 600℃、大气环境下保温 60 min,随炉冷却后对膜层截面不同深度处进行 EDS 分析,将不同薄层深度 O 元素的原子百分含量绘制如图7 所示的关系图。结果发现 CrAlN 薄膜中的氧含量随深度增加而减少。基体偏压为 400 V 时, CrAlN 薄膜中氧元素含量衰减最为迅速,膜基结合面处的氧含量仅为 4.09 at.%,仅薄膜表面处的 27.72%。原因是此时薄膜沉积过程中离子轰击效应最强,膜层的致密度最高,氧原子扩散困难。但此时薄膜最薄,因此薄膜的高温抗氧化性能主要受到致密度的影响,膜层致密度越高越有利于防止高温下 O 原子的扩散。

  • 图7 不同基体偏压下 CrAlN阻氢薄膜不同深度处的 O含量

  • Fig.7 O content at different depths of CrAlN film under different substrate bias

  • 图8 为相同试验条件下制备的 CrN 薄膜高温氧化结果。与 CrN 薄膜相比,CrAlN 薄膜外表面的氧含量相对较高,这是因为薄膜中的 Al 元素易与氧气作用生成 Al2O3薄膜,附着于薄膜表面。随着取点深度增加,CrAlN 阻氢薄膜中的氧含量衰减程度明显大于 CrN 薄膜,并且 CrAlN 阻氢薄膜与基体结合面处的氧元素含量也明显小于 CrN[24]。因此,CrN 薄膜中掺入 Al 元素可以大大提高其高温抗氧化性能。

  • 图8 不同基体偏压下 CrN 阻氢薄膜不同深度处的 O 含量

  • Fig.8 O content at different depths of CrN film under different substrate bias

  • 对高温氧化后的样品进行称重测试,不锈钢基体一侧的高温氧化增重量为 0.001 4 g,另一侧四组 CrAlN薄膜高温氧化增重分别为0.000 8 g、0.000 5 g、 0.000 4 g 和 0.000 4 g,计算可得基体偏压为 100 V、 200 V、300 V 和 400 V 下制备的 CrAlN 薄膜单位面积氧化增重值分别为 1.28 g / m2、0.8 g / m2、 0.64 g / m2 和0.64 g / m2。绘制出如图9所示的CrAlN 薄膜氧元素增加量与基体偏压的关系曲线。四组薄膜的单位面积氧增加量均不到 316L 不锈钢基体的 50%,即薄膜的抗氧化性能比 316L 不锈钢基体至少提高 1 倍,可以认为不同偏压条件下制备的 CrAlN 阻氢薄膜本身均具备优良的抗氧化性能。基体偏压为 100 V 时,CrAlN 薄膜单位面积的氧化增重量最大,当基体偏压为 300 V 和 400 V 时,薄膜的氧增加量最小,仅为基体的 10%,高温抗氧化性优异。

  • 图9 CrAlN 薄膜单位面积的氧化增重随基体偏压变化关系

  • Fig.9 Variation of weight gain per unit area of CrAlN film with substrate bias

  • 掺入 Al 元素后,除基体偏压 100 V 下制备的样品外,CrAlN 阻氢薄膜高温氧化后的单位面积氧增重量显著减小。因此,在 CrN 中掺入 Al 元素可以有效提高阻氢薄膜的高温抗氧化性,保护基体不受氧化;同时薄膜内部自身氧化程度也很低,氧化反应主要集中在薄膜表面,生成的致密 Al2O3 保护膜可以抑制氧原子内扩散,同时减少因体积变化而应引起的膜层开裂和剥落[30]

  • 2.5 基体偏压大小对 CrAlN 薄膜膜基结合力的影响

  • 采用压痕法测试 CrAlN 薄膜的膜基结合力。采用 200HRS-150 型号的的数显式洛氏硬度计, 120°圆锥形金刚石压头,施加载载荷 1 470 N,加载后保荷 10 s,以 CrAlN 薄膜与 316L 不锈钢基体的剥离状态作为评估膜基结合力的标准[31]。图10 为四组薄膜的压痕形貌图,根据标准号为 VDI-3198 1992 的工业标准[32],对比压痕形貌等级划分示意图,四组试验的膜基结合力达到 HF1 级,均未发生任何脱落现象。说明按此试验方法制备的 CrAlN 阻氢薄膜与 316L 不锈钢基体的结合力较好,可以在工业上实际应用。316L 不锈钢为奥氏体钢种,相结构主要是面心立方的 γ-Fe。研究表明 CrN 与 γ-Fe 不仅具有相同的晶体结构,衍射角也接近[33],因此 CrAlN 在 316L 不锈钢基体上形核生长时原子匹配程度很高,膜基结合力较好。

  • 图10 不同基体偏压下 CrAlN 薄膜(316L 不锈钢基体)的压痕形貌

  • Fig.10 Indentation morphology of CrAlN film (316L stainless steel substrate) under different substrate bias

  • 2.6 基体偏压大小对 CrAlN 薄膜电化学腐蚀性能的影响

  • 采用伏安法得出 CrAlN薄膜的塔菲尔极化曲线如图11 所示。电解溶液为 3.5 wt.%的 NaCl 溶液,以饱和甘汞溶液作参比电极,Pt 电极充当辅助电极,阻氢薄膜充当工作电极,由此可以计算出四组样品的腐蚀电位分别为−0.842 V、−0.751 V、−0.885 V 和 −0.752 V,腐蚀电流分别为 1.979×10−5 A、2.025×10−6 A、1.040×10−5 A 和 1.523×10−5 A。

  • 图11 不同基体偏压下 CrAlN 阻氢薄膜的塔菲尔曲线

  • Fig.11 Tafel curves of CrAlN films with different substrate bias

  • 图12 为 CrAlN 薄膜腐蚀电位及腐蚀电流随基体偏压的变化关系曲线,点 sub 为 316L 不锈钢基体的电化学腐蚀参数。由图可知,四组 CrAlN 薄膜都能提高基体的腐蚀电位,降低腐蚀电流,从而起到保护基体、提升基体电化学腐蚀性能的作用。

  • 图12 CrAlN 薄膜腐蚀电位和腐蚀电流随基体偏压的变化关系

  • Fig.12 Relationship between corrosion potential and corrosion current of CrAlN film and substrate bias voltage

  • 影响 CrAlN 薄膜电化学腐蚀性能的主要因素是微观结构,而随着基体偏压的增大,薄膜的致密度逐渐提高,能够有效阻碍腐蚀溶液向内扩散,因此当基体偏压为 400 V 时可以获得最好的耐腐蚀性能[27]

  • 3 结论

  • 采用 Cr、Al 双靶共沉积制备 CrAlN 薄膜,通过改变基体偏压分别为 100 V、200 V、300 V 和 400 V,得出以下结论。

  • (1)四组 CrAlN 薄膜均为柱状晶结构,随着基体偏压升高,离子轰击效应增强,膜层的致密度提高,但沉积速率逐渐降低;CrAlN 薄膜的择优生长方向为 Cr(200)晶面法线方向。

  • (2)试验制备的 CrAlN 薄膜氢抑制率均超过 70%,氢原子扩散系数最低比 316L 不锈钢基体低 3 个数量级。当基体偏压为 300 V 时,可以同时获得最优的氢抑制率(87.4%)和最低的氢原子扩散系数 (6.188×10−10 cm 2 /s)。相比于 CrN 薄膜,CrAlN 晶格间隙较小,且部分间隙被 Al 原子填充成为氢原子扩散的障碍,因此相同基体偏压下制备的 CrAlN 薄膜比 CrN 薄膜阻氢效果更好。

  • (3)CrN 薄膜掺 Al 后可使得薄膜在高温下表面生成致密的 Al2O3 层,阻止氧原子进一步的内扩散。在 600℃、氧气气氛下保温 60 min,其膜基结合面处氧含量仅为表面处的 30%左右。相比于 CrN 薄膜,高偏压下制备的 CrAlN 薄膜氧增重量仅为 316L 不锈钢基体的 10%,抗氧化能力提升更为明显。

  • (4)不同偏压下制备的 CrAlN 薄膜与 316L 不锈钢基体膜基结合力均达到 HF1 级,结合良好,可以满足实际应用要求;四组 CrAlN 薄膜都能提高基体的腐蚀电位,降低腐蚀电流,从而起到保护基体的作用。

  • 参考文献

    • [1] 凌文,刘玮,李育磊,等.中国氢能基础设施产业发展战略研究[J].中国工程科学,2019,21(3):76-83.LING Wen,LIU Wei,LI Yulei,et al.Research on the development strategy of China's hydrogen energy infrastructure industry[J].China Engineering Science,2019,21(3):76-83.(in Chinese)

    • [2] 董健.铁铝合金/氧化锆/磷酸盐复合阻氢涂层制备及其性能研究[D].北京:北京科技大学,2020.DONG jian.Preparation and properties of Fe Al alloy/zirconia/phosphate composite hydrogen barrier coating[D].Beijing:Beijing University of Science and Technology,2020.(in Chinese)

    • [3] 周池楼,何默涵,肖舒,等.不锈钢表面阻氢涂层研究进展[J].化工进展,2020,39(9):3458-3468.ZHOU Chilou,HE Mohan,XIAO Shu,et al.Research progress of hydrogen barrier coatings on stainless steel [J].Progress in Chemical Industry,2020,39(9):3458-3468.(in Chinese)

    • [4] 王玫,牛栋华,胡琪,等.二维材料调控阻氢涂层研究进展[J].化工学报,2017,68(S1):9-17.WANG Mei,NIU Donghua,HU Qi,et al.Research progress of hydrogen barrier coating controlled by two-dimensional materials[J].Journal of Chemical Engineering,2017,68(S1):9-17.(in Chinese)

    • [5] GOLUBEVA A V,Cherkez D I.Hydrogen retention in tungsten alloys developed for fusion facilities[J].Physics of Atomic Nuclei,2019,82(7):996-1004.

    • [6] LI W Z,CHEN Q Z,POLCAR T,et al.Influence of Zr alloying on the mechanical properties,thermal stability and oxidation resistance of Cr-Al-N coatings[J].Applied Surface Science,2014,317:269-277.

    • [7] 夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN coating under different working conditions[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)

    • [8] WANG D Y,WENG K W.Deposition of CrN coatings by current-modulating cathodic arc evaporation[J].Surface & Coatings Technology,2001,137(1):31-37.

    • [9] HOFMANN S,JEHN H A.Oxidation behavior of CrNx and(Cr,Al)Nx hard coatings[J].Materials and Corrosion,1990,41(12):756-760.

    • [10] 宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/Crn and Cr/Crn/Craln coatings[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)

    • [11] OHTA R,GERILE N,KAGA M,et al.Composite Si-Ni nanoparticles produced by plasma spraying physical vapor deposition for negative electrode in Li-ion batteries.[J].Nanotechnology,2021.

    • [12] NAKAHARA R,SAKAI M,KIMURA T,et al.Lasing action of ZnO nanowires grown by mist chemical vapor deposition using thin Au layer on-plane sapphire substrate[J].Japanese Journal of Applied Physics,2021,60(5):62-73.

    • [13] 张新宇.直流、射频磁控溅射制备 Al2O3薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Process exploration and performance study of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)

    • [14] MASAHIRO G,MICHIKO S,XU Yibin,et al.Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology[J].Applied Surface Science,2017,407:405-411.

    • [15] 金浩,张莹莹,时卓,等.磁控溅射技术制备CrAlN涂层的研究进展[J].材料导报,2016,30(3):54-59.JIN Hao,ZHANG Yingying,SHI Zhuo,et al.Research progress of CrAlN coating prepared by magnetron sputtering[J].Material Guide,2016,30(3):54-59.(in Chinese)

    • [16] LI Yang,YANG Li,XIA Hong,et al.Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites[J].Materials Research Express,2020,7(10):105602-.

    • [17] VLADIMIR K,KAROL M,JOCHEN M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2):290-293.

    • [18] 张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Research progress of ZnO thin films prepared by high power pulsed magnetron sputtering[J].Vacuum,2021,58(1):72-77.(in Chinese)

    • [19] PARK S H,CHANG J H,MINEGISHI T,et al.Investigation on the ZnO:N films grown on(0001)and(0001¯)ZnO templates by plasma-assisted molecular beam epitaxy[J].Joumal of Crystal Growth,2009,311(7):2167-2171.

    • [20] 付英英,李红轩,吉利,等.CrN 和CrAlN薄膜的微观结构及在不同介质中的摩擦学性能[J].中国表面工程,2012,25(6):34-41.FU Yingying,LI Hongxuan,JI L,et al.Microstructure and tribological properties of CrN and CrAlN films in different media[J].China Surface Engineering,2012,25(6):34-41.(in Chinese)

    • [21] 郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.Study on CrAlN thin films co sputtered by high power pulsed and pulsed DC magnetron[J].Surface Technology,2019,48(4):137-144.(in Chinese)

    • [22] 王宇星,张侠.基体偏压对磁控溅射制备CrAlN纳米多层薄膜微观结构和力学性能的影响[J].机械工程材料,2021,45(3):41-45.WANG Yuxing,ZHANG Xia.Effect of substrate bias on Microstructure and mechanical properties of CrAlN nano multilayer films prepared by magnetron sputtering[J].Mechanical Engineering Materials,2021,45(3):41-45.(in Chinese)

    • [23] LIU Jia,MA Cuiying,DU Huiling.A Comparative study of TiAlN and CrAlN coatings deposited on sialon ceramic cutting inserts by physical vapor deposition[C]//Science and Engineering Research Center.Proceedings of 2017 2nd International Conference on Applied Mechanics,Electronics and Mechatronics Engineering(AMEME 2017).DEStech Publications,2017:316-324.

    • [24] 刘孟奇,郭惠霞,王永欣,等.CrN/CrAlSiN 涂层海水环境下的摩擦学性能[J].中国表面工程,2017,30(2):63-70.LIU Mengqi,GUO Huixia,WANG Yongxin,et al.Tribological properties of CrN/CrAlSiN coating in seawater[J].China Surface Engineering,2017,30(2):63-70.(in Chinese)

    • [25] 朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及 CrAlN 涂层的性能[J].材料热处理学报 2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by hipims technology[J].Journal of Material Heat Treatment,2019,40(4):127-135.(in Chinese)

    • [26] LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface & Coatings Technology,2010,205(10):3226-3234.

    • [27] 吕艳红,孔庆花,吉利,等.氮气流量对中频非平衡反应磁控溅射制备CrAlN薄膜性能的影响[J].中国表面工程,2011,24(4):7-12.LÜYanhong,KONG Qinghua,JI Li,et al.Effect of nitrogen flow rate on properties of CrAlN thin films prepared by medium frequency unbalanced reactive magnetron sputtering[J].China Surface Engineering,2011,24(4):7-12.(in Chinese)

    • [28] 张辉,王晓波,张炜鑫,等.基体偏压对高功率脉冲磁控溅射CrN薄膜结构及阻氢性能的影响[J].真空科学与技术学报,2021,41(11):1046-1052.ZHANG Hui,WANG Xiaobo,ZHANG Weixin,et al.Effect of substrate bias on the structure and hydrogen barrier properties of CrN films prepared by high power pulsed magnetron sputtering[J].Journal of Vacuum Science and Technology,2021,41(11):1046-1052.(in Chinese)

    • [29] 张炜鑫.高功率磁控溅射CrN基薄膜的制备及其阻氢性能研究[D].哈尔滨:哈尔滨工业大学,2019.ZHANG Weixin.Preparation of CrN based thin films by high power magnetron sputtering and their hydrogen barrier properties[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [30] GUIMARAES M C R,NOSSA T D S,AVILA P R T,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings Technology,2018,340:112-120.

    • [31] 瞿全炎,邱万奇,曾德长,等.划痕法综合评定膜基结合力[J].真空科学与技术学报,2009,29(2):184-187.QU Quanyan,QIU Wanqi,ZENG Dechang,et al.Measurement of TIN film substrate interfacial adhesion by scratching[J].Chinese Journal of Vacuum Science and Technology,2009,29(2):184-187.(in Chinese)

    • [32] 吴雁,肖礼军,王冰,等.TiAlSiN 多层梯度涂层力学及摩擦磨损性能试验研究[J].中国陶瓷,2020,56(9):36-42.WU Yan,XIAO Lijun,WANG Bing,et al.Experimental study on mechanical and friction and wear properties of TiAlSiN multilayer gradient coating[J].China Ceramics,2020,56(9):36-42.(in Chinese)

    • [33] ZHANG Xin,TIAN Xiubo,ZHAO Zhiwei,et al.Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates[J].Surface and Coatings Technology,2019,364:135-143.

  • 参考文献

    • [1] 凌文,刘玮,李育磊,等.中国氢能基础设施产业发展战略研究[J].中国工程科学,2019,21(3):76-83.LING Wen,LIU Wei,LI Yulei,et al.Research on the development strategy of China's hydrogen energy infrastructure industry[J].China Engineering Science,2019,21(3):76-83.(in Chinese)

    • [2] 董健.铁铝合金/氧化锆/磷酸盐复合阻氢涂层制备及其性能研究[D].北京:北京科技大学,2020.DONG jian.Preparation and properties of Fe Al alloy/zirconia/phosphate composite hydrogen barrier coating[D].Beijing:Beijing University of Science and Technology,2020.(in Chinese)

    • [3] 周池楼,何默涵,肖舒,等.不锈钢表面阻氢涂层研究进展[J].化工进展,2020,39(9):3458-3468.ZHOU Chilou,HE Mohan,XIAO Shu,et al.Research progress of hydrogen barrier coatings on stainless steel [J].Progress in Chemical Industry,2020,39(9):3458-3468.(in Chinese)

    • [4] 王玫,牛栋华,胡琪,等.二维材料调控阻氢涂层研究进展[J].化工学报,2017,68(S1):9-17.WANG Mei,NIU Donghua,HU Qi,et al.Research progress of hydrogen barrier coating controlled by two-dimensional materials[J].Journal of Chemical Engineering,2017,68(S1):9-17.(in Chinese)

    • [5] GOLUBEVA A V,Cherkez D I.Hydrogen retention in tungsten alloys developed for fusion facilities[J].Physics of Atomic Nuclei,2019,82(7):996-1004.

    • [6] LI W Z,CHEN Q Z,POLCAR T,et al.Influence of Zr alloying on the mechanical properties,thermal stability and oxidation resistance of Cr-Al-N coatings[J].Applied Surface Science,2014,317:269-277.

    • [7] 夏虎峰,田广科,陈庆春,等.不同工作环境下CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN coating under different working conditions[J].China Surface Engineering,2019,32(6):56-62.(in Chinese)

    • [8] WANG D Y,WENG K W.Deposition of CrN coatings by current-modulating cathodic arc evaporation[J].Surface & Coatings Technology,2001,137(1):31-37.

    • [9] HOFMANN S,JEHN H A.Oxidation behavior of CrNx and(Cr,Al)Nx hard coatings[J].Materials and Corrosion,1990,41(12):756-760.

    • [10] 宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/Crn and Cr/Crn/Craln coatings[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)

    • [11] OHTA R,GERILE N,KAGA M,et al.Composite Si-Ni nanoparticles produced by plasma spraying physical vapor deposition for negative electrode in Li-ion batteries.[J].Nanotechnology,2021.

    • [12] NAKAHARA R,SAKAI M,KIMURA T,et al.Lasing action of ZnO nanowires grown by mist chemical vapor deposition using thin Au layer on-plane sapphire substrate[J].Japanese Journal of Applied Physics,2021,60(5):62-73.

    • [13] 张新宇.直流、射频磁控溅射制备 Al2O3薄膜工艺探索及其性能的研究[D].太原:中北大学,2017.ZHANG Xinyu.Process exploration and performance study of Al2O3 thin films prepared by DC and RF magnetron sputtering[D].Taiyuan:North University of China,2017.(in Chinese)

    • [14] MASAHIRO G,MICHIKO S,XU Yibin,et al.Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology[J].Applied Surface Science,2017,407:405-411.

    • [15] 金浩,张莹莹,时卓,等.磁控溅射技术制备CrAlN涂层的研究进展[J].材料导报,2016,30(3):54-59.JIN Hao,ZHANG Yingying,SHI Zhuo,et al.Research progress of CrAlN coating prepared by magnetron sputtering[J].Material Guide,2016,30(3):54-59.(in Chinese)

    • [16] LI Yang,YANG Li,XIA Hong,et al.Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites[J].Materials Research Express,2020,7(10):105602-.

    • [17] VLADIMIR K,KAROL M,JOCHEN M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2):290-293.

    • [18] 张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Research progress of ZnO thin films prepared by high power pulsed magnetron sputtering[J].Vacuum,2021,58(1):72-77.(in Chinese)

    • [19] PARK S H,CHANG J H,MINEGISHI T,et al.Investigation on the ZnO:N films grown on(0001)and(0001¯)ZnO templates by plasma-assisted molecular beam epitaxy[J].Joumal of Crystal Growth,2009,311(7):2167-2171.

    • [20] 付英英,李红轩,吉利,等.CrN 和CrAlN薄膜的微观结构及在不同介质中的摩擦学性能[J].中国表面工程,2012,25(6):34-41.FU Yingying,LI Hongxuan,JI L,et al.Microstructure and tribological properties of CrN and CrAlN films in different media[J].China Surface Engineering,2012,25(6):34-41.(in Chinese)

    • [21] 郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.Study on CrAlN thin films co sputtered by high power pulsed and pulsed DC magnetron[J].Surface Technology,2019,48(4):137-144.(in Chinese)

    • [22] 王宇星,张侠.基体偏压对磁控溅射制备CrAlN纳米多层薄膜微观结构和力学性能的影响[J].机械工程材料,2021,45(3):41-45.WANG Yuxing,ZHANG Xia.Effect of substrate bias on Microstructure and mechanical properties of CrAlN nano multilayer films prepared by magnetron sputtering[J].Mechanical Engineering Materials,2021,45(3):41-45.(in Chinese)

    • [23] LIU Jia,MA Cuiying,DU Huiling.A Comparative study of TiAlN and CrAlN coatings deposited on sialon ceramic cutting inserts by physical vapor deposition[C]//Science and Engineering Research Center.Proceedings of 2017 2nd International Conference on Applied Mechanics,Electronics and Mechatronics Engineering(AMEME 2017).DEStech Publications,2017:316-324.

    • [24] 刘孟奇,郭惠霞,王永欣,等.CrN/CrAlSiN 涂层海水环境下的摩擦学性能[J].中国表面工程,2017,30(2):63-70.LIU Mengqi,GUO Huixia,WANG Yongxin,et al.Tribological properties of CrN/CrAlSiN coating in seawater[J].China Surface Engineering,2017,30(2):63-70.(in Chinese)

    • [25] 朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及 CrAlN 涂层的性能[J].材料热处理学报 2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by hipims technology[J].Journal of Material Heat Treatment,2019,40(4):127-135.(in Chinese)

    • [26] LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface & Coatings Technology,2010,205(10):3226-3234.

    • [27] 吕艳红,孔庆花,吉利,等.氮气流量对中频非平衡反应磁控溅射制备CrAlN薄膜性能的影响[J].中国表面工程,2011,24(4):7-12.LÜYanhong,KONG Qinghua,JI Li,et al.Effect of nitrogen flow rate on properties of CrAlN thin films prepared by medium frequency unbalanced reactive magnetron sputtering[J].China Surface Engineering,2011,24(4):7-12.(in Chinese)

    • [28] 张辉,王晓波,张炜鑫,等.基体偏压对高功率脉冲磁控溅射CrN薄膜结构及阻氢性能的影响[J].真空科学与技术学报,2021,41(11):1046-1052.ZHANG Hui,WANG Xiaobo,ZHANG Weixin,et al.Effect of substrate bias on the structure and hydrogen barrier properties of CrN films prepared by high power pulsed magnetron sputtering[J].Journal of Vacuum Science and Technology,2021,41(11):1046-1052.(in Chinese)

    • [29] 张炜鑫.高功率磁控溅射CrN基薄膜的制备及其阻氢性能研究[D].哈尔滨:哈尔滨工业大学,2019.ZHANG Weixin.Preparation of CrN based thin films by high power magnetron sputtering and their hydrogen barrier properties[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [30] GUIMARAES M C R,NOSSA T D S,AVILA P R T,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings Technology,2018,340:112-120.

    • [31] 瞿全炎,邱万奇,曾德长,等.划痕法综合评定膜基结合力[J].真空科学与技术学报,2009,29(2):184-187.QU Quanyan,QIU Wanqi,ZENG Dechang,et al.Measurement of TIN film substrate interfacial adhesion by scratching[J].Chinese Journal of Vacuum Science and Technology,2009,29(2):184-187.(in Chinese)

    • [32] 吴雁,肖礼军,王冰,等.TiAlSiN 多层梯度涂层力学及摩擦磨损性能试验研究[J].中国陶瓷,2020,56(9):36-42.WU Yan,XIAO Lijun,WANG Bing,et al.Experimental study on mechanical and friction and wear properties of TiAlSiN multilayer gradient coating[J].China Ceramics,2020,56(9):36-42.(in Chinese)

    • [33] ZHANG Xin,TIAN Xiubo,ZHAO Zhiwei,et al.Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates[J].Surface and Coatings Technology,2019,364:135-143.

  • 手机扫一扫看