en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高海洋,男,1998年出生,硕士研究生。主要研究方向为表面防护材料。E-mail:gaohy@licp.cas.cn

通讯作者:

张斌,男,1982年出生,博士,研究员,博士研究生导师。主要研究方向为表面涂层技术与加工、工程超滑、固液复合润滑。E-mail:bzhang@licp.cas.cn

中图分类号:TB383;TG174

DOI:10.11933/j.issn.1007−9289.20220103002

参考文献 1
CRACIUN D,STEFAN N,SOCOL G,et al.Very hard TiN thin films grown by pulsed laser deposition[J].Applied Surface Science,2012,260:2-6.
参考文献 2
ZHANGF Z,GHASEMI A,KOUTNA N,et al.Correlating point defects with mechanical properties in nanocrystalline TiN thin films[J].Materials & Design,2021,207:109844.
参考文献 3
BOBZIN K.High-performance coatings for cutting tools[J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.
参考文献 4
FALTERMEIER C,CHERYL G.Barrier properties of titanium nitride films grown by low temperature chemical vapor deposition from titanium tetraiodide[J].Journal of the Electrochemical Society,1997,144(3):1002-1008.
参考文献 5
LIAM W,ANTONY P,STEVE D.Studies on the effect of arc current mode and substrate rotation configuration on the structure and corrosion behavior of PVD TiN coatings[J].Coatings,2017,7(4):50.
参考文献 6
KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.
参考文献 7
YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516(21):7294-7298.
参考文献 8
郝娟,杨超,蒋百灵,等.不同磁控溅射工艺对纳米晶TiN薄膜微观结构与力学性能的影响[J].稀有金属材料与工程,2021,50(8):2715-2720.HAO Juan,YANG Chao,JIANG Bailing,et al.Effects of magnetron sputtering techniques on microstructure and mechanical properties of nanocrystalline TiN films[J].Rare Metal Materials and Engineering,2021,50(8):2715-2720.(in Chinese)
参考文献 9
KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.
参考文献 10
暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)
参考文献 11
CHANG C L,LIN C Y,YANG F C,et al.The effect of match between high power impulse and bias voltage:tin coating deposited by high power impulse magnetron sputtering[J].Coatings,2021,11(7):822.
参考文献 12
MA D L,DENG Q Y,LIU H Y,et al.Effect of ion energy on the microstructure and properties of Titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.
参考文献 13
贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)
参考文献 14
付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)
参考文献 15
MARTINEZ D,LOPEZ C C,FERNANDEZ A,et al.Exploring the benefits of depositing hard TiN thin films by non-reactive magnetron sputtering[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013,275(15):121-126.
参考文献 16
ZHAO Y,GUO C,YANG W,et al.TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating[J].Vacuum,2015,112:46-54.
参考文献 17
ZHAO J P,WANG X,CHEN Z Y,et al.Overall energy model for preferred growth of TiN films during filtered arc deposition[J].Journal of Physics D-Applied Physics,1999,30(1):5-12.
参考文献 18
POWELL C J.Elemental binding energies for X-ray photoelectron spectroscopy[J].Applied Surface Science,1995,89(2):141-149.
参考文献 19
MARCO J F,AGUDELO A C,GANCEDO J R,et al.Corrosion resistance of single TiN layers,Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray(phohesion)test:an evaluation by XPS[J].Surface and Interface Analysis,1999,27(2):71-75.
参考文献 20
CHOURASIA A R,CHOPRA D R.X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces[J].Thin Solid Films,1995,266(2):298-301.
参考文献 21
KHAMDOKHOV A Z,TESHEV R S,KHAMDOKHOV Z M,et al.XPS study of TiN films formed by the electric arc technique[J].Journal of Surface Investigation.X-ray,Synchrotron and Neutron Techniques,2015,9(4):710-714.
参考文献 22
PANDE C S,COOPER K P.Nanomechanics of Hall–Petch relationship in nanocrystalline materials[J].Progress in Materials Science,2009,54(6):689-706.
参考文献 23
时惠英,杨超,蒋百灵,等.双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J].金属学报,2018,54(6):927-934.SHI Huiying,YANG Chao,JIANG Bailing,et al.Influences of target peak current density on the microstructure and mechanical properties of TiN films deposited by dual pulsed power magnetron sputtering[J].Acta Metallurgica Sinica,2018,54(6):927-934.(in Chinese)
参考文献 24
MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9):5148-5152.
目录contents

    摘要

    为探究脉冲频率对通过高功率脉冲磁控溅射制备 TiN 薄膜组织力学性能的影响,选用 Ti 靶和 N2气体,采用反应磁控溅射技术通过改变高功率脉冲磁控溅射(HiPIMS)电源脉冲频率在 Si(100)晶片上制备不同种 TiN 薄膜。利用 X 射线衍射仪(XRD)、X 射线光电子能谱仪和扫描电子显微镜(SEM)对所制薄膜晶体结构和成分、表面和断面形貌进行分析,利用纳米压痕仪对薄膜的硬度和弹性模量进行表征,并计算 H / EH3 / E2 。结果表明,高离化率 Ti 离子轰击促使薄膜以低应变能的晶面优先生长,所制 TiN 薄膜具有(111)晶面择优取向。薄膜平均晶粒尺寸均在 10.3 nm 以下,随着脉冲频率增大晶粒尺寸增大,结晶度和沉积速率降低,柱状生长明显,致密度下降,影响薄膜力学性能。在 9 kHz 时,TiN 薄膜的晶粒尺寸可达 8.9 nm,薄膜组织致密具有最高硬度为 30 GPa,弹性模量 374 GPa,弹性恢复为 62.9 %,具有最优的力学性能。

    Abstract

    In order to explore the effect of pulse frequency on the mechanical properties of TiN films prepared by high-power pulsed magnetron sputtering, different kinds of TiN films are prepared on Si(100) wafers by changing the pulse frequency of High-power impulse magnetron sputtering(HiPIMS) power supply through reactive magnetron sputtering technology. The crystal structure and composition, surface and cross-sectional morphology of the films are characterized by XRD, XPS and SEM. The hardness and elastic modulus of the films are characterized by nanoindenter, and H / E and H3 / E2 are calculated. The results show that the high ionization rate Ti ion bombardment promotes the preferential growth of the film with low strain energy crystal planes, and the prepared TiN film has a (111) preferred orientation. The average grain size of the films is below 10.3 nm, but as the pulse frequency increases, grain size increases, crystallinity and the deposition rate decrease, columnar growth is obvious, and the density decreases, which affects the mechanical properties of the film. At 9 kHz, the grain size of the TiN film is 8.9 nm, and the film has the densest structure with the highest hardness of 30 GPa, an elastic modulus of 374 GPa, and elastic recovery is 62.9%, meaning that the film has the best mechanical properties.

  • 0 前言

  • TiN 薄膜因具有高硬度、优异的耐磨性和良好的耐蚀性等特点被广泛应用于机械加工、抗磨损部件及航天航空等领域[1-3],金黄色的外观使其在装饰领域也占有一席之地。研究者尝试了多种工艺制备 TiN 薄膜,包括化学气相沉积[4],阴极电弧蒸发[5]、磁控溅射[6-7]等。但化学气相沉积法需要较高的沉积温度,电弧蒸发法获得的薄膜表面粗糙度往往过高,这都限制其实际工业应用,磁控溅射法成为研究人员的重点研究方向。通过对比不同种磁控溅射工艺制备的 TiN 薄膜的微观结构和力学性能可知,采用高功率脉冲磁控溅射( High-power impulse magnetron sputtering,HiPIMS)获得的薄膜具有更好的综合力学性能[8]

  • 高功率脉冲磁控溅射是由 KOUZNETSOV 等[9]提出的一种利用脉冲等离子体放电提供高峰值功率和高靶材原子离化率的溅射技术。高度离化的靶材能够提供更好的薄膜致密度和表面平整度[10],从而获得性能更优的薄膜。CHANG 等[11] 研究偏压对高功率脉冲磁控溅射制备氮化钛薄膜特性的影响,偏压电流的增大,可以使择优取向从(111)改变为(220),并提高沉积速率,在直流偏压模式下硬度最大可达 23.2 GPa。MA 等[12] 发现通过高功率脉冲磁控溅射技术制备 TiN 薄膜时,提高 Ti 离子能量使 TiN 薄膜的晶粒尺寸和表面粗糙度减小,但残余应力增大使薄膜粘附强度降低。贺贞等[13]在高功率脉冲沉积 TiN 薄膜时为提高气体离化率加入离子源辅助,随着离子能量的增加,薄膜致密度显著提升,离子源提高气体离子轰击作用,释放薄膜中拉应力,能够使薄膜韧性提高。结合高的靶材离化率,通过改变偏压提高离子能量的方式,TiN 薄膜的致密度和力学性能有着显著提升。但在 HiPIMS 技术中,通过改变脉冲频率控制脉冲宽度探究其对薄膜性能的研究较少,因此,有必要研究脉冲频率变化对沉积 TiN 薄膜性能的影响。

  • 本文采用反应磁控溅射方法,通过改变 HiPIMS 脉冲频率制备 TiN 薄膜,研究不同脉冲频率对 TiN 薄膜组织和力学性能的影响规律。

  • 1 试验准备

  • 1.1 TiN 薄膜制备

  • 采用 HiPIMS 技术将 TiN 薄膜制备在单面抛光 Si(100)衬底上。选用高纯 Ti(99.7%,φ 50 mm× 6 mm)作为试验靶材。制备方法为试验前先将单面抛光硅片衬底经过丙酮和乙醇分别超声清洗 15 min,干燥后装入镀膜腔室样品架上,使样品架正对靶材,调节二者之间的距离为 110 mm。真空镀膜系统被抽至真空度优于 3 mPa 后通入 50 mL / min 氩气(99.99%),负偏压−700 V,离子溅射 30 min 以去除表面氧化物及杂质。为了减小界面间的应力、增加薄膜与衬底间的结合力,首先利用 HiPIMS 技术在衬底硅片上沉积一层 Ti 过渡层。最后通入 5 mL / min 氮气(99.99%),电源采用恒电压模式,通过调节高功率脉冲磁控溅射电源脉冲频率 (3 kHz、6 kHz、9 kHz、12 kHz、15 kHz 和 18 kHz) 通过反应磁控溅射方法制备 TiN 薄膜,相关参数如表1 所示。溅射镀膜过程中利用示波器记录靶电压 (Vt)、靶电流(It)和偏压电流(Ib),如图1 为 6 kHz 脉冲频率制备 TiN 薄膜时的波形图,峰值靶电流为 18 A,脉宽 16.7 μs。

  • 表1 TiN 薄膜沉积参数

  • Table1 Deposition parameters of the TiN films

  • 图1 6 kHz 脉冲频率制备 TiN 薄膜的靶电压 Vt、靶电流 It 和偏压电流 Ib波形图

  • Fig.1 Waveforms of target voltage Vt, target current It and bias current Ib of TiN films prepared at 6 kHz pulse frequency

  • 1.2 结构表征及力学性能测试

  • 采用布鲁克 D8 Discover 25 型 X-射线衍射仪 (XRD)对薄膜的物相组成进行测试,X 射线源为 Cu Kα(λ= 0.154 nm),扫描角度 30°~90°,扫描速度 6(°)/ min。采用 ESCALAB 250Xi 型 X 射线光电子能谱仪(XPS)对薄膜的化学成分进行检测,为正确反映薄膜内部的元素组成,利用 2 kV 加速电压 Ar+ 刻蚀薄膜 5 min,采用 C 1s 结合能(284.8 eV) 进行校准。运用美国 FEI Apreo S 场发射扫描电子显微镜(Scanning electron microscope,SEM)对薄膜的表面和截面形貌进行观察,加速电压为 20 kV,并利用截面形貌测量薄膜的实际厚度。采用 Anton Paar NHT2 型纳米压痕仪通过连续压入法对薄膜的显微硬度和弹性模量进行测定,设定最大压入深度为 50 nm,加载速率和卸载速率均为 500 nm / min,保持加载时间 10 s,测试中压头的压入深度小于薄膜厚度的 1 / 10,以避免基材对硬度测试的影响。同时为了减少测量误差,测试时对每个样品分别选取 3 个点进行测量,将其平均值作为试验的最终结果。

  • 2 结果与讨论

  • 2.1 薄膜的组织和形貌

  • 图2 为不同脉冲频率下制备 TiN 薄膜的 X 射线衍射分析(X-ray diffraction,XRD)图谱。由图2 可以看出,所制备 TiN 薄膜具有明显的面心立方 (fcc)晶体结构衍射特征,不同脉冲频率制备薄膜的 XRD 谱均在衍射角 2θ 为 36.7°、42.6°、61.8° 和 77.9°处出现明显的衍射峰,与标准 PDF 卡片 87-0628 号吻合,衍射峰分别对应 fcc 结构的(111)、 (200)、(220)和(222)晶面。同时,在低脉冲频率下的 TiN 薄膜衍射峰更尖锐,说明薄膜的结晶度更高[14]。此外,XRD 谱中还发现存在 Ti 过渡层以及衬底 Si 晶片的衍射峰,这是所制备 TiN 薄膜厚度过低,使得 X-射线穿透至薄膜下层,将过渡层及 Si 晶片晶体结构信息反映到图谱中。

  • 图2 不同脉冲频率下制备 TiN 薄膜的 XRD 图谱

  • Fig.2 XRD patterns of different TiN films deposited at various pulse frequencies

  • 通过对衍射峰的半高宽(FWHM)进行拟合,利用 Scherrer 公式对制备的 TiN 薄膜晶粒尺寸进行计算,结果如表2 所示,发现六组不同脉冲频率制备的薄膜,晶粒尺寸均在 10.3 nm 以内,在 6 kHz 脉冲频率下制备 TiN 薄膜具有最小晶粒尺寸 6.77 nm。随着脉冲频率的升高,TiN 薄膜晶粒尺寸有逐渐增大的趋势,这是由于在低脉冲频率下靶电流更大,靶材溅射产率更大,等离子体对基底的轰作用更强,高能粒子的轰击能够抑制晶粒的生长,促进 TiN 薄膜的晶粒细化[15],结合表3 靶电流数据,在 6 kHz 脉冲频率下峰值靶电流最高,离子轰击作用更强,获得更小的晶粒尺寸。另外,利用各衍射峰的织构系数可以判断,制备的 TiN 薄膜沿(111)晶面择优生长,随着脉冲频率的增大,这一趋势逐渐减弱。这一现象可以通过薄膜生长过程中表面扩散和离子轰击之间的竞争决定晶体织构形成来解释。以表面扩散为主的生长倾向于形成具有最低表面能晶面,而离子轰击使晶体生长时产生弹性应变和残余内应力,生长时倾向于形成具有最低应变能晶面[16]。而对于 fcc 结构的 TiN 晶体,(111) 晶面的应变能最低[17]。通过 HiPIMS 制备 TiN 薄膜时能够提供高离化率的 Ti,Ti 离子轰击使得具有最低应变能的(111)晶面优先生长,这也是 (111)晶面的衍射峰强度随着脉冲频率增大而降低的原因。

  • 表2 不同脉冲频率制备 TiN 薄膜晶粒尺寸

  • Table2 Grain size of TiN films under different pulse frequencies

  • 表3 不同脉冲频率下制备 TiN 薄膜的膜厚、峰值靶电流和峰值偏压电流

  • Table3 Film thickness, target peak current and bias peak current of TiN films prepared at various pulse frequencies

  • 图3 所示为 9 kHz 脉冲频率制备 Ti 薄膜刻蚀前后的 Ti2p、N 1s 峰的 XPS 结果。从图中分析可知, Ti2p 3 / 2 峰在 455.2 eV、456.7 eV 和 458.5 eV 处的峰分别对应TiN,TiOxNy和TiO2 [18-19]。N 1s峰在397.2 eV、396.2 eV 和 398.5 eV 处的峰分别对应 TiN 和 TiOxNy [20-21]。刻蚀后的结果说明薄膜的主要成分为 TiN 和 TiOxNy。其中,氧元素的存在主要是所制 TiN 薄膜在真空腔内和空气中氧化造成。刻蚀后不同脉冲频率下制备 TiN 薄膜的元素组成如表4 所示。

  • 图3 9 kHz 脉冲频率下制备 TiN 薄膜刻蚀前后的 XPS 图谱

  • Fig.3 XPS spectra of TiN films prepared at 9 kHz pulse frequency before and after etching

  • 表4 刻蚀后不同脉冲频率下制备TiN 薄膜的元素组成(at.%)

  • Table4 Chemical composition of TiN films deposited at various pulse frequencies after etching(at.%)

  • 图4 为不同脉冲频率下制备的 TiN 薄膜在扫描电镜下观察到的截面形貌。对应不同脉冲频率下制得 TiN 薄膜厚度分别为 1.05 μm、1.24 μm、0.87 μm、 0.68 μm、0.63 μm 和 0.57 μm,膜厚随脉冲频率的增大不断降低。其中,6 kHz 频率下制备的薄膜具有最大厚度,平均沉积速率为 10.3 nm / min。而在 18 kHz 脉冲频率制备的 TiN 薄膜沉积速率仅有 4.75 nm / min。结合表3 恒定靶电压下不同脉冲频率制备 TiN 薄膜的峰值靶电流和峰值偏压电流数据可知,随着脉冲频率的增大,峰值靶电流降低,溅射功率降低,同时峰值偏压电流也具有相同趋势,说明溅射产率和到达基底带电离子减少,因此薄膜的沉积速率降低,表面粗糙度增大。另外,薄膜具有致密均匀的柱状晶结构,无明显孔隙缺陷,且晶体垂直于衬底平面生长。但随着脉冲频率的升高,薄膜组织柱状生长更加明显,柱状组织寸有增大的趋势。

  • 图4 不同脉冲频率下制备 TiN 薄膜的截面形貌

  • Fig.4 Cross-sectional morphologies of TiN films under different pulse frequencies

  • 图5 为不同脉冲频率下制备的 TiN 薄膜的表面形貌。不同脉冲频率下薄膜表面形貌变化明显。在 3 kHz 制备的 TiN 薄膜具有明显的花椰菜结构,且具有较大间隙。在 6 kHz 和 9 kHz 频率制备的薄膜表面晶粒尺寸均匀,晶粒堆积最为平整,孔隙较小,具有较好的致密性。但随着脉冲频率进一步增大,薄膜表面凹凸感明显,孔隙逐渐增多,团聚晶粒分布大小不均且有增大趋势。结合磁控溅射沉积薄膜时在低脉冲频率具有更高的靶电流和偏压电流,说明相较于高脉冲频率,在 6 kHz 和 9 kHz 沉积薄膜的溅射离子具有更大的溅射速率,即更大的动能轰击薄膜表面,降低形核晶粒尺寸和原子扩散速率,增大薄膜的形核数量,使薄膜表面较为平整。孔隙和表面粗糙度增加是因为到达基底表面的带电离子随频率增加减少。

  • 图5 不同脉冲频率下制备 TiN 薄膜的表面形貌

  • Fig.5 Surface morphologies of TiN films under different pulse frequencies

  • 2.2 力学性能

  • 通过纳米压痕仪对所制备的 TiN 薄膜的硬度和弹性模量进行测量,结果如图6 所示。在较低脉冲频率下制备的薄膜均具有超过 20 GPa 的硬度。其中,9 kHz 脉冲频率制备的薄膜具有最高的硬度,为 30 GPa,同时,其弹性模量也是所有样品中最高的,可达 374 GPa。随着脉冲频率的增大,TiN 薄膜的硬度和弹性模量均有明显降低,在 18 kHz 制备的薄膜硬度降至 14 GPa,弹性模量仅为 237 GPa。

  • 图6 不同脉冲频率下制备 TiN 薄膜的硬度和弹性模量

  • Fig.6 Hardness and elastic modulus of TiN films under different pulse frequencies

  • 对比计算得到的晶粒尺寸值,TiN 薄膜的硬度和弹性模量符合 Hall-Petch 关系[22],较小的晶粒尺寸能够显著提高薄膜的硬度和弹性模量。同时,在低脉冲频率下,薄膜组织中较明显的间隙等缺陷减少也会提高薄膜的力学性能。图7 为不同脉冲频率下制备 TiN 薄膜的加载-卸载曲线。由图可知,随着脉冲频率的增大,薄膜的弹性恢复依次为 53.3%,5 7.4%,62.9%,52.8%,36.8%和 45.9%。在 6 kHz 和 9 kHz 脉冲频率下制备的薄膜具有最优的弹性恢复,说明薄膜抵抗塑性变形的能力更强。同时弹性恢复大小也符合不同脉冲频率下制备 TiN 薄膜晶粒大小的规律,制备的 TiN 薄膜具有优异的力学性能。

  • 图7 不同脉冲频率下制备 TiN 薄膜的加载-卸载曲线

  • Fig.7 Load-unload curves of TiN films under different pulse frequencies

  • 图8 所示为不同脉冲频率下制备 TiN 薄膜的硬度和弹性模量的比值 H / EH3 / E2。高的 H / E 值表明薄膜能够将其所受的应力释放以减缓薄膜失效,同时薄膜耐磨性更好;说明薄膜具有更好抵抗塑性变形的能力[23-24]。由图可知,在 9 kHz 脉冲频率下制备的 TiN 薄膜具有更优的 H / EH3 / E2,说明晶粒细化和高致密度能够显著提升薄膜的力学性能,而高脉冲频率下相对较大的晶粒和低薄膜致密度及结晶度削弱了薄膜的性能。

  • 图8 不同脉冲频率下制备 TiN 薄膜的 H / EH3 / E2

  • Fig.8 H / E and H3 / E2 of different TiN films under different pulse frequencies

  • 3 结论

  • (1)所制 TiN 薄膜的晶粒尺寸均在 10.3 nm 以下。HiPIMS 方法制备氮化钛薄膜时,低脉冲频率有助于晶粒细化,同时促使低应变能的 TiN(111)面优先生长,能够获得致密的的柱状生长组织。

  • (2)脉冲频率的升高降低了靶电流,TiN 薄膜的沉积速率降低,同时薄膜的致密度和结晶度降低,柱状生长明显,表面团聚晶粒尺寸均一性变差,削弱了薄膜性能。

  • (3)在 9 kHz 脉冲频率制备薄膜具有最优的晶粒尺寸和致密度,薄膜表面均匀平整,同时硬度及弹性模量能够达到 30 GPa 和 374 GPa,抗塑性变形能力最好。

  • 参考文献

    • [1] CRACIUN D,STEFAN N,SOCOL G,et al.Very hard TiN thin films grown by pulsed laser deposition[J].Applied Surface Science,2012,260:2-6.

    • [2] ZHANGF Z,GHASEMI A,KOUTNA N,et al.Correlating point defects with mechanical properties in nanocrystalline TiN thin films[J].Materials & Design,2021,207:109844.

    • [3] BOBZIN K.High-performance coatings for cutting tools[J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.

    • [4] FALTERMEIER C,CHERYL G.Barrier properties of titanium nitride films grown by low temperature chemical vapor deposition from titanium tetraiodide[J].Journal of the Electrochemical Society,1997,144(3):1002-1008.

    • [5] LIAM W,ANTONY P,STEVE D.Studies on the effect of arc current mode and substrate rotation configuration on the structure and corrosion behavior of PVD TiN coatings[J].Coatings,2017,7(4):50.

    • [6] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.

    • [7] YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516(21):7294-7298.

    • [8] 郝娟,杨超,蒋百灵,等.不同磁控溅射工艺对纳米晶TiN薄膜微观结构与力学性能的影响[J].稀有金属材料与工程,2021,50(8):2715-2720.HAO Juan,YANG Chao,JIANG Bailing,et al.Effects of magnetron sputtering techniques on microstructure and mechanical properties of nanocrystalline TiN films[J].Rare Metal Materials and Engineering,2021,50(8):2715-2720.(in Chinese)

    • [9] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [10] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)

    • [11] CHANG C L,LIN C Y,YANG F C,et al.The effect of match between high power impulse and bias voltage:tin coating deposited by high power impulse magnetron sputtering[J].Coatings,2021,11(7):822.

    • [12] MA D L,DENG Q Y,LIU H Y,et al.Effect of ion energy on the microstructure and properties of Titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.

    • [13] 贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)

    • [14] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)

    • [15] MARTINEZ D,LOPEZ C C,FERNANDEZ A,et al.Exploring the benefits of depositing hard TiN thin films by non-reactive magnetron sputtering[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013,275(15):121-126.

    • [16] ZHAO Y,GUO C,YANG W,et al.TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating[J].Vacuum,2015,112:46-54.

    • [17] ZHAO J P,WANG X,CHEN Z Y,et al.Overall energy model for preferred growth of TiN films during filtered arc deposition[J].Journal of Physics D-Applied Physics,1999,30(1):5-12.

    • [18] POWELL C J.Elemental binding energies for X-ray photoelectron spectroscopy[J].Applied Surface Science,1995,89(2):141-149.

    • [19] MARCO J F,AGUDELO A C,GANCEDO J R,et al.Corrosion resistance of single TiN layers,Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray(phohesion)test:an evaluation by XPS[J].Surface and Interface Analysis,1999,27(2):71-75.

    • [20] CHOURASIA A R,CHOPRA D R.X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces[J].Thin Solid Films,1995,266(2):298-301.

    • [21] KHAMDOKHOV A Z,TESHEV R S,KHAMDOKHOV Z M,et al.XPS study of TiN films formed by the electric arc technique[J].Journal of Surface Investigation.X-ray,Synchrotron and Neutron Techniques,2015,9(4):710-714.

    • [22] PANDE C S,COOPER K P.Nanomechanics of Hall–Petch relationship in nanocrystalline materials[J].Progress in Materials Science,2009,54(6):689-706.

    • [23] 时惠英,杨超,蒋百灵,等.双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J].金属学报,2018,54(6):927-934.SHI Huiying,YANG Chao,JIANG Bailing,et al.Influences of target peak current density on the microstructure and mechanical properties of TiN films deposited by dual pulsed power magnetron sputtering[J].Acta Metallurgica Sinica,2018,54(6):927-934.(in Chinese)

    • [24] MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9):5148-5152.

  • 参考文献

    • [1] CRACIUN D,STEFAN N,SOCOL G,et al.Very hard TiN thin films grown by pulsed laser deposition[J].Applied Surface Science,2012,260:2-6.

    • [2] ZHANGF Z,GHASEMI A,KOUTNA N,et al.Correlating point defects with mechanical properties in nanocrystalline TiN thin films[J].Materials & Design,2021,207:109844.

    • [3] BOBZIN K.High-performance coatings for cutting tools[J].CIRP Journal of Manufacturing Science and Technology,2017,18:1-9.

    • [4] FALTERMEIER C,CHERYL G.Barrier properties of titanium nitride films grown by low temperature chemical vapor deposition from titanium tetraiodide[J].Journal of the Electrochemical Society,1997,144(3):1002-1008.

    • [5] LIAM W,ANTONY P,STEVE D.Studies on the effect of arc current mode and substrate rotation configuration on the structure and corrosion behavior of PVD TiN coatings[J].Coatings,2017,7(4):50.

    • [6] KUO C C,LIN Y T,CHAN A,et al.High temperature wear behavior of titanium nitride coating deposited using high power impulse magnetron sputtering[J].Coatings,2019,9(9):555.

    • [7] YEH T S,WU J M,HU L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J].Thin Solid Films,2008,516(21):7294-7298.

    • [8] 郝娟,杨超,蒋百灵,等.不同磁控溅射工艺对纳米晶TiN薄膜微观结构与力学性能的影响[J].稀有金属材料与工程,2021,50(8):2715-2720.HAO Juan,YANG Chao,JIANG Bailing,et al.Effects of magnetron sputtering techniques on microstructure and mechanical properties of nanocrystalline TiN films[J].Rare Metal Materials and Engineering,2021,50(8):2715-2720.(in Chinese)

    • [9] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [10] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)

    • [11] CHANG C L,LIN C Y,YANG F C,et al.The effect of match between high power impulse and bias voltage:tin coating deposited by high power impulse magnetron sputtering[J].Coatings,2021,11(7):822.

    • [12] MA D L,DENG Q Y,LIU H Y,et al.Effect of ion energy on the microstructure and properties of Titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.

    • [13] 贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].中国表面工程,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostructure films prepared by ion source assisted HiPIMS[J].China Surface Engineering,2019,32(1):63-71.(in Chinese)

    • [14] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205.FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)

    • [15] MARTINEZ D,LOPEZ C C,FERNANDEZ A,et al.Exploring the benefits of depositing hard TiN thin films by non-reactive magnetron sputtering[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013,275(15):121-126.

    • [16] ZHAO Y,GUO C,YANG W,et al.TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating[J].Vacuum,2015,112:46-54.

    • [17] ZHAO J P,WANG X,CHEN Z Y,et al.Overall energy model for preferred growth of TiN films during filtered arc deposition[J].Journal of Physics D-Applied Physics,1999,30(1):5-12.

    • [18] POWELL C J.Elemental binding energies for X-ray photoelectron spectroscopy[J].Applied Surface Science,1995,89(2):141-149.

    • [19] MARCO J F,AGUDELO A C,GANCEDO J R,et al.Corrosion resistance of single TiN layers,Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray(phohesion)test:an evaluation by XPS[J].Surface and Interface Analysis,1999,27(2):71-75.

    • [20] CHOURASIA A R,CHOPRA D R.X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces[J].Thin Solid Films,1995,266(2):298-301.

    • [21] KHAMDOKHOV A Z,TESHEV R S,KHAMDOKHOV Z M,et al.XPS study of TiN films formed by the electric arc technique[J].Journal of Surface Investigation.X-ray,Synchrotron and Neutron Techniques,2015,9(4):710-714.

    • [22] PANDE C S,COOPER K P.Nanomechanics of Hall–Petch relationship in nanocrystalline materials[J].Progress in Materials Science,2009,54(6):689-706.

    • [23] 时惠英,杨超,蒋百灵,等.双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J].金属学报,2018,54(6):927-934.SHI Huiying,YANG Chao,JIANG Bailing,et al.Influences of target peak current density on the microstructure and mechanical properties of TiN films deposited by dual pulsed power magnetron sputtering[J].Acta Metallurgica Sinica,2018,54(6):927-934.(in Chinese)

    • [24] MUSIL J,JIROUT M.Toughness of hard nanostructured ceramic thin films[J].Surface and Coatings Technology,2007,201(9):5148-5152.

  • 手机扫一扫看