en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

蒋智韬,男,1988年出生,博士研究生。主要研究方向为功能薄膜与工艺。E-mail:jzt6987303@dlut.edu.cn

通讯作者:

雷明凯,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为表面工程。E-mail:surfeng@dlut.edu.cn

中图分类号:TB301

DOI:10.11933/j.issn.1007−9289.20220601001

参考文献 1
CAO Jian,BRINKSMEIER E,FU M,et al.Manufacturing of advanced smart tooling for metal forming[J].CIRP Annals,2019,68(2):605-628.
参考文献 2
HINTSALA E,KIENER D,JACKSON J,et al.In-situ measurements of free-standing,ultra-thin film cracking in bending[J].Experimental Mechanics,2015,55(9):1681-1690.
参考文献 3
ZHANG S,SUN D,FU YQ,et al.Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films[J].Thin Solid Films,2004,13(10):1777-1784.
参考文献 4
ZHANG S,ZHANG X.Toughness evaluation of hard coatings and thin films[J].Thin Solid Films,2012,520(7):2375-2389.
参考文献 5
MAMUN M A,ELMUSTAFA A A.Fracture toughness of amorphus SiC thin films using nanoindentation and simulation[J].Advances in Materials Research,2020,9(1):49-62.
参考文献 6
GUO Yuning,STAEDLER T,MÜLLER J,et al.Adetailed analysis of the determination of fracture toughness by nanoindentation induced radial cracksc[J].Journal of the European Ceramia Society,2020,40(2):276-289.
参考文献 7
LI X D,DIAO D,BHUSHAN B.Fracture mechanisms of thin amorphous carbon films in nanoindentation[J].Acta Materialia,1997,45(11):4453-4461.
参考文献 8
FIELD J E,PICKLES C.Strength,fracture and friction properties of diamond[J].Diamond and Related Materials,1996,5(6-8):625-634.
参考文献 9
YOO D,ZHANG M,CHOI C,et al.Indentation-induced cracking behavior of a Cu(In,Ga)Se2 films on Mo substrate[J].Journal of Materials Research and Technology,2021,13:1132-1138.
参考文献 10
CSANÁDI T,NÉMETH D,LOFAJ F.Mechanical properties of hard W-C coating on steel substrate deduced from nanoindentation and finite element modeling[J].Experimental Mechanics,2017,57(7):1057-1069.
参考文献 11
MILLWATER H,OCAMPO J,CROSBY N.Probabilistic methods for risk assessment of airframe digital twin structures[J].Engineering Fracture Mechanics,2019,221:106674.
参考文献 12
JIANG Zhitao,LI Yuge,LEI Mingkai.An inverse problem in estimating fracture toughness of TiAlN thin films by finite element method based on nanoindentation morphology[J].Vacuum,2021,192:110458.
参考文献 13
LEE J H,GAO Y F,JOHANNS K E,et al.Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials[J].Acta Materialia,2012,60(15):5448-5467.
参考文献 14
JIANG Zhitao,LEI Mingkai.Structure and fracture toughness of TiAlN thin films deposited by deep oscillation magnetron sputtering[J].Thin Solid Films,2022,754:139306.
参考文献 15
DONG Kai,LU Fazhang,HUANG Wenzhi,et al.Residual stress and fracture toughness of thick 8YSZ-Al2O3 composite coatings via a modified Vickers indentation method[J].Vacuum,2020,177:109437.
参考文献 16
LI Yuge,LU Yuelei,JIANG Zhitao,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.
参考文献 17
KATARIA S,GOYAL S,DASH S,et al.Evaluation of nano-mechanical properties of hard coatings on a soft substrate[J].Thin Solid Films,2012,522:297-303.
参考文献 18
LOFAJ F,NÉMETH D.Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM[J].Journal of the European Ceramic Society,2017,37(14):4379-4388.
参考文献 19
VEPREK H M,VEPŘEK S.The deformation of the substrate during indentation into superhard coatings:Bückle's rule revised[J].Surface and Coatings Technology,2015,284:206-214.
参考文献 20
SUN Liang,MA Dejun,WANG Lizhi,et al.Dermining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique[J].Engineering Fracture Mechanics,2018,197:151-159.
参考文献 21
ZHAO Xiaoli,XIE Zonghan,MUNROE P.Nanoindentation of hard multilayer coatings:Finite element modelling,Materials Science and Engineering:A[J].2011,528(3):1111-1116.
参考文献 22
GRECZYNSKI G,PETROV I,GREENE J E,et al.Paradigm shift in thin-film growth by magnetron sputtering:from gas-ion to metal-ion irradiation of the growing film[J].Journal of Vacuum Science & Technology,2019,37(6):060801.
参考文献 23
FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering and Performance,2021,30(6):3912-3924.
参考文献 24
SEIDL W M,BARTOSIK M,KOLOZSVÁRI S,et al.Influence of Ta on the fracture toughness of arc evaporated Ti-Al-N[J].Vacuum,2018,150:24-28.
参考文献 25
BARTOSIK M,RUMEAU C,HAHN R,et al.Fracture toughness and structural evolution in the TiAlN system upon annealing[J].Scientific Reports,2017,7(1):16476.
参考文献 26
VÖLKER B,DU C,FAGER H,et al.How tensile tests allow a screening of the fracture toughness of hard coatings[J].Surface and Coatings Technology,2020,390:125645.
目录contents

    摘要

    针对高性能表面层制造的薄膜断裂韧性检测,采用扩展有限元法(XFEM)模拟 TiAlN 薄膜微米压痕行为,基于数字孪生方法优化薄膜最大起始断裂应力(σmax)和相应的裂纹分离距离(δc)参数,根据 Griffith-Irwin 关系测定薄膜断裂韧性。深振荡磁控溅射(DOMS)在 AISI 304 奥氏体不锈钢基体上沉积具有立方结构的 TiAlN 薄膜,随着峰值功率由 58.7 kW 增至 129.9 kW,薄膜的择优取向由(111)转变为(200)。维氏微米压痕试验在载荷 500 mN 下压制,聚焦离子束(FIB)结合扫描电子显微镜(SEM)观察薄膜平面和横截面开裂行为,通过 3D XFEM 建模表征薄膜损伤过程,将模拟的薄膜裂纹形态、数量、分布及总长度与试验值进行交互反馈和融合分析,孪生匹配出薄膜平面开裂的σmaxδc参数,计算出 AISI 304 奥氏体不锈钢上沉积 TiAlN 薄膜的断裂韧性。随着 DOMS 峰值功率提高,TiAlN 薄膜断裂韧性先增加后减小。峰值功率为 90.2 kW,伴随最高纳米硬度 28.3 GPa,断裂韧性最大值为 1.88 MPa·m1/2,DOMS 沉积 TiAlN 薄膜具有强韧性复合性能。XFEM 模拟微米压痕的数字孪生方法,不仅发展了薄膜断裂韧性的测量技术,还为高性能表面层制造反问题提供了一种求解方法。

    Abstract

    Micro indentation of TiAlN thin film is simulated by an extended finite element method (XFEM) to measure the fracture toughness of surface layer by high-performance manufacturing. The fracture toughness of thin film is obtained according to Griffith-Irwin relationship with the maximum damage initiation stress (σmax) and corresponding crack separation distance (δc) that are optimized based on the digital twin. The cubic TiAlN thin film on the AISI 304 austenitic stainless steel substrate are deposited by the deep oscillation magnetron sputtering (DOMS). The preferred orientation of TiAlN thin film changed from (111) to (200) at the peak powers from 58.7 kW to 129.9 kW. The micro Vickers indentation is pressed with a load of 500 mN. The planar and cross-sectional cracks of thin film are observed by the focused ion beam (FIB) combined with scanning electron microscope (SEM). The damage process of TiAlN thin film on the stainless steel substrate is characterized by 3D XFEM modeling. The crack morphology, number and distribution, and total crack length are compared between the simulated and experimental results, through an interactive feedback and combination analysis. The σmax and δc of thin film in plane cracking are matched and therefore, the fracture toughness of TiAlN thin film on stainless steel substrate is calculated. With the DOMS peak power, the fracture toughness of TiAlN thin film increased and then decreased with a maximum value of 1.88 MPa·m1/2 at the peak power of 90.2 kW, where there is a maximum nanohardness of 28.6 GPa. A combinedly improvement of hardness and fracture toughness is obtained on the TiAlN thin film on the AISI 304 austenitic stainless steel substrate. The digital twin based on XFEM simulating micro indentation not only developed the measurement of fracture toughness of thin film, but also provided a useful solution to the inverse problem of high-performance surface layer manufacturing.

  • 0 前言

  • 薄膜断裂韧性是高性能表面层制造的关键力学性能之一,作为硬质薄膜覆层面向性能设计、制备、检测的重要指标备受关注[1]。评估薄膜断裂韧性的方法主要有弯曲法[2]、划痕法[3]、拉伸法[4]和压痕法[5-6]等。由于薄膜材料尺度和微观结构对测试方法的限制,薄膜断裂韧性结果分散,甚至存在较大差异。除划痕法定性表征薄膜断裂韧性外,压痕法与弯曲法和拉伸法相比较,通过连续加卸载获得材料压入及卸载阶段压痕深度和载荷之间关系,表征薄膜平面断裂行为,测定的薄膜断裂韧性,克服了薄膜无基体支承或拉 / 压残余应力等约束条件。

  • 压痕法根据表面层压痕试验结合压痕损伤过程模拟,确定薄膜断裂的能量释放率,保证测量结果的精准度。LI 等[7]通过纳米压痕曲线的 pop-in 评估薄膜裂纹开裂释放的能量,计算出锥形压痕下 Si 基体上离子束制备非晶碳薄膜的断裂韧性为 5.4 MPa·m 1/2,立方形压痕下 Si 基体上离子束和阴极电弧制备非晶碳薄膜的断裂韧性为 4.9 MPa·m 1/2 和 10.9 MPa·m 1/2。对比压痕法径向裂纹测量的金刚石薄膜断裂韧性为 5~6 MPa·m 1/2,相应的金刚石体材料断裂韧性则为 3~11 MPa·m1/2[8]。鉴于薄膜损伤的能量机制,受到基体抑制的薄膜开裂过程增加薄膜的断裂韧性[9]。而且,单纯的压痕结果无法获得薄膜断裂过程的应力场和裂纹形态演化信息,难以定量表征裂纹扩展行为,包括薄膜的塑性变形开始、剪切带形成、裂纹萌生和扩展、界面分离等能量吸收过程。CSANÁDI 等[10]采用扩展有限元 (Extended finite element method,XFEM)模拟纳米压痕,通过纳米压痕曲线第一个 pop-in 位置确定最大起始断裂应力(σmax),再拟合纳米压痕曲线确定裂纹分离距离(δc),计算出结构钢基体上 WC 薄膜断裂韧性为 3.5 MPa·m 1/2。由于第一个 pop-in 位置可能是薄膜弹塑性转变点,存在高估薄膜断裂韧性的可能。因此,为提升压痕法测量薄膜断裂韧性的精准度,以数字化方式创建薄膜压痕的虚拟模型,借助数值模拟压痕行为并与压痕物理实体通过数据交互反馈和融合分析,增加和扩展常规测量技术新的能力和水平[11],发展薄膜断裂韧性的高性能检测技术。

  • 薄膜断裂韧性主要由薄膜单位面积的断裂能 G 决定,σmaxδc是影响 G 的关键断裂参数,取决于薄膜压痕的裂纹形貌特征。遵循高性能表面层制造的检测路径,建立压痕法测量薄膜断裂韧性的模型,针对各类压痕实验,获得薄膜/基体材料应力应变场等材料加工载荷参数,揭示等效加工过程印记,实现薄膜开裂监测和检测[12]。薄膜的断裂韧性 KIC 可根据 Griffith-Irwin 关系[13]

  • KIC=GE1-v2
    (1)
  • G=12σmaxδc
    (2)
  • 式(1)、(2)中,Ev 分别为薄膜弹性模量和 Poisson 比。

  • 纳米压痕在薄膜力学性能表征方面优势明显,但是针对测量薄膜断裂韧性,微米压痕设备简便,一致性好,适用范围更广[14-15]。微米压痕测量薄膜断裂韧性的数字孪生方法,为提升压痕法的测量精准度创造了有利条件。本文采用 3D XFEM 模拟 TiAlN 薄膜微米压痕行为,基于数字孪生方法匹配薄膜断裂参数σmaxδc,根据 Griffith-Irwin 关系测定薄膜断裂韧性。采用一种新的高功率脉冲磁控溅射沉积技术—深振荡磁控溅射(Deep oscillation magnetron sputtering,DOMS),在 AISI 304 奥氏体不锈钢基体上制备 TiAlN 薄膜,系统研究峰值功率对 TiAlN 薄膜断裂韧性的影响,证实微米压痕测定薄膜断裂韧性数字孪生方法的可行性。

  • 1 试验方法

  • DOMS 沉积 TiAlN 薄膜的试验装置在此前工作中已做详尽介绍[16]。磁控溅射靶为 TiAl(50 / 50 at.%) 合金靶,尺寸为 440 mm×140 mm×6 mm,由 Zpulser CypriumTM 高功率深振荡磁控溅射电源控制。固定平均功率为 1.5 kW,充电电压为 260 V,调控脉冲开启时间 6~12 μs 和脉冲关闭时间 30 μs,获得峰值功率由 58.7 kW 增至 129.9 kW。溅射沉积腔室的本底真空为 6.0×10−4 Pa,提供的氮气和氩气混合气体比例为 70 / 30%,流量为 80 mL / min,工作气压为 0.3 Pa。试样与溅射靶间距离为 100 mm。

  • AISI 304 奥氏体不锈钢样品尺寸为 20 mm× 20 mm×6 mm,经丙酮和无水乙醇分别清洗 15 min 吹干后,置于与溅射靶面平行的样品架上。在溅射沉积前,提供 80 mL / min 的氩气,工作气压为 2.5 Pa,使用 AE Pinnacle plus 脉冲电源以−350 V 电压溅射清洗样品 20 min,再使用深振荡磁控溅射(Deep oscillation magnetron sputtering,DOMS)电源在 0.3 Pa 下预溅射清洗溅射靶 2 min。所有 TiAlN 薄膜的沉积时间均为 180 min。

  • 采用 PANalytical EMPYREAN 型 x 射线衍射仪分析 TiAlN 薄膜相结构, CuKα 辐射。 MTS Nanoindenter XPTM 型纳米压痕仪测量薄膜硬度,屈服强度、弹性模量和 Poisson 比,取 9 个有效测量点的平均值计。维氏微米压痕采用 HXD-1000TM 型显微硬度计压制,金刚石压头的相对面夹角为 136°,施加载荷为 500 mN。采用 Helios G4 UX 型聚焦离子束(Focused ion beam,FIB)制备在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的横截面样品,利用附带扫描电子显微镜(Scanning electron microscopy,SEM)功能观察维氏微米压痕平面和横截面开裂行为。薄膜平面裂纹形貌为断裂参数孪生匹配提供试验结果,确定压痕的裂纹形态,数量、分布及裂纹总长度。

  • 2 维氏微米压痕建模和数字孪生分析

  • 采用 ABAQUS(2017)有限元软件及 XFEM 模块,对 AISI 304 奥氏体不锈钢基体上 TiAlN 薄膜的微米压痕进行 3D 建模。图1 给出维氏微米压痕 3D XFEM 模型及其区域划分示意图。AISI 304 奥氏体不锈钢基体和 TiAlN 薄膜的取样尺寸为 50 μm× 50 μm。薄膜和基体定义为理想的弹塑性材料[17-18],且各向同性[19],根据 Tabor 关系 Y=HV / 3 计算屈服强度。模型选取维氏金刚石压头沿对称轴的四分之一为对象,两个对称面分别为 x = 0 和 z = 0。由于维氏压头等效锥半角大于 60°,摩擦力对薄膜法向力没有显著影响,压头与 TiAlN 薄膜间摩擦因数可忽略不计。薄膜和基体全部采用 12168 个六面体八节点三维线性有限元单元。定义金刚石压头为接触主面,薄膜表面为从面,描述接触切向行为的摩擦公式选取罚函数法,法向行为选取“hard”接触。有限元单元选取增强的沙漏控制模式,刚度粘滞权重因子为 0.5。压头正下方的局部变形较大,为保证精度,压头接触区域附近的薄膜进行网格细化,沿薄膜厚度方向每个单元大小约 0.3 μm。为了模拟薄膜裂纹的萌生和扩展,在模型中创建 10 个 XFEM 区域,每个区域长度为 1 μm。基体底部采用固定边界条件,假设薄膜与基体之间存在完美的结合界面。薄膜和基体初始视为无应力。表1 给出 3D XFEM 建模的维氏金刚石压头、TiAlN 薄膜和 AISI 304 奥氏体不锈钢基体的力学性能参数。

  • 维氏微米压痕测量薄膜断裂韧性的数字孪生分析流程见图2。首先,通过薄膜压痕试验形成的压制损伤观察,获得薄膜平面裂纹形态、数量、分布及总长度的试验结果;其次,参考压痕试验建立维氏压痕 3D XFEM 模型,利用参数σmaxδc 初值,模拟薄膜平面和横截面的开裂损伤过程;再次,将模拟的数据与压痕物理实体数据交互反馈,融合分析后匹配优化参数 σmaxδc;最后,根据 Griffith-Irwin 关系,利用薄膜平面开裂的断裂参数 σmaxδc,计算出 AISI 304 奥氏体不锈钢上沉积 TiAlN 薄膜的断裂韧性。

  • 图1 AISI 304 奥氏体不锈钢基体上 TiAlN 薄膜的微米压痕 3D XFEM 建模及其区域划分示意图

  • Fig.1 Schematic diagram of 3D XFEM modeling of micro Vickers indentation for the TiAlN thin film on AISI 304 austenitic stainless steel substrate and its XFEM division area

  • 表1 3D 建模的维氏金刚石压头、不同 DOMS 峰值功率沉积 TiAlN 薄膜和 AISI 304 奥氏体不锈钢基体的力学性能参数

  • Table1 Mechanical parameters of 3D modelling of Vickers indenter, ,TiAlN thin film deposed at the different peak powers and AISI 304 austenitic stainless steel substrate

  • 图2 维氏微米压痕测量薄膜断裂韧性的数字孪生分析流程

  • Fig.2 Analysis flowchart of fracture toughness measurement of thin film by micro Vickers indentation based on digital twin

  • 3 结果与讨论

  • 3.1 薄膜结构表征

  • 图3 给出 DOMS 在 AISI 304 奥氏体不锈钢基体上沉积的 TiAlN 薄膜随着峰值功率由 58.7 kW 增至 129.9 kW 的相结构 XRD 分析结果。XRD 图谱中,由于 TlAlN 薄膜较薄,来自 AISI 304 奥氏体不锈钢基体的面心立方相γ(111)、(200)、(220)、(311)、 (222)衍射峰和少量的应力诱发马氏体相α(110) 衍射峰被记录。DOMS 沉积过程中,沉积原子的平均金属-离子转移动量没有超过ω-AlN 相分离的临界值,四种峰值功率下的 TiAlN 薄膜均为典型的面心立方结构,可观察到明显的 c-TiAlN (111)和 (200)衍射峰。58.7 kW 时薄膜具有(111)择优取向。随着峰值功率增加,TiAlN 薄膜的择优取向从 (111)过渡到(200),90.2 kW 时(200)强度达到最高值,(111)衍射峰几乎消失,129.9 kW 时薄膜具有(200)择优取向。

  • 图3 DOMS 在 AISI 304 奥氏体不锈钢基体上沉积的TiAlN 薄膜随着峰值功率由 58.7 kW 增至 129.9 kW 的相结构 XRD 图

  • Fig.3 XRD patterns of the TiAlN thin film on AISI 304 austenitic stainless steel substrate deposited by DOMS at the peak powers from 58.7 kW to 129.9 kW

  • 3.2 维氏微米压痕形貌观察

  • 图4 给出不同 DOMS 峰值功率在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的维氏微米压痕平面和横截面 SEM 图。薄膜平面的维氏微米压痕具有典型的四方画框状裂纹形貌,同时观察到局部弯曲裂纹和横向裂纹、少量边缘裂纹和斜向裂纹。为了方便试验与模拟结果对比,画框状裂纹圈数由内向外用数字标记。在峰值功率 58.7~129.9 kW 下,DOMS 沉积 TiAlN 薄膜厚度 h 分别为 2 μm、1.8 μm、1.6 μm 和 1.4 μm。在维氏压痕载荷500 mN作用下,峰值功率为58.7 kW,压痕的平面图有 6 圈四方画框状裂纹,薄膜与基体界面有轻微分离。通过 1~6 画框裂纹长度之和测量的平面裂纹总长度为 109.0 μm。在薄膜的中部和中上部有巨大的横向裂纹,压痕截面上跨越柱间晶界而形成的裂纹中,横向裂纹模式对薄膜的破坏作用最大,边缘裂纹和斜向裂纹次之,对薄膜影响最小的是弯曲裂纹 (图4a)。峰值功率为 66.2 kW,压痕平面图上半部分中,左右两侧各有 5 圈画框状裂纹,且裂纹之间相互独立,右边外侧第三圈裂纹中间不连续。下半部分,左侧为 5 圈裂纹,右侧为 3 圈,最外圈裂纹中间不连续。在压痕中心薄膜有明显的塌陷,整个薄膜与基体的界面只有左右两侧远离压头中心保留少部分结合良好区域,平面裂纹总长度为 101.3 μm。随着峰值功率增加,整体薄膜横截面损伤程度变小,薄膜横向裂纹数量和破坏规模都有减少,弯曲裂纹、斜向裂纹和边缘裂纹的损伤程度相近(图4b)。峰值功率为 90.2 kW,压痕的平面图也有 5 圈画框状裂纹,在压痕中心薄膜也明显塌陷。薄膜与基体只有左右两侧远离压头中心保留少部分结合良好区域,平面裂纹总长度减少至9 9.0 μm。边缘裂纹破坏作用最大,压痕截面上观察到少量横向裂纹、弯曲裂纹和斜向裂纹,显然,薄膜横截面损伤程度进一步降低(图4c)。最大峰值功率为 129.9 kW,压痕的平面图有 5 圈画框状裂纹,薄膜中心压头尖端处,薄膜有明显的塌陷,平面裂纹总长度为 129.5 μm。但是,薄膜与基体的界面分离最小,以跨越柱状间晶界形成的边缘裂纹破坏作用为主,压痕截面上仍观察到少量横向裂纹、弯曲裂纹和斜向裂纹。

  • 图4 不同 DOMS 峰值功率在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的维氏微米压痕平面和横截面 SEM 图

  • Fig.4 SEM photos of planar and cross-sectional images of micro Vickers indentation for the TiAlN thin film on AISI 304 austenitic stainless steel substrate deposited by DOMS at the different peak powers

  • 3.3 维氏微米压痕形貌模拟

  • 应用 ABAQUS 最大主应力断裂准则,当薄膜应力达到σmax,单元初始发生开裂,再达到系列开裂的δc,薄膜呈现完整的断裂损伤过程。通过 3D XFEM 建模表征薄膜损伤过程,模拟薄膜裂纹形态、数量、分布及总长度。在孪生匹配过程中,初步δc 保持不变,研究σmax 对薄膜压痕开裂过程的影响规律,与微米压痕试验值反馈比较,进一步确定合适的σmax,再研究δc 对裂纹形貌的影响规律,最终融合优化确定薄膜断裂参数σmaxδc。图5给出DOMS 峰值功率 66.2 kW 在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜不同σmaxδc = 3 nm 维氏微米压痕平面和横截面模拟计算云图。为了方便模拟结果与试验对比,画框状裂纹圈数由内向外用数字加# 号标记。在维氏压痕载荷 500 mN 作用下,随着σmax 由 7.5 GPa 增至 9.4 GPa,四方画框状裂纹圈数从 3 圈减至 2 圈,再增至 4 圈。σmax 为 7.5 GPa,3 圈压痕呈椭圆状(图5a),随着σmax 增大,椭圆状压痕形态向圆状发展(图5b),σmax 为 8.9 GPa,压痕中可见 4 圈四方画框裂纹,裂纹 1 #~4 # 之间相互独立,单个裂纹长度从内到外递减,平面裂纹总长度为 49 μm(图5c)。σmax 为 9.4 GPa,4 圈画框裂纹的平面裂纹总长度明显减小(图5d)。

  • 图5 DOMS 峰值功率 66.2 kW 在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜不同σmaxδc = 3 nm 维氏微米压痕平面和横截面模拟计算云图

  • Fig.5 Computed pictures of planar and cross-sectional images of micro Vickers indentation for the TiAlN thin film on AISI 304 austenitic stainless steel substrates deposited by DOMS at the peak power of 66.2 kW with the different σmax at δc = 3 nm

  • 在模拟数据与试验值进行交互反馈和融合分析中,综合比较 3D XFEM 维氏压痕模拟和试验的平面裂纹总长度,通过在不显著改变裂纹形态、数量和分布的前提下,进一步调整平面裂纹总长度,孪生匹配出薄膜平面开裂的参数σmaxδc。图6 给出 DOMS 峰值功率 66.2 kW 在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜σmax = 8.9 GPa 及不同δc维氏微米压痕平面和横截面模拟计算云图。在维氏压痕载荷 500 mN 作用下,随着δc由 2.0 nm 增至 2.4 nm,四方画框状裂纹圈数从 5 圈减小到 2 圈。δc 为 2.0 nm,5 圈裂纹的压痕呈画框状(图6a)。δc 为 2.3 nm,4 圈画框状裂纹的压痕中,1 #~4 # 之间相互独立,裂纹 1 # 和 2 # 的形状近四方形,裂纹 1 # 中间有类似三角形的裂纹扩展,裂纹 3 # 和 4 # 较 1 # 和 2 # 相对变短,平面裂纹总长度为 58 μm(图6b)。随着δc 增大,2 圈四方画框裂纹的平面裂纹总长度明显减少(图6c)。与δc = 3 nm 相比,在裂纹数量 4 圈和画框位置基本不变的前提下,平面裂纹总长度增加。确定 DOMS 峰值功率 66.2 kW 沉积 TiAlN 薄膜的断裂参数为σmax = 8.9 GPa 和δc = 2.3 nm。

  • 图6 DOMS 峰值功率 66.2 kW 在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜σmax = 8.9 GPa 和不同δc维氏微米压痕平面和横截面模拟计算云图

  • Fig.6 Computed pictures of planar and cross-sectional images of micro Vickers indentation for the TiAlN thin film on AISI 304 austenitic stainless steel substrates deposited by DOMS at the peak power of 66.2 kW with the different δc at σmax = 8.9 GPa

  • 采用 3D XFEM 模拟 TiAlN 薄膜微米压痕行为,基于数字孪生方法优化薄膜断裂参数σmaxδc。图7 给出不同DOMS峰值功率下在AISI 304奥氏体不锈钢基体上沉积 TiAlN 薄膜优化σmax δc的维氏微米压痕平面和横截面模拟计算云图。在维氏压痕载荷 500 mN 作用下,峰值功率为 58.7 kW,孪生匹配的σmax = 8 GPa 和δc = 2 nm,4 圈四方画框状裂纹的压痕,平面裂纹扩展路径呈不规则形状,靠近压头部分 1 # 裂纹为小三角形,2 # 裂纹为近四方形,3 # 和 4 # 裂纹为短裂纹,且相互连通,平面裂纹总长度为 75.2 μm,与图4a 中裂纹形态、数量和分布相匹配 (图7a)。峰值功率为 90.2 kW,断裂参数σmax = 10.2 GPa 和δc = 2 nm,4 圈不规则的四方画框状裂纹,1 # 和 4# 裂纹都与 2 # 裂纹互连,平面裂纹总长度为 47.2 μm,与图4c 相匹配(图7b)。最大峰值功率为 129.9 kW,断裂参数σmax = 8.5 GPa 和δc = 2.2 nm,5 圈四方画框状裂纹,靠近压头中心的 1# 裂纹有沿外侧凸起的尖角裂纹,2# 裂纹有沿内侧凸起的尖角裂纹,平面裂纹总长度为 97.6 μm,与图4d 相匹配(图7c)。

  • 图7 不同 DOMS 峰值功率下在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜优化σmaxδc的维氏微米压痕平面及横截面模拟计算云图

  • Fig.7 Computed pictures of planar and cross-sectional images of micro Vickers indentation for the TiAlN thin film on AISI 304 austenitic stainless steel substrates deposited by DOMS at the peak power of 66.2 kW with the simulated σmax and δc

  • 3.4 TiAlN 薄膜断裂韧性检测

  • 根据 Griffith-Irwin 关系(式(1)和(2)),采用数字孪生优化的薄膜断裂参数σmaxδc 参数,测定 TiAlN 薄膜断裂韧性。表2 给出不同 DOMS 峰值功率在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的断裂韧性测量结果。随着 DOMS 峰值功率提高,TiAlN 薄膜断裂韧性先增加后减小。峰值功率为 90.2 kW,伴随最高纳米硬度 28.3 GPa,断裂韧性最大值为 1.88 MPa·m 1/2。TiAlN 薄膜由(111) 转变为(200)的择优取向,促进薄膜纳米硬度的提高,增加薄膜的抗断裂能力。采用 DOMS 等高功率磁控溅射沉积薄膜时,随着峰值功率增加,等离子体密度提高的同时被溅射的 Ti、Al 原子离化率增加,特别是等离子体中二价金属离子的比例提高[22-23],在薄膜沉积过程中,控制富含金属离子的高密度等离子体提供的大量金属离子轰击作用,保证有效地向吸附原子传递动量,从而提高薄膜表面原子迁移率,才能降低薄膜孔隙率,生长晶粒细化促进薄膜硬度和断裂韧性的提高。

  • 不同工艺沉积 TiAlN 薄膜的断裂韧性测量值存在明显差异,而且薄膜厚度、基体等也是重要的影响因素。SEIDL 等[24]报道了阴极电弧蒸发法在 Si (100)基体上沉积厚度 2 μm 的 TiAlN 薄膜,薄膜纳米硬度为 31.5 GPa,采用 30%KOH 溶液 70℃化学刻蚀去除基体,弯曲试验法测定无基体支承 TiAlN 薄膜的断裂韧性为 3.5 MPa·m 1/2。BARTOSIK 等[25] 通过 FIB 垂直 TiAlN 薄膜生长方向去除基体,在 SEM 上进行原位微观力学测试,微悬臂梁的加载位移控制为 5 nm / s,加载轴垂直于薄膜表面,测定厚度为 1.8 μm、硬度为 34 GPa 的无基体支承 TiAlN薄膜断裂韧性为 2.7 MPa·m 1/2。在薄膜断裂损伤过程中,受到基体抑制的薄膜开裂过程增加薄膜的断裂韧性[9],造成与无基体支承的 TiAlN 薄膜断裂韧性测量值存在确定的偏差。高功率脉冲磁控溅射在铜基体上制备厚度 3 μm 的 TiAlN 薄膜,同样进行 SEM 原位拉伸试验,位移速率为 5 μm / s,测量的断裂韧性增至 4.1 MPa·m 1/2 [26]

  • 由于在薄膜纳米力学性能表征方面纳米压痕具有明显优势,JIANG 等[12]采用 XFEM 模拟 TiAlN 薄膜纳米压痕行为,计算薄膜横截面的裂纹数量和位置,基于数字孪生方法求解薄膜断裂参数σmaxδc 的反问题,优化薄膜断裂参数σmaxδc 测定薄膜断裂韧性。DOMS 峰值功率 136.1 kW 下在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的断裂韧性为 1.09 MPa·m 1/2,较维氏微米压痕测定的断裂韧性值偏低。原因可能归结于微米压痕裂纹损伤行为的检测误差较小,数据一致性好[14-15]。微纳尺度检测优势的进一步比较,特别是简便的大尺度压痕检测方法的影响因素有待于后续深入研究。维氏微米压痕测定薄膜断裂韧性的数字孪生方法,通过 3D XFEM 建模表征薄膜损伤过程,将模拟的薄膜裂纹形态、数量、分布及总长度与试验值进行交互反馈和融合分析,不仅发展了薄膜断裂韧性的测量技术,还为高性能表面层制造反问题提供一种求解方法。

  • 表2 不同 DOMS 峰值功率下在 AISI 304 奥氏体不锈钢基体上沉积 TiAlN 薄膜的断裂韧性测量结果

  • Table2 Fracture toughness of the TiAlN thin film on AISI 304 austenitic stainless steel substrate deposited by DOMS at the different peak powers

  • 4 结论

  • (1)采用一种新的高功率脉冲磁控溅射技术— 深振荡磁控溅射(DOMS)在 AISI 304 奥氏体不锈钢基体上沉积具有面心立方结构的 TiAlN 薄膜,随着峰值功率由 58.7 kW 增至 129.9 kW,薄膜厚度为 2.0~1.4 μm,薄膜的择优取向由(111)过渡为(200),具有强韧性复合性能。

  • (2)通过 3D 扩展有限元(XFEM)建模,表征薄膜维氏微米压痕损伤过程,将模拟的薄膜裂纹形态、数量、分布及总长度与试验值进行交互反馈和融合分析,孪生匹配出薄膜平面开裂的σmaxδc 参数。

  • (3)根据 Griffith-Irwin 关系,基于数字孪生拟合的σmaxδc 参数,计算 DOMS 峰值功率 58.7~129.9 kW 在 AISI 304 奥氏体不锈钢上沉积 TiAlN 薄膜断裂韧性先增加后减小。峰值功率为 90.2 kW,伴随最高纳米硬度 28.3 GPa,断裂韧性最大值为 1.88 MPa·m 1/2

  • 参考文献

    • [1] CAO Jian,BRINKSMEIER E,FU M,et al.Manufacturing of advanced smart tooling for metal forming[J].CIRP Annals,2019,68(2):605-628.

    • [2] HINTSALA E,KIENER D,JACKSON J,et al.In-situ measurements of free-standing,ultra-thin film cracking in bending[J].Experimental Mechanics,2015,55(9):1681-1690.

    • [3] ZHANG S,SUN D,FU YQ,et al.Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films[J].Thin Solid Films,2004,13(10):1777-1784.

    • [4] ZHANG S,ZHANG X.Toughness evaluation of hard coatings and thin films[J].Thin Solid Films,2012,520(7):2375-2389.

    • [5] MAMUN M A,ELMUSTAFA A A.Fracture toughness of amorphus SiC thin films using nanoindentation and simulation[J].Advances in Materials Research,2020,9(1):49-62.

    • [6] GUO Yuning,STAEDLER T,MÜLLER J,et al.Adetailed analysis of the determination of fracture toughness by nanoindentation induced radial cracksc[J].Journal of the European Ceramia Society,2020,40(2):276-289.

    • [7] LI X D,DIAO D,BHUSHAN B.Fracture mechanisms of thin amorphous carbon films in nanoindentation[J].Acta Materialia,1997,45(11):4453-4461.

    • [8] FIELD J E,PICKLES C.Strength,fracture and friction properties of diamond[J].Diamond and Related Materials,1996,5(6-8):625-634.

    • [9] YOO D,ZHANG M,CHOI C,et al.Indentation-induced cracking behavior of a Cu(In,Ga)Se2 films on Mo substrate[J].Journal of Materials Research and Technology,2021,13:1132-1138.

    • [10] CSANÁDI T,NÉMETH D,LOFAJ F.Mechanical properties of hard W-C coating on steel substrate deduced from nanoindentation and finite element modeling[J].Experimental Mechanics,2017,57(7):1057-1069.

    • [11] MILLWATER H,OCAMPO J,CROSBY N.Probabilistic methods for risk assessment of airframe digital twin structures[J].Engineering Fracture Mechanics,2019,221:106674.

    • [12] JIANG Zhitao,LI Yuge,LEI Mingkai.An inverse problem in estimating fracture toughness of TiAlN thin films by finite element method based on nanoindentation morphology[J].Vacuum,2021,192:110458.

    • [13] LEE J H,GAO Y F,JOHANNS K E,et al.Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials[J].Acta Materialia,2012,60(15):5448-5467.

    • [14] JIANG Zhitao,LEI Mingkai.Structure and fracture toughness of TiAlN thin films deposited by deep oscillation magnetron sputtering[J].Thin Solid Films,2022,754:139306.

    • [15] DONG Kai,LU Fazhang,HUANG Wenzhi,et al.Residual stress and fracture toughness of thick 8YSZ-Al2O3 composite coatings via a modified Vickers indentation method[J].Vacuum,2020,177:109437.

    • [16] LI Yuge,LU Yuelei,JIANG Zhitao,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.

    • [17] KATARIA S,GOYAL S,DASH S,et al.Evaluation of nano-mechanical properties of hard coatings on a soft substrate[J].Thin Solid Films,2012,522:297-303.

    • [18] LOFAJ F,NÉMETH D.Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM[J].Journal of the European Ceramic Society,2017,37(14):4379-4388.

    • [19] VEPREK H M,VEPŘEK S.The deformation of the substrate during indentation into superhard coatings:Bückle's rule revised[J].Surface and Coatings Technology,2015,284:206-214.

    • [20] SUN Liang,MA Dejun,WANG Lizhi,et al.Dermining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique[J].Engineering Fracture Mechanics,2018,197:151-159.

    • [21] ZHAO Xiaoli,XIE Zonghan,MUNROE P.Nanoindentation of hard multilayer coatings:Finite element modelling,Materials Science and Engineering:A[J].2011,528(3):1111-1116.

    • [22] GRECZYNSKI G,PETROV I,GREENE J E,et al.Paradigm shift in thin-film growth by magnetron sputtering:from gas-ion to metal-ion irradiation of the growing film[J].Journal of Vacuum Science & Technology,2019,37(6):060801.

    • [23] FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering and Performance,2021,30(6):3912-3924.

    • [24] SEIDL W M,BARTOSIK M,KOLOZSVÁRI S,et al.Influence of Ta on the fracture toughness of arc evaporated Ti-Al-N[J].Vacuum,2018,150:24-28.

    • [25] BARTOSIK M,RUMEAU C,HAHN R,et al.Fracture toughness and structural evolution in the TiAlN system upon annealing[J].Scientific Reports,2017,7(1):16476.

    • [26] VÖLKER B,DU C,FAGER H,et al.How tensile tests allow a screening of the fracture toughness of hard coatings[J].Surface and Coatings Technology,2020,390:125645.

  • 参考文献

    • [1] CAO Jian,BRINKSMEIER E,FU M,et al.Manufacturing of advanced smart tooling for metal forming[J].CIRP Annals,2019,68(2):605-628.

    • [2] HINTSALA E,KIENER D,JACKSON J,et al.In-situ measurements of free-standing,ultra-thin film cracking in bending[J].Experimental Mechanics,2015,55(9):1681-1690.

    • [3] ZHANG S,SUN D,FU YQ,et al.Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films[J].Thin Solid Films,2004,13(10):1777-1784.

    • [4] ZHANG S,ZHANG X.Toughness evaluation of hard coatings and thin films[J].Thin Solid Films,2012,520(7):2375-2389.

    • [5] MAMUN M A,ELMUSTAFA A A.Fracture toughness of amorphus SiC thin films using nanoindentation and simulation[J].Advances in Materials Research,2020,9(1):49-62.

    • [6] GUO Yuning,STAEDLER T,MÜLLER J,et al.Adetailed analysis of the determination of fracture toughness by nanoindentation induced radial cracksc[J].Journal of the European Ceramia Society,2020,40(2):276-289.

    • [7] LI X D,DIAO D,BHUSHAN B.Fracture mechanisms of thin amorphous carbon films in nanoindentation[J].Acta Materialia,1997,45(11):4453-4461.

    • [8] FIELD J E,PICKLES C.Strength,fracture and friction properties of diamond[J].Diamond and Related Materials,1996,5(6-8):625-634.

    • [9] YOO D,ZHANG M,CHOI C,et al.Indentation-induced cracking behavior of a Cu(In,Ga)Se2 films on Mo substrate[J].Journal of Materials Research and Technology,2021,13:1132-1138.

    • [10] CSANÁDI T,NÉMETH D,LOFAJ F.Mechanical properties of hard W-C coating on steel substrate deduced from nanoindentation and finite element modeling[J].Experimental Mechanics,2017,57(7):1057-1069.

    • [11] MILLWATER H,OCAMPO J,CROSBY N.Probabilistic methods for risk assessment of airframe digital twin structures[J].Engineering Fracture Mechanics,2019,221:106674.

    • [12] JIANG Zhitao,LI Yuge,LEI Mingkai.An inverse problem in estimating fracture toughness of TiAlN thin films by finite element method based on nanoindentation morphology[J].Vacuum,2021,192:110458.

    • [13] LEE J H,GAO Y F,JOHANNS K E,et al.Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials[J].Acta Materialia,2012,60(15):5448-5467.

    • [14] JIANG Zhitao,LEI Mingkai.Structure and fracture toughness of TiAlN thin films deposited by deep oscillation magnetron sputtering[J].Thin Solid Films,2022,754:139306.

    • [15] DONG Kai,LU Fazhang,HUANG Wenzhi,et al.Residual stress and fracture toughness of thick 8YSZ-Al2O3 composite coatings via a modified Vickers indentation method[J].Vacuum,2020,177:109437.

    • [16] LI Yuge,LU Yuelei,JIANG Zhitao,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.

    • [17] KATARIA S,GOYAL S,DASH S,et al.Evaluation of nano-mechanical properties of hard coatings on a soft substrate[J].Thin Solid Films,2012,522:297-303.

    • [18] LOFAJ F,NÉMETH D.Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM[J].Journal of the European Ceramic Society,2017,37(14):4379-4388.

    • [19] VEPREK H M,VEPŘEK S.The deformation of the substrate during indentation into superhard coatings:Bückle's rule revised[J].Surface and Coatings Technology,2015,284:206-214.

    • [20] SUN Liang,MA Dejun,WANG Lizhi,et al.Dermining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique[J].Engineering Fracture Mechanics,2018,197:151-159.

    • [21] ZHAO Xiaoli,XIE Zonghan,MUNROE P.Nanoindentation of hard multilayer coatings:Finite element modelling,Materials Science and Engineering:A[J].2011,528(3):1111-1116.

    • [22] GRECZYNSKI G,PETROV I,GREENE J E,et al.Paradigm shift in thin-film growth by magnetron sputtering:from gas-ion to metal-ion irradiation of the growing film[J].Journal of Vacuum Science & Technology,2019,37(6):060801.

    • [23] FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering and Performance,2021,30(6):3912-3924.

    • [24] SEIDL W M,BARTOSIK M,KOLOZSVÁRI S,et al.Influence of Ta on the fracture toughness of arc evaporated Ti-Al-N[J].Vacuum,2018,150:24-28.

    • [25] BARTOSIK M,RUMEAU C,HAHN R,et al.Fracture toughness and structural evolution in the TiAlN system upon annealing[J].Scientific Reports,2017,7(1):16476.

    • [26] VÖLKER B,DU C,FAGER H,et al.How tensile tests allow a screening of the fracture toughness of hard coatings[J].Surface and Coatings Technology,2020,390:125645.

  • 手机扫一扫看