en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马旻昱,男,1989年出生,博士后。主要研究方向为材料表面改性技术。E-mail:myma8911@126.com;

刘亮亮,男,1992年出生,博士研究生。主要研究方向为等离子体镀膜设备和工艺。E-mail:liull620@163.com

通讯作者:

吴忠振,男,1984年出生,副教授,博士研究生导师。主要研究方向为等离子体涂层与薄膜材料制备与调控研究。E-mail:wuzz@pkusz.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211230005

参考文献 1
ZHANG Guojun,LI Bin,JIANG Bailing,et al.Microstructure and mechanical properties of multilayer Ti(C,N)films by closed-field unbalanced magnetron sputtering ion plating[J].Journal of Materials Science & Technology,2010,26(2):119-124.
参考文献 2
ANDERS A.Structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.
参考文献 3
王福贞,武俊伟.现代离子镀膜技术[M].北京:机械工业出版社,2021.WANG Fuzhen,WU Junwei.Modern ion plating technology[M].Beijing:China Machine Press,2021.(in Chinese)
参考文献 4
PETROV I,ADIBI F,GREENE J E,et al.Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition[J].Journal of Vacuum Science & Technology A,1992,10(5):3283-3287.
参考文献 5
IVANOV I,KAZANSKY P,HULTMAN L,et al.Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering[J].Journal of Vacuum Science & Technology A,1994,12(2):314-320.
参考文献 6
YAMASHITA M.Fundamental characteristics of built‐ in high-frequency coil-type sputtering apparatus[J].Journal of Vacuum Science & Technology A,1989,7(2):151-158.
参考文献 7
ROSSNAGEL S M,HOPWOOD J.Metal ion deposition from ionized mangetron sputtering discharge[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,1994,12(1):449-453.
参考文献 8
YOSHIDA Y.Low-gas-pressure sputtering by means of microwave-enhanced magnetron plasma excited by electron cyclotron resonance[J].Applied Physics Letters,1992,61(14):1733-1734.
参考文献 9
MUSIL J.Microwave plasma:its characteristics and applications in thin film technology[J].Vacuum,1986,36(1):161-169.
参考文献 10
MUSIL J.Deposition of thin films using microwave plasmas:Present status and trends[J].Vacuum,1996,47(2):145-155.
参考文献 11
张磊,施立群.微波ecr等离子体辅助磁控溅射沉积装置:中国,200910046033.9[P].2010-08-11.ZHANG Lei,SHI Liqun.Microwave ecr plasma assisted magnetron sputtering deposition device:China,200910046033.9[P].2010-08-11.(in Chinese)
参考文献 12
李灿民,魏荣华.等离子增强磁控溅射沉积 Ti(Al)基纳米复合涂层在铸铝模具上的应用[J].中国表面工程,2012,25(2):1-7.LI Canmin,WEI Ronghua.Ti(Al)based nanocomposite coating produced by plasma enhanced magnetron sputtering applied in aluminum die casting[J].China Surface Engineering,2012,25(2):1-7.(in Chinese)
参考文献 13
MATOSSIAN J,WEI R,VAJO J,et al.Plasma-enhanced magnetron-sputtered deposition(PMD)of materials[J].Surface and Coatings Technology,1998,108:496-506.
参考文献 14
FORTUNA S V,SHARKEEV Y P,PERRY A J,et al.Microstructural features of wear-resistant titanium nitride coatings deposited by different methods[J].Thin Solid Films,2000,377:512-517.
参考文献 15
WEI Ronghua,VAJO J J,MATOSSIAN J N,et al.Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools[J].Surface and Coatings Technology,2002,158:465-472.
参考文献 16
WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface and Coatings Technology,2006,201(7):4453-4459.
参考文献 17
EL-RAHMAN A M,WEI Ronghua.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface and Coatings Technology,2014,241:74-79.
参考文献 18
WEI R H,LANGA E,ARPS J,et al.Erosion resistance of thick nitride and carbonitride coatings deposited using plasma enhanced magnetron sputtering[J].Plasma Processes and Polymers,2007,4(S1):693-699.
参考文献 19
WEI R H.Plasma enhanced magnetron sputter deposition of Ti-Si-C-N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5):538-544.
参考文献 20
LIN J L,WEI R H,BITSIS D C,et al.Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications[J].Surface and Coatings Technology,2016,298:121-131.
参考文献 21
魏荣华.等离子增强磁控溅射 Ti-Si-C-N 基纳米复合膜层耐冲蚀性能研究[J].中国表面工程,2009,22(1):1-10.WEI R H.Ti-Si-C-N based nanocomposite coatings produced by plasma enhanced magnetron sputter deposition and its erosion resistance[J].China Surface Engineering,2009,22(1):1-10.(in Chinese)
参考文献 22
KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.
参考文献 23
暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Pyhsics Review,2015 32(S1):52-58.(in Chinese)
参考文献 24
BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2005,23(1):18-22.
参考文献 25
LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//广东省真空学会学术年会论文集,湛江:广东省真空学会,2015.LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//Proceedings of the Annual Conference of Guangdong Vacuum Society,Zhanjiang:Guangdong Vacuum Society,2015:8.
参考文献 26
王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG xiaobo,ZHANG shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)
参考文献 27
BOUZAKIS K D,MICHAILIDIS N,SKORDARIS G,et al.Cutting with coated tools:Coating technologies,characterization methods and performance optimization[J].CIRP Annals,2012,61(2):703-723.
参考文献 28
STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:the impact of nitrogen admixture in HIPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.
参考文献 29
雷明凯,朱小鹏,李昱鹏,等.泡沫塑料高功率脉冲磁控溅射表面金属化方法:中国,CN130122452B[P].2013-03-11.LEI Mingkai,ZHU Xiaopeng,LI Yupeng,et al.Surface metallization method for foamed plastic by adopting high-power pulse magnetron sputtering:China,CN130122452B[P].2013-03-11.(in Chinese)
参考文献 30
ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HIPIMS techniques[J].Surface and Coatings Technology,2020,394:125890.
参考文献 31
AIJAZ A,JI Yuxia,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.
参考文献 32
ABIDI M,ASSADI A A,BOUZAZA A,et al.Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HIPIMS on polyester cloth under low intensity visible light[J].Applied Catalysis B:Environmental,2019,259:118074.
参考文献 33
SITTINGER V,LENCK O,VERGÖHL M,et al.Applications of HIPIMS metal oxides[J].Thin Solid Films,2013,548:18-26.
参考文献 34
李迎春.高功率脉冲磁控溅射在微深孔镀膜上的应用 [C/CD]//第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.Li Yingchun.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)
参考文献 35
BOBZIN K,BAGCIVAN N,IMMICH P,et al.Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology[J].Journal of Materials Processing Technology,2009,29(1):165-170.
参考文献 36
SHIMIZU T,KOMIYA H,TERANISHI Y,et al.Pressure dependence of(Ti,Al)N film growth on inner walls of small holes in high-power impulse magnetron sputtering[J].Thin Solid Films,2017,624:189-196.
参考文献 37
SUBE T,KOMMER M,FENKER M,et al.Reduced friction on γ-Mo2N coatings deposited by high power impulse magnetron sputtering on microstructured surfaces[J].Tribology International,2017,106:41-45.
参考文献 38
ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.
参考文献 39
巩春志.管筒内壁自激射频放电等离子体浸没离子注入方法研究[D].哈尔滨:哈尔滨工业大学,2008.GONG Chunzhi.Plasma immersionn ion implantation of cylindrical bore based on self excited radio-frequency glow discharge[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)
参考文献 40
柯培玲,王振玉,张栋,等.一种制备润湿性可控的高光滑高硬TiN薄膜的方法:中国,CN103469168B[P].2015-09-30.KE Peiling,WANG Zhenyu,ZHANG Dong,et al.A kind of method preparing high hard TiAlN thin film of the controlled high smooth of wettability:China,CN103469168B[P].2015-09-30.(in Chinese)
参考文献 41
WEINBACH M.iPhone 13 will collect fewer fingerprints[EB/OL].MacRumors,(2021-04-05).(2021-04-05).https://www.macrumors.com/2021/04/05/iphone-13-will-collect-fewer-fingerprints/.
参考文献 42
YANG J,TSOU H K,CHEN Y H,et al.Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film[J].Materials Science and Engineering:C,2015,57:58-66.
参考文献 43
GANESAN R,AKHAVAN B,HIOB M A,et al.HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility[J].Carbon,2018,139:118-128.
参考文献 44
TSUNOYAMA H,ZHANG C,AKATSUKA H,et al.Development of high-flux ion source for size-selected nanocluster ions based on high-power impulse magnetron sputtering[J].Chemistry Letters,2013,42(8):857-859.
参考文献 45
ZHANG C H,TSUNOYAMA H,AKATSUKA H,et al.Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation[J].The Journal of Physical Chemistry A,American Chemical Society,2013,117(40):10211-10217.
参考文献 46
PILCH I,SÖDERSTRÖM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles[J].KONA Powder and Particle Journal,2014,31:171-180.
参考文献 47
PILCH I,SÖDERSTRÖM D,BRENNING N,et al.Size-controlled growth of nanoparticles in a highly ionized pulsed plasma[J].Applied Physics Letters,2013,102(3):033108.
参考文献 48
PRYSIAZHNYI V,KRATOCHVIL J,KAFTAN D,et al.Growth of hard nanostructured ZrN surface induced by copper nanoparticles[J].Applied Surface Science,2021,562:150230.
参考文献 49
MAYORAL A,MARTÍNEZ L,GARCÍA-MARTÍN J M,et al.Tuning the size,composition and structure of Au and Co50Au50 nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis[J].Nanotechnology,2018,30(6):065606.
参考文献 50
李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposion of tin coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)
参考文献 51
桂刚.2 kA 高功率脉冲磁控溅射电源研制及 Cr-DLC 薄膜制备[D].哈尔滨:哈尔滨工业大学,2011.GUI Gang.Development of 2 kA high power pulsed magnetron sputtering power supply and preparation of Cr-DLC films[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
参考文献 52
LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.
参考文献 53
BROITMAN E,CZIGÁNY Z,GRECZYNSKI G,et al.Industrial-scale deposition of highly adherent CNx films on steel substrates[J].Surface and Coatings Technology,2010,204(21):3349-3357.
参考文献 54
LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.
参考文献 55
CemeCon.涂层技术进入医疗制造行业——HIPIMS 涂层加工铬钴合金[J].金属加工(冷加工),2020(11):24.CemeCon.Coating technology enters medical maufacturing industry-Machining chromium cobalt alloy woth HiPIMS coating[J].Metal Working(Metal Cutting),2020(11):24.(in Chinese)
参考文献 56
CemeCon Suzhou Coating Technology Co.Ltd.TapCon®Gold-The coating for the perfect thread[EB/OL].[2021-12-26].https://www.cemecon.de/cn-en/facts/tapconrgold-coating-perfect-thread.
参考文献 57
ERKENS G,VETTER J,MULLER J.SIBONICA——采用新型高离化混合PVD工艺HI3技术生成的抗氧化性能最佳的新一代刀具涂层[J].工具技术,2013,47(9):18-24.ERKENS G,VETTER J,MULLER J.SIBONICA,The next generation of highest oxidation resistat tool coatings synthesised by means of novel high ionization hybrid PVD processing H13[J].Tool Engineering,2013,47(9):18-24.(in Chinese)
参考文献 58
SHIMIZU T,KOMIYA H,WATANABE T,et al.HIPIMS deposition of TiAlN films on inner wall of micro-dies and its applicability in micro-sheet metal forming[J].Surface and Coatings Technology,2014,250:44-51.
参考文献 59
Vnv.Neue Schichtgeneration läutet glatte Revolution ein.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.Vnv.Neue Layer generation heralds smooth revolution.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.
参考文献 60
S3p-Scalable pulsed power plasma[EB/OL].[2021-12-26].https://www.oerlikon.com/balzers/us/en/portfolio/surface-technologies/pvd-based-processes/s3p-scalable-pu lsed-power-plasma/.
参考文献 61
高能脉冲磁控溅射镀膜机[J].中国科学院院刊,2020,35(Z1):83.High power impulse magnetron sputtering(HiPIMS)coating machine[J].Bulletin of Chinese Academy of Sciences,2020,35(Z1):83.(in Chinese)
参考文献 62
PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films,2011,520(5):1559-1563.
参考文献 63
吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system [J].Vacuum,2019,56(6):1-6.(in Chinese)
参考文献 64
吴厚朴,田修波,张新宇,等.双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J].金属学报,2018,55(3):299-307.WU Houpu,TIAN Xiubo,ZHANG Xinyu,et al.Discharge characteristics of novel dual-pulse HiPIMS and deposition of CrN films with high deposition rate [J].Acta Metallurgica Sinica,2018,55(3):299-307.(in Chinese)
参考文献 65
SIMONE.Hauzer:excellent results with HIPIMS and HIPIMS+ technology[EB/OL]//GlassOnline.com-the world’s leading glass industry website.(2010-06-07)[2022-03-13].https://www.glassonline.com/hauzerexcellent-results-with-hipims-and-hipims-technology/.
参考文献 66
EERDEN M,PAPA F,KRUG T,et al.Higher tool productivity due to new generation of PVD coatings[J].Vakuum in Forschung und Praxis,2012,24(1):6-8.
参考文献 67
PAPA F,TIETEMA R,KOLEV I,et al.Apparatus and method for depositing hydrogen-free ta-c layers on workpieces and workpiece:China,US20170167010A1[P].2017-06-15.
参考文献 68
冯利民,Ivan Fernandez Martinez,Frank Papa.带有正脉冲周期的HIPIMS电源-更开放的涂层工艺窗口和更高的沉积速率[C/CD]//深圳市真空学会第一期学术沙龙.深圳:2018.FENG limin,Ivan Fernandez Martinez,Frank Papa.The application of a short positive voltage reversal in HIPIMS-Widening the process window and increasing deposition rate [C/CD]//The first academic salon of Shenzhen Vacuum Society.Shenzhen:2018.(in Chinese)
参考文献 69
肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):294-302.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):294-302.(in Chinese)
参考文献 70
崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):178-189.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta physica Sinica,2019,68(19):178-189.(in Chinese)
参考文献 71
崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):285-292.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source [J].Acta physica Sinica,2017,66(9):285-292.(in Chinese)
参考文献 72
李体军,崔岁寒,刘亮亮,等筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.LI Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode [J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)
参考文献 73
吴忠振,肖舒,崔岁寒,等.高离化磁控溅射技术的高速沉积[C/CD]//粤港澳大湾区真空科技与宽禁带半导体应用高峰论坛暨2017年广东省真空学会学术年会.中国广东惠州:2017.WU Zhongzhen,XIAO Shu,CUI Suihan,et al.High-speed deposition of high-ionization magnetron sputtering technology [C/CD]//Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology and Wide Bandgap Semiconductor Application Summit Forum and 2017 Guangdong Vacuum Society Academic Annual Meeting.Huizhou Guangdong China:2017.(in Chinese)
参考文献 74
吴忠振.陶瓷涂层中纳米级缺陷构筑及其强韧性研究 [C/CD]//中国稀土学会2021学术年会论文摘要集,成都:中国稀土学会,2021.WU Zhongzhen.Research on nano-scale defects construction and strength and toughness in ceramic coatings[C/CD]//Abstracts of 2021 Academic Conference of Chinese Rare Earth Society,Chengdu:Chinese Rare Earth Society,2021.(in Chinese)
参考文献 75
GANESAN R,AKHAVAN B,DONG X,et al.External magnetic field increases both plasma generation and deposition rate in HiPIMS[J].Surface and Coatings Technology,2018,352:671-679.
参考文献 76
HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.
参考文献 77
李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53(2):84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong et al.High deposition characteristic of(E-MF)HiPIMS at high ionization rate [J].Journal of Harbin Institute of Technology,2021,53(2):84-92.(in Chinese)
参考文献 78
崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):233-244.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of the closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):233-244.(in Chinese)
参考文献 79
WILSON G W,SINHA B P.The effects of absorbed argon on the electrical properties of thin copper films[J].Thin Solid Films,Elsevier,1971,8(3):207-211.
参考文献 80
HOSOKAWA N,TSUKADA T,MISUMI T.Self ‐ sputtering phenomena in high‐rate coaxial cylindrical magnetron sputtering[J].Journal of Vacuum Science and Technology,American Vacuum Society,1977,14(1):143-146.
参考文献 81
KUKLA R,KRUG T,LUDWIG R,et al.A highest rate self-sputtering magnetron source[J].Vacuum,1990,41(7-9):1968-1970.
参考文献 82
POSADOWSKI W M,BRUDNIK A.Optical emission spectroscopy of self-sustained magnetron sputtering[J].Vacuum,1999,53(1-2):11-15.
参考文献 83
ROSSNAGEL S M,KAUFMAN H R.Current-voltage relations in magnetrons[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1988,6(2):223-229.
参考文献 84
CHEN Lei,CUI Suihan,TANG Wei,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.
参考文献 85
北京大学新型镀膜技术与装备实验室.超大功率磁控溅射技术与应用 [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7%b3%bb%e7%bb%9f/.New coating technology and equipment laboratory Peaking University.Ultra-high power magnetron sputtering technology and application [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7% b3%bb%e7%bb%9f/.(in Chinese)
参考文献 86
BOO J H,JUNG M J,PARK H K,et al.High-rate deposition of copper thin films using newly designed high-power magnetron sputtering source[J].Surface and Coatings Technology,2004,188:721-727.
参考文献 87
刘亮亮,周林,唐伟,等.持续高功率磁控溅射技术高速制备挠性覆铜板Cu膜[J].真空与低温,2020,26(5):369-376.LIU Liangliang,ZHOU Lin,TANG Wei,et al.Rapid deposition of flexible copper clad laminate used Cu film by continuous high power magnetron sputtering[J].Vacuum and Cryogenics,2020,26(5):369-376.(in Chinese)
参考文献 88
AN Xiaokai,CHAO Yang,WU Zhongzhen,et al.Self-regulated super-hydrophobic Cu/CuO electrode film deposited by one-step high-power sputtering[J].Advanced Electronic Materials,2020,6(1):1900891.
参考文献 89
真空薄膜技术与装备(后浪实验室).陶瓷覆铜板绿色制造技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165 Vacuum coating Technology & System(Origin Lab).Ceramic Copper Clad Technology[EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165.
参考文献 90
CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.
参考文献 91
真空薄膜技术与装备(后浪实验室).高透明氧化铝膜/板制备技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.Vacuum coating Technology & System(Origin Lab).High-transparency alumina film/plate preparation technology [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.
参考文献 92
LIU Liangliang,TANG Wei,ZHOU Lin,et al.Comparative study of TiAlN coatings deposited by different high-ionization physical vapor deposition techniques[J].Ceramics International,2020,46(8):10814-10819.
参考文献 93
吴忠振.闭合磁场的布局逻辑与作用[C/CD]//.第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.WU Zhongzhen.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and the 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)
目录contents

    摘要

    磁控溅射技术发展至今已有 40 余年的历史,广泛应用在航空航天、武器装备、电子器件等领域,但较低的离化率对磁控溅射的工艺可控性、深孔沉积能力甚至涂层质量等有很大限制,高离化率一直是磁控溅射追寻的目标。从早期引入辅助增强装置,到高功率脉冲磁控溅射的提出,以及持续高功率技术的发展,高离化磁控溅射技术受到广泛关注。以高离化磁控溅射技术的发展为切入点,综述近年来该技术的发展迭代、应用现状以及面向各种应用的工业设备研发进程。高离化磁控溅射的发展可归纳为四个阶段,即辅助增强的磁控溅射、高功率脉冲磁控溅射、改进型高功率脉冲磁控溅射以及持续高功率磁控溅射。分别阐述不同阶段的技术特点和存在的问题,分析各技术的应用现状及其潜在的应用价值,介绍各技术的工业设备及其应用现状。随着工业发展对涂层长寿命、高可靠性的要求,以及市场对高效率制备的诉求,高离化磁控溅射也在朝着可控、精确、高效的方向发展,最后对高离化磁控溅射技术未来发展进行展望。

    Abstract

    After nearly 40 years’ development, magnetron sputtering (MS) technique is widely used in many fields such as aerospace, weaponry and electronic devices. However, the process controllability, the deep hole deposition and the coating quality are significantly limited because of the low ionization rate, so MS presents a strong requirement of the high ionization rate. From the early plasma enhancement devices, to high power impulse magnetron sputtering (HiPIMS) and the continuous high-power magnetron sputtering (C-HPMS), high-ionized MS technique are extensively concerned. The development, applications, and industrial equipment of the high ionized MS are reviewed. The development of high ionization MS can be summarized into four stages, namely plasma enhanced MS, HiPIMS, modified HiPIMS and C-HPMS. The technical characteristics and problems at different stages, and the application status, application prospects, as well as the industrial equipment of each technique are presented. With the increasing requirements for the long life and high reliability to the industrial coatings, as well as the market requirement to high efficiency preparation, high ionized MS is developing towards the high controllable, accuracy and efficiency. Finally, the future development of the high ionized MS is prospected.

  • 0 前言

  • 随着工业技术的不断进步,材料的综合性能要求不断提高,单一的材料性能已经不能满足某些特殊环境下的服役要求。真空离子镀膜技术在基体表面沉积一层薄膜,能够有效提高零部件的综合性能,从而提高产品的性能与使用寿命。相比较于传统的镀膜技术,离子镀膜将中性不可控原子转变为带电离子,通过改变工作环境中的电场、磁场以及偏压等措施,控制入射粒子相比较于传统的镀膜技术,离子镀膜将中性不可控原子转变为带电离子,通过改变工作环境中的电场、磁场以及偏压等措施,控制入射粒子荷能状态与空间分布,人为地干预离子流的入射能量与方向,提高离子的轰击作用,促使薄膜发生再结晶与形核,促进涂层的晶粒细化,同时提高涂层结构的致密程度,获得更高质量的薄膜[1-2]。故薄膜沉积过程中获得沉积粒子的高离化率是获得高质量薄膜的关键之一。

  • 以电离为基础的真空镀膜技术主要有电弧离子镀和磁控溅射技术两种,前者主要通过电弧放电实现靶材料气化,并通过电弧等离子体中高密度的电子将气化的靶材料原子电离,形成离子镀膜。然而,电弧热会使得部分靶材料熔化后来不及气化,而形成“金属液滴”,并随离子束流沉积在工件表面形成 “大颗粒”,破坏涂层致密结构并降低性能。虽然大量研究者通过优化其磁场布局,甚至设计弧斑的快速跑动、增加过滤等方式减少“金属液滴”,但仍无法完全消除。磁控溅射技术可以从原理上消除粒子团簇,形成比较“清洁”的单核离子束流,但是其较低的电子密度使得溅射材料的离化率一般不足 20%,很难实现离子的有效控制[3]。故发展高离化磁控溅射技术,实现高密度、“清洁”的沉积粒子离子束流,并研究单核离子束流能量与材料结构与性能的关系一直是行业研究热点。学者们通过添加辅助装置热丝、发展高功率电源,以及优化阴极等措施,使磁控溅射技术获得巨大进步,并逐渐走向工业应用。本文从高离化率磁控溅射的发展过程出发,总结辅助增强磁控溅射(Plasma enhanced magnetic sputtering,PEMS)、高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)、改进型的高功率脉冲磁控溅射(Modified HiPIMS)以及持续高功率磁控溅射( Continuous high power magnetron sputtering,C-HPMS)的技术特点,阐述依托相应技术开发的真空涂层装备特点和工业应用案例等,并对高离化磁控溅射技术的发展趋势和可能应用做出展望。

  • 1 辅助增强磁控溅射

  • 为了提高传统磁控溅射技术,学者们曾尝试在靶材与基片架之间的空间内引入一些增强离化装置,以增强放电空间内的等离子体密度,进而实现并大幅度提高溅射材料离化,如通过耦合磁场、电场、引入离子源、热丝等增强离化装置。PETROV 等[4-5]提出一种在靶材与基板之间添加可调控的轴向磁场,如图1a 所示,通过调节外加的磁场可以改变电子的运动轨迹,加强电子对中性气体原子的轰击作用,提高基材表面的离子通量,最高可将离子与中性粒子密度比从 0.1 提高到 5 左右。 YAMASHITA[6]提出在靶材与基片之间放置电感耦合的(ICP)线圈,用以产生二次等离子体,同时感应线圈将等离子体束缚在靶材与基板之间的区域内,增加电子与气体分子的碰撞频率,等离子体密度达到1010~1011 cm−3,离化率提高至50%~90%[7],如图1b 所示。MUSIL 提出采用微波 ECR 等离子源增强磁控溅射的想法,并由 MATSUO 实现了这一方法[8-9]。当放电室的磁场强度使电子在磁场中的回旋频率与微波频率相等时,微波与回旋电子产生共振能量交换,在低气压下(10−3~10−1 Pa)就可产生高密度(1011~1013 cm−3)、高电离的等离子体,在低气压下溅射粒子的平均自由程大,溅射粒子不会因发生碰撞而损失能量,如图1c 所示[10-11]。魏荣华等[12]提出采用热阴极增强的磁控溅射技术,即在真空室内添加一组灯丝,在灯丝上施加的加热电流使灯丝发热,向真空室内发射大量热电子,同时在灯丝和真空室壁之间施加直流电压(灯丝接负压,真空室接地),灯丝发射的热电子被加速飞向真空室壁,高能量、高密度的电子流与中性气体分子(原子)碰撞,导致气体电离,最终在真空室中产生高密度等离子体,如图1d 所示。通过引入的灯丝使整个真空室充满等离子体,从而大大改善传统磁控溅射的等离子体仅局限在靶材表面的问题,这种全局等离子体大大提高等离子体的密度,同时等离子体中带正电荷的氩离子被靶吸引,也会进一步轰击靶产生溅射。

  • 在上述增强技术中,以 PEMS 添加的辅助装置最为简单,更容易被工业所接受,因此学者们针对该技术研究其在工业应用中的可能性。首先是硬质薄膜中最常见的 TiN 薄膜,在使用 PEMS 制备 TiN 时,一般将热丝添加在样品附近,在通入氮气时,控制反应性溅射过程中的电压,将其稳定在迟滞曲线的拐点处,随后加热样品附近的热丝提高样品附近的离化率,使样品被高密度的等离子包裹,随后可以通过控制偏压调控离子的入射能量。

  • 图1 辅助增强等离子磁控溅射技术不同装置原理示意图

  • Fig.1 Schematic diagram of different devices of assisted enhanced plasma magnetron sputtering technology

  • MATOSSIAN 等[13]重点研究该技术制备的 TiN 涂层的工艺参数(包括沉积温度、工具表面的离子轰击电流密度、TiN 沉积速率、离子与原子比、氮分压、TiN 表面状态)与刀具磨损寿命的影响,确定 PEMS 技术中沉积温度和表面状态是影响刀具薄膜寿命的主要因素,并对比该技术与传统刀具镀膜技术制备的刀具性能,对比发现在加工相同零件数量后,PEMS 刀具磨损比商业刀具低 2~3 倍。WEI 等 [14-15]对比研究了 PEMS 与其他传统工艺制备的 TiN 薄膜在刀具加工上的表现,发现 PEMS 制备 TiN 时,同时产生高比例的原子氮和双电荷 Ar,可产生高电流密度,由 0.2 mA / mm2 提高至 4.9 mA / mm2,提高了 20 多倍[3]。在沉积前的清洗过程中,高电流密度和高能量离子轰击在样品表面相比电弧蒸发和常规非平衡磁控溅射,该过程不会发生金属沉积,能保证去除基体表面的“原生”氧化物,并能在其涂层之前防止重新氧化。而在沉积过程中,使用 PEMS 技术沉积的 TiN 涂层显示出非常细小的晶粒尺寸(约 60 nm)和较高的内应力,如表1 所示[14]。由于其出色的附着力和内聚力,在与传统技术制备的硬质薄膜相比中,表现出更加卓越的切削性能,在立铣刀、成型刀具和滚刀上的此类涂层显示出更长的使用寿命,如图2 所示[13]

  • 表1 PEMS 与传统 PVD、CVD 制备的 TiN 薄膜对比

  • Table1 Comparison of TiN films prepared by PEMS, traditional PVD and CVD

  • 图2 PEMS 制备的刀具与商业刀具使用过程中磨损寿命与刀面、刀间的磨损量

  • Fig.2 Wear life, flank wear and nose wear during the use of the tool prepared by PEMS and the commercial tool

  • 鉴于 PEMS 技术在制备 TiN 薄膜时的优异表现, WEI 等[16-19]对该技术制备的薄膜材料在各领域的适用情况进行全面性的研究。例如在钛合金的抗冲刷防护中,相比较于传统磁控溅射,PEMS 制备的 TiSiCN 具有更加细小的晶粒和致密性,硬度更是达到 40 GPa 以上。在冲刷侵蚀性能方面,PEMS 制备的 TiSiCN 涂层比钛合金的侵蚀速率平均降低 37 倍,比航空航天工业中常用的 TiN / Ti 多层涂层性提高 5.6 倍,如图3 所示[17-18]。同时,PEMS 制备的 TiSiCN 比传统技术制备的 TiSiCN 侵蚀速率降低 80%以上,表现出优异抗冲刷能力,能够满足对飞机发动机以及燃气轮机叶片保护的要求[19]。虽然 PEMS 制备的 TiSiCN 表现出足够的强韧性,但其摩擦因数在 0.3~0.7,相对较高。LIN 等[20]在此基础上优化 TiSiCN 的涂层成分与制备工艺,使 TiSiCN 涂层的摩擦因数降低至 0.17~0.2,并在 SAE 10W-30 柴油发动机油中,使用 Plint TE77 测试评估涂层活塞环的摩擦学性能,发现优化后的涂层比基体降低 10%。在 SAE 5W-20 发动机油的单缸汽油发动机和 SAE 10W-30 柴油发动机油的重型柴油发动机中对涂层环进行评估,发现优化后的 TiSiCN 涂层顶环和二环的环重量损失比基体分别降低 28%和 40%,极大程度的减少活塞环的磨损,如图4 所示[20]。PEMS 制备的 TiSiCN 纳米复合涂层在各领域都展现优异的应用能力[1721],获得 2009 年美国百大科技研发奖 (R&D100 Award)。基于 PEMS 技术原理,国外著名涂层公司 Mustang Vacuum,以及国内的沈阳科友真空、纳晶真空都分别与美国西南研究院合作,开发 PEMS 的工业机。

  • 图3 PEMS 制备的 TiSiCN 与传统涂层的耐冲蚀性能对比

  • Fig.3 Comparison of erosion resistance between TiSiCN prepared by PEMS and traditional coatings

  • 图4 PEMS 制备的活塞环表面 TiSiCN 磨擦测试

  • Fig.4 TiSiCN friction test on the surface of piston ring prepared by PEMS

  • 2 高功率脉冲磁控溅射

  • 辅助增强技术,可以使磁控溅射的离化率提高,但过程中使用辅助电离装置,造成设备复杂性和工艺的低重复性。20 世纪末,KOUZNETSOV[22]首次报道一种采用高功率脉冲模式对溅射阴极进行放电新型磁控溅射技术,由极高的峰值功率可以产生极高的溅射金属离化率,即高功率脉冲磁控溅射技术。 HiPIMS 技术仅仅通过供电方式的变化实现高溅射材料离化率,从而赋予磁控溅射技术更多的可能性,成为目前研究与应用的热点。

  • 2.1 HiPIMS 技术的特点与潜在应用

  • HiPIMS 的峰值功率可达 103 kW / cm2 量级,靶材附近产生的电子密度高达 1019 m−3,电子密度的提高增加靶材溅射原子与电子的碰撞几率,有效提高靶材的离化率,最高可达 90%[23-24]。金属离化率的提高,大大提高等离子体中金属的可控性,使得制备的薄膜性能更加优异。以 TiAlN 涂层为例,传统磁控溅射制备的 TiAlN 涂层硬度为 30 GPa,弹性模量为 460 GPa,而 HiPIMS 制备的 TiAlN 硬度则为 34 GPa,弹性模量为 377 GPa,具有更优的强韧性[25-26]。BOUZAKIS 等[27]对比不同工艺沉积的 TiAlN 刀具,发现 HiPIMS 等离子密度可以达到 1019 m 3,比传统溅射 1016 m 3 高 3 个数量级,高度电离的金属离子能够以更高的动能沉积到样品表面,可以提高薄膜致密性与力学性能,在加工过程中,HiPIMS 制备的薄膜相比较于传统工艺表现出明显的寿命优势,几乎为传统工艺制备刀具的 4 倍,如图5 所示[27]

  • HiPIMS 虽然瞬时功率很高,但其总功率与常规直流磁控溅射一致,故可实现低温沉积,适用于在一些非耐热基片(如有机物、柔性屏幕、光纤传感器)表面制备功能化的薄膜[28]。此外,HiPIMS 较高的金属材料离化率和离子能量,使其可以在非金属材料(如 ABS,泡沫塑料等)表面沉积保护性涂层,并有效提高涂层与基体之间的结合力,在一定条件下也可通过偏压进一步对基体表面进行离子轰击或注入处理,进一步强化膜基结合强度。

  • 图5 不同物理气相沉积技术制备的(Ti,Al)N 薄膜使用寿命与磨损情况

  • Fig.5 Service life and wear of (Ti, Al) N films prepared by different physical vapor deposition techniques

  • 雷明凯等[29]提出了一种利用 HiPIMS 技术实现一种泡沫塑料表面的金属化的方法,即泡沫塑料(包括尼龙、聚酯、聚丙烯等)的表面沉积 Cu、Al、Cr 等金属膜,用于改善材料的力学性能,比如消除静电、降低泡沫的透气率、提高其防潮性等。ZHANG 等[30]发现 HiPIMS 在 ABS 表面制备的薄膜相比于传统溅射制备的薄膜更加致密、晶粒更加细小、韧性更高,在−40℃和 80℃之间热冲击时,更能够保证薄膜的完整性。AIJAZ 等[31]在对比 HiPIMS 与 DCMS 制备的 VO2薄膜时发现,HiPIMS 沉积的 VO2 薄膜可将沉积温度由 500℃降低至 300℃,即便在 200℃低温下,沉积的 VO2 薄膜也能够观察到微弱的热致变色现象。ABIDI 等[32]首次报道利用 HiPIMS 在 PES 表面低温溅射具有灭菌功能的 CuxO / TiO2 薄膜,能够有效降解空气中的挥发性有机合成物,包括氯仿、丁醛等。利用此方法制备的薄膜同时具有很强的灭菌功能,以及自清洁功效,在医用纺织品上具有广阔的应用前景。SITTINGER 等[33]还研究了 HiPIMS 在聚合物表面制备的氧化物薄膜在各个领域的功能性,包括过滤器中的光学涂层,光伏中的透明导电氧化物,低辐射涂层、触摸面板、挡风玻璃表面的防冰薄膜,加热蒸馏塔观察窗口的光学保护层等,均取得良好的效果,如图6 所示[33]

  • HiPIMS 产生高度离化的金属离子可在鞘层电压的作用下实现优异的绕射性,并能够加速轰击基板,将动能传输给薄膜表面的原子,引发薄膜表面原子的迁移与扩散,从而减轻阴影效应,在复杂结构(如微深孔[34]、刀具前角侧面[35]、微小管内壁[36]、带图案的材料[37])的表面实现均匀沉积,形成致密薄膜[38]。哈工大的田修波等[39]利用HiPIMS 技术,结合空心阴极原理,实现管道内部等离子体放电和离子质量控制,可在长达20 m 的管道内部获得10~150 μm 厚度的 DLC 沉积,用来防腐、耐磨、防蜡、疏水等。宁波所使用 HiPIMS 技术可以在手表表带表面制备 TiN 薄膜,并通过控制 TiN 薄膜的结构进而调控薄膜的润湿性,拓展其在疏水装饰领域的应用[40]。据报道称,最新版的 iPhone13 手机中框的金色,也是通过HiPIMS 制备,相比较于其他PVD 的装饰涂层,致密光洁的表面具有更有效的抵抗指纹能力,保持机身的洁净[41]

  • 图6 HiPIMS 制备的氧化物薄膜应用

  • Fig.6 Application of oxide film prepared by HiPIMS

  • 在生物领域,HiPIMS 的高离化率对薄膜晶体结构的控制以及其优异的结合力,同样具有很重要的应用潜力。YANG 等[42]发现利用 HiPIMS 的离子轰击更容易促进 TiO2 在聚醚醚酮脊柱植入器件上的形核与结晶,形成的锐钛矿结构或金红石结构在干燥环境和测试溶液中都表现出更优异的结合力,更有效地加速成骨细胞粘附和生长。GANESAN 等[43]使用 HiPIMS 复合技术制备碳膜发现,由于 HiPIMS 高能离子冲击,在碳膜中产生自由基,其存在可以更好的固定生物分子,从而展现出极低的凝血活性,降低血栓的形成,同时高达 45 GPa 的碳膜硬度和良好的附着能力,保证不锈钢心血管支架薄膜在手术过程中变形时不发生剥落,在生物领域中的血液接触过程方面具有极高的应用潜力。

  • 除薄膜应用外,HiPIMS 在纳米颗粒的制备中也具有极高的应用价值。相较于物理蒸发的方法, HiPIMS 产生的高密度等离子体更容易受控聚集,以形成纳米颗粒或者纳米簇。TSUNOYAMA 等[44]报道了一种 HiPIMS 对纳米团簇尺寸的控制方法,如图7 所示[44]。用于溅射的靶材安装在一个由液氮冷却的气流腔室中,Ar 直接通入靶材附近进行放电,溅射出靶材中的金属材料,He 做为缓冲气体,经过液氮冷却后通入腔室中,从靶材中溅射出的原子和离子与缓冲气体原子碰撞而凝聚成纳米团簇,通过气流将中性的和离子的纳米团簇引入到工作腔室,通过把离子导向器将离子纳米团簇引导进入质量分析室,在质量分析室中,利用离子偏转器将期望的离子纳米团簇偏转至质量过滤器中进行筛选,最终获得需要的纳米团簇沉积在衬底表面。ZHANG 等[45] 指出利用这种方法在制备纳米簇时,尺寸分布更加均匀,通过调节峰值功率可以灵活的控制纳米簇的尺寸。这种方法目前可以成功的制备出 Cu 和 Ag 纳米簇[46-47],同时也可以应用在纳米颗粒的组装中[48-49]

  • 图7 HiPIMS 制备纳米颗粒装置示意图[45]

  • Fig.7 Schematic diagram of HiPIMS nanoparticle preparation device

  • 2.2 基于 HiPIMS 的工业设备

  • HiPIMS 技术主要是利用高功率脉冲进行放电,早期的设备研发主要体现在 HiPIMS 电源上。最早的 HiPIMS 电源由林雪平大学的 Ulf Helmersson 团队研发,并由此成立首家 HiPIMS 电源生产公司 Ionautics,但由于其高校背景,研制的 HiPIMS 电源均为小功率的电源,主要用于科学研究。国内哈工大的田修波团队于 2008 年首次报道其研发的 HiPIMS 电源研究成果[50],并先后开发多款 HiPIMS 电源,峰值电压可达到 2 kV,峰值电流最高可达2 kA[51]。之后,德国 Hüttinger、Melec、Z-pulse 等公司先后推出自己的 HiPIMS 电源,由于 Hüttinger 在工业领域的先天优势,其在市场上的推广最为成功,并以此为亮点,对放电电压、电流的波形进行限制和优化,尽可能地减少 HiPIMS 放电过程中的“打弧” 现象。近年来,HiPIMS 技术得到更多亲睐,其相关技术发展相对较快,除上述公司外,以德国 Nano4energy、中国的成都同创、唐山标先、兰州精新等电源公司也先后推出自主研发的 HiPIMS 电源,并将输出功率提高到 40 kW,单个脉冲可输出 2~8 MW 的峰值功率。

  • 最早的配备 HiPIMS 的涂层系统来源于 Cemecon,CemeCon 集成欧洲多家高校的研究成果,于 2012 年报道 CC800@HiPIMS 工业涂层设备,设备如图8 所示[52]。该设备配备 6 个溅射阴极,其中有 4 个阴极配备 HiPIMS 模式。这套设备在纯 HiPIMS 模式下的沉积速率可达到 2 μm / h,可满足市场上几乎所有可用的 PVD 涂层沉积,此外,该设备在基片上添加高功率脉冲模式的同步偏压,可以更有利于涂层结合力的提高。BROITMAN 等[53]采用 CC800 设备对比研究直流溅射清洗、HiPIMS 耦合直流偏压清洗以及 HiPIMS 耦合高功率脉冲同步偏压清洗(双 HiPIMS 模式)三种预处理方式的效果,发现在双 HiPIMS 模式的预处理过程中,Cr 离子可以注入基体表面并在基体表面形成 Cr 的外延层,与其他预处理对比,双 HiPIMS 处理后的薄膜在划痕测试中没有发生开裂的现象,结合力高达 84 N,具有更加优异的结合性能,如图9 所示[53]

  • 图8 CemeCon 的 CC800 型设备

  • Fig.8 CemeCon's CC800 equipment

  • Cemecon利用CC800设备针对不同的刀具工况开发了多种刀具涂层[54],比如针对难加工的 CoCr 合金,Cemecon 推出 Inoxa Con 超薄、超光滑薄膜,光滑的刀具表面能够大幅度降低涂层的摩擦因数,优异的薄膜性能使得涂层厚度可减少到 1.5 μm 或 3 μm,从而保持切削刃的锋利度,可以有效的防止刀具在 CoCr 合金加工过程中产生硬化,确保工艺的稳定性[55]。针对钛、铝合金,研发的纳米晶的 TiB2 涂层,可在高达 1 000℃的高温下保持稳定,能有效防止积削瘤的产生。针对内螺纹的加工,开发 AlTiN-TiN 基的 TapCon 涂层,极高的致密度和极低的表面粗糙度可确保加工过程中稳定的低扭矩和可靠的无粘连排屑,涂层材料的高韧性可以在螺纹加工过程中最佳地保护切削刃。针对转位刀片的表面,开发 12 μm 厚的 AITiN 系涂层,可将制备温度控制在 500℃,保障基体性能不下降[56]

  • 图9 双 HiPIMS 模式预处理制备的 CNx 薄膜界面及不同预处理后的薄膜结合力

  • Fig.9 Interface of CNx film prepared by dual HiPIMS mode pretreatment and the film adhesion after different pretreatments

  • 鉴于 HiPIMS 沉积速率较低的问题,Sulzer 采用多技术耦合的方法,开发 METAPLAS. DOMINO 模块化技术平台,配备电弧增强的辉光放电 (AEGD)、先进等离子体辅助电弧(APA-Arc)以及 HiPIMS 溅射系统组成的 HI3 技术,其设备内部结构如图10a 所示[57],炉腔内壁配置有 4 个法兰板,其中 2 块法兰板用于安装先进等离子体辅助电弧,另外 2 块位于炉腔内相对的位置,用于安装 HiPIMS 的阴极。在沉积涂层之前,采用 AEGD 对工件进行离子清洗,在此环节会产生大量的惰性气体等离子体,AEGD 对反应气体的预离化最大程度地抑制膜层沉积阶段可能出现的靶中毒现象。这种模块式装置可以更好的实现混合涂层的制备,例如 Sulzers 开发了 SIBONICA 第一代涂层,利用 APA 技术制备 TiAlN 的底层,随后制备 TiAlN 和 SiBNC 的过渡层,最后利用 HiPIMS 技术制备顶部的 SiBCN 膜层,厚度为 1 μm。这样的涂层设计与制备技术,不仅保证涂层的制备效率,同时多结构的薄膜具备更好的强韧性与抗高温能力,在测试加工钛合金、硬化钢及镍基合金时,该技术沉积 SIBONICA 涂层的刀具寿命相比较于传统镀膜刀具使用寿命至少提高 50%。SHIMIZU 等[58]使用 DOMINO 模块中的 HiPIMS 在微成形冷加工模具表面制备的 TiAlN 涂层,表面更加光滑,具有更高的硬度和致密性,在磨损过程中,可以有效的抑制三体磨损的作用,减少材料的粘附,磨痕的表面更加平整,更有利于提高刀具、模具的寿命。

  • Balzers 作为硬质涂层领域的龙头企业,收购 Sulzers,其设备仍采用 HI3 的复合技术,同时针对 HiPIMS 技术进一步提出可调节脉冲的增强等离子体技术(S3p),通过脉冲持续时间、脉冲形状、电流密度的自由可调节性,为涂层设计开创自由的空间,同时使用 Balzers 独有的技术,消除 HiPIMS 放电过程的滞后现象,实现输出波形与输入波形的完全吻合,电压在脉冲持续时间内保持恒定,进而实现高功率脉冲的持续时间和电流强度的精确控制,如图11 所示[59]。更精确的波形控制,使得 S3p 技术能够准确的控制金属离化率,控制晶粒尺寸,获得比传统磁控溅射更加致密的涂层,而且没有电弧技术中的颗粒。利用 S3p 精确的控制技术,Balzers 开发了硬度高达 40 GPa 的无氢 DLC,卓越的硬度与碳涂层的低摩擦,以及光洁的涂层表面,适用于接触压力或滑动速度比较极端的磨损环境。S3p 技术制备的光滑的涂层,在模具的应用中更加方便脱模,在刀具表面具有更高的结合力与致密性,相比常规 HiPIMS 制备的薄膜,刀具寿命提高 117%[60]

  • 图10 HI3 技术装置及 SIBONICA 涂层

  • Fig.10 HI3 technical device and SIBONICA coating

  • 图11 Balzers 的 S3p 技术与其他 HiPIMS 的波形对比

  • Fig.11 Waveform comparison between Balzers s3p technology and other HiPIMS

  • 此外,国内多个单位也陆续研发基于 HiPIMS 的涂层装备系统,比如:中科院力学所于 2019 年装备 HiPIMS-001 镀膜机,搭载 6 套 HiPIMS 磁控溅射电源及阴极,可产生 Ti 离化率大于 80%,并在长春一汽、包头寰宇等公司的模具涂层上得到应用[61]; 北京丹普引入 Huttinger 的 TruPlasmaHighpulse4000 发生器,并装备到自身的镀膜设备上,实现了 HiPIMS 涂层设备基本构架。东莞华升真空与广东工业大学合作,陆续推出装备 HiPIMS 电源的 HM800 和 HM1000 两种涂层装备系统,配备四套独立的磁控阴极,并在阴极和工件架上都装配 HiPIMS 电源,主要用于数控刀具涂层、滚刀涂层、防腐蚀涂层等的制备,最大沉积速率 2.5 μm / h,涂层结合力可高达 130 N,广东汇成真空在 HiPIMS-800 镀膜机上实现全自动工作模式,可同时处理 1 800 件圆柄工具或 5 000 枚刀片。

  • 3 改进型高功率脉冲磁控溅射

  • HiPIMS 技术虽然可以实现较高的溅射材料离化率,但是其放电稳定性差,易打火,沉积速率低,且对不同材料的离化率差异较大,不利于工业产品的稳定性。因此针对 HiPIMS 的缺陷,发展一系列改进型 HiPIMS 技术,其主要集中在改进 HiPIMS 放电脉冲形式、改进阴极放电结构和利用电磁场控制等离子体输运三个方面。

  • 3.1 改进放电脉冲形式

  • HiPIMS 较高的峰值功率使得其放电非常接近弧光放电,很容易因为靶面某些点出现“打弧”现象,造成放电不稳定,因此 HiPIMS 电源的改进很大一方面在于抑制电弧的产生。多家电源公司也针对快速抑弧技术进行研究,但多数停留在数微秒到数十微秒量级。2018 年,哈工大推出其研制的快速抑弧技术,可以在 500 ns 内实现快速响应,从而实现电弧的快速切断和放电的再次发生,有效提高电源放电效率,提高镀膜稳定性。将 HiPIMS 单个脉冲分割成多个小脉冲形成的调制脉冲技术 (Modulated pulse power,MPP)[62],其放电波形如图12 所示[62],可以在一个大的脉冲周期内,放电电流仍保持较高的水平,而小脉冲又能避免电子的过渡积累,抑制其向电弧放电的过渡,因此稳定性得到明显提高。此外,由于等离子体演化的延迟作用,小脉冲关断期间,等离子体来不及消逝而保持下来,这就造成无电压时,等离子体放电仍在继续进行,大大降低阴极负担,从而可延迟大脉冲时间,使沉积效率大大翻倍。

  • 图12 典型 MPP 形式放电的脉冲电压、电流和功率变化

  • Fig.12 Typical MPP pulse showing the target voltage, current, and power evolution during one modulated pulse

  • 鉴于离子的回吸造成 HiPIMS 较低的沉积速率,以 Nano4Energy 为代表的多家单位提出双极性脉冲放电技术,其双极性电源的放电波形如图13 所示[63],即在正常的 HiPIMS 放电结束后,空间内仍存在大量的等离子体,通过在靶面施加反向电压,推动空间等离子体移向工件,有效利用空间等离子体,增加沉积速率。之后,哈工大在此基础上进一步提出在 HiPIMS 脉冲开始时设计更高的引弧脉冲激发等离子体,然后使用 HiPIMS 脉冲维持放电的双脉冲放电模式,其放电波形如图14 所示[64]。即放电的初始阶段,采用较高的电压激发产生高强度的放电,然后采用较低的电压维持该放电,这样可以降低放电的整体电压,降低离子的回吸而提升沉积速率。

  • 图13 传统 BP-HiPIMS 不同正向脉冲电压下波形图

  • Fig.13 Waveforms of conventional BP-HiPIMS with different positive voltage

  • 图14 双脉冲 HiPIMS 不同引燃脉冲电压及传统 HiPIMS 条件下靶电压和靶电流波形图

  • Fig.14 Waveforms of target voltage and target current of conventional HiPIMS and dual-pulse HiPIMS with different ignition voltages

  • 对于脉冲波形调制的 HiPIMS,企业界已经有一定的应用。比如:Hauzer[65]通过 MPP 调制技术开发放电波形如图15 的 HiPIMS+ 技术,通过波形的优化可有效抑制 HiPIMS 放电过程中的打火现象,制备出的薄膜更加致密光滑,沉积速率更高。Hauzer 公司对比 HiPIMS+ 与传统的直流溅射和电弧离子镀制备的 TiAlN 膜层,发现 HiPIMS+ 制备的刀具涂层组织更加致密,粗糙度是电弧离子镀的十分之一倍。在切削工程中,采用 HiPIMS+ 制备的 TiAlN 刀具涂层在湿加工不锈钢时,侧面磨损量比直流溅射的下降 66%,比电弧离子镀的下降 36%;在干加工不锈钢时,HiPIMS+ 制备的刀具表现同样最优,相比较于电弧离子镀的刀具磨损下降 48%,而直流溅射的刀具已经损坏,如图16 所示[66]。此外,Hauzer 公司[67]利用 HiPIMS+ 技术中多种参数可调的特性,能够沉积一种四面体非晶碳 ta-C 涂层,即无氢类金刚石碳(DLC)涂层,通过控制和优化功率、电流、电压占空比以及脉冲启动和关断时间,研发出工业级设备,使得这类 ta-C 涂层具有高硬度、低摩擦、低黏着性和光滑的优异性能,并实现产业化。德国 PVT 集团和上海新弧源分别依托 Nano4Energy的双极性HiPIMS电源开发了HiPIMS工业设备(Q-plex 系统),采用四组柱状磁控阴极形成非平衡闭合磁场,采用 180°可旋转磁钢,无需靶前挡板,具有独立辅助阳极,可有效提高离子利用率。沉积氮化钛涂层,在施加反向脉冲后,沉积速率相比未施加反向电压时提高 30%~50%。此外,施加反向电压后等离子体的能量分布范围更广,其能量可以达到施加反向电压的值,故采用该技术进行基底刻蚀清洗时,有利于过渡界面的原子共混,制备得到的 1 μm 厚的 DLC 涂层,结合力可超过 100 N。同时,利用反向脉冲的 HiPIMS 技术可以得到离子的高绕射性,可用于在长深比 1∶4 的凹槽或 1∶5 的内孔中制备 AlTiN 涂层,并实现 HF1 级的结合强度(图17[68])。

  • 图15 Hauzer 的 HiPIMS+ 技术

  • Fig.15 The HiPIMS+ technology of Hauzer

  • 图16 不同制备工艺制备的 TiAlN 薄膜刀具的磨损量对比

  • Fig.16 Wear rate of the drillings deposited by different methods

  • 图17 采用双极性脉冲制备高结合力 DLC 与 AlTiN 涂层

  • Fig.17 High bonding strength DLC and AlTiN coating prepared by bipolar pulse

  • 3.2 改进阴极结构

  • 针对 HiPIMS 放电问题,北京大学深圳研究生院主要从溅射阴极的角度进行改进,认为不一样的放电模式也需要不一样的放电结构,其借鉴磁过滤电弧中放电和沉积不在同一方向的思路,研发适用于 HiPIMS 放电的内筒型磁控溅射阴极结构,如图18 所示[69]。该筒型溅射阴极结构可以将 HiPIMS 放电与等离子体限制在圆筒内,从而实现类似空心阴极效应的等离子体密度增强效应,对靶面溅射产生的原子可以在筒内与电子碰撞而电离,在筒口处设置与筒同轴的磁场,将离子束缚,并以束流的形式引出,而未电离的溅射粒子沿初速度继续向对面运动,沉积在对面靶材表面或参与自溅射,直到电离后沿磁力线输出[70-71]。这种结构的放电,可以大幅度提高 HiPIMS 的等离子体密度,且对于不同的靶材料,其输出的等离子体束流中溅射粒子的离化率都接近 100%,在偏压的作用下可以有效提高离子能量的一致性和涂层结构的可控性。此外,即便出现偶尔的“打弧”现象,筒型结构也将其限制在内部,而不会随等离子体束流输出到工件表面,破坏涂层质量。

  • 图18 筒型阴极结构示意图

  • Fig.18 Diagram of the cylinder sputtering cathode

  • 李体军等[72]对该筒型结构阴极的磁场进行优化,并通过等离子体光谱仪分析 Cr 靶的放电情况,发现该筒型阴极在 HiPIMS 放电时,可以产生较高比例的高价 Cr2+离子,如图19 所示。在制备 CrN 时的沉积速率是常规直流磁控溅射的 4 倍,同时实现高离化和高速沉积[73]。筒型阴极制备的 CrN 涂层硬度高达 37 GPa,约为常规 CrN 涂层硬度的 1.5 倍,并且在纳米微柱压缩过程中发现,涂层在 35%的压缩变形后仍未发生明显脆性断裂,表现出类似金属的变形能力。通过透射电子显微镜观察发现,该方法制备的 CrN 晶粒尺寸约 32 nm,晶粒内部含有高密度的纳米孪晶缺陷结构,孪晶厚度平均为 5.9 nm,如图20 所示[74]

  • 图19 筒型源磁场优化前后 Cr 靶放电时不同粒子的密度

  • Fig.19 Particle density during Cr discharge by cylinder sputtering cathode

  • 图20 筒型阴极制备的 CrN 涂层中的孪晶

  • Fig.20 Twin crystals of CrN coating prepared by cylindrical cathode

  • 3.3 电磁场强化的 HiPIMS 放电

  • HiPIMS 放电与沉积过程不仅受电源波形和阴极的影响,还与放电过程中等离子体输运区间的电磁场环境有关。HiPIMS 放电强度越高,粒子碰撞越激烈,发散角度也更广,很多粒子会进行侧向移动到非镀膜区,造成溅射粒子的利用率下降,故部分研究者尝试改善真空室的电磁场环境,以提高 HiPIMS 放电强度和溅射粒子利用率。GANESAN 等[75]在使用 Al 靶进行 HiPIMS 放电时,通过在靶前施加环形磁场,降低溅射粒子向真空腔壁的漂移,促进其利用效率,如图21 所示[75],涂层的沉积速率提升 3~4 倍。同时,外加磁场还增加了放电强度,使得 Al 的二价离子的光谱强度得到大幅提升。李刘合等[76]在研究双极性 HiPIMS 放电时,通过施加辅助阳极,促使离子向镀膜区汇聚,镀膜区的离子密度提升了 2~6 倍,如图22 所示[76]

  • 图21 传统 HiPIMS 放电和施加外部磁场放电粒子扩散示意图

  • Fig.21 Particle diffusion diagram of traditional HiPIMS and HiPIMS with external magnetic field

  • 图22 施加辅助阳极的 HiPIMS 放电示意图

  • Fig.22 Discharge diagram of HiPIMS with external anode

  • 李春伟等[77]分别研究磁场增强、电场增强及电磁场共同增强的 HiPIMS 放电效果,如图23 所示[77],发现无增强的 HiPIMS 放电,大部分电子移向真空腔壁,电子会吸引一部分离子到腔壁而造成浪费,降低沉积速率;通过外加磁场,可以约束电子在靶正前方镀膜区;施加适量的辅助电场(辅助阳极),可以进一步促进电子集中在镀膜区,此时 V 靶放电的离化率得到显著增强,V 膜沉积速率提升 30%。除单独在镀膜区施加磁场电场外,闭合磁场的设计也能避免等离子体向真空墙壁的扩散,提高溅射离子利用率。崔岁寒等[78]的模拟结果显示,通过在真空腔体内合理布局靶位置和磁场方向,形成多级闭合磁场,能够将边缘电子溢出比降低至 3%,镀膜区电子密度可以提升 42.25%到 53.41%,如图24 所示[78]

  • 图23 不同外部电磁场下电子扩散示意图

  • Fig.23 Electrons diffusion at different electromagnetic field

  • 图24 镀膜区域在不同磁场配置的电子密度

  • Fig.24 Electron density of different magnetic field configurations in the coating area

  • 4 持续高功率磁控溅射

  • 4.1 C-HPMS 的发展和放电特性

  • 持续高功率磁控溅射(C-HPMS)的研究是伴随着自溅射概念的提出而发展的。早在 19 世纪 90 年代,磁控溅射就已经成为一个热门技术,但是磁控溅射的放电离不开惰性气体(多为 Ar)的参与。因此 Ar 不可避免地会在膜层沉积过程中进入膜层引起孔洞缺陷,影响膜层性能[79]。研究者提出采用溅射出的金属离子反向轰击靶材产生自溅射,来替代 Ar 离子对靶材的溅射,以期消除 Ar 离子的参与[80],而这种自溅射需要较强的离子密度,需要依赖较高的放电功率密度才能实现。

  • 1990 年,KUKLA 等[81]为提升磁控溅射的沉积速率,将传统阴极的纯磁场约束转变为磁场和电场混合约束模式,可以实现高达 205 W / cm2 的放电功率密度。1993 年,POSADOWSKI 等[82]也利用电磁场不怕高温的特点设计出能在超高功率密度下放电的溅射阴极,据报道功率密度可高达 1 kW / cm2。 POSADOWSKI 等[82]在不同气压和不同靶功率密度下对 Cu 靶放电的等离子体光谱进行研究,发现在氩气参与下,随着靶面功率密度从 30~40 W / cm2 提高到 350~400 W / cm2,氩气主导的气体放电,逐渐演变成金属 Cu 的放电,如图25a 所示[82],这一现象主要归因于高功率密度促使靶面温度提升而导致的 “气体稀薄” 效应[83]。而在没有Ar气参与时,可以更加明显的观测到金属 Cu 光谱的增加。同时,在 400~410 nm 波段范围内,可以明显发现 Cu 离子的光谱(404.3 nm)相比铜原子的光谱(402.3 nm,406.3 nm)强度增加更多,表明 Cu 离子比例的增加,如图25b 所示[82]

  • 图25 不同功率密度放电下等离子体的光谱数据

  • Fig.25 OES at different discharge power density

  • 但是通过电来实现高强度的磁场十分困难,因此该研究一直停留在研究阶段。随着 HiPIMS 技术的发展,高强度放电的杰出效果进一步被学界和企业界认知,但脉冲方式带来的放电不稳定性,尤其是低沉积效率使得发展连续的高强度放电越来越迫切。为进一步探究持续高功率磁控溅射放电特性和实现的可行性,北京大学陈磊等[84] 通过仿真的方法建立 C-HPMS 放电的整体模型 (图26),并将 C-HPMS 放电中存在热电子的积累问题和由此导致的温升问题引入仿真模型(虚线箭头所示)。通过计算发现 Al 和 Cu 在分别 183 W / cm2 和 176 W / cm2 的功率密度下,即可实现与 HiPIMS 相似的离化率(图27[84]),但计算得到的沉积速率(图28[84])却远高于 HiPIMS,在 180 W / cm2 功率密度下,Al 和 Cu 的沉积速率分别是 HiPIMS 的 26 倍和 30 倍。该结果从理论角度给出 C-HPMS 离化率和沉积速率的量化数据,证明 C-HPMS 放电中热电子积累和气体稀薄效应可以使其在远低于 HiPIMS 峰值功率密度的放电条件下实现类似的溅射材料离化率,但同时可将沉积速率提高数十倍。

  • 图26 C-HPMS 放电的整体模型

  • Fig.26 The global discharge model of C-HPMS

  • 图27 Al 和 Cu 靶 C-HPMS 和 HiPIMS 放电离化率的变化

  • Fig.27 The ionization rate of Al and Cu by C-HPMS and HiPIMS discharge

  • 图28 Al 和 Cu 靶 C-HPMS 放电沉积速率和 HiPIMS 对比

  • Fig.28 Depositionrate of Al and Cu by C-HPMS compared with HiPIMS

  • 鉴于此,北京大学吴忠振等在 2016 年后便开始探索通过原始的磁铁提供磁场实现数百 W / cm2 功率密度放电的溅射阴极结构,并于 2019 年通过对阴极结构的改进和优化,解决高功率密度放电的靶材冷却问题,在不牺牲靶材利用率的前提下,将常见金属和合金靶材的稳定放电功率密度提升至 100~300 W / cm2 以上。目前,已经推出 127 mm×300 mm、 127 mm×800 mm、127 mm×1 200 mm 等多款不同尺寸的高功率磁控溅射阴极,如图29 所示[84-85],并依托该技术开展多方面的应用探索。

  • 图29 C-HPMS 溅射阴极及在不同功率密度下 Cu 靶的放电

  • Fig.29 C-HPMS sputtering cathode and its Cu discharge at different power density

  • 4.2 C-HPMS 沉积金属膜

  • 正是 C-HPMS 持续性高功率密度放电带来的高速沉积和高离化率,使其在沉积金属膜领域具有独特优势。BOO 等[92]采用持续高功率磁控溅射在不同功率密度下沉积铜膜,发现随着功率密度的增加,沉积速率不断提高,在 115 W / cm2 的功率密度下沉积速率可以高达 2.8 μm / min(图30a[86]),并且沉积的膜层纯度较高,XPS 结果表明 Cu 中不存在 O 和 C 等杂质元素(图30b[86]),避免常规磁控溅射沉积过程中氧化污染的问题,因此膜层的电阻率可低至 20 nΩ·m。刘亮亮等[87]也以 Cu 膜为例研究 C-HPMS 沉积金属膜层的沉积特性,发现其等离子体输运距离大大提高,即使在靶基距 30~40 cm 条件下,在 140 W / cm2 的功率密度时,Cu 膜的沉积速率也可高达 1.72 μm / min。由于 C-HPMS 离化率高,因此能量控制更便捷,可控范围更广,通过控制沉积过程中的温度和能量,膜层结构可控范围更广,可以得到从粗大的柱状晶到致密的纳米晶貌,如图31 所示[87]。在高基体温度、低离子能量沉积条件下,可以制备得到粗大的 Cu(111)柱状晶,通过调节 Cu 膜的表面粗糙度,在空气中自然氧化形成 CuO,可以实现大于 150°的超疏水的特性,为大面积便捷制备无机超疏水材料提供可能[88]。在高离子能量作用下,控制基体温度又可以得到致密度极高的纳米晶 Cu 膜,通过能量的控制可在聚酰亚胺、 PET 等基底沉积高致密度 Cu 膜,电阻率低至 4.3×10−8 Ω·m,并可获得高达 0.76~0.87 N / mm 的结合强度,用于高端覆铜板的生产制造中,如图32 所示[89]

  • 图30 Cu 膜沉积速率和 XPS 数据

  • Fig.30 Deposition rate and XPS result by C-HPMS

  • 依托该技术,课题组面向电子、电路行业,分别针对陶瓷基覆铜板和高端柔性覆铜板开发连续生产线设备。其中,陶瓷基覆铜板生产线可以用于批量生产以氮化铝、氧化铝、氮化硅、碳化硅等为基底的陶瓷覆铜板、绝缘栅双极型晶体管(IGBT)、层压电容(MLCC)电极层等产品,届时单线可实现 140 万片 / 月的陶瓷基覆铜生产能力,如图33a 所示[89]。自主研发的卷对卷柔性覆铜板生产线可以用于批量生产以聚酰亚胺(PI)、聚四氟乙烯(PTFE) 等为基底的高端柔性覆铜板,以及以聚乙烯(PET)、聚丙烯(PP)等为基底的导电集流体层等产品,试验线正在安装调试中,如图33b 所示[89]

  • 图31 不同温度和能量下沉积 Cu 膜的结构和性能

  • Fig.31 Structure and properties of Cu films deposited at different temperature and ion energy by C-HPMS

  • 图32 高端覆铜板产品

  • Fig.32 High quality of copper clad products

  • 图33 自主研发的覆铜板连续生产设备

  • Fig.33 Continuous line equipment for copper clad products

  • 4.3 C-HPMS 制备氧化物涂层

  • 氧化铝具有较高的绝缘性和力学性能,在电路绝缘、显示面板防护等领域有重要应用,但传统的磁控溅射制备氧化铝涂层时,很容易在氧气气氛下中毒,即便使用氧化铝靶材和射频磁控溅射法,其沉积效率也极低,一般不足 20 nm / min,严重影响生产效率。

  • 一般来说,靶面中毒主要是由于靶面的溅射刻蚀低于靶面化合,使得靶面形成绝缘氧化铝,终止放电造成的。而 C-HPMS 的持续高功率密度放电一方面可以产生高速的靶面刻蚀,使反应性气体来不及在靶面化合即被溅射离开;另一方面,C-HPMS 的持续高功率放电可在靶面附近产生高温,形成强烈的气体稀薄效应,减少反应气体靠近靶面,从而避免靶面化合,从而使靶面长期工作在非中毒状态,大幅度提高氧化铝的沉积速率。CUI 等[90]以反应溅射制备氧化铝为例,从理论和试验上研究 C-HPMS 技术的抗中毒能力。研究发现通过不断提升靶面功率密度,高功率放电使靶面对氧气的容忍度更高, O2 流量可以不断提升(图34a、34b[90]),并且等离子体中的 O / Al 比例(图34c)和靶面化合物的覆盖率(图34d)均大幅下降,说明 C-HPMS 在抗靶面中毒方面具有显著优势。

  • 采用 C-HPMS 技术使用 Al 靶放电制备的 Al2O3 时,其反应气体O2与惰性气体Ar 的比例可高达1∶1,沉积速率可高于 100 nm / min,如图35 所示[90],在保证镀膜区间氧气充足的条件下,其沉积速率可高达 400 nm / min 以上,采用 C-HPMS 制备的氧化铝膜层从绝缘性和透过率上,均远远优于常规磁控溅射制备的膜层。由于制备技术对抗靶面中毒性能的提升,制备的工艺窗口拓宽,从而更容易控制膜层的元素含量,从而实现对 Al2O3 膜层的性能调控。在研究过程中发现,随着氧气流量的增加,膜层中的氧含量也增加,更多的 Al 与 O 键合,Al 周边的自由电子密度逐渐减小,电阻率上升。由于反应溅射氧含量窗口被大幅度拓宽,使得反应溅射中的氧流量可以在较大范围内连续调控,从而可以控制氧化铝薄膜中的含氧量,实现薄膜电阻率在 10~1012 Ω ·m 之间连续可调,如图36 所示[91],进而实现 AlOx从导体到半导体,再到绝缘体的转变,以满足多种导电性能的需求,可用于加速器、传感器、甚至量子态的构建中[91]

  • 图34 持续高功率制备 Al2O3 种不同功率密度下靶面中毒情况

  • Fig.34 Poisoning of the target surface under continuous high-power preparation of Al2O3 with different power densities

  • 图35 不同功率密度下氧化铝性能对比

  • Fig.35 Properties of Al2O3 films deposited at different power density

  • 图36 C-HPMS 制备的 AlOx 的电阻与 O2 流量的关系[91]

  • Fig.36 Relationship between the resistance and the flow of O2 of AlOx prepared by C-HPMS

  • 4.4 C-HPMS 制备硬质涂层

  • 正是由于 C-HPMS 在等离子体放电、沉积效率,以及宽反应溅射窗口方面的优势,其在常规磁控溅射不擅长的硬质涂层领域也具有较强的应用前景。

  • LIU 等[92]对比研究普通磁控溅射(MS)、 HiPIMS、电弧离子镀(AIP)和 C-HPMS 沉积的 TiAlN 涂层,发现 HiPIMS、C-HPMS 和 AIP 制备的涂层相比常规磁控溅射制备的涂层更加致密, HiPIMS 和 AIP 制备的涂层表面有不同程度的大颗粒,影响涂层表面质量,而 C-HPMS 表面非常的光滑、平整,如图37 所示[92]。C-HPMS 的沉积速率可高达 400 nm / min,远高于其他磁控溅射,甚至优于电弧离子镀。C-HPMS制备的涂层硬度和HiPIMS、电弧离子镀制备的涂层硬度相当,均在 33 GPa 左右 (图38[92])。由于离化率较高,离子轰击作用强, C-HPMS 制备得到的涂层结合力可以高达 74 N,远高于相同沉积参数下的 HiPIMS 样品(图39[92])。综上所述,C-HPMS 制备涂层时,不仅沉积速率高,而且放电稳定,可以避免 HiPIMS 和电弧的打火导致的大颗粒,因此具有较高的表面光滑度和涂层致密度,力学性能好、结合力高,相比普通磁控溅射、HiPIMS 和电弧离子镀技术具有明显的综合优势。

  • 图37 采用不同方法制备的膜层形貌

  • Fig.37 Morphology of TiAlN coatings deposited by different methods

  • 图38 不同方法制备的 TiAlN 的力学性能

  • Fig.38 Mechanical properties of TiAlN coatings deposited by different methods

  • 图39 不同方法制备得到的 TiAlN 的结合力

  • Fig.39 Adhesion of TiAlN coatings deposited by different methods

  • 依托上述技术,北大团队研发新一代多级闭合磁场的高功率涂层系统 C-HS1,其设备和磁场布局如图40 所示[93],该设备配备高功率磁控溅射阴极 4 套,阳极层离子源 8 套,其中 4 个离子源和 4 个磁控阴极呈间隔室均匀分布在腔体周边,另外 4 个离子源位于腔体中部,阴极和离子源之间形成多级闭合磁场,可以大幅降低电子损失,提升溅射金属和反应气体粒子的离化。使用该系统制备出的常规硬质涂层的硬度和表面粗糙度如表2 所示[92],涂层的力学性能已经达到甚至超过电弧离子镀的水平,但涂层具有较低的表面粗糙度,较高的涂层致密度,在高温、高腐蚀环境有显著优势。

  • 表2 C-HPMS 制备的不同涂层性能对比

  • Table2 Properties of different coatings deposited by C-HPMS

  • 图40 C-HS1 闭合磁场镀膜设备

  • Fig.40 The diagram of C-HS1 vacuum chamber

  • 5 结论与展望

  • 高离化磁控溅射技术可以产生高密度、高离化、 “清洁”的单核离子束流,使得沉积涂层过程中离子能量可控性强、制备的涂层结构致密、性能优异,且表面缺陷少,在表面高精度需求、高温、高腐蚀环境体现出独特的优势,受到国内外的广泛的关注。自高功率脉冲磁控溅射起,国外经过多年的发展,多家公司已经开发出多种具有自主知识产权的涂层技术、系统装备与涂层体系。相对来说,国内仍处于研究阶段,但是国内外差距并不大,以哈尔滨工业大学、大连理工大学、北京大学深圳研究生院、中国科学院宁波材料技术与工程研究所、中国科学院力学研究所、北京航空航天大学等为代表的单位已经在技术上取得很大进步,甚至部分领域已经超过国外。但是,我国在高离化磁控溅射的应用,以及系统装备的研发上仍与国外企业存在一定的差距,比如:高功率电源的稳定性与智能化、磁控溅射设备的集成化与系统协调性、高质量高性能涂层设计与体系完整性上,都需要高校、科研院所、企业、需求方等多方面的交流与合作,实现多学科、跨领域的协同进步与创新,开发具有国内自主知识产权的技术、装备与膜层体系,进一步带动我国表面涂层与防护领域的进步。

  • 参考文献

    • [1] ZHANG Guojun,LI Bin,JIANG Bailing,et al.Microstructure and mechanical properties of multilayer Ti(C,N)films by closed-field unbalanced magnetron sputtering ion plating[J].Journal of Materials Science & Technology,2010,26(2):119-124.

    • [2] ANDERS A.Structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.

    • [3] 王福贞,武俊伟.现代离子镀膜技术[M].北京:机械工业出版社,2021.WANG Fuzhen,WU Junwei.Modern ion plating technology[M].Beijing:China Machine Press,2021.(in Chinese)

    • [4] PETROV I,ADIBI F,GREENE J E,et al.Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition[J].Journal of Vacuum Science & Technology A,1992,10(5):3283-3287.

    • [5] IVANOV I,KAZANSKY P,HULTMAN L,et al.Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering[J].Journal of Vacuum Science & Technology A,1994,12(2):314-320.

    • [6] YAMASHITA M.Fundamental characteristics of built‐ in high-frequency coil-type sputtering apparatus[J].Journal of Vacuum Science & Technology A,1989,7(2):151-158.

    • [7] ROSSNAGEL S M,HOPWOOD J.Metal ion deposition from ionized mangetron sputtering discharge[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,1994,12(1):449-453.

    • [8] YOSHIDA Y.Low-gas-pressure sputtering by means of microwave-enhanced magnetron plasma excited by electron cyclotron resonance[J].Applied Physics Letters,1992,61(14):1733-1734.

    • [9] MUSIL J.Microwave plasma:its characteristics and applications in thin film technology[J].Vacuum,1986,36(1):161-169.

    • [10] MUSIL J.Deposition of thin films using microwave plasmas:Present status and trends[J].Vacuum,1996,47(2):145-155.

    • [11] 张磊,施立群.微波ecr等离子体辅助磁控溅射沉积装置:中国,200910046033.9[P].2010-08-11.ZHANG Lei,SHI Liqun.Microwave ecr plasma assisted magnetron sputtering deposition device:China,200910046033.9[P].2010-08-11.(in Chinese)

    • [12] 李灿民,魏荣华.等离子增强磁控溅射沉积 Ti(Al)基纳米复合涂层在铸铝模具上的应用[J].中国表面工程,2012,25(2):1-7.LI Canmin,WEI Ronghua.Ti(Al)based nanocomposite coating produced by plasma enhanced magnetron sputtering applied in aluminum die casting[J].China Surface Engineering,2012,25(2):1-7.(in Chinese)

    • [13] MATOSSIAN J,WEI R,VAJO J,et al.Plasma-enhanced magnetron-sputtered deposition(PMD)of materials[J].Surface and Coatings Technology,1998,108:496-506.

    • [14] FORTUNA S V,SHARKEEV Y P,PERRY A J,et al.Microstructural features of wear-resistant titanium nitride coatings deposited by different methods[J].Thin Solid Films,2000,377:512-517.

    • [15] WEI Ronghua,VAJO J J,MATOSSIAN J N,et al.Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools[J].Surface and Coatings Technology,2002,158:465-472.

    • [16] WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface and Coatings Technology,2006,201(7):4453-4459.

    • [17] EL-RAHMAN A M,WEI Ronghua.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface and Coatings Technology,2014,241:74-79.

    • [18] WEI R H,LANGA E,ARPS J,et al.Erosion resistance of thick nitride and carbonitride coatings deposited using plasma enhanced magnetron sputtering[J].Plasma Processes and Polymers,2007,4(S1):693-699.

    • [19] WEI R H.Plasma enhanced magnetron sputter deposition of Ti-Si-C-N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5):538-544.

    • [20] LIN J L,WEI R H,BITSIS D C,et al.Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications[J].Surface and Coatings Technology,2016,298:121-131.

    • [21] 魏荣华.等离子增强磁控溅射 Ti-Si-C-N 基纳米复合膜层耐冲蚀性能研究[J].中国表面工程,2009,22(1):1-10.WEI R H.Ti-Si-C-N based nanocomposite coatings produced by plasma enhanced magnetron sputter deposition and its erosion resistance[J].China Surface Engineering,2009,22(1):1-10.(in Chinese)

    • [22] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.

    • [23] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Pyhsics Review,2015 32(S1):52-58.(in Chinese)

    • [24] BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2005,23(1):18-22.

    • [25] LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//广东省真空学会学术年会论文集,湛江:广东省真空学会,2015.LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//Proceedings of the Annual Conference of Guangdong Vacuum Society,Zhanjiang:Guangdong Vacuum Society,2015:8.

    • [26] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG xiaobo,ZHANG shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)

    • [27] BOUZAKIS K D,MICHAILIDIS N,SKORDARIS G,et al.Cutting with coated tools:Coating technologies,characterization methods and performance optimization[J].CIRP Annals,2012,61(2):703-723.

    • [28] STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:the impact of nitrogen admixture in HIPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.

    • [29] 雷明凯,朱小鹏,李昱鹏,等.泡沫塑料高功率脉冲磁控溅射表面金属化方法:中国,CN130122452B[P].2013-03-11.LEI Mingkai,ZHU Xiaopeng,LI Yupeng,et al.Surface metallization method for foamed plastic by adopting high-power pulse magnetron sputtering:China,CN130122452B[P].2013-03-11.(in Chinese)

    • [30] ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HIPIMS techniques[J].Surface and Coatings Technology,2020,394:125890.

    • [31] AIJAZ A,JI Yuxia,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [32] ABIDI M,ASSADI A A,BOUZAZA A,et al.Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HIPIMS on polyester cloth under low intensity visible light[J].Applied Catalysis B:Environmental,2019,259:118074.

    • [33] SITTINGER V,LENCK O,VERGÖHL M,et al.Applications of HIPIMS metal oxides[J].Thin Solid Films,2013,548:18-26.

    • [34] 李迎春.高功率脉冲磁控溅射在微深孔镀膜上的应用 [C/CD]//第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.Li Yingchun.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)

    • [35] BOBZIN K,BAGCIVAN N,IMMICH P,et al.Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology[J].Journal of Materials Processing Technology,2009,29(1):165-170.

    • [36] SHIMIZU T,KOMIYA H,TERANISHI Y,et al.Pressure dependence of(Ti,Al)N film growth on inner walls of small holes in high-power impulse magnetron sputtering[J].Thin Solid Films,2017,624:189-196.

    • [37] SUBE T,KOMMER M,FENKER M,et al.Reduced friction on γ-Mo2N coatings deposited by high power impulse magnetron sputtering on microstructured surfaces[J].Tribology International,2017,106:41-45.

    • [38] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.

    • [39] 巩春志.管筒内壁自激射频放电等离子体浸没离子注入方法研究[D].哈尔滨:哈尔滨工业大学,2008.GONG Chunzhi.Plasma immersionn ion implantation of cylindrical bore based on self excited radio-frequency glow discharge[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [40] 柯培玲,王振玉,张栋,等.一种制备润湿性可控的高光滑高硬TiN薄膜的方法:中国,CN103469168B[P].2015-09-30.KE Peiling,WANG Zhenyu,ZHANG Dong,et al.A kind of method preparing high hard TiAlN thin film of the controlled high smooth of wettability:China,CN103469168B[P].2015-09-30.(in Chinese)

    • [41] WEINBACH M.iPhone 13 will collect fewer fingerprints[EB/OL].MacRumors,(2021-04-05).(2021-04-05).https://www.macrumors.com/2021/04/05/iphone-13-will-collect-fewer-fingerprints/.

    • [42] YANG J,TSOU H K,CHEN Y H,et al.Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film[J].Materials Science and Engineering:C,2015,57:58-66.

    • [43] GANESAN R,AKHAVAN B,HIOB M A,et al.HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility[J].Carbon,2018,139:118-128.

    • [44] TSUNOYAMA H,ZHANG C,AKATSUKA H,et al.Development of high-flux ion source for size-selected nanocluster ions based on high-power impulse magnetron sputtering[J].Chemistry Letters,2013,42(8):857-859.

    • [45] ZHANG C H,TSUNOYAMA H,AKATSUKA H,et al.Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation[J].The Journal of Physical Chemistry A,American Chemical Society,2013,117(40):10211-10217.

    • [46] PILCH I,SÖDERSTRÖM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles[J].KONA Powder and Particle Journal,2014,31:171-180.

    • [47] PILCH I,SÖDERSTRÖM D,BRENNING N,et al.Size-controlled growth of nanoparticles in a highly ionized pulsed plasma[J].Applied Physics Letters,2013,102(3):033108.

    • [48] PRYSIAZHNYI V,KRATOCHVIL J,KAFTAN D,et al.Growth of hard nanostructured ZrN surface induced by copper nanoparticles[J].Applied Surface Science,2021,562:150230.

    • [49] MAYORAL A,MARTÍNEZ L,GARCÍA-MARTÍN J M,et al.Tuning the size,composition and structure of Au and Co50Au50 nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis[J].Nanotechnology,2018,30(6):065606.

    • [50] 李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposion of tin coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [51] 桂刚.2 kA 高功率脉冲磁控溅射电源研制及 Cr-DLC 薄膜制备[D].哈尔滨:哈尔滨工业大学,2011.GUI Gang.Development of 2 kA high power pulsed magnetron sputtering power supply and preparation of Cr-DLC films[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [52] LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.

    • [53] BROITMAN E,CZIGÁNY Z,GRECZYNSKI G,et al.Industrial-scale deposition of highly adherent CNx films on steel substrates[J].Surface and Coatings Technology,2010,204(21):3349-3357.

    • [54] LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.

    • [55] CemeCon.涂层技术进入医疗制造行业——HIPIMS 涂层加工铬钴合金[J].金属加工(冷加工),2020(11):24.CemeCon.Coating technology enters medical maufacturing industry-Machining chromium cobalt alloy woth HiPIMS coating[J].Metal Working(Metal Cutting),2020(11):24.(in Chinese)

    • [56] CemeCon Suzhou Coating Technology Co.Ltd.TapCon®Gold-The coating for the perfect thread[EB/OL].[2021-12-26].https://www.cemecon.de/cn-en/facts/tapconrgold-coating-perfect-thread.

    • [57] ERKENS G,VETTER J,MULLER J.SIBONICA——采用新型高离化混合PVD工艺HI3技术生成的抗氧化性能最佳的新一代刀具涂层[J].工具技术,2013,47(9):18-24.ERKENS G,VETTER J,MULLER J.SIBONICA,The next generation of highest oxidation resistat tool coatings synthesised by means of novel high ionization hybrid PVD processing H13[J].Tool Engineering,2013,47(9):18-24.(in Chinese)

    • [58] SHIMIZU T,KOMIYA H,WATANABE T,et al.HIPIMS deposition of TiAlN films on inner wall of micro-dies and its applicability in micro-sheet metal forming[J].Surface and Coatings Technology,2014,250:44-51.

    • [59] Vnv.Neue Schichtgeneration läutet glatte Revolution ein.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.Vnv.Neue Layer generation heralds smooth revolution.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.

    • [60] S3p-Scalable pulsed power plasma[EB/OL].[2021-12-26].https://www.oerlikon.com/balzers/us/en/portfolio/surface-technologies/pvd-based-processes/s3p-scalable-pu lsed-power-plasma/.

    • [61] 高能脉冲磁控溅射镀膜机[J].中国科学院院刊,2020,35(Z1):83.High power impulse magnetron sputtering(HiPIMS)coating machine[J].Bulletin of Chinese Academy of Sciences,2020,35(Z1):83.(in Chinese)

    • [62] PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films,2011,520(5):1559-1563.

    • [63] 吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system [J].Vacuum,2019,56(6):1-6.(in Chinese)

    • [64] 吴厚朴,田修波,张新宇,等.双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J].金属学报,2018,55(3):299-307.WU Houpu,TIAN Xiubo,ZHANG Xinyu,et al.Discharge characteristics of novel dual-pulse HiPIMS and deposition of CrN films with high deposition rate [J].Acta Metallurgica Sinica,2018,55(3):299-307.(in Chinese)

    • [65] SIMONE.Hauzer:excellent results with HIPIMS and HIPIMS+ technology[EB/OL]//GlassOnline.com-the world’s leading glass industry website.(2010-06-07)[2022-03-13].https://www.glassonline.com/hauzerexcellent-results-with-hipims-and-hipims-technology/.

    • [66] EERDEN M,PAPA F,KRUG T,et al.Higher tool productivity due to new generation of PVD coatings[J].Vakuum in Forschung und Praxis,2012,24(1):6-8.

    • [67] PAPA F,TIETEMA R,KOLEV I,et al.Apparatus and method for depositing hydrogen-free ta-c layers on workpieces and workpiece:China,US20170167010A1[P].2017-06-15.

    • [68] 冯利民,Ivan Fernandez Martinez,Frank Papa.带有正脉冲周期的HIPIMS电源-更开放的涂层工艺窗口和更高的沉积速率[C/CD]//深圳市真空学会第一期学术沙龙.深圳:2018.FENG limin,Ivan Fernandez Martinez,Frank Papa.The application of a short positive voltage reversal in HIPIMS-Widening the process window and increasing deposition rate [C/CD]//The first academic salon of Shenzhen Vacuum Society.Shenzhen:2018.(in Chinese)

    • [69] 肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):294-302.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):294-302.(in Chinese)

    • [70] 崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):178-189.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta physica Sinica,2019,68(19):178-189.(in Chinese)

    • [71] 崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):285-292.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source [J].Acta physica Sinica,2017,66(9):285-292.(in Chinese)

    • [72] 李体军,崔岁寒,刘亮亮,等筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.LI Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode [J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)

    • [73] 吴忠振,肖舒,崔岁寒,等.高离化磁控溅射技术的高速沉积[C/CD]//粤港澳大湾区真空科技与宽禁带半导体应用高峰论坛暨2017年广东省真空学会学术年会.中国广东惠州:2017.WU Zhongzhen,XIAO Shu,CUI Suihan,et al.High-speed deposition of high-ionization magnetron sputtering technology [C/CD]//Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology and Wide Bandgap Semiconductor Application Summit Forum and 2017 Guangdong Vacuum Society Academic Annual Meeting.Huizhou Guangdong China:2017.(in Chinese)

    • [74] 吴忠振.陶瓷涂层中纳米级缺陷构筑及其强韧性研究 [C/CD]//中国稀土学会2021学术年会论文摘要集,成都:中国稀土学会,2021.WU Zhongzhen.Research on nano-scale defects construction and strength and toughness in ceramic coatings[C/CD]//Abstracts of 2021 Academic Conference of Chinese Rare Earth Society,Chengdu:Chinese Rare Earth Society,2021.(in Chinese)

    • [75] GANESAN R,AKHAVAN B,DONG X,et al.External magnetic field increases both plasma generation and deposition rate in HiPIMS[J].Surface and Coatings Technology,2018,352:671-679.

    • [76] HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.

    • [77] 李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53(2):84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong et al.High deposition characteristic of(E-MF)HiPIMS at high ionization rate [J].Journal of Harbin Institute of Technology,2021,53(2):84-92.(in Chinese)

    • [78] 崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):233-244.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of the closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):233-244.(in Chinese)

    • [79] WILSON G W,SINHA B P.The effects of absorbed argon on the electrical properties of thin copper films[J].Thin Solid Films,Elsevier,1971,8(3):207-211.

    • [80] HOSOKAWA N,TSUKADA T,MISUMI T.Self ‐ sputtering phenomena in high‐rate coaxial cylindrical magnetron sputtering[J].Journal of Vacuum Science and Technology,American Vacuum Society,1977,14(1):143-146.

    • [81] KUKLA R,KRUG T,LUDWIG R,et al.A highest rate self-sputtering magnetron source[J].Vacuum,1990,41(7-9):1968-1970.

    • [82] POSADOWSKI W M,BRUDNIK A.Optical emission spectroscopy of self-sustained magnetron sputtering[J].Vacuum,1999,53(1-2):11-15.

    • [83] ROSSNAGEL S M,KAUFMAN H R.Current-voltage relations in magnetrons[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1988,6(2):223-229.

    • [84] CHEN Lei,CUI Suihan,TANG Wei,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.

    • [85] 北京大学新型镀膜技术与装备实验室.超大功率磁控溅射技术与应用 [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7%b3%bb%e7%bb%9f/.New coating technology and equipment laboratory Peaking University.Ultra-high power magnetron sputtering technology and application [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7% b3%bb%e7%bb%9f/.(in Chinese)

    • [86] BOO J H,JUNG M J,PARK H K,et al.High-rate deposition of copper thin films using newly designed high-power magnetron sputtering source[J].Surface and Coatings Technology,2004,188:721-727.

    • [87] 刘亮亮,周林,唐伟,等.持续高功率磁控溅射技术高速制备挠性覆铜板Cu膜[J].真空与低温,2020,26(5):369-376.LIU Liangliang,ZHOU Lin,TANG Wei,et al.Rapid deposition of flexible copper clad laminate used Cu film by continuous high power magnetron sputtering[J].Vacuum and Cryogenics,2020,26(5):369-376.(in Chinese)

    • [88] AN Xiaokai,CHAO Yang,WU Zhongzhen,et al.Self-regulated super-hydrophobic Cu/CuO electrode film deposited by one-step high-power sputtering[J].Advanced Electronic Materials,2020,6(1):1900891.

    • [89] 真空薄膜技术与装备(后浪实验室).陶瓷覆铜板绿色制造技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165 Vacuum coating Technology & System(Origin Lab).Ceramic Copper Clad Technology[EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165.

    • [90] CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.

    • [91] 真空薄膜技术与装备(后浪实验室).高透明氧化铝膜/板制备技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.Vacuum coating Technology & System(Origin Lab).High-transparency alumina film/plate preparation technology [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.

    • [92] LIU Liangliang,TANG Wei,ZHOU Lin,et al.Comparative study of TiAlN coatings deposited by different high-ionization physical vapor deposition techniques[J].Ceramics International,2020,46(8):10814-10819.

    • [93] 吴忠振.闭合磁场的布局逻辑与作用[C/CD]//.第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.WU Zhongzhen.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and the 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)

  • 参考文献

    • [1] ZHANG Guojun,LI Bin,JIANG Bailing,et al.Microstructure and mechanical properties of multilayer Ti(C,N)films by closed-field unbalanced magnetron sputtering ion plating[J].Journal of Materials Science & Technology,2010,26(2):119-124.

    • [2] ANDERS A.Structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.

    • [3] 王福贞,武俊伟.现代离子镀膜技术[M].北京:机械工业出版社,2021.WANG Fuzhen,WU Junwei.Modern ion plating technology[M].Beijing:China Machine Press,2021.(in Chinese)

    • [4] PETROV I,ADIBI F,GREENE J E,et al.Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition[J].Journal of Vacuum Science & Technology A,1992,10(5):3283-3287.

    • [5] IVANOV I,KAZANSKY P,HULTMAN L,et al.Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering[J].Journal of Vacuum Science & Technology A,1994,12(2):314-320.

    • [6] YAMASHITA M.Fundamental characteristics of built‐ in high-frequency coil-type sputtering apparatus[J].Journal of Vacuum Science & Technology A,1989,7(2):151-158.

    • [7] ROSSNAGEL S M,HOPWOOD J.Metal ion deposition from ionized mangetron sputtering discharge[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,1994,12(1):449-453.

    • [8] YOSHIDA Y.Low-gas-pressure sputtering by means of microwave-enhanced magnetron plasma excited by electron cyclotron resonance[J].Applied Physics Letters,1992,61(14):1733-1734.

    • [9] MUSIL J.Microwave plasma:its characteristics and applications in thin film technology[J].Vacuum,1986,36(1):161-169.

    • [10] MUSIL J.Deposition of thin films using microwave plasmas:Present status and trends[J].Vacuum,1996,47(2):145-155.

    • [11] 张磊,施立群.微波ecr等离子体辅助磁控溅射沉积装置:中国,200910046033.9[P].2010-08-11.ZHANG Lei,SHI Liqun.Microwave ecr plasma assisted magnetron sputtering deposition device:China,200910046033.9[P].2010-08-11.(in Chinese)

    • [12] 李灿民,魏荣华.等离子增强磁控溅射沉积 Ti(Al)基纳米复合涂层在铸铝模具上的应用[J].中国表面工程,2012,25(2):1-7.LI Canmin,WEI Ronghua.Ti(Al)based nanocomposite coating produced by plasma enhanced magnetron sputtering applied in aluminum die casting[J].China Surface Engineering,2012,25(2):1-7.(in Chinese)

    • [13] MATOSSIAN J,WEI R,VAJO J,et al.Plasma-enhanced magnetron-sputtered deposition(PMD)of materials[J].Surface and Coatings Technology,1998,108:496-506.

    • [14] FORTUNA S V,SHARKEEV Y P,PERRY A J,et al.Microstructural features of wear-resistant titanium nitride coatings deposited by different methods[J].Thin Solid Films,2000,377:512-517.

    • [15] WEI Ronghua,VAJO J J,MATOSSIAN J N,et al.Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools[J].Surface and Coatings Technology,2002,158:465-472.

    • [16] WEI R H,LANGA E,RINCON C,et al.Deposition of thick nitrides and carbonitrides for sand erosion protection[J].Surface and Coatings Technology,2006,201(7):4453-4459.

    • [17] EL-RAHMAN A M,WEI Ronghua.A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J].Surface and Coatings Technology,2014,241:74-79.

    • [18] WEI R H,LANGA E,ARPS J,et al.Erosion resistance of thick nitride and carbonitride coatings deposited using plasma enhanced magnetron sputtering[J].Plasma Processes and Polymers,2007,4(S1):693-699.

    • [19] WEI R H.Plasma enhanced magnetron sputter deposition of Ti-Si-C-N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5):538-544.

    • [20] LIN J L,WEI R H,BITSIS D C,et al.Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications[J].Surface and Coatings Technology,2016,298:121-131.

    • [21] 魏荣华.等离子增强磁控溅射 Ti-Si-C-N 基纳米复合膜层耐冲蚀性能研究[J].中国表面工程,2009,22(1):1-10.WEI R H.Ti-Si-C-N based nanocomposite coatings produced by plasma enhanced magnetron sputter deposition and its erosion resistance[J].China Surface Engineering,2009,22(1):1-10.(in Chinese)

    • [22] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.

    • [23] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Pyhsics Review,2015 32(S1):52-58.(in Chinese)

    • [24] BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,American Vacuum Society,2005,23(1):18-22.

    • [25] LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//广东省真空学会学术年会论文集,湛江:广东省真空学会,2015.LEYENDECKER T,JIMMY Z,WERNER-GUO Y,et al.Advances in deposition equipment and process technology for HiPIMS coatings for cutting tools[C/CD]//Proceedings of the Annual Conference of Guangdong Vacuum Society,Zhanjiang:Guangdong Vacuum Society,2015:8.

    • [26] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG xiaobo,ZHANG shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)

    • [27] BOUZAKIS K D,MICHAILIDIS N,SKORDARIS G,et al.Cutting with coated tools:Coating technologies,characterization methods and performance optimization[J].CIRP Annals,2012,61(2):703-723.

    • [28] STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:the impact of nitrogen admixture in HIPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.

    • [29] 雷明凯,朱小鹏,李昱鹏,等.泡沫塑料高功率脉冲磁控溅射表面金属化方法:中国,CN130122452B[P].2013-03-11.LEI Mingkai,ZHU Xiaopeng,LI Yupeng,et al.Surface metallization method for foamed plastic by adopting high-power pulse magnetron sputtering:China,CN130122452B[P].2013-03-11.(in Chinese)

    • [30] ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HIPIMS techniques[J].Surface and Coatings Technology,2020,394:125890.

    • [31] AIJAZ A,JI Yuxia,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [32] ABIDI M,ASSADI A A,BOUZAZA A,et al.Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HIPIMS on polyester cloth under low intensity visible light[J].Applied Catalysis B:Environmental,2019,259:118074.

    • [33] SITTINGER V,LENCK O,VERGÖHL M,et al.Applications of HIPIMS metal oxides[J].Thin Solid Films,2013,548:18-26.

    • [34] 李迎春.高功率脉冲磁控溅射在微深孔镀膜上的应用 [C/CD]//第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.Li Yingchun.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)

    • [35] BOBZIN K,BAGCIVAN N,IMMICH P,et al.Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology[J].Journal of Materials Processing Technology,2009,29(1):165-170.

    • [36] SHIMIZU T,KOMIYA H,TERANISHI Y,et al.Pressure dependence of(Ti,Al)N film growth on inner walls of small holes in high-power impulse magnetron sputtering[J].Thin Solid Films,2017,624:189-196.

    • [37] SUBE T,KOMMER M,FENKER M,et al.Reduced friction on γ-Mo2N coatings deposited by high power impulse magnetron sputtering on microstructured surfaces[J].Tribology International,2017,106:41-45.

    • [38] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.

    • [39] 巩春志.管筒内壁自激射频放电等离子体浸没离子注入方法研究[D].哈尔滨:哈尔滨工业大学,2008.GONG Chunzhi.Plasma immersionn ion implantation of cylindrical bore based on self excited radio-frequency glow discharge[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [40] 柯培玲,王振玉,张栋,等.一种制备润湿性可控的高光滑高硬TiN薄膜的方法:中国,CN103469168B[P].2015-09-30.KE Peiling,WANG Zhenyu,ZHANG Dong,et al.A kind of method preparing high hard TiAlN thin film of the controlled high smooth of wettability:China,CN103469168B[P].2015-09-30.(in Chinese)

    • [41] WEINBACH M.iPhone 13 will collect fewer fingerprints[EB/OL].MacRumors,(2021-04-05).(2021-04-05).https://www.macrumors.com/2021/04/05/iphone-13-will-collect-fewer-fingerprints/.

    • [42] YANG J,TSOU H K,CHEN Y H,et al.Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film[J].Materials Science and Engineering:C,2015,57:58-66.

    • [43] GANESAN R,AKHAVAN B,HIOB M A,et al.HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility[J].Carbon,2018,139:118-128.

    • [44] TSUNOYAMA H,ZHANG C,AKATSUKA H,et al.Development of high-flux ion source for size-selected nanocluster ions based on high-power impulse magnetron sputtering[J].Chemistry Letters,2013,42(8):857-859.

    • [45] ZHANG C H,TSUNOYAMA H,AKATSUKA H,et al.Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation[J].The Journal of Physical Chemistry A,American Chemical Society,2013,117(40):10211-10217.

    • [46] PILCH I,SÖDERSTRÖM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles[J].KONA Powder and Particle Journal,2014,31:171-180.

    • [47] PILCH I,SÖDERSTRÖM D,BRENNING N,et al.Size-controlled growth of nanoparticles in a highly ionized pulsed plasma[J].Applied Physics Letters,2013,102(3):033108.

    • [48] PRYSIAZHNYI V,KRATOCHVIL J,KAFTAN D,et al.Growth of hard nanostructured ZrN surface induced by copper nanoparticles[J].Applied Surface Science,2021,562:150230.

    • [49] MAYORAL A,MARTÍNEZ L,GARCÍA-MARTÍN J M,et al.Tuning the size,composition and structure of Au and Co50Au50 nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis[J].Nanotechnology,2018,30(6):065606.

    • [50] 李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposion of tin coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [51] 桂刚.2 kA 高功率脉冲磁控溅射电源研制及 Cr-DLC 薄膜制备[D].哈尔滨:哈尔滨工业大学,2011.GUI Gang.Development of 2 kA high power pulsed magnetron sputtering power supply and preparation of Cr-DLC films[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [52] LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.

    • [53] BROITMAN E,CZIGÁNY Z,GRECZYNSKI G,et al.Industrial-scale deposition of highly adherent CNx films on steel substrates[J].Surface and Coatings Technology,2010,204(21):3349-3357.

    • [54] LEMMER O,KÖLKER W,BOLZ S,et al.HiPIMS “goes production”,actual status & outlook[J].IOP Conference Series:Materials Science and Engineering,2012,39:012003.

    • [55] CemeCon.涂层技术进入医疗制造行业——HIPIMS 涂层加工铬钴合金[J].金属加工(冷加工),2020(11):24.CemeCon.Coating technology enters medical maufacturing industry-Machining chromium cobalt alloy woth HiPIMS coating[J].Metal Working(Metal Cutting),2020(11):24.(in Chinese)

    • [56] CemeCon Suzhou Coating Technology Co.Ltd.TapCon®Gold-The coating for the perfect thread[EB/OL].[2021-12-26].https://www.cemecon.de/cn-en/facts/tapconrgold-coating-perfect-thread.

    • [57] ERKENS G,VETTER J,MULLER J.SIBONICA——采用新型高离化混合PVD工艺HI3技术生成的抗氧化性能最佳的新一代刀具涂层[J].工具技术,2013,47(9):18-24.ERKENS G,VETTER J,MULLER J.SIBONICA,The next generation of highest oxidation resistat tool coatings synthesised by means of novel high ionization hybrid PVD processing H13[J].Tool Engineering,2013,47(9):18-24.(in Chinese)

    • [58] SHIMIZU T,KOMIYA H,WATANABE T,et al.HIPIMS deposition of TiAlN films on inner wall of micro-dies and its applicability in micro-sheet metal forming[J].Surface and Coatings Technology,2014,250:44-51.

    • [59] Vnv.Neue Schichtgeneration läutet glatte Revolution ein.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.Vnv.Neue Layer generation heralds smooth revolution.[EB/OL].[2014-05-22].https://www.polymedia.ch/fr/neue-schichtgeneration-lautet-glatte-revolution-ein/.

    • [60] S3p-Scalable pulsed power plasma[EB/OL].[2021-12-26].https://www.oerlikon.com/balzers/us/en/portfolio/surface-technologies/pvd-based-processes/s3p-scalable-pu lsed-power-plasma/.

    • [61] 高能脉冲磁控溅射镀膜机[J].中国科学院院刊,2020,35(Z1):83.High power impulse magnetron sputtering(HiPIMS)coating machine[J].Bulletin of Chinese Academy of Sciences,2020,35(Z1):83.(in Chinese)

    • [62] PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films,2011,520(5):1559-1563.

    • [63] 吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system [J].Vacuum,2019,56(6):1-6.(in Chinese)

    • [64] 吴厚朴,田修波,张新宇,等.双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J].金属学报,2018,55(3):299-307.WU Houpu,TIAN Xiubo,ZHANG Xinyu,et al.Discharge characteristics of novel dual-pulse HiPIMS and deposition of CrN films with high deposition rate [J].Acta Metallurgica Sinica,2018,55(3):299-307.(in Chinese)

    • [65] SIMONE.Hauzer:excellent results with HIPIMS and HIPIMS+ technology[EB/OL]//GlassOnline.com-the world’s leading glass industry website.(2010-06-07)[2022-03-13].https://www.glassonline.com/hauzerexcellent-results-with-hipims-and-hipims-technology/.

    • [66] EERDEN M,PAPA F,KRUG T,et al.Higher tool productivity due to new generation of PVD coatings[J].Vakuum in Forschung und Praxis,2012,24(1):6-8.

    • [67] PAPA F,TIETEMA R,KOLEV I,et al.Apparatus and method for depositing hydrogen-free ta-c layers on workpieces and workpiece:China,US20170167010A1[P].2017-06-15.

    • [68] 冯利民,Ivan Fernandez Martinez,Frank Papa.带有正脉冲周期的HIPIMS电源-更开放的涂层工艺窗口和更高的沉积速率[C/CD]//深圳市真空学会第一期学术沙龙.深圳:2018.FENG limin,Ivan Fernandez Martinez,Frank Papa.The application of a short positive voltage reversal in HIPIMS-Widening the process window and increasing deposition rate [C/CD]//The first academic salon of Shenzhen Vacuum Society.Shenzhen:2018.(in Chinese)

    • [69] 肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):294-302.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):294-302.(in Chinese)

    • [70] 崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):178-189.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta physica Sinica,2019,68(19):178-189.(in Chinese)

    • [71] 崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):285-292.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source [J].Acta physica Sinica,2017,66(9):285-292.(in Chinese)

    • [72] 李体军,崔岁寒,刘亮亮,等筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.LI Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode [J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)

    • [73] 吴忠振,肖舒,崔岁寒,等.高离化磁控溅射技术的高速沉积[C/CD]//粤港澳大湾区真空科技与宽禁带半导体应用高峰论坛暨2017年广东省真空学会学术年会.中国广东惠州:2017.WU Zhongzhen,XIAO Shu,CUI Suihan,et al.High-speed deposition of high-ionization magnetron sputtering technology [C/CD]//Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology and Wide Bandgap Semiconductor Application Summit Forum and 2017 Guangdong Vacuum Society Academic Annual Meeting.Huizhou Guangdong China:2017.(in Chinese)

    • [74] 吴忠振.陶瓷涂层中纳米级缺陷构筑及其强韧性研究 [C/CD]//中国稀土学会2021学术年会论文摘要集,成都:中国稀土学会,2021.WU Zhongzhen.Research on nano-scale defects construction and strength and toughness in ceramic coatings[C/CD]//Abstracts of 2021 Academic Conference of Chinese Rare Earth Society,Chengdu:Chinese Rare Earth Society,2021.(in Chinese)

    • [75] GANESAN R,AKHAVAN B,DONG X,et al.External magnetic field increases both plasma generation and deposition rate in HiPIMS[J].Surface and Coatings Technology,2018,352:671-679.

    • [76] HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.

    • [77] 李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53(2):84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong et al.High deposition characteristic of(E-MF)HiPIMS at high ionization rate [J].Journal of Harbin Institute of Technology,2021,53(2):84-92.(in Chinese)

    • [78] 崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):233-244.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of the closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):233-244.(in Chinese)

    • [79] WILSON G W,SINHA B P.The effects of absorbed argon on the electrical properties of thin copper films[J].Thin Solid Films,Elsevier,1971,8(3):207-211.

    • [80] HOSOKAWA N,TSUKADA T,MISUMI T.Self ‐ sputtering phenomena in high‐rate coaxial cylindrical magnetron sputtering[J].Journal of Vacuum Science and Technology,American Vacuum Society,1977,14(1):143-146.

    • [81] KUKLA R,KRUG T,LUDWIG R,et al.A highest rate self-sputtering magnetron source[J].Vacuum,1990,41(7-9):1968-1970.

    • [82] POSADOWSKI W M,BRUDNIK A.Optical emission spectroscopy of self-sustained magnetron sputtering[J].Vacuum,1999,53(1-2):11-15.

    • [83] ROSSNAGEL S M,KAUFMAN H R.Current-voltage relations in magnetrons[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1988,6(2):223-229.

    • [84] CHEN Lei,CUI Suihan,TANG Wei,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.

    • [85] 北京大学新型镀膜技术与装备实验室.超大功率磁控溅射技术与应用 [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7%b3%bb%e7%bb%9f/.New coating technology and equipment laboratory Peaking University.Ultra-high power magnetron sputtering technology and application [EB/OL].[2021-12-27].https://web.pkusz.edu.cn/wuzz/pvd%e7% b3%bb%e7%bb%9f/.(in Chinese)

    • [86] BOO J H,JUNG M J,PARK H K,et al.High-rate deposition of copper thin films using newly designed high-power magnetron sputtering source[J].Surface and Coatings Technology,2004,188:721-727.

    • [87] 刘亮亮,周林,唐伟,等.持续高功率磁控溅射技术高速制备挠性覆铜板Cu膜[J].真空与低温,2020,26(5):369-376.LIU Liangliang,ZHOU Lin,TANG Wei,et al.Rapid deposition of flexible copper clad laminate used Cu film by continuous high power magnetron sputtering[J].Vacuum and Cryogenics,2020,26(5):369-376.(in Chinese)

    • [88] AN Xiaokai,CHAO Yang,WU Zhongzhen,et al.Self-regulated super-hydrophobic Cu/CuO electrode film deposited by one-step high-power sputtering[J].Advanced Electronic Materials,2020,6(1):1900891.

    • [89] 真空薄膜技术与装备(后浪实验室).陶瓷覆铜板绿色制造技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165 Vacuum coating Technology & System(Origin Lab).Ceramic Copper Clad Technology[EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=165.

    • [90] CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.

    • [91] 真空薄膜技术与装备(后浪实验室).高透明氧化铝膜/板制备技术 [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.Vacuum coating Technology & System(Origin Lab).High-transparency alumina film/plate preparation technology [EB/OL].[2021-12-30].http://originvac.com/col.jsp?id=161.

    • [92] LIU Liangliang,TANG Wei,ZHOU Lin,et al.Comparative study of TiAlN coatings deposited by different high-ionization physical vapor deposition techniques[J].Ceramics International,2020,46(8):10814-10819.

    • [93] 吴忠振.闭合磁场的布局逻辑与作用[C/CD]//.第四届粤港澳大湾区真空科技创新发展论坛暨2020年广东省真空学会学术年会论文集,佛山:广东省真空学会,2020.WU Zhongzhen.Application of high power pulsed magnetron sputtering on micro deep hole coating [C/CD]//The 4th Guangdong-Hong Kong-Macao Greater Bay Area Vacuum Technology Innovation and Development Forum and the 2020 Guangdong Vacuum Society Academic Annual Conference Proceedings,Foshan:Guangdong Vacuum Society,2020.(in Chinese)

  • 手机扫一扫看