en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

白雪冰,男,1991年出生,博士研究生。主要研究方向为薄膜与涂层技术。E-mail:baixuebing@seu.edu.cn

通讯作者:

张旭海,男,1979年出生,副教授,博士研究生导师。主要研究方向为薄膜与涂层技术。E-mail:zhangxuhai@seu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211213002

参考文献 1
SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):166-184.
参考文献 2
GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):136-140.
参考文献 3
吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vaccum,2009,46(3):18-22.(in Chinese)
参考文献 4
GREENE J E.Tracing the recorded history of thin-film sputter deposition:From the 1800s to 2017s[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):05C204.
参考文献 5
WU Z,TIAN X,LI C,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering[J].Acta Physica Sinica,2014,63(17):175-201.
参考文献 6
杨文茂,刘艳文,徐禄祥,等.溅射沉积技术的发展及其现状[J].真空科学与技术学报,2005(3):204-210.YANG Wenmao,LIU Yanwen,XU Luxiang,et al.Review of film growth by sputtering technology[J].Journal of Vacuum Science and Technology,2005,(3):204-210.(in Chinese)
参考文献 7
吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)
参考文献 8
韩明月,李刘合,李花,等.高功率脉冲磁控溅射(HiPIMS)等离子体放电时空特性研究进展[J].表面技术,2019,48(9):20-52.HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.(in Chinese)
参考文献 9
ALAMI J,MARIC Z,BUSCH H,et al.Enhanced ionization sputtering:A concept for superior industrial coatings[J].Surface and Coatings Technology,2014,255:43-51.
参考文献 10
吴忠振,田修波,潘锋,等.不同靶材料的高功率脉冲磁控溅射放电行为[J].金属学报,2014,50(10):1279-1284 WU Zhongzhen,TIAN Xiubo,PAN Feng,et al.High power pulsed magnetron sputtering discharge behavior of various target material[J].Sacta Metallurgica Sinica,2014,50(10):1279-1284(in Chinese)
参考文献 11
王振玉,张栋,柯培玲,等.离子轰击对HIPIMS制备TiN薄膜结构和性能的影响[J].真空科学与技术学报,2014,34(3):256-260.WANG Zhenyu,ZHANG Dong,KE Peiling,et al.Effect of ion bombardment on TiN films deposited high-power impulse magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2014,34(3):256-260.(in Chinese)
参考文献 12
暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)
参考文献 13
艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)
参考文献 14
吴保华,冷永祥,黄楠,等.高功率脉冲磁控溅射技术的离子(粒子)特性及其对薄膜组织结构的影响[J].表面技术,2018,47(5):245-255.WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.(in Chinese)
参考文献 15
PILCH I,SöDERSTRöM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles [J].KONA Powder and Particle Journal,2014,31:171-180.
参考文献 16
程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering al+α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)
参考文献 17
WALLIN E,SELINDER T I,ELFWING M,et al.Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J].EPL(Europhysics Letters),2008,82(3):36002.
参考文献 18
SELINDER T I,CORONEL E,WALLIN E,et al.α-Alumina coatings on WC/Co substrates by physical vapor deposition[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):507-512.
参考文献 19
CHENG Y,CHU C,ZHOU P.Low-temperature deposition and hardness enhancement of α-(Al,Cr)2O3 films by reactive high power pulsed magnetron sputtering[J].Materials Research Express,2020,7(11):116407.
参考文献 20
BOBZIN K,BRÖGELMANN T,BRUGNARA R H,et al.Investigation of reactive HPPMS process and influence of bias voltage during deposition of alumina coatings[J].Advanced Engineering Materials,2016,18(4):665-670.
参考文献 21
ZHOU G,WANG L,WANG X,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.
参考文献 22
ZHOU G,WANG L,WANG X,et al.Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering[J].Vacuum,2019,166:88-96.
参考文献 23
谷金鑫,魏航,任飞飞,等.高能脉冲磁控溅射技术制备 VO2薄膜研究进展[J].哈尔滨工程大学学报,2020,41(2):219-226.GU Jinxin,WEI Hang,REN Feifei,et al.Recent progress on the preparation of VO2 thin films by high-power impulse magnetron sputtering technology[J].Journal of Harbin Engineering University,2020,41(2):219-226.(in Chinese)
参考文献 24
FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.
参考文献 25
AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.
参考文献 26
LIN T,WANG L,WANG X,et al.Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition[J].Functional Materials Letters,2016,09(5):1650062.
参考文献 27
HOUSKA J,KOLENATY D,VLCEK J,et al.Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300 ℃[J].Thin Solid Films,2018,660:463-470.
参考文献 28
KOLENATY D,HOUSKA J,VLCEK J.Improved performance of thermochromic VO2/SiO2 coatings prepared by low-temperature pulsed reactive magnetron sputtering:Prediction and experimental verification[J].Journal of Alloys and Compounds,2018,767:46-51.
参考文献 29
HOUSKA J,KOLENATY D,REZEK J,et al.Characterization of thermochromic VO2(prepared at 250 ℃)in a wide temperature range by spectroscopic ellipsometry[J].Applied Surface Science,2017,421:529-534.
参考文献 30
REN F,WEI H,GU J,et al.In situ preparation of VO2 films with controlled ionized flux density in HiPIMS and their regulation of thermal radiance[J].ACS Applied Electronic Materials,2020,2(7):2203-2210.
参考文献 31
VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.
参考文献 32
VICTOR J L,MARCEL C,SAUQUES L,et al.High quality thermochromic VO2 thin films deposited at room temperature by balanced and unbalanced HiPIMS[J].Solar Energy Materials and Solar Cells,2021,227:111-113.
参考文献 33
LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.
参考文献 34
LOQUAI S,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al.HiPIMS-deposited thermochromic VO2 films with high environmental stability[J].Solar Energy Materials and Solar Cells,2017,160:217-224.
参考文献 35
JUAN P C,LIN K C,LIN C L,et al.Low thermal budget annealing for thermochromic VO2 thin films prepared by high power impulse magnetron sputtering[J].Thin Solid Films,2019,687:137443.
参考文献 36
WANG Q M,KWON S H,HUI K N,et al.Synthesis and properties of crystalline TiO2 films deposited by a HIPIMS+ technique[J].Vacuum,2013,89:90-95.
参考文献 37
KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.
参考文献 38
OLEJNíČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.
参考文献 39
RATOVA M,WEST G T,KELLY P J.HiPIMS deposition of tungsten-doped titania coatings for photocatalytic applications[J].Vacuum,2014,102:48-50.
参考文献 40
RATOVA M,WEST G T,KELLY P J.Optimisation of HiPIMS photocatalytic titania coatings for low temperature deposition[J].Surface and Coatings Technology,2014,250:7-13.
参考文献 41
CEMIN F,TSUKAMOTO M,KERAUDY J,et al.Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth[J].Journal of Physics D:Applied Physics,2018,51(23):235-301.
参考文献 42
TWU M J,CHIOU A H,HU C C,et al.Properties of TiO2 films deposited on flexible substrates using direct current magnetron sputtering and using high power impulse magnetron sputtering[J].Polymer Degradation and Stability,2015,117:1-7.
参考文献 43
SULTAN M T,GUDMUNDSSON J T,MANOLESCU A,et al.Obtaining SiGe nanocrystallites between crystalline TiO2 layers by HiPIMS without annealing[J].Applied Surface Science,2020,511:145552.
参考文献 44
FURLAN A,GROCHLA D,D'ACREMONT Q,et al.Influence of substrate temperature and film thickness on thermal,electrical,and structural properties of HPPMS and DC magnetron sputtered Ge thin films[J].Advanced Engineering Materials,2017,19(5):1600854.
参考文献 45
BOLVARDI H,EMMERLICH J,MRÁZ S,et al.Low temperature synthesis of Mo2BC thin films[J].Thin Solid Films,2013,542:5-7.
参考文献 46
TIRON V,VELICU I L,PANA I,et al.HiPIMS deposition of silicon nitride for solar cell application[J].Surface and Coatings Technology,2018,344:197-203.
参考文献 47
张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Review on semi-conductive ZnO thin film prepared by HiPIMS[J].Vaccum,2021,58(1):72-77.(in Chinese)
参考文献 48
LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.
参考文献 49
MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.
参考文献 50
STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:The impact of nitrogen admixture in HiPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.
参考文献 51
冯军,李必文,陈文波,等.PMMA 表面高功率脉冲磁控溅射制备ITO涂层[J].稀有金属材料与工程,2020,49(7):2229-2233.FENG Jun,LI Biwen,CHEN Wenbo,et al.Preparation of ITO coating on PMMA by high-power pulse magnetron sputtering[J].Rare Metal Materials and Engineering,2020,49(7):2229-2233.(in Chinese)
参考文献 52
AN X,WU Z,LIU L,et al.High-ion-energy and low-temperature deposition of diamond-like carbon(DLC)coatings with pulsed kV bias[J].Surface and Coatings Technology,2019,365:152-157.
参考文献 53
WIATROWSKI A,KIJASZEK W,POSADOWSKI W M,et al.Deposition of diamond-like carbon thin films by the high power impulse magnetron sputtering method[J].Diamond and Related Materials,2017,72:71-76.
参考文献 54
BAGCIVAN N,BOBZIN K,BRUGNARA R H.Investigation of the properties of low temperature(Cr1-xAlx)N coatings deposited via hybrid PVD DC-MSIP/HPPMS[J].Materialwissenschaft und Werkstofftechnik,2013,44(8):667-672.
参考文献 55
DING J,YIN X,FANG L,et al.TiN films deposited on uranium by high power pulsed magnetron sputtering under low temperature[J].Materials(Basel),2018,11(8):1400.
参考文献 56
SARAKINOS K,MUSIC D,NAHIF F,et al.Ionized physical vapor deposited Al2O3 films:Does subplantation favor formation of α-Al2O3[J].Physica Status Solidi-Rapid Research Letters,2010,4(7):154-156.
参考文献 57
MUSIC D,NAHIF F,SARAKINOS K,et al.Ab initio molecular dynamics of Al irradiation-induced processes during Al2O3 growth[J].Applied Physics Letters,2011,98(11):111908.
参考文献 58
BOBZIN K,LUGSCHEIDER E,MAES M,et al.Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering[J].Thin Solid Films,2006,494(1-2):255-262.
目录contents

    摘要

    高能脉冲磁控溅射技术(HiPIMS)是一种新型的磁控溅射技术,以峰值功率密度高,金属离化率高为特点,与传统直流磁控溅射(DCMS)相比,表现出其独有的优势。晶态薄膜的制备以往通常采用高温沉积或者后续的热处理技术,不仅工艺复杂,而且容易造成能源损失。高度离化的脉冲等离子体使 HiPIMS 技术成功应用于晶态薄膜的沉积,极大地降低制备温度,简化制备工艺,扩展了基底材料的选择范围,提升了薄膜的应用空间。然而,针对 HiPIMS 低温制备晶态薄膜的系统研究较为缺乏,因此亟需对现有的研究结果进行整理、归纳、总结,对其进一步研究提供理论参考。基于晶态薄膜的低温制备,在详细介绍以 Al2O3、VO2、TiO2为代表的晶态薄膜的 HiPIMS 低温沉积工艺及其结构性能的基础上,探讨薄膜低温结晶的机理,展望 HiPIMS 未来的研究方向和应用前景。

    Abstract

    High power impulse magnetron sputtering (HiPIMS) is a new type of magnetron sputtering technology characterized by high peak power density and high metal ionization rate. Compared with conventional direct current magnetron sputtering (DCMS), HiPIMS shows its unique advantages. The crystalline films are usually prepared by high temperature or post heat treatment, which is complicated and easy to cause energy loss. HiPIMS is successfully applied to the deposition of crystalline thin films due to the highly ionized pulsed plasma, which can reduce the preparation temperature, simplify the preparation process, expand the range of substrate materials, and improve the application space of thin films. However, there is a lack of systematic research about the preparation of crystalline films at a low temperature by HiPIMS. Therefore, it is urgent to summarize the previous research results to provide theoretical references for further research on the deposition of HiPIMS films at a low temperature. Based on the preparation of crystalline thin films at a low temperature, the HiPIMS deposition process and its structural properties of crystalline thin films represented by Al2O3, VO2 and TiO2 are introduced in detail. The low-temperature crystallization mechanism of thin films is discussed. The future development and application of HiPIMS are prospected.

    关键词

    HiPIMS结晶薄膜沉积温度Al2O3VO2TiO2

  • 0 前言

  • 薄膜应用于多种技术领域,如表面防护和装饰、数据存储、光学以及微电子技术等(图1)。随着科技的进步以及人民生活水平的提高,新型功能薄膜的需求日益增长,这不仅需要对薄膜生长的基本原理和技术进行研究,而且需要开发新的沉积技术,以便更好地控制薄膜沉积过程[1-3]

  • 图1 薄膜在现代生产生活中的应用[4]

  • Fig.1 Application of thin films in modern society

  • 磁控溅射技术广泛应用于多种薄膜的制备。在传统的直流磁控溅射(Direct current magnetron sputtering,DCMS)等离子体中,以气体离子、中性的金属原子为主,金属的离化率极低(~1%),粒子难以被控制[5-6]。20 世纪末,在 DCMS 基础上发展起来的高能脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)引起了学术界的广泛关注。它通过在阴极靶上应用低频( 50~1 000 Hz)、低占空比(0.5%~10%)的单极大功率脉冲(功率密度 0.5~3 kW / cm2,脉冲宽度 50~200 μs)来实现高电离溅射粒子,以高密度的等离子体为特点,又称作高功率脉冲磁控溅射(HPPMS)[7-10]。图2 为 Cu 靶在 Ar 条件下的 HiPIMS 的典型放电电压电流图,工作气压为 1.33 Pa,峰值功率密度为 1.5 kW / cm2,平均功率密度为 5.5 W / cm2。溅射原子被电离后,离子的运动方向和离子轰击能量可以分别通过磁场和电场来调控,从而使薄膜质量(密度、结合力、表面粗糙度、复杂基底等)大幅提升,特别地,通过控制内部反应条件,可以极大地降低薄膜的制备温度和相组成,将基底材料引导至生产生活中所需的各个领域[11-14]

  • 以 Al2O3、VO2、TiO2 为代表的薄膜只有在晶态结构下才具有相应的性能,它们普遍需要在高温条件下制备或者通过后续高温热处理。例如:α-Al2O3 和金红石结构的 TiO2 晶态薄膜一般要求 1 000℃,而 VO2晶态薄膜也至少在 400℃以上。随着 HiPIMS 发展,这些薄膜在无后续热处理的条件下实现远低于其传统工艺温度的低温(~400℃)沉积,大大扩展了这些薄膜基底材料的选择,丰富其应用领域。

  • 图2 HiPIMS 放电中典型的放电电压-电流图[15]

  • Fig.2 A typical discharge voltage-current plot in a HiPIMS discharge

  • 本文从薄膜的低温沉积着手,探讨近年来 HiPIMS 技术的薄膜低温沉积工艺及薄膜的结构性能。重点论述了 HiPIMS 发挥的作用及其影响,讨论了薄膜的低温结晶机理,并对 HiPIMS 未来的发展及应用进行了展望。

  • 1 HiPIMS 低温制备 Al2O3薄膜

  • 晶态氧化铝(Al2O3)薄膜以高硬度、良好的化学惰性、导电性和优异的光学透明度而应用于耐磨、耐腐蚀、催化、微电子、热障和光保护等领域,诸如刀具、发动机防护涂层和芯片制造等。晶态氧化铝存在许多不同的晶体结构,包括 α、γ、κ、θ、δ、 η 和 χ,除了热力学稳定的 α 相(刚玉)外,其他大部分是亚稳态的。由于常温制备的 Al2O3 薄膜通常是非晶态,因此,长期以来,工业上对 Al2O3 涂层只能使用化学气相沉积(Chemical vapor deposition,CVD)技术在 1 000℃以上制备[16]

  • HiPIMS 放电中沉积粒子的固有能量通常小于 100 eV,只有大约 50%的离子具有大于 20 eV 的能量。WALLIN 等[17]通过 HiPIMS 在 650℃条件下得到了 α-Al2O3薄膜,基底偏压为−40 V。试验中发现晶体结构取决于沉积温度[18]。α-氧化铝在低温下结晶的关键不仅在于高能量轰击,而且需要在合适的能量范围内以足够高的离子通量(动量)与基底发生作用。

  • α-Cr2O3 和 α-Al2O3 具有相同的刚玉型结构、相似的力学性能和晶格常数,类似于铸造过程中形核剂的原理,α-Cr2O3 的引入增加了形核点,使形核和生长过程中的表面能降低到一个相对较低的水平,在沉积过程中引入 α-Cr2O3 形核层成为降低 α-Al2O3 合成温度的新理念。CHENG 等[19]使用 Al70Cr30 复合靶和 HiPIMS 技术在 Si(100)基底表面制备 α-(Al,Cr)2O3 薄膜,使制备温度降低至 540℃。工艺以 α-Cr2O3 为主导,促进了 α-Al2O3 在 α-Cr2O3 表面的形核,抑制了亚稳态氧化铝的形成。Al+ 和 Cr3+沿界面相互扩散,形成稳定性较高的 α-(Al,Cr)2O3 固溶体。不同于纯 Al 靶溅射,Al70Cr30复合靶抑制了靶中毒,薄膜的紧实度高,固溶强化提高了 α-(Al,Cr)2O3薄膜的硬度,如图3 所示,α-(Al,Cr)2O3 的硬度达到 25.6 GPa,能够应用于高速钢的表面防护。

  • 图3 薄膜的载荷-位移曲线(样品 I:α-(Al,Cr)2O3,样品 II: α-Al2O3[19]

  • Fig.3 Load-displacement curves of the films (Sample I: α- (Al, Cr) 2O3; sample II: α-Al2O3)

  • 相比于 α-Al2O3,制备 γ-Al2O3 所需的温度较低,而且也可作为红外透明保护材料。BOBZIN 等[20]以 Ar和Kr为保护气体分别研究了脉宽和偏压对Al2O3 涂层性能的影响。脉冲宽度可影响通入的最高氧气流量。偏压对涂层的致密度及力学性能具有重要作用。通过在基底上施加负偏置电压,改变离子通量,加速正离子向基底表面移动,且转移它们的动能于基底表面的原子上。随着薄膜能量的增加,表面扩散增强,促进与基底更好的附着和成核,从而形成了晶体结构。在 577℃的基底温度下获得 γ-Al2O3 结构的薄膜。

  • 与单靶溅射相比,双靶结构可以进一步增强高能激活过程,实现低温沉积。ZHOU 等[21]采用双靶高能脉冲磁控溅射(TTR-HiPIMS)无偏压辅助时在低至 300℃得到结晶 γ-Al2O3 氧化铝薄膜,晶粒大小为 15~25 nm。制备标准 Al2O3 薄膜的最佳 Ar / O2 流量比为 50 / 14。之后他们研究了偏压对 Al2O3 薄膜的微观结构的影响,并于−40 V 的偏压辅助下进一步实现 230℃沉积温度得到 γ-Al2O3薄膜[22]

  • 目前,HiPIMS 低温制备晶态 Al2O3 薄膜所采取的手段主要包括:第一,通过优化 HiPIMS 工艺,调整等离子体状态,提高金属离化率,适当调节偏压来加强粒子能量;第二,预置相同晶体结构的种子层(α-Cr2O3)来降低形核能垒,进一步降低沉积温度;第三,采用结晶温度更低的 γ-Al2O3 薄膜替代 α-Al2O3 在红外透明保护材料领域的应用。

  • 2 HiPIMS 低温制备 VO2薄膜

  • 作为一种热致变色材料,二氧化钒(VO2)在智能窗户和卫星智能散热器等设备具有很大应用潜力。它在临界温度(Tc=68℃)呈现可逆的金属-绝缘体转变,具有对红外(IR)传输的巨大调制。在低温状态下,VO2 是一种单斜晶体结构的半导体,具有很大的红外透明度,而在高温状态(吸收和反射的增加)下,块状氧化物重新组织呈现出一种金红石(四方)晶体相,具有类金属行为和高红外反射率。晶态 VO2 薄膜的生产工艺复杂,且需要超过 400℃的沉积温度[23]

  • FORTIER等[24]采用HiPIMS技术在300℃基底温度下沉积了 VO2 薄膜,并利用−200 V 的脉冲偏压调控粒子的能量,研究了薄膜的光学及物理学性能。在 30℃和 90℃下薄膜的红外光学透过率达到 61%(∆T2 500 nm=61%),临界温度(Tc)降低至 63℃。他们认为应力变化及晶粒大小分布对薄膜的临界温度有显著的影响。HiPIMS 高能离子轰击使沉积材料很大程度上由电离粒子凝结,薄膜更致密,压应力更大,减小了 VO2 晶体结构中的 V-V 距离,导致 d 轨道的直接重叠,较小的晶粒尺寸使基体中晶界更多,产生应变和氧空位等缺陷,从而降低了 Tc值。

  • AIJAZ 等[25]对比了 DCMS 和 HiPIMS 制备的 VO2 薄膜的性能差异。如图4,在 300℃基底温度和−100 V 偏压下,HiPIMS 制备的 VO2薄膜具有热致变色效应,而同等条件下对于脉冲直流磁控溅射 (Pulsed direct current magnetion sputtering,PDCMS) 几乎没有此性能。只有在基底温度为 500℃时 PDCMS 才得到了热致变色效应。研究发现入射离子的能量对于低温合成 VO2 结晶薄膜以及改变 Tc 至关重要确定了形成结晶 VO2 薄膜的最佳离子能量约为 100 eV,进一步增加离子能量将使薄膜结晶性下降。

  • 偏压是调控沉积离子能量的重要参数,但是对不导电基底材料往往难以有效发挥作用。为此,LIN 等[26]采用导电的氧化铟玻璃(ITO)为基底,研究了不同偏压条件下薄膜的结构及其相变特点。实现了以−200 V 偏压和 300℃基底温度制备金属-绝缘体转变温度(Tc=37℃)的 VO2 薄膜。

  • 图4 20℃和 90℃下 HiPIMS 和 PDCMS 沉积的 VO2 薄膜的光谱透过率(偏压−100 V,基底温度 300℃)[25]

  • Fig.4 Spectral transmittance recorded at 20℃ and 90℃ for HiPIMS and PDCMS deposited VO2 thin films grown at substrate temperature τs=300℃ and substrate bias UB=−100 V

  • 为探索适合工业化且不损失薄膜性能的沉积工艺,HOUSKA 等[27]以 1 mm厚的钠钙玻璃作为基底,通过控制反应气体,在 300℃得到了与 400℃相似结构和性能的 VO2 薄膜。制备过程中由预设 O2 分压临界值(p=15 mPa)的可编程控制器控制通入 O2 的脉冲持续时间,使 O2流速在 0~2 mL/min 之间脉冲变化。为了提高薄膜的光学和力学性能,之后在表面附加了抗反射 SiO2层,获得 VO2/SiO2 涂层[28]。 SiO2 层使 VO2 薄膜的透光率提高 16%,对太阳光透过率的调制范围提高 2.6%。薄膜沉积过程中脉冲电压持续时间和氧气分压临界值是决定热致变色薄膜工艺的关键。HOUSKA 等[29]采用 HiPIMS 在结晶 Si 基底上制备 VO2 薄膜。通过调整反应气体通量,优化了沉积参数,在悬浮(Float)偏压和 250℃基底温度下得到具有热致变色性能的 VO2 薄膜,极大地增加了涂层的应用潜力。

  • 为了进一步理解晶态VO2薄膜的形核与长大特点,REN 等[30]研究了离子通量密度对 VO2 薄膜结晶性的影响,发现薄膜的相变特性与离子通量密度密切相关,随着离子通量密度的增加,薄膜的结晶度逐渐提高。

  • 另外,HiPIMS 技术在钠钙玻璃基底上低温溅射结晶 VO2 薄膜存在沉积速率低的问题(0.6~4.8 nm / min)。为了优化沉积速率,VU 等[31]利用高占空比(频率 1.5 kHz,脉宽 200 μs)的 HiPIMS 技术在钠钙玻璃基底材料上沉积了 VO2 薄膜,沉积速率高达 5.7 nm / min。在钠钙玻璃基底材料上制备比高温玻璃和石英基底上制备的 VO2具有更优异的结晶度和热变色性能(最高透光率 Tlum=30.4%,调制太阳光效率 ΔTsol=12%)。

  • 与平衡磁控溅射相比,非平衡磁控管的磁场分布向基底延伸,能够促进等离子体中的高能离子积极参与薄膜的生长,为薄膜提供额外的能量,促使吸附原子在基底表面更好地迁移,从而提高薄膜的结晶度。VICTOR 等[32]对比了平衡与非平衡 HiPIMS 对 VO2 薄膜热变色性能的影响。受磁场分布不同,非平衡 HiPIMS 沉积的 VO2薄膜在 300℃退火后即表现出优异的热变色行为,而平衡 HiPIMS 的 VO2 薄膜需要在 500℃退火后才具有该性能。

  • 同样地,形核剂的理念也应用在 VO2 薄膜的低温制备领域。金红石结构的 TiO2 与 VO2 具有相似的晶格参数。基于此,LOQUAI 等[33]在镀膜之前预沉积了一层 10 nm 厚的 TiO2层,使沉积温度进一步低至 275℃,并在聚酰亚胺(PI)柔性基底上制备了 VO2 晶态薄膜。VO2 薄膜的环境不稳定性也备受关注,在氧气存在的情况下,VO2 会慢慢转化为 V6O13 和 V3O7 的中间氧化物,最后达到稳定的 V2O5。这使 VO2 薄膜难以在环境和潮湿环境中使用。为解决该问题,LOQUAI 等[34]使用−180 V 的射频(RF) 偏压在 350℃基底温度制备了 VO2薄膜,并在其顶部覆盖一层 35 nm 的 SiNx 阻挡层。屏障层的存在不仅提高了薄膜的保护水平,而且优化了其发光透光率,进一步提升了 VO2的环境适应能力。

  • JUAN 等[35]利用 TiO2过渡层在玻璃基底上制备 TiO2 / VO2 薄膜,为了得到完全晶态 VO2 薄膜,在 500℃快速热退火 3 min,研究了 O2 / Ar 流量比对薄膜性能的影响。当 O2 / Ar 比为 6%时,薄膜在 25 / 85℃的热应力循环下具有良好的耐久性能。在低温状态下具有良好的光学性能(调制太阳光效率 ΔTsol=10.4%,透光率 Tlum=35.2%)。

  • 虽然 HiPIMS 技术已经能够在低温下得到晶态 VO2 薄膜,但是仍然在不同程度上牺牲其相关性能,与高温条件下所制备的 VO2薄膜的质量仍然存在差距。这要求研究工作者不仅要在工艺参数上进一步优化,还要在制备方法上改革创新。

  • 3 HiPIMS 低温制备 TiO2薄膜

  • 氧化钛(TiO2)具有半导体性质,一般以锐钛矿和金红石两种结晶相存在。具有锐钛矿结构时,薄膜可用于破坏有机污染物的光催化性能;金红石结构具有更高的折射率和硬度,适用于太阳能电池等领域。锐钛矿结构需要在 300℃的退火温度下得到,而金红石结构需要更多的能量,一般在 900℃ 以上合成。传统磁控溅射得到的 TiO2薄膜通常是非晶形式,难以实现其性能[36]

  • KONSTANTINIDIS 等[37]分别采用 HiPIMS 和直流双极脉冲磁控溅射在同等条件下(平均功率、靶基距、气体组分等)在不锈钢基底表面制备 TiO2 薄膜,发现 HiPIMS 薄膜为金红石结构,直流双极脉冲磁控溅射薄膜为锐钛矿结构,证实 HiPIMS 强烈的能量凝结过程,表明晶体形成不仅是由溅射材料的高电离率引起的,而且是由到达衬底的大电子通量引起的。

  • OLEJNÍČEK 等 [38]对比无额外加热条件下 HiPIMS、中频双极脉冲磁控溅射(Medium frequency bipolar pulse magnetron sputtering,MF)及其组合 (HiPIMS+MF)三种模式下的 TiO2 薄膜的优劣。三种模式的薄膜均为金红石TiO2结构。而HiPIMS+MF 组合有效地减少了起始阶段阴极电压和电流之间的延迟,在基底上具有最低的热通量,具有在聚碳酸酯膜等热敏基底上的应用潜力。

  • RATOVA等[39]使用HiPIMS技术将W掺入TiO2 形成结晶薄膜,薄膜表现出锐钛矿和金红石的混合结构并具有有效的光催化作用。之后他们总结了低温条件下工作压力、脉冲宽度和脉冲频率等溅射参数对 TiO2 薄膜结晶度的影响。增加工作压力可降低放电中离子和原子的平均自由程,延长激发态的寿命,提高等离子体电离。短脉宽在一定程度上可增大峰值电流,增加离子的通量,提高涂层的结晶度。脉冲频率对脉冲电流的影响较小,对涂层结晶度没有明显的变化。最后在高分子( Polyethylene terephthalate,PET)基底表面获得 TiO2 薄膜,最佳的工艺参数为工作气压 0.93 Pa,频率 300 Hz,脉宽 50 μs [40]。CEMIN 等[41]研究基片温度和峰值电流密度对薄膜结晶度的影响,发现高温 500℃有利于 TiO2 金红石稳定相的形成,随着峰值电流密度的增加,金红石的比例越来越大。

  • 此后,越来越多的研究者开始在柔性衬底上制备晶态 TiO2薄膜。TWU 等[42]研究 DCMS 和 HiPIMS 在 PET 表面室温沉积 TiO2 薄膜的晶体结构。如图5a、5b 所示[42],相比于 DCMS 薄膜,HiPIMS 得到的 TiO2 薄膜的颗粒尺寸较小,表面明显更加致密、均匀。此外,如图5c 所示,HiPIMS 模式的 TiO2 薄膜 XRD 衍射峰更加尖锐和强烈,结晶性更好,具有锐钛矿晶面,呈(200)择优取向,这是由于HiPIMS 中负氧离子的移动使生长膜表面产生高能量,促进了结晶。

  • 图5 DCMS 和HiPIMS 沉积TiO2薄膜的SEM 图和XRD 图[42]

  • Fig.5 SEM micrographs and XRD patterns of the TiO2 thin films deposited by DCMS and HiPIMS

  • SULTAN 等[43]采用 DCMS 和 HiPIMS 相结合的方法在晶态 TiO2 层间制备了 SiGe 纳米晶,形成 SiO2 / TiO2 / SiGe / TiO2 结构,证实 HiPIMS 工艺有利于形成晶型结构,无须后续热处理,降低了制造成本。

  • HiPIMS 技术大大降低了 TiO2 结晶薄膜的沉积温度,甚至无须外部加热,简化了工艺过程,进一步缩减了制造成本。薄膜的性能与 HiPIMS 工艺参数密切相关。如图6a、6b 所示[40],工作气压的高低明显影响着薄膜的光催化性,较高的工作压力 (0.93 Pa)时,光催化活性达到最大值 3.3 × 10−5 s −1,此时的亲水性也较高(接触角为 9°)。脉宽和频率对其催化性的影响呈现相反的作用,对接触角的变化趋势相同。

  • 图6 TiO2光催化亚甲基蓝的一级速率常数 Ka、薄膜表面去离子水滴的接触角与工艺参数(气压、脉宽、频率)的关系[40]

  • Fig.6 First rate order constant value for the process of photo degradation of methylene blue and contact angles of deionised water droplets on the surface of the coating as a function of sputtering parameters

  • 4 HiPIMS 低温沉积其它薄膜

  • 半导体 Ge 通常是非晶形式,Ge 薄膜的电导率与其结晶程度密切相关。FURLAN 等[44]采用 HiPIMS 技术在 200℃和−920 V 脉冲偏压辅助条件下获得了 Ge 膜。由 HiPIMS 得到的所有厚度的薄膜均为晶态。作为对比,DC 只有在 350℃和大于 1.5 μm 膜厚时才出现结晶现象。图7a、7b 分别表示了 DCMS 和 HiPIMS 得到的薄膜结晶状态与膜厚和温度之间的关系。

  • 图7 DCMS 和 HiPIMS 沉积 Ge 薄膜结晶状态与膜厚和温度之间的关系[44]

  • Fig.7 Crystallite state for different film thickness and temperature for Ge thin films deposited by DCMS and HiPIMS

  • 结晶 Mo2BC 涂层通常需要在 900℃下制备,而 BOLVARDI 等[45]采用 HiPIMS 使结晶 Mo2BC 的合成温度降低至 380℃。他们通过分析非晶态 Mo2BC 粉末在 820℃下的体扩散结晶过程,认为低温合成晶态薄膜必须激活其表面扩散,合成温度的降低由离子轰击诱导的表面扩散引起。氮化硅(SiNx)薄膜作为光学器件常需要与柔性材料集成,降低其制备温度是其应用关键。TIRON 等[46]采用 HiPIMS 技术在常温下以 Ar/N2/H2 为反应气体制备了 SiNx 和 SiN∶H 薄膜,它具有 200~1 800 nm 波长范围内的低反射率(<5%),高透射率(93%),以及良好的力学和摩擦学性能。ZnO 薄膜通常需要掺杂 Al 和 N 等提高其 p 型电导率,但是较高的工艺温度使 Al 与 N、Al 与 O 以及 Zn、Al、O 之间发生反应,为此,降低工艺温度是其面临的最大挑战[47]。LI 等[48] 在 280℃下制备了 Al-N 共掺杂 p 型 ZnO 薄膜,电阻率为 0.35 Ω·cm,迁移率为 3.41 cm2 /(V·s),空穴浓度为 5.34×1018 cm−3。另外,MICKAN 等[49]使用 HiPIMS 技术改善了低温制备铝掺杂氧化锌 (AZO)薄膜的电均匀性。

  • 氧化铟(ITO)需要在至少 200℃以上温度下制备。STRANAK 等[50]使用 HiPIMS 优化了 ITO 薄膜的常温沉积工艺,在反应室通入 N2,通过 N2 降低金属 In 和 Sn 的发射强度,而电离的 N+ 有助于溅射过程。冯军等[51]使用 HiPIMS 技术在有机玻璃 (PMMA)上得到了 ITO 涂层,研究了偏压对其透光率的影响。在−160 V 的偏压下,高能量的离子通量促进 ITO 薄膜的结晶度并获得高透光率 (89.82%)。

  • 类金刚石(DLC)涂层是 sp 2 和 sp 3 杂化的亚稳态无定形碳,高温会促进 sp 3 向 sp 2 转化,降低涂层的力学性能。为了避免加工温度过高,AN 等[52]利用 HiPIMS 离化率高的特性,通过脉冲 KV 偏压增加等离子体中碳离子能量。高能离子间歇式的轰击和注入使其在低温下获得了高 sp 3 含量的 DLC 薄膜。同样地,WIATROWSKI 等[53]也通过 HiPIMS 得到了 sp 3 杂化部分含量为 70%~80%的 DLC 膜。

  • 为了扩展 CrAlN 涂层在热敏钢基底上使用,避免其高温下的变形及硬度损伤,BAGCIVAN 等[54] 利用DCMS+HiPIMS技术在200℃制备了(Cr1-xAlx) N 涂层,降低了涂层的沉积温度,并在偏压−200 V 时实现了涂层的高硬度( 20 GPa)和高模量 (412 GPa)。同时研究了偏压对涂层机械性能的影响。一方面,高偏压使高离子通量的 Cr 和 Al 离子以更高的动能到达基底,引起涂层的再溅射,一定程度上降低了沉积速率。另一方面,随着离子轰击基底能量的增加,基底表面原子的流动加快,减弱了柱状晶的阴影效应。涂层更加致密光滑,晶粒更细小。TiN 涂层制备温度在 300℃以上,铀在该温度下会形成厚而疏松的氧化层并发生变形和失效。为使其作为铀的保护涂层应用于核工业。DING 等[55] 首次通过 HiPIMS 技术在铀表面沉积了 TiN 保护涂层,沉积温度为 180℃,实现了高硬度 22.09 GPa,高结合力 16 N,低磨损耐腐蚀。

  • 综上,多种薄膜通过 HiPIMS 技术实现了低温沉积并达到应用要求,为此,本文讨论了薄膜的低温结晶机理。试验和理论认为结晶薄膜的相组成受亚稳相或稳定相形核率的控制,形核率由表面和体扩散过程的影响。图8 为 HiPIMS 低温沉积薄膜的结晶机理示意图,腔体中气体在阴极作用下发生电离,不断与靶表面发生碰撞,受高能脉冲影响,等离子体中存在气体离子、气体原子、金属离子、金属原子,离化率远远高于普通直流磁控溅射。在基底表面组成薄膜的粒子通常要保持稳定状态,即达到最小的吉布斯自由能,为了形成晶态结构,这些粒子必须进行有效的充分扩散。等离子体内大量的高能粒子在一定的偏压作用下,不断地向基底高速运动,在基底表面形成了一定的离子辐照区,它们将能量不断转移给薄膜,使薄膜近表面获得了高于实际加热温度的“有效温度”,弥补了薄膜结晶过程中加热不足的现象,促进了基底表面形核点附近的粒子不断向其扩散,从而实现薄膜结晶。相反,传统磁控溅射在基底表面并没有形成高离子通量,因此必须采用外部辅助加热方式促进其结晶[56-58]

  • 图8 HiPIMS 低温沉积薄膜的结晶机理示意图

  • Fig.8 Schematic diagram of crystalline thin films deposited by HiPIMS

  • 5 结论与展望

  • 传统磁控溅射技术已经在刀具和零部件获得广泛市场。然而,在许多应用领域,并不能满足用户最终的需求。HiPIMS 作为一种新技术,简单易用,只需将传统电源改为 HiPIMS 电源,即可用于工业生产。此外,更好的靶材利用率、更均匀致密的涂层质量使该技术具有广泛的应用前景。尤其 HiPIMS 技术适用于在较低的基底温度下或在形状复杂的工件上进行沉积薄膜。随着社会快速发展,薄膜在满足传统机械工程应用的同时,在电工电子、信息科技等行业也备受关注。然而,国内的 HiPIMS 技术仍然面临巨大挑战。

  • (1)HiPIMS 技术沉积氧化物薄膜受到靶中毒现象的影响,薄膜沉积速率较低,薄膜的性能难以满足工业需求,例如 VO2 的过渡温度仍然难以达到室温。为此,研究如何减少沉积氧化物过程中的靶中毒现象,提高氧化物薄膜的沉积速率及性能,得到最佳的沉积参数仍需要深入研究。

  • (2)晶态薄膜的低温制备虽已取得一定成效,但是低温下薄膜的结晶效果仍然不理想,削弱了它的应用价值。因此,未来提高晶态薄膜的结晶性仍然需要对 HiPIMS 设备和工艺进一步研究。

  • (3)要建立晶态薄膜形成过程中的数据模型,从理论上对HiPIMS技术的成膜机理进行分析研究,探索工艺参数与薄膜性能的对应关系及规律,实现工艺的快速调节。

  • (4)国内 HiPIMS 技术的开发与应用起步较晚,未来国内专家学者以及企业需在加快国产 HiPIMS 电源的开发与利用上加倍努力,从而实现 HiPIMS 大规模工业化,扩大 HiPIMS 的应用空间。

  • 参考文献

    • [1] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):166-184.

    • [2] GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):136-140.

    • [3] 吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vaccum,2009,46(3):18-22.(in Chinese)

    • [4] GREENE J E.Tracing the recorded history of thin-film sputter deposition:From the 1800s to 2017s[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):05C204.

    • [5] WU Z,TIAN X,LI C,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering[J].Acta Physica Sinica,2014,63(17):175-201.

    • [6] 杨文茂,刘艳文,徐禄祥,等.溅射沉积技术的发展及其现状[J].真空科学与技术学报,2005(3):204-210.YANG Wenmao,LIU Yanwen,XU Luxiang,et al.Review of film growth by sputtering technology[J].Journal of Vacuum Science and Technology,2005,(3):204-210.(in Chinese)

    • [7] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [8] 韩明月,李刘合,李花,等.高功率脉冲磁控溅射(HiPIMS)等离子体放电时空特性研究进展[J].表面技术,2019,48(9):20-52.HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.(in Chinese)

    • [9] ALAMI J,MARIC Z,BUSCH H,et al.Enhanced ionization sputtering:A concept for superior industrial coatings[J].Surface and Coatings Technology,2014,255:43-51.

    • [10] 吴忠振,田修波,潘锋,等.不同靶材料的高功率脉冲磁控溅射放电行为[J].金属学报,2014,50(10):1279-1284 WU Zhongzhen,TIAN Xiubo,PAN Feng,et al.High power pulsed magnetron sputtering discharge behavior of various target material[J].Sacta Metallurgica Sinica,2014,50(10):1279-1284(in Chinese)

    • [11] 王振玉,张栋,柯培玲,等.离子轰击对HIPIMS制备TiN薄膜结构和性能的影响[J].真空科学与技术学报,2014,34(3):256-260.WANG Zhenyu,ZHANG Dong,KE Peiling,et al.Effect of ion bombardment on TiN films deposited high-power impulse magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2014,34(3):256-260.(in Chinese)

    • [12] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)

    • [13] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [14] 吴保华,冷永祥,黄楠,等.高功率脉冲磁控溅射技术的离子(粒子)特性及其对薄膜组织结构的影响[J].表面技术,2018,47(5):245-255.WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.(in Chinese)

    • [15] PILCH I,SöDERSTRöM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles [J].KONA Powder and Particle Journal,2014,31:171-180.

    • [16] 程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering al+α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)

    • [17] WALLIN E,SELINDER T I,ELFWING M,et al.Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J].EPL(Europhysics Letters),2008,82(3):36002.

    • [18] SELINDER T I,CORONEL E,WALLIN E,et al.α-Alumina coatings on WC/Co substrates by physical vapor deposition[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):507-512.

    • [19] CHENG Y,CHU C,ZHOU P.Low-temperature deposition and hardness enhancement of α-(Al,Cr)2O3 films by reactive high power pulsed magnetron sputtering[J].Materials Research Express,2020,7(11):116407.

    • [20] BOBZIN K,BRÖGELMANN T,BRUGNARA R H,et al.Investigation of reactive HPPMS process and influence of bias voltage during deposition of alumina coatings[J].Advanced Engineering Materials,2016,18(4):665-670.

    • [21] ZHOU G,WANG L,WANG X,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.

    • [22] ZHOU G,WANG L,WANG X,et al.Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering[J].Vacuum,2019,166:88-96.

    • [23] 谷金鑫,魏航,任飞飞,等.高能脉冲磁控溅射技术制备 VO2薄膜研究进展[J].哈尔滨工程大学学报,2020,41(2):219-226.GU Jinxin,WEI Hang,REN Feifei,et al.Recent progress on the preparation of VO2 thin films by high-power impulse magnetron sputtering technology[J].Journal of Harbin Engineering University,2020,41(2):219-226.(in Chinese)

    • [24] FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.

    • [25] AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [26] LIN T,WANG L,WANG X,et al.Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition[J].Functional Materials Letters,2016,09(5):1650062.

    • [27] HOUSKA J,KOLENATY D,VLCEK J,et al.Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300 ℃[J].Thin Solid Films,2018,660:463-470.

    • [28] KOLENATY D,HOUSKA J,VLCEK J.Improved performance of thermochromic VO2/SiO2 coatings prepared by low-temperature pulsed reactive magnetron sputtering:Prediction and experimental verification[J].Journal of Alloys and Compounds,2018,767:46-51.

    • [29] HOUSKA J,KOLENATY D,REZEK J,et al.Characterization of thermochromic VO2(prepared at 250 ℃)in a wide temperature range by spectroscopic ellipsometry[J].Applied Surface Science,2017,421:529-534.

    • [30] REN F,WEI H,GU J,et al.In situ preparation of VO2 films with controlled ionized flux density in HiPIMS and their regulation of thermal radiance[J].ACS Applied Electronic Materials,2020,2(7):2203-2210.

    • [31] VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.

    • [32] VICTOR J L,MARCEL C,SAUQUES L,et al.High quality thermochromic VO2 thin films deposited at room temperature by balanced and unbalanced HiPIMS[J].Solar Energy Materials and Solar Cells,2021,227:111-113.

    • [33] LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.

    • [34] LOQUAI S,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al.HiPIMS-deposited thermochromic VO2 films with high environmental stability[J].Solar Energy Materials and Solar Cells,2017,160:217-224.

    • [35] JUAN P C,LIN K C,LIN C L,et al.Low thermal budget annealing for thermochromic VO2 thin films prepared by high power impulse magnetron sputtering[J].Thin Solid Films,2019,687:137443.

    • [36] WANG Q M,KWON S H,HUI K N,et al.Synthesis and properties of crystalline TiO2 films deposited by a HIPIMS+ technique[J].Vacuum,2013,89:90-95.

    • [37] KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.

    • [38] OLEJNíČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.

    • [39] RATOVA M,WEST G T,KELLY P J.HiPIMS deposition of tungsten-doped titania coatings for photocatalytic applications[J].Vacuum,2014,102:48-50.

    • [40] RATOVA M,WEST G T,KELLY P J.Optimisation of HiPIMS photocatalytic titania coatings for low temperature deposition[J].Surface and Coatings Technology,2014,250:7-13.

    • [41] CEMIN F,TSUKAMOTO M,KERAUDY J,et al.Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth[J].Journal of Physics D:Applied Physics,2018,51(23):235-301.

    • [42] TWU M J,CHIOU A H,HU C C,et al.Properties of TiO2 films deposited on flexible substrates using direct current magnetron sputtering and using high power impulse magnetron sputtering[J].Polymer Degradation and Stability,2015,117:1-7.

    • [43] SULTAN M T,GUDMUNDSSON J T,MANOLESCU A,et al.Obtaining SiGe nanocrystallites between crystalline TiO2 layers by HiPIMS without annealing[J].Applied Surface Science,2020,511:145552.

    • [44] FURLAN A,GROCHLA D,D'ACREMONT Q,et al.Influence of substrate temperature and film thickness on thermal,electrical,and structural properties of HPPMS and DC magnetron sputtered Ge thin films[J].Advanced Engineering Materials,2017,19(5):1600854.

    • [45] BOLVARDI H,EMMERLICH J,MRÁZ S,et al.Low temperature synthesis of Mo2BC thin films[J].Thin Solid Films,2013,542:5-7.

    • [46] TIRON V,VELICU I L,PANA I,et al.HiPIMS deposition of silicon nitride for solar cell application[J].Surface and Coatings Technology,2018,344:197-203.

    • [47] 张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Review on semi-conductive ZnO thin film prepared by HiPIMS[J].Vaccum,2021,58(1):72-77.(in Chinese)

    • [48] LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.

    • [49] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [50] STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:The impact of nitrogen admixture in HiPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.

    • [51] 冯军,李必文,陈文波,等.PMMA 表面高功率脉冲磁控溅射制备ITO涂层[J].稀有金属材料与工程,2020,49(7):2229-2233.FENG Jun,LI Biwen,CHEN Wenbo,et al.Preparation of ITO coating on PMMA by high-power pulse magnetron sputtering[J].Rare Metal Materials and Engineering,2020,49(7):2229-2233.(in Chinese)

    • [52] AN X,WU Z,LIU L,et al.High-ion-energy and low-temperature deposition of diamond-like carbon(DLC)coatings with pulsed kV bias[J].Surface and Coatings Technology,2019,365:152-157.

    • [53] WIATROWSKI A,KIJASZEK W,POSADOWSKI W M,et al.Deposition of diamond-like carbon thin films by the high power impulse magnetron sputtering method[J].Diamond and Related Materials,2017,72:71-76.

    • [54] BAGCIVAN N,BOBZIN K,BRUGNARA R H.Investigation of the properties of low temperature(Cr1-xAlx)N coatings deposited via hybrid PVD DC-MSIP/HPPMS[J].Materialwissenschaft und Werkstofftechnik,2013,44(8):667-672.

    • [55] DING J,YIN X,FANG L,et al.TiN films deposited on uranium by high power pulsed magnetron sputtering under low temperature[J].Materials(Basel),2018,11(8):1400.

    • [56] SARAKINOS K,MUSIC D,NAHIF F,et al.Ionized physical vapor deposited Al2O3 films:Does subplantation favor formation of α-Al2O3[J].Physica Status Solidi-Rapid Research Letters,2010,4(7):154-156.

    • [57] MUSIC D,NAHIF F,SARAKINOS K,et al.Ab initio molecular dynamics of Al irradiation-induced processes during Al2O3 growth[J].Applied Physics Letters,2011,98(11):111908.

    • [58] BOBZIN K,LUGSCHEIDER E,MAES M,et al.Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering[J].Thin Solid Films,2006,494(1-2):255-262.

  • 参考文献

    • [1] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):166-184.

    • [2] GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):136-140.

    • [3] 吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vaccum,2009,46(3):18-22.(in Chinese)

    • [4] GREENE J E.Tracing the recorded history of thin-film sputter deposition:From the 1800s to 2017s[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2017,35(5):05C204.

    • [5] WU Z,TIAN X,LI C,et al.Phasic discharge characteristics in high power pulsed magnetron sputtering[J].Acta Physica Sinica,2014,63(17):175-201.

    • [6] 杨文茂,刘艳文,徐禄祥,等.溅射沉积技术的发展及其现状[J].真空科学与技术学报,2005(3):204-210.YANG Wenmao,LIU Yanwen,XU Luxiang,et al.Review of film growth by sputtering technology[J].Journal of Vacuum Science and Technology,2005,(3):204-210.(in Chinese)

    • [7] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [8] 韩明月,李刘合,李花,等.高功率脉冲磁控溅射(HiPIMS)等离子体放电时空特性研究进展[J].表面技术,2019,48(9):20-52.HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.(in Chinese)

    • [9] ALAMI J,MARIC Z,BUSCH H,et al.Enhanced ionization sputtering:A concept for superior industrial coatings[J].Surface and Coatings Technology,2014,255:43-51.

    • [10] 吴忠振,田修波,潘锋,等.不同靶材料的高功率脉冲磁控溅射放电行为[J].金属学报,2014,50(10):1279-1284 WU Zhongzhen,TIAN Xiubo,PAN Feng,et al.High power pulsed magnetron sputtering discharge behavior of various target material[J].Sacta Metallurgica Sinica,2014,50(10):1279-1284(in Chinese)

    • [11] 王振玉,张栋,柯培玲,等.离子轰击对HIPIMS制备TiN薄膜结构和性能的影响[J].真空科学与技术学报,2014,34(3):256-260.WANG Zhenyu,ZHANG Dong,KE Peiling,et al.Effect of ion bombardment on TiN films deposited high-power impulse magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2014,34(3):256-260.(in Chinese)

    • [12] 暴一品,李刘合,刘峻曦,等.高功率脉冲磁控溅射研究进展[J].原子核物理评论,2015,32(S1):52-58.BAO Yipin,LI Liuhe,LIU Junxi,et al.Research progress on high power pulsed magnetron sputtering[J].Nuclear Physics Review,2015,32(S1):52-58.(in Chinese)

    • [13] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [14] 吴保华,冷永祥,黄楠,等.高功率脉冲磁控溅射技术的离子(粒子)特性及其对薄膜组织结构的影响[J].表面技术,2018,47(5):245-255.WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.(in Chinese)

    • [15] PILCH I,SöDERSTRöM D,LUNDIN D,et al.The use of highly ionized pulsed plasmas for the synthesis of advanced thin films and nanoparticles [J].KONA Powder and Particle Journal,2014,31:171-180.

    • [16] 程奕天,邱万奇,周克崧,等.低温反应溅射 Al+α-Al2O3 复合靶沉积 α-Al2O3 薄膜[J].无机材料学报,2019,34(8):862-866.CHENG Yitian,QIU Wanqi,ZHOU Kesong,et al.Low-temperature deposition of α-Al2O3 films by reactive sputtering al+α-Al2O3 target[J].Journal of Inorganic Materials,2019,34(8):862-866.(in Chinese)

    • [17] WALLIN E,SELINDER T I,ELFWING M,et al.Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J].EPL(Europhysics Letters),2008,82(3):36002.

    • [18] SELINDER T I,CORONEL E,WALLIN E,et al.α-Alumina coatings on WC/Co substrates by physical vapor deposition[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):507-512.

    • [19] CHENG Y,CHU C,ZHOU P.Low-temperature deposition and hardness enhancement of α-(Al,Cr)2O3 films by reactive high power pulsed magnetron sputtering[J].Materials Research Express,2020,7(11):116407.

    • [20] BOBZIN K,BRÖGELMANN T,BRUGNARA R H,et al.Investigation of reactive HPPMS process and influence of bias voltage during deposition of alumina coatings[J].Advanced Engineering Materials,2016,18(4):665-670.

    • [21] ZHOU G,WANG L,WANG X,et al.Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering[J].Applied Surface Science,2018,455:310-317.

    • [22] ZHOU G,WANG L,WANG X,et al.Effect of bias voltage on microstructure and optical properties of Al2O3 thin films prepared by twin targets reactive high power impulse magnetron sputtering[J].Vacuum,2019,166:88-96.

    • [23] 谷金鑫,魏航,任飞飞,等.高能脉冲磁控溅射技术制备 VO2薄膜研究进展[J].哈尔滨工程大学学报,2020,41(2):219-226.GU Jinxin,WEI Hang,REN Feifei,et al.Recent progress on the preparation of VO2 thin films by high-power impulse magnetron sputtering technology[J].Journal of Harbin Engineering University,2020,41(2):219-226.(in Chinese)

    • [24] FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.

    • [25] AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [26] LIN T,WANG L,WANG X,et al.Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition[J].Functional Materials Letters,2016,09(5):1650062.

    • [27] HOUSKA J,KOLENATY D,VLCEK J,et al.Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300 ℃[J].Thin Solid Films,2018,660:463-470.

    • [28] KOLENATY D,HOUSKA J,VLCEK J.Improved performance of thermochromic VO2/SiO2 coatings prepared by low-temperature pulsed reactive magnetron sputtering:Prediction and experimental verification[J].Journal of Alloys and Compounds,2018,767:46-51.

    • [29] HOUSKA J,KOLENATY D,REZEK J,et al.Characterization of thermochromic VO2(prepared at 250 ℃)in a wide temperature range by spectroscopic ellipsometry[J].Applied Surface Science,2017,421:529-534.

    • [30] REN F,WEI H,GU J,et al.In situ preparation of VO2 films with controlled ionized flux density in HiPIMS and their regulation of thermal radiance[J].ACS Applied Electronic Materials,2020,2(7):2203-2210.

    • [31] VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.

    • [32] VICTOR J L,MARCEL C,SAUQUES L,et al.High quality thermochromic VO2 thin films deposited at room temperature by balanced and unbalanced HiPIMS[J].Solar Energy Materials and Solar Cells,2021,227:111-113.

    • [33] LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.

    • [34] LOQUAI S,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al.HiPIMS-deposited thermochromic VO2 films with high environmental stability[J].Solar Energy Materials and Solar Cells,2017,160:217-224.

    • [35] JUAN P C,LIN K C,LIN C L,et al.Low thermal budget annealing for thermochromic VO2 thin films prepared by high power impulse magnetron sputtering[J].Thin Solid Films,2019,687:137443.

    • [36] WANG Q M,KWON S H,HUI K N,et al.Synthesis and properties of crystalline TiO2 films deposited by a HIPIMS+ technique[J].Vacuum,2013,89:90-95.

    • [37] KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.

    • [38] OLEJNíČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.

    • [39] RATOVA M,WEST G T,KELLY P J.HiPIMS deposition of tungsten-doped titania coatings for photocatalytic applications[J].Vacuum,2014,102:48-50.

    • [40] RATOVA M,WEST G T,KELLY P J.Optimisation of HiPIMS photocatalytic titania coatings for low temperature deposition[J].Surface and Coatings Technology,2014,250:7-13.

    • [41] CEMIN F,TSUKAMOTO M,KERAUDY J,et al.Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth[J].Journal of Physics D:Applied Physics,2018,51(23):235-301.

    • [42] TWU M J,CHIOU A H,HU C C,et al.Properties of TiO2 films deposited on flexible substrates using direct current magnetron sputtering and using high power impulse magnetron sputtering[J].Polymer Degradation and Stability,2015,117:1-7.

    • [43] SULTAN M T,GUDMUNDSSON J T,MANOLESCU A,et al.Obtaining SiGe nanocrystallites between crystalline TiO2 layers by HiPIMS without annealing[J].Applied Surface Science,2020,511:145552.

    • [44] FURLAN A,GROCHLA D,D'ACREMONT Q,et al.Influence of substrate temperature and film thickness on thermal,electrical,and structural properties of HPPMS and DC magnetron sputtered Ge thin films[J].Advanced Engineering Materials,2017,19(5):1600854.

    • [45] BOLVARDI H,EMMERLICH J,MRÁZ S,et al.Low temperature synthesis of Mo2BC thin films[J].Thin Solid Films,2013,542:5-7.

    • [46] TIRON V,VELICU I L,PANA I,et al.HiPIMS deposition of silicon nitride for solar cell application[J].Surface and Coatings Technology,2018,344:197-203.

    • [47] 张玉琛,张海宝,陈强.高功率脉冲磁控溅射制备ZnO薄膜的研究进展[J].真空,2021,58(1):72-77.ZHANG Yuchen,ZHANG Haibao,CHEN Qiang.Review on semi-conductive ZnO thin film prepared by HiPIMS[J].Vaccum,2021,58(1):72-77.(in Chinese)

    • [48] LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.

    • [49] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [50] STRANAK V,BOGDANOWICZ R,SEZEMSKY P,et al.Towards high quality ITO coatings:The impact of nitrogen admixture in HiPIMS discharges[J].Surface and Coatings Technology,2018,335:126-133.

    • [51] 冯军,李必文,陈文波,等.PMMA 表面高功率脉冲磁控溅射制备ITO涂层[J].稀有金属材料与工程,2020,49(7):2229-2233.FENG Jun,LI Biwen,CHEN Wenbo,et al.Preparation of ITO coating on PMMA by high-power pulse magnetron sputtering[J].Rare Metal Materials and Engineering,2020,49(7):2229-2233.(in Chinese)

    • [52] AN X,WU Z,LIU L,et al.High-ion-energy and low-temperature deposition of diamond-like carbon(DLC)coatings with pulsed kV bias[J].Surface and Coatings Technology,2019,365:152-157.

    • [53] WIATROWSKI A,KIJASZEK W,POSADOWSKI W M,et al.Deposition of diamond-like carbon thin films by the high power impulse magnetron sputtering method[J].Diamond and Related Materials,2017,72:71-76.

    • [54] BAGCIVAN N,BOBZIN K,BRUGNARA R H.Investigation of the properties of low temperature(Cr1-xAlx)N coatings deposited via hybrid PVD DC-MSIP/HPPMS[J].Materialwissenschaft und Werkstofftechnik,2013,44(8):667-672.

    • [55] DING J,YIN X,FANG L,et al.TiN films deposited on uranium by high power pulsed magnetron sputtering under low temperature[J].Materials(Basel),2018,11(8):1400.

    • [56] SARAKINOS K,MUSIC D,NAHIF F,et al.Ionized physical vapor deposited Al2O3 films:Does subplantation favor formation of α-Al2O3[J].Physica Status Solidi-Rapid Research Letters,2010,4(7):154-156.

    • [57] MUSIC D,NAHIF F,SARAKINOS K,et al.Ab initio molecular dynamics of Al irradiation-induced processes during Al2O3 growth[J].Applied Physics Letters,2011,98(11):111908.

    • [58] BOBZIN K,LUGSCHEIDER E,MAES M,et al.Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering[J].Thin Solid Films,2006,494(1-2):255-262.

  • 手机扫一扫看