en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张海宝,男,1982年出生,博士,副教授,硕士研究生导师。主要研究方向为等离子体诊断、等离子体催化合成、等离子体表面改性和高功率脉冲磁控溅射。E-mail:hbzhang@bigc.edu.cn;

刘洋,女,1995年出生,硕士研究生。主要研究方向为低温等离子体催化合成。E-mail:2965576609@qq.com

通讯作者:

陈强,男,1963年出生,博士,教授,硕士研究生导师。主要研究方向为低温等离子体物理与材料。E-mail:chenqiang@bigc.edu.cn

中图分类号:TN305;O484

DOI:10.11933/j.issn.1007−9289.20211231004

参考文献 1
GROVE W R.On the electro-chemical polarity of gases[J].Philosophical Magazine,1852,4(4):498-514.
参考文献 2
KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.
参考文献 3
ZHANG H,CHERNG J S,CHEN Q.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.
参考文献 4
GHAILANE A,MAKHA M,LARHLIMI H,et al.Design of hard coatings deposited by HiPIMS and dcMS[J].Materials Letters,2020,280:128540.
参考文献 5
罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)
参考文献 6
XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.
参考文献 7
LIN J,SPROUL W D,WEI R,et al.Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses[J].Surface and Coatings Technology,2014,258:1212-1222.
参考文献 8
VELICU I L,TIRON V,POROSNICU C,et al.Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach[J].Applied Surface Science,2017,424:397-406.
参考文献 9
ROSS A E,SANGINÉS R,TREVERROW B,et al.Optimizing efficiency of Ti ionized deposition in HiPIMS[J].Plasma Sources Science and Technology,2011,20(3):035021.
参考文献 10
LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.
参考文献 11
王浩琦,周茜,孙丽,等.深振荡磁控溅射制备柔性硬质纳米涂层的研究进展[J].稀有金属材料与工程.2021,50(8):2993-3002.WANG Haoqi,ZHOU Qian,SUN Li,et al.Research progress of flexible hard coating deposited by deep oscillating magnetron sputtering[J].Rare Metal Materials and Engineering,2021,50(8):2993-3002.(in Chinese)
参考文献 12
LIN J,MOORE J J,SPROUL W D,et al.Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2009,203(24):3676-3685.
参考文献 13
WANG Z,LI Q,YUAN Y,et al.The semi-conductor of ZnO deposited in reactive HiPIMS[J].Applied Surface Science,2019,494:384-390.
参考文献 14
MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.
参考文献 15
HAN M,LUO Y,LI H,et al.Effects of the dynamic cathode sheath on electron transport at the initial period of HiPIMS pulse studied by Langmuir probe measurements and 2D PIC-MCC simulation[J].Surface and Coatings Technology,2020,403:126371.
参考文献 16
HAN M,LUO Y,LI H,et al.Auxiliary capacitor to enhance oscillation in circuit and reduce current onset delay in HiPIMS discharge:theory,experiment and simulation[J].Surface and Coatings Technology,2021,405:126518.
参考文献 17
HÁLA M,ČAPEK J,ZABEIDA O,et al.Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies[J].Journal of Physics D:Applied Physics,2012,45(5):055204.
参考文献 18
LUNDIN D,SARAKINOS K.An introduction to thin film processing using high-power impulse magnetron sputtering[J].Journal of Materials Research,2012,27(5):780-792.
参考文献 19
AIEMPANAKIT M,HELMERSSON U,AIJAZ A,et al.Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide[J].Surface and Coatings Technology,2011,205(20):4828-4831.
参考文献 20
SURPI A,KUBART T,GIORDANI D,et al.HiPIMS deposition of TiOx in an industrial-scale apparatus:effects of target size and deposition geometry on hysteresis[J].Surface and Coatings Technology,2013,235:714-719.
参考文献 21
AGNARSSON B,MAGNUS F,TRYGGVASON T K,et al.Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering[J].Thin Solid Films,2013,545:445-450.
参考文献 22
KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.
参考文献 23
AMIN A,KÖHL D,WUTTIG M.The role of energetic ion bombardment during growth of TiO2 thin films by reactive sputtering[J].Journal of Physics D:Applied Physics,2010,43(40):405303.
参考文献 24
LIN J,WANG B,SPROUL W D,et al.Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering[J].Journal of Physics D:Applied Physics,2013,46(8):084008.
参考文献 25
OLEJNÍČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.
参考文献 26
ZUBKINS M,ARSLAN H,BIKSE L,et al.High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere:the study of sputtering process and AZO films[J].Surface and Coatings Technology,2019,369:156-164.
参考文献 27
LIN T,WANG J,LIU G,et al.Influence of discharge current on phase transition properties of high quality polycrystalline VO2 thin film fabricated by HiPIMS[J].Materials.2017,10(6):633.
参考文献 28
VLČEK J,KOLENATÝ D,HOUŠKA J,et al.Controlled reactive HiPIMS-effective technique for low-temperature(300 °C)synthesis of VO2 films with semiconductor-to-metal transition[J].Journal of Physics D:Applied Physics,2017,50(38):38LT01.
参考文献 29
FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.
参考文献 30
CHEN S C,KUO T Y,LIN H C,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508:145106.
参考文献 31
SUN H,KUO T Y,CHEN S C,et al.Contribution of enhanced ionization to the optoelectronic properties of p-type NiO films deposited by high power impulse magnetron sputtering[J].Journal of the European Ceramic Society,2019,39(16):5285-5291.
参考文献 32
CHUANG T H,WEN C K,CHEN S C,et al.P-type semi-transparent conductive NiO films with high deposition rate produced by superimposed high power impulse magnetron sputtering[J].Ceramics International,2020,46(17):27695-27701.
参考文献 33
GAO X,ANDERSSON J,KUBART T,et al.Epitaxy of ultrathin NiSi2 films with predetermined thickness[J].Electrochemical and Solid-State Letters,2011,14(7):H268-H270.
参考文献 34
REED A N,SHAMBERGER P J,HU J J,et al.Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2015,579:30-37.
参考文献 35
PARTRIDGE J G,MAYES E L H,MCDOUGALL N L,et al.Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering(HiPIMS)[J].Journal of Physics D:Applied Physics,2013,46(16):165105.
参考文献 36
VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.
参考文献 37
AIJAZ A,JI Y X,Montero J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.
参考文献 38
LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.
参考文献 39
LIN K C,LIN C L,TSAI C A,et al.The effect of TiO2 buffer layer thickness on the thermochromic properties of VO2 thin-film fabricated by high density plasma source[J].Japanese Journal of Applied Physics,2021,60(SA):SAAB04.
参考文献 40
WANG Z,LI Q,YUAN Y,et al.N doped ZnO(N:ZnO)film prepared by reactive HiPIMS deposition technique[J].AIP Advances,2020,10(3):035122.
参考文献 41
MICKAN M,HELMERSSON U,HORWAT D.Effect of substrate temperature on the deposition of Al-doped ZnO thin films using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2018,347:245-251.
参考文献 42
REZEK J,NOVÁK P,HOUŠKA J,et al.High-rate reactive high-power impulse magnetron sputtering of transparent conductive Al-doped ZnO thin films prepared at ambient temperature[J].Thin Solid Films,2019,679:35-41.
参考文献 43
MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.
参考文献 44
LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.
参考文献 45
TIRON V,VELICU IL,STANESCU D,et al.High visible light photocatalytic activity of nitrogen-doped ZnO thin films deposited by HiPIMS[J].Surface and Coatings Technology,2017,324:594-600.
参考文献 46
JI C,WU Z,WU X,et al.Optimization of metal-to-insulator phase transition properties in polycrystalline VO2 films for terahertz modulation applications by doping[J].Journal of Materials Chemistry C,2018,6(7):1722-1730.
参考文献 47
JI C,WU Z,WU X,et al.Al-doped VO2 films as smart window coatings:Reduced phase transition temperature and improved thermochromic performance[J].Solar Energy Materials and Solar Cells,2018,176:174-180.
参考文献 48
LU L,WU Z,JI C,et al.Effect of Fe doping on thermochromic properties of VO2 films[J].Journal of Materials Science:Materials in Electronics,2018,29(7):5501-5508.
参考文献 49
ZHANG H,WU Z,NIU R,et al.Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range[J].Applied Surface Science,2015,331:92-97.
参考文献 50
KRAMMER A,GREMAUD A,BOUVARD O,et al.In situphotoelectron spectroscopic characterization of reactively sputtered,doped vanadium oxide thin films[J].Surface and Interface Analysis,2016,48(7):440-444.
参考文献 51
KRAMMER A,MAGREZ A,VITALE W A,et al.Elevated transition temperature in Ge doped VO2 thin films[J].Journal of Applied Physics,2017,122:045304.
参考文献 52
CHANG C T,YANG Y C,LEE J W,et al.The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2014,572:161-168.
参考文献 53
AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.
参考文献 54
LIN T,WANG L,WANG X,et al.Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS[J].Surface and Coatings Technology,2016,305:110-115.
参考文献 55
LIMWICHEAN S,EIAMCHAI P,PONCHIO C,et al.Comparative investigations of DCMS/HiPIMS reactively sputtered WO3 thin films for photo-electrochemical efficiency enhancements[J].Vacuum,2021,185:109978.
参考文献 56
HÁLA M,VERNHES R,ZABEIDA O,et al.Growth and properties of high index Ta2O5 optical coatings prepared by HiPIMS and other methods[J].Surface and Coatings Technology,2014,241:33-37.
参考文献 57
GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341..
参考文献 58
CARRERI F C,SABELFELD A,GERDES H,et al.HIPIMS ITO films from a rotating cylindrical cathode[J].Surface and Coatings Technology,2016,290:65-72.
参考文献 59
REZEK J,HOUŠKA J,PROCHÁZKA M,et al.In-Ga-Zn-O thin films with tunable optical and electrical properties prepared by high-power impulse magnetron sputtering[J].Thin Solid Films,2018,658:27-32.
参考文献 60
WU C H,YANG F C,CHEN W C,et al.Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process[J].Surface and Coatings Technology,2016,303:209-214.
参考文献 61
HALBE A,JOHNSON P,JACKSON S,et al.High efficiency copper indium gallium diSelenide(CIGS)by high power impulse magnetron sputtering(HIPIMS):a promising and scalable application in thin-film photovoltaics[J].MRS Online Proceedings Library,2010,1210(1):609.
目录contents

    摘要

    高功率脉冲磁控溅射(HiPIMS)技术具有离化率高、等离子体密度高、沉积温度低、薄膜结构致密等优点,与沉积超硬耐磨涂层相比,HiPIMS 技术在光电薄膜沉积中的应用相对较少,且 HiPIMS 镀膜过程中涉及工艺参数较多,工艺参数的选择直接影响着沉积薄膜的结构和性能。基于这两个问题,系统梳理 HiPIMS 在光电薄膜沉积中放电的时空演变特性,重点介绍 HiPIMS 技术在光电薄膜沉积过程中的关键工艺参数,包括峰值功率密度、衬底材料、掺杂、偏置电压等,对薄膜结构和性能的影响规律,最后展望 HiPIMS 技术在光电薄膜沉积中的应用前景与发展趋势。

    Abstract

    High power impulse magnetron sputtering (HiPIMS) technology has the advantages of high ionization rate, high plasma density, low deposition temperature, and dense film structure. Compared with the deposition of super-hard wear-resistant coatings, HiPIMS technology has relatively few applications in the deposition of optoelectronic thin films. At the same time, many parameters are involved in the HiPIMS coating process, and the structure and performance of deposited film are directly affected by the choice of process parameters. Based on these two issues, the tempo-spatial evolution characteristics of the HiPIMS discharge in the deposition process of optoelectronic thin film are summarized. The key process parameters for the structure and function, including peak power density, substrate material, doping, bias, etc., are introduced in optoelectronic thin film deposited by HiPIMS. Finally, the future application and development trends of HiPIMS technology in the deposition of optoelectronic thin films are prospected.

  • 0 前言

  • 溅射技术可以追溯到 19 世纪中叶,GROVE[1] 于 1852 首次开始研究“溅射”。他将电和磁引入溅射系统中用于捕获和限制高能粒子,以便在低工作压力下溅射沉积高质量薄膜。磁控溅射技术的发展伴随着溅射电源的发展。磁控溅射常用的电源是直流电源( Direct current,DC)、脉冲直流电源 (Pulsed-direct current,p-DC)、射频电源(Radio frequency,RF),有时也把这几种电源联合使用。 1999 年,瑞典林雪平大学的 KOUZNETSOV 等[2]首次提出高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)电源的概念,经过 20 余年的发展已成为现代物理气相沉积(Physical vapor deposition,PVD)技术中最具吸引力的研究课题之一。

  • HiPIMS 技术最典型的特点是放电脉冲时间窄(50~200 µs),峰值功率密度高(>1 kW / cm2),等离子体密度高(>1019 m 3),离化率高,沉积温度低[3]。与传统磁控溅射相比,HiPIMS 技术沉积的薄膜质量更好,纯度、硬度、致密性、表面光滑性以及附着性能都更加优异,因此被广泛应用于沉积超硬耐磨涂层、光电功能薄膜以及近年来发展迅速的高熵合金。HiPIMS 镀膜过程中靶材离化率高,金属靶材 Cu 和 Cr 可达到 70%,Ti 靶可高达 90%[2]。与 DC 磁控溅射相比,HiPIMS 沉积的薄膜微观结构更加致密[4]。因此,HiPIMS 技术非常适合沉积超硬耐磨涂层,如用于沉积传统的单元或双元超硬涂层以及多元高熵合金超硬涂层[5-6]

  • 与在沉积超硬耐磨涂层领域的广泛而深入的应用相比,HiPIMS 技术在光电薄膜沉积中的应用相对较少,研究的光电薄膜材料种类和数量也有限。与此同时,HiPIMS 镀膜过程中涉及工艺参数较多,如峰值功率密度、占空比、衬底材料、偏置电压等,这些工艺参数的选择直接影响着沉积薄膜的结构和性能。因此有必要对目前 HiPIMS 技术在沉积光电薄膜中的研究进展进行梳理。本文首先结合 HiPIMS 源放电波形的发展演变,概括总结 HiPIMS 放电特性。第二部分重点介绍 HiPIMS 技术在光电薄膜沉积中的应用,特别是归纳梳理沉积过程中几个关键工艺参数,通过工艺参数调控策略实现 HiPIMS 放电特点和薄膜结构与性能之间的对应优化。最后展望 HiPIMS 技术在光电薄膜沉积中的应用前景。

  • 1 HiPIMS 在沉积光电薄膜过程中的放电机制特点

  • HiPIMS 镀膜过程中放电特性对薄膜的结构和性能都有很重要的影响。HiPIMS 放电产生的等离子体一方面离化中性气体产生气体离子,气体离子轰击靶材有效溅射镀膜;另一方面,不同溅射镀膜过程等离子体放电机制不同,通过调控等离子体放电特性可以沉积不同性质的薄膜。HiPIMS 的典型放电由短脉冲时间(<100 μs)内在靶材上施加强电流 (~100 A)和高电压(~1 000 V)引发。这种短脉冲放电使 HiPIMS 放电的瞬间功率超出平均功率 2个数量级,有效实现气体离化。足够高的离化率和离子通量有利于提高薄膜致密性,最大限度地减少薄膜中的缺陷和残余应力[7],同时可以有效避免产生不稳定的电弧放电现象。

  • HiPIMS 镀膜是典型的离子物理气相沉积过程。HiPIMS 激励电源的脉冲配置影响着靶材的离化率和溅射粒子到达衬底的通量[8]。随着真空镀膜技术的发展和对薄膜结构和性能需求的不断提升,近 20 年来 HiPIMS 激励电源脉冲配置也在不断演变。传统的 HiPIMS 激励电源波形如图1a 所示,脉冲磁控溅射电源是在直流磁控溅射电源的基础上进行调制,常规调制后的脉冲磁控溅射电源输出方波,初始脉冲为千伏内的高峰值电压,而电流波形类似于三角形。说明在脉冲方波电压的作用下,脉冲电流逐渐线性增加,直到脉冲电压关闭。进一步观察发现,脉冲电压方波在施加电压初期有振铃现象[9],如图1b 所示,这种振铃现象是由输出电感和小的输出电容引起,一直可以持续到没有负载时等离子体引发之前。HiPIMS 放电中脉冲电流都会有所延迟,在等离子体引发之前脉冲电流并不随着脉冲电压的增加而增加,等离子体引发后脉冲电流以线性方式增加。这使得尽管解决了 HiPIMS 传统磁控溅射靶材离化率低的问题,但是同时存在电弧现象和镀率低的问题,其镀率只有传统直流磁控溅射(Direct current magnetron sputtering,dcMS)的 25%~35%。调制脉冲磁控溅射(Modulated pulsed power magnetron sputtering,MPPMS)可通过微脉冲技术调控输出脉冲波形,如图1c 所示。在脉冲开始的数百微秒内施加高占空比、低电压、弱电流产生弱电离放电,而后施加低占空比高功率脉冲产生强电离放电,从而实现电压和电流同步,提高溅射镀率,但对于消除高功率电弧放电现象依然是一大挑战。进一步研究发现,在 MPPMS 反应溅射过程中,通过调控输出脉冲波形,产生由多个短而强的高脉冲电压振荡组成的长调制脉冲可以抑制靶面打弧现象,这种调制脉冲功率溅射模式被称为深振荡磁控溅射( Deep oscillation magnetron sputtering,DOMS)。图1d 所示为微脉冲占空比为 25%时 DOMS 放电电压-电流波形图[10]。每个长脉冲中的首个超强短脉冲启动强电离放电。在脉冲放电完全衰退前,基体电流还维持在一个高水平时,调控输出后续次强电压脉冲直至该负长调制电压脉冲结束,进而实现稳定的高功率放电。短脉冲之间的间隔可以从根本上抑制电弧放电的产生[11]

  • 图1 HiPIMS 放电电压-电流波形图

  • Fig.1 Voltage and current waveform of HiPIMS discharge

  • LIN 等[7]报道 DOMS 脉冲包含两组不同的频率和占空比。一组是调制脉冲的频率和占空比,由长调制脉冲开启和关闭时间确定,另一组是振荡脉冲的频率和占空比,由一个调制脉冲内的电压振荡脉冲开启时间(τon)和脉冲关闭时间(τoff)确定。可以通过改变 τonτoff来控制靶材峰值电压和电流。随着 τon的增加,靶材峰值电流和电压增加。另一方面,靶材峰值电流和电压将随着振荡 τoff的增加而降低。VELICU 等[8]设计三种不同脉冲模式的 HiPIMS 用以沉积钨薄膜:单超短脉冲模式(3 μs)、单长脉冲模式(50 μs)和多脉冲模式(5 ×3 μs)。与其它脉冲模式相比,多脉冲模式下沉积的钨薄膜具有更光滑的表面、更高的均匀性、更致密的微观结构、更高的硬度和杨氏模量值、更好的对硅衬底的附着力以及更低的摩擦因数。

  • HiPIMS 放电的电压-电流波形图反映 HiPIMS 电源的能量输出状态,同时也表明 HiPIMS 镀膜过程中等离子体放电具有时空演变特性。HiPIMS 溅射镀膜是一个依赖于时间的过程,在脉冲开启阶段、施加高电压时和之后的时间段(即电源切断或余辉)具有不同的放电行为,靶电压-电流波形、等离子体密度、等离子体电势、悬浮电位和电子温度等物理量均随时间发生变化,这些重要的变化直接影响着等离子体动力学,尤其是影响着反应气体的成分以及薄膜性能。WANG 等[13]在传统 HiPIMSAr / O2工作气氛中反应沉积透明导电 ZnO 薄膜时,借助于发射光谱法(Optical emission spectrum,OES)诊断观察多种活性粒子在 HiPIMS 一个脉冲阶段的时间演变特性,如图2 所示。这些活性粒子包括激发态 O I(777 nm)、激发态 Ar I(763.5 nm)、单价离子 Ar II(759 nm)、激发态 Zn I(481 nm) 和离子 Zn II(747.8 nm)。WANG 等[13]发现在 O2 气氛下,HiPIMS 溅射 Zn 靶时,首先可检测到的谱线来自激发态 Ar I(763.5 nm),这条谱线由快电子激发中性工作气体 Ar 产生。这意味着 Ar 异常辉光放电产生的电子在 HiPIMS 放电引发阶段起到电离作用。HiPIMS 放电引发以后,其它谱线强度随着 HiPIMS 脉冲电流的增加逐渐增强,而 Ar I (763.5 nm)谱线强度在 5.2 μs 达到峰值后开始减弱。激发态 O I(777 nm)谱线强度随着 HiPIMS 脉冲电流的变化而变化,表明原子 O 参与反应。原子 O 参与反应有助于 ZnO 薄膜的晶体结构由富 Zn 变为富 O。ROSS 等[9]借助于 OES 诊断研究 HiPIMS 溅射 Ti 靶时的等离子体组成、电子温度以及镀率的时间演变特性。发现 Ti+ 离子由热电子碰撞中性 Ti 原子产生,Ti+ 离子的谱线强度依赖于功率的变化,Ti+ 离子谱线强度存在临界饱和点。进一步增加功率虽然有助于提升镀率,但是薄膜沉积能量密度下降,功率的增加主要用于高能二次电子碰撞产生高离化态的 Ti2+和 Ti3+离子。

  • 图2 一个脉冲持续时间内 HiPIMS 放电 OES 时间演化

  • Fig.2 OES time evolution of HiPIMS discharge within a pulse duration

  • HiPIMS 放电随时间演变的同时,在空间尺度上也存在空间演变。一方面,HiPIMS 放电靶材与基体之间的等离子体空间可以区分为靶鞘层区、预鞘层区、等离子体区和基体前鞘层区共 4 个区间,另一方面,等离子体变量如等离子体电势、等离子体密度(离子、电子)、粒子能量分布(离子、电子) 空间分布也不均匀。靶鞘层区具有大电位降和较高电场,预鞘层区具有低电位降和较低电场[14]。靶鞘层区和预鞘层区之间的边界可以通过等离子体电位 Vp 来估计。HAN 等[15]模拟不同时间等离子体电位 Vp 的空间分布,如图3 所示。在 0.5 μs 时,靶鞘层外为强等离子体负电位,在轴向 10 mm 处几乎达到 −400 V。随着正净电荷密度分布收敛,靶鞘层厚度逐渐减薄,最终在 2.5 μs 时达到约 1 mm。跑道上方鞘层受磁场限制,等离子体电位在跑道上方急剧下降。图3d 显示在 z = 7 mm 处有一个相对较高的电位,而在 2.5 μs 时预鞘层内其他位置的电位较低。也就是说,预鞘层内有电位反转。电位反转与电子在交叉电磁场中的传输有关,电子受到磁场的强烈约束,导致电子过剩和负电位。另外,HAN 等[16] 模拟了标准 HiPIMS 和电路振荡增强型 HiPIMS 中不同时间等离子体参数的空间演变,包括电子出现的位置、电子密度 ne、等离子体电位 VpE×B 漂移方向上的电子电流密度 JE×B

  • 图3 等离子体电位的空间分布

  • Fig.3 Spatial distribution of plasma potential

  • HiPIMS 电源的电压-电流波形主要由溅射电源的激励机制不同而决定。在电源确定的情况下,溅射不同成分、结构以及性能的薄膜,所对应的溅射靶材、工作气氛及气压不同,往往也会影响溅射电源的电学特性。同时,不同类型的 HiPIMS 溅射电源受到的影响不同。HÁLA 等[17]对比 HiPIMS、 MPPMS、dcMS 三种电源在 O2 / Ar 气氛下溅射 Nb 靶沉积透明高折射率 Nb2O5 薄膜时的反应溅射行为和薄膜光学特性。他们发现随着 O2 流量的增加, HiPIMS 和 MPPMS 的放电电流变化不同,HiPIMS 放电电流随 O2 流量的增加快速上升,而 MPPMS 的放电电流到了大功率脉冲阶段宽幅振荡开始以后才随 O2 流量的增加而增加,如图4a 和图4b 所示。同时,靶材表面氧化状态对于反应溅射过程放电特性也至关重要。脉冲之间间隔时间越长,靶材表面越容易发生氧化。从图4c 和图4d 可以看出,随着脉冲频率的降低,HiPIMS 和宽幅振荡 MPPMS 的峰值电流都明显增加。峰值电流随脉冲频率降低而增加,是靶材表面氧化引起的二次电子发射增加所致。对比 HiPIMS、MPPMS 和 dcMS 三种电源沉积 Nb2O5 薄膜的光学性能,发现 HiPIMS 沉积得到的 Nb2O5 薄膜折射率为 2.336,高于另外两种工艺。薄膜的折射率与其致密程度有关。HiPIMS 溅射的高能离子有助于生长更加致密的 Nb2O5 薄膜。

  • 图4 O2流量 Φ(O2)和脉冲重复频率 f 对 HiPIMS 和 MPPMS 脉冲电流波形的影响

  • Fig.4 Effect of oxygen flow Φ (O2) and pulse repetition frequency f on the pulse current waveforms of the HiPIMS and MPPMS

  • 2 HiPIMS 技术沉积光电薄膜过程参数调控策略

  • 与传统磁控溅射相比,HiPIMS 技术放电参数和沉积工艺参数更加多样,一方面增加 HiPIMS 镀膜过程的复杂性,同时也为调控优化工艺参数、制备性能多样的薄膜提供可能性。HiPIMS 技术沉积光电薄膜过程中关键参数包括峰值功率密度、衬底材料、掺杂、偏置电压等。在靶材和工作气氛确定的情况下,放电参数峰值功率密度和占空比的调控范围主要取决于所选用的 HiPIMS 电源。本节将围绕目前研究较多的几种金属氧化物光电薄膜,包括 TiO2、ZnO、VO2、NiO 等,梳理 HiPIMS 沉积光电薄膜主要过程参数调控策略。

  • 2.1 峰值功率密度

  • HiPIMS 最典型的特点是高功率密度。HiPIMS 的高功率密度有助于溅射靶材,提高溅射材料的电离度,使沉积到的薄膜更加光滑致密。同时,HiPIMS 的高功率密度有助于形成高能溅射离子,高能溅射离子的存在有助于在低温条件下形成高温相薄膜,从而实现薄膜晶粒结构的调控。

  • LUNDIN 等[18]研究发现,与传统 dcMS 对比,功率密度相同的情况下,HiPIMS 放电中 Ti+ 的能量高达 40 eV,而在 dcMS 放电中仅为 20 eV。为了将离子能量分布的变化与薄膜特性相关联, AIEMPANAKIT 等[19]发现具有最高峰值功率(39 kW) 的 HiPIMS 显示出最高的离子能量。Ti+ 和 O+ 的尾部能量存在显著差异,在所有情况下,与 Ti+ 相比, O+ 的能量尾部延伸到更高的值,如图5a 和 5b 所示。 SURPI 等[20]发现在 dcMS 弱电离的 Ar 等离子体中含有中性 Ti 原子。HiPIMS 金属模式溅射下的 OES 光谱主要以 Ti+ 和 Ti++谱线为主,中性 Ar 谱线消失, Ar+ 谱线相对较弱,如图5c 所示。AIEMPANAKIT 等[19]研究发现在 dcMS 生长的薄膜为无定型,在中等峰值功率 HiPIMS 条件下生长的薄膜具有最高密度和最高折射率,室温下可以生长锐钛矿相和金红石相的 TiO2薄膜(图5d),无需对衬底加热和设置偏压,无需沉积后退火,并且沉积速率相对较高。锐钛矿相和金红石相的比例取决于 HiPIMS 放电的峰值功率。使用高峰值功率沉积到金红石相,而在低峰值功率时主要沉积到锐钛矿相。AGNARSSON 等[21]通过 HiPIMS 在相对较低的生长温度下获得具有高折射率的金红石相 TiO2 薄膜,无需后退火。这些薄膜比用 dcMS 生长的薄膜更光滑(图5e),并显示出更好的光学特性。SURPI 等[20]发现 HiPIMS 比 dcMS 沉积到的 TiO2 薄膜的折射率高出很多,如图5f 所示。KONSTANTINIDIS 等[22]认为与传统 dcMS 沉积的薄膜相比,由于重离子轰击,HiPIMS 沉积的薄膜致密化是折射率增加的主要原因。AMIN[23]等研究发现HiPIMS放电中高能氧离子轰击作用强烈,可以在低温下沉积到纯金红石结构的 TiO2 薄膜。

  • LIN 等[24]对比脉冲 dcMS 和 DOMS 溅射 TiO2 薄膜的晶型结构和光学性能。脉冲 dcMS 沉积的 TiO2 薄膜全部为锐钛矿相,而通过调控峰值电流,在 DOMS 中可以实现 TiO2 薄膜从锐钛矿相向金红石相的转变,在峰值电流升高至 200 A 时,TiO2薄膜完全转化为金红石相。DOMS 溅射的高能离子轰击有利于增强反应气体以及薄膜表面的反应活性,降低形成晶相的能量壁垒,从而使得 TiO2 薄膜膜层致密、折射率高。

  • OLEJNÍČEK 等[25]采用叠加型磁控溅射系统: HiPIMS+中频(MF)用于在低衬底温度下沉积 TiO2 薄膜。结果表明,在反应气氛中,HiPIMS+MF 组合有效地减少阴极电压边缘和电流开始之间的延迟。总离子流中 Ti+ 离子的比例最高,在惰性 Ar 气氛中达到最高离子能量。无论激发模式如何,在反应气氛中沉积的所有 TiO2 薄膜都具有纯金红石相。此外,HiPIMS+MF 的低温沉积特性有利于在聚碳酸酯箔衬底上沉积到金红石相的 TiO2 薄膜。

  • ZUBKINS 等[26]研究 HiPIMS 峰值电流对 Al 掺杂 ZnO(Al-doped ZnO,AZO)薄膜的结构、电学和光学特性的影响。由于强烈的氩气稀薄效应,与其他金属相比,Zn 靶获得的峰值功率密度相对较低。但是可以通过增加脉冲之间的平均功率将峰值功率密度提高到 0.5 kW / cm2 以上,如果脉冲持续时间为 500 μs,当峰值功率密度高于 0.3 kW / cm2 时,可以观察到持续的自溅射放电。沉积到的 AZO 薄膜的最低电阻率为 1.0×10−3 Ω·cm,透射率约为 70%。

  • 图5 dcMS 和 HiPIMS 沉积 TiO2薄膜工艺对比

  • Fig.5 Comparison of dcMS and HiPIMS technology for deposition of TiO2 thin film

  • LIN 等[27]在石英衬底上沉积 VO2 热致变色薄膜,在峰值功率密度为 4.71 kW / cm2,衬底温度为 420℃时,获得相变温度(TMIT)为 49.2℃的高质量多晶 VO2薄膜。VLČ EK 等[28]在峰值功率密度高达 5 kW / cm2,常规钠钙玻璃衬底上低温(300℃) 沉积到具有显著相变特性的 VO2 薄膜,实现 2 500 nm 处的高透射率(ΔT2 500 nm为 43%),并且在 56~57℃的 TMIT 下实现 350 倍的电阻率增加。 FORTIER 等[29]在 300℃下制备一种高质量的、几乎化学计量的多晶 VO2热致变色薄膜,其 ΔT2 500 nm 为 61%。该工作峰值功率密度高达 15 kW / cm2,大大高于之前工作中描述的峰值功率密度。结果表明,即使在较低的沉积温度下,峰值功率密度越高,VO2 薄膜的质量就越好。

  • CHEN 等[30]对比 HiPIMS 和 dcMS 在不同氧气流量比下,沉积到的 NiO 薄膜的结构和光电性能。结果表明,由于在 HiPIMS 沉积过程中形成的 Ni3+ 离子密度增加,薄膜中形成了更多的镍空位,导致薄膜载流子浓度显著提高。HiPIMS 沉积的 NiO 薄膜比 dcMS 沉积的薄膜具有更好的 p 型导电性。此外,随着氧气流量比的增加,可以引入更多的间隙氧,这也可以增强薄膜的 p 型导电性。然而,这些缺陷降低了薄膜的透射率。SUN 等[31]认为 HiPIMS 沉积过程中会产生更多 Ni3+离子增强了 NiO 薄膜的固有 p 型电导率。随着脉冲关断时间从 0 μs 增加到 3 000 μs,Ni3+浓度大大提高,表明 Ni 空位数量和空穴浓度显著提高,证实 HiPIMS 技术制备 p 型 NiO 薄膜的优势。特别是当脉冲关闭时间达到 3 ms 时,可实现 2.86×1021 cm−3 的高载流子浓度和约 0.07 Ω·cm 的相对较低的电阻率。 CHUANG 等 [32] 采用 HiPIMS+MF 叠加型溅射源沉积半透明导电 p-NiO 薄膜。研究发现,在 HiPIMS 的单极脉冲中叠加 MF,特别是在 HiPIMS+MF3X 的沉积模式中,可以获得低至 3.41 Ω·cm 的电阻率,同时保持 2.32 Å / s 的高沉积速率。在沉积过程中,MF 的时间延长会使靶离化率降低,薄膜中氧含量和 Ni3+含量下降,最终导致薄膜的电阻降低,而薄膜透光性能得到改善。

  • 2.2 衬底材料

  • 在 HiPIMS 镀膜工艺中,薄膜的表面形貌、结晶度和光电性能受衬底材料的影响显著[33]

  • REED 等[34]使用 HiPIMS 溅射 ZnO 陶瓷靶在导电硅片表面沉积 ZnO 薄膜,发现薄膜以平行于衬底-薄膜界面的方向(101)面和(002)面择优取向生长。 PARTRIDGE 等[35]使用 HiPIMS 在 300℃蓝宝石衬底上反应沉积 ZnO 薄膜,获得的 n 型 ZnO 薄膜表现出高透明度、中等载流子浓度(约 5×1018 cm−3) 和 8.0 cm2 /(V·s)的霍尔迁移率,用此 ZnO 薄膜构建的 Pt / ZnO 肖特基二极管在+/−2 V 时表现出高达 104 的整流比,并且对紫外线敏感。

  • VU 等[36]采用 HiPIMS 在普通的钠钙玻璃基片上沉积 VO2薄膜,沉积速度可观,达到 5.7 nm / min。与高温玻璃基底和硅基底相比,展现出优异的结晶度和热致变色性能,最高透光率 Tlum 达到 30.4%,太阳光调制率 ΔTsol 约为 12%。AIJAZ 等[37]的研究表明,与传统的 dcMS 或 rfMS 相比,HiPIMS 允许更低的沉积温度,这有利于在温度敏感的基材上沉积薄膜。LOQUAI 等[38]实现在低至 275℃的温度下,在温度敏感的柔性聚酰亚胺衬底上沉积热致变色 VO2 薄膜,ΔT2 500 nm高达 50%。

  • 此外,HiPIMS 低温工艺有利于一些非导电衬底在不施加偏压的情况下沉积高质量薄膜,例如玻璃或塑料。LIN 等[39]在玻璃衬底上预沉积 TiO2 介质层,通过 HiPIMS 在室温下沉积 VO2薄膜,经 500℃ 后处理 3 min,获得良好的光学性能,在低温状态下具有出色的太阳能调节效率(ΔTsol = 10.2%)和良好的透光率(Tlum = 41.1%)。使用 25℃ / 85℃热应力循环 100 次证明薄膜良好的耐久性。

  • 2.3 掺杂

  • WANG 等[40]通过 HiPIMS 技术以 N2为 N 源在玻璃衬底沉积 N 掺杂 ZnO(N∶ZnO)薄膜,研究工艺参数对 N∶ZnO 薄膜从 n 型到 p 型导电性的改变以及 p 型行为稳定性的影响。研究发现,N∶ZnO 薄膜的 n 型或 p 型行为受 N2 流速、沉积温度和感应耦合等离子体(Inductively coupled plasma,ICP)辅助离化的影响。值得注意的是,由于 ICP 提高 N2 的电离率,N∶ZnO 薄膜几乎完全表现出 p 型行为。基于时间分辨发射光谱诊断等离子体成分,证实薄膜生长中ICP辅助离化产生的高浓度的活性N+ 与蒸气中溅射的 Zn+ 反应形成无缺陷的 p 型 N∶ZnO 薄膜。MICHAN 等[41]使用 HiPIMS 在室温和 600℃之间的衬底温度下沉积 AZO 薄膜。在 600℃的最高衬底温度下可以沉积最低电阻率为 3×10−4 Ω·cm 的薄膜。HiPIMS 溅射过程可以在金属或过渡模式下进行,即使在相对较高的氧分压下也可以避免负氧轰击的不利影响。薄膜结晶度提高有助于迁移率的提高,从而改善薄膜的电学性能和对环境的稳定性。REZEK 等[42]用 HiPIMS 在室温下沉积透明导电的 AZO 薄膜,沉积速率高达 60 nm / min,电阻率为 3×10−3 Ω·cm。平均靶功率和电压脉宽分别为 1.9 W / cm2 和 200 μs。MICKAN 等[43]使用 HiPIMS 从合金靶材上沉积 AZO 薄膜,研究发现 HiPIMS 工艺显著改善 AZO 薄膜的电学性能,显示出低至 10−4 Ω·cm 的低电阻率,并且在整个衬底上具有良好的均匀性,使它们成为太阳能电池电极的潜在候选者。HiPIMS 溅射允许以过渡模式进行,并在低温下在大表面上沉积高导电性、透明的 AZO 薄膜。 LI等[44]进一步采用Al-N共掺杂制备p型ZnO薄膜。借助 HiPIMS 的高电离率,N+ 和 Zn+ 的浓度增加,在 280℃的条件下可以生长电阻率低于 0.35 Ω·cm,且空穴浓度高于 5.34×1018 cm−3 的共掺杂 p 型 ZnO 薄膜。另外,TIRON 等[45]在 Ar / N2 / O2 气氛中用HiPIMS溅射纯Zn靶来合成ZnOxNy薄膜,其氮含量超过 6.2 at.%,光学带隙能量值超过 3.34~1.67 eV。通过稳定过渡区中的 HiPIMS 放电,可以在金属和化合物溅射模式中精细控制沉积薄膜中的氮含量。

  • 目前VO2智能窗薄膜商业化所涉及的障碍包括相对较高的相转变温度 Tc(对于体材料~340 K)、高沉积温度(通常高于 400℃)、低可见光透射率 (在可见光区域中低于 50%)和不理想的颜色(棕黑色或紫红色,取决于薄膜厚度)。这些问题是制备高质量 VO2 薄膜面临的主要挑战,针对这些问题学者探索了很多方法,例如通过掺杂不同元素的方法(例如 W[46]、Nb[46]、Al[47]、Fe[48]和 Si[49])改变相转变温度 Tc(低于或高于体材料)。通常,掺杂方法用于降低 VO2 的相转变温度 Tc,掺杂 W 可将相转变温度降低至 31.1℃[46]。掺杂剂的含量可以通过 DC 或 RF 磁控溅射的施加功率来控制,DC 或 RF 磁控溅射源可以配备在 HiPIMS 中用于沉积掺杂 VO2 薄膜。

  • 2.4 偏置电压

  • HiPIMS 具有高电离率和高等离子体密度的特性,但也需要施加偏压来控制溅射粒子动量,从而改善薄膜性能[50]。磁控溅射工艺中给衬底施加偏压可以增加沉积离子的平均能量,从而显著影响薄膜性能[51]。特别是对于 HiPIMS,其中主要是溅射离子促进薄膜的低温生长,所以可以很容易地通过施加衬底偏压控制沉积离子的能量[52]

  • AIJAZ 等[53]证明在 HiPIMS 工艺中,通过调控衬底偏压改变沉积通量来调整 VO2薄膜的成分和热致变色响应的可行性。在衬底偏压的辅助下, HiPIMS 使沉积温度从 500℃降低到 300℃,这有利于薄膜在温度敏感的衬底表面沉积。LIN 等[54]使用 HiPIMS 研究脉冲直流偏压对沉积在石英衬底上的 VO2 薄膜相变特性的影响。当脉冲偏压从−50 V 增加到−250 V 时,TMIT从 54℃降低到 31.5℃。

  • 由此可见,与传统的 dcMS 技术相比,HiPIMS 技术借助于其高峰值电流和峰值功率密度,在光电薄膜沉积中有助于实现薄膜成分、形貌、晶相以及性能的精确控制和优化。除了以上介绍的 TiO2、 ZnO、VO2、NiO 等几种常见的氧化物光电薄膜以外,用 HiPIMS 技术沉积的光电薄膜还有 WO3 [55]、 Nb2O5 [17]、Ta2O5 [56]、HfO2 [57]、SnO2∶In(ITO)[58]、 InGaZnO(IGZO)[59-60]、CuInGaSn(CIGS)[61]等。溅射薄膜不同也会对溅射电源的电学特性产生影响。因此,在 HiPIMS 溅射过程中,不同薄膜对应的具体工艺参数不同,主要的影响因素需要结合溅射薄膜结构和性能,耦合溅射电源的电学参数以及薄膜沉积过程工艺参数对薄膜结构和性能综合考察。

  • 3 结论与展望

  • 与经典的磁控溅射技术相比,HiPIMS 技术的研究目前仍处于早期阶段,仍然存在许多问题需要研究和探索,如 HiPIMS 固有的溅射机制、电流延迟、低沉积速率、电弧现象和相对复杂的工艺技术。同时,与沉积超硬耐磨涂层相比,HiPIMS 在光电薄膜沉积方面的应用还相对较少,有必要从如下 3 个方面开展具体工作:

  • (1)HiPIMS 溅射电源的设计。HiPIMS 溅射电源决定 HiPIMS 不同的溅射机制,影响 HiPIMS 放电的时空演变特性,对 HiPIMS 溅射等离子体特性、活性粒子的反应特性以及沉积薄膜的结构和性能都有直接影响。从传统的单脉冲 HiPIMS 到 MPPMS,再到 DOMS、BP-HiPIMS、DBP-HiPIMS 等,HiPIMS 源的波形经历了从典型的简单方波到复杂多样的其他脉冲形式,以及在脉冲关闭期间叠加其他波形。 HiPIMS 源的变化直接影响溅射过程等离子体反应动力学,对 HiPIMS 源的研究有助于理解沉积过程中的溅射机理,解决具体工艺问题。

  • (2)HiPIMS 沉积光电薄膜的工艺调控策略。除溅射电源以外,HiPIMS 溅射机制也受薄膜沉积工艺中具体选用的靶材、工作气氛、气压、沉积温度等工艺参数影响。虽然 HiPIMS 技术发展至今 20 余年来已广泛应用于沉积功能薄膜,尤其是沉积超硬耐磨涂层,但由于溅射过程参数的耦合,薄膜性能高度依赖于溅射工艺参数。另外,HiPIMS 沉积光电薄膜相对较少,一方面与光电薄膜的发展进程有关; 另一方面,制备光电薄膜往往需要对薄膜成分、结构与缺陷等精确调控,薄膜光电性能对具体工艺参数非常敏感;同时,很多光电薄膜溅射采用的是多价态金属靶材,其氧化态复杂多样。通过调控 HiPIMS 沉积光电薄膜过程中的关键参数,如峰值功率密度、衬底材料、掺杂、偏置电压等,可以实现制备多种不同结构和性能的光电薄膜。

  • (3)HiPIMS 的脉冲放电机制决定其时空演变特性,HiPIMS 溅射场的非平衡性对于沉积大面积光电薄膜是一个巨大的挑战。同时,HiPIMS 源的稳定性和 HiPIMS 镀率低的问题对于沉积大面积光电薄膜也是障碍。经过过去 20 余年的研究,全世界从学术界到工业界对于 HiPIMS 技术的优势已经有目共睹。目前全世界也有很多公司可以提供完整的 HiPIMS 源。随着 HiPIMS 镀膜工艺的逐渐成熟, HiPIMS 技术有望应用于沉积大面积光电薄膜的工业过程中。

  • 参考文献

    • [1] GROVE W R.On the electro-chemical polarity of gases[J].Philosophical Magazine,1852,4(4):498-514.

    • [2] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [3] ZHANG H,CHERNG J S,CHEN Q.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.

    • [4] GHAILANE A,MAKHA M,LARHLIMI H,et al.Design of hard coatings deposited by HiPIMS and dcMS[J].Materials Letters,2020,280:128540.

    • [5] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)

    • [6] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [7] LIN J,SPROUL W D,WEI R,et al.Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses[J].Surface and Coatings Technology,2014,258:1212-1222.

    • [8] VELICU I L,TIRON V,POROSNICU C,et al.Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach[J].Applied Surface Science,2017,424:397-406.

    • [9] ROSS A E,SANGINÉS R,TREVERROW B,et al.Optimizing efficiency of Ti ionized deposition in HiPIMS[J].Plasma Sources Science and Technology,2011,20(3):035021.

    • [10] LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.

    • [11] 王浩琦,周茜,孙丽,等.深振荡磁控溅射制备柔性硬质纳米涂层的研究进展[J].稀有金属材料与工程.2021,50(8):2993-3002.WANG Haoqi,ZHOU Qian,SUN Li,et al.Research progress of flexible hard coating deposited by deep oscillating magnetron sputtering[J].Rare Metal Materials and Engineering,2021,50(8):2993-3002.(in Chinese)

    • [12] LIN J,MOORE J J,SPROUL W D,et al.Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2009,203(24):3676-3685.

    • [13] WANG Z,LI Q,YUAN Y,et al.The semi-conductor of ZnO deposited in reactive HiPIMS[J].Applied Surface Science,2019,494:384-390.

    • [14] MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.

    • [15] HAN M,LUO Y,LI H,et al.Effects of the dynamic cathode sheath on electron transport at the initial period of HiPIMS pulse studied by Langmuir probe measurements and 2D PIC-MCC simulation[J].Surface and Coatings Technology,2020,403:126371.

    • [16] HAN M,LUO Y,LI H,et al.Auxiliary capacitor to enhance oscillation in circuit and reduce current onset delay in HiPIMS discharge:theory,experiment and simulation[J].Surface and Coatings Technology,2021,405:126518.

    • [17] HÁLA M,ČAPEK J,ZABEIDA O,et al.Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies[J].Journal of Physics D:Applied Physics,2012,45(5):055204.

    • [18] LUNDIN D,SARAKINOS K.An introduction to thin film processing using high-power impulse magnetron sputtering[J].Journal of Materials Research,2012,27(5):780-792.

    • [19] AIEMPANAKIT M,HELMERSSON U,AIJAZ A,et al.Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide[J].Surface and Coatings Technology,2011,205(20):4828-4831.

    • [20] SURPI A,KUBART T,GIORDANI D,et al.HiPIMS deposition of TiOx in an industrial-scale apparatus:effects of target size and deposition geometry on hysteresis[J].Surface and Coatings Technology,2013,235:714-719.

    • [21] AGNARSSON B,MAGNUS F,TRYGGVASON T K,et al.Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering[J].Thin Solid Films,2013,545:445-450.

    • [22] KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.

    • [23] AMIN A,KÖHL D,WUTTIG M.The role of energetic ion bombardment during growth of TiO2 thin films by reactive sputtering[J].Journal of Physics D:Applied Physics,2010,43(40):405303.

    • [24] LIN J,WANG B,SPROUL W D,et al.Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering[J].Journal of Physics D:Applied Physics,2013,46(8):084008.

    • [25] OLEJNÍČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.

    • [26] ZUBKINS M,ARSLAN H,BIKSE L,et al.High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere:the study of sputtering process and AZO films[J].Surface and Coatings Technology,2019,369:156-164.

    • [27] LIN T,WANG J,LIU G,et al.Influence of discharge current on phase transition properties of high quality polycrystalline VO2 thin film fabricated by HiPIMS[J].Materials.2017,10(6):633.

    • [28] VLČEK J,KOLENATÝ D,HOUŠKA J,et al.Controlled reactive HiPIMS-effective technique for low-temperature(300 °C)synthesis of VO2 films with semiconductor-to-metal transition[J].Journal of Physics D:Applied Physics,2017,50(38):38LT01.

    • [29] FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.

    • [30] CHEN S C,KUO T Y,LIN H C,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508:145106.

    • [31] SUN H,KUO T Y,CHEN S C,et al.Contribution of enhanced ionization to the optoelectronic properties of p-type NiO films deposited by high power impulse magnetron sputtering[J].Journal of the European Ceramic Society,2019,39(16):5285-5291.

    • [32] CHUANG T H,WEN C K,CHEN S C,et al.P-type semi-transparent conductive NiO films with high deposition rate produced by superimposed high power impulse magnetron sputtering[J].Ceramics International,2020,46(17):27695-27701.

    • [33] GAO X,ANDERSSON J,KUBART T,et al.Epitaxy of ultrathin NiSi2 films with predetermined thickness[J].Electrochemical and Solid-State Letters,2011,14(7):H268-H270.

    • [34] REED A N,SHAMBERGER P J,HU J J,et al.Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2015,579:30-37.

    • [35] PARTRIDGE J G,MAYES E L H,MCDOUGALL N L,et al.Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering(HiPIMS)[J].Journal of Physics D:Applied Physics,2013,46(16):165105.

    • [36] VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.

    • [37] AIJAZ A,JI Y X,Montero J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [38] LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.

    • [39] LIN K C,LIN C L,TSAI C A,et al.The effect of TiO2 buffer layer thickness on the thermochromic properties of VO2 thin-film fabricated by high density plasma source[J].Japanese Journal of Applied Physics,2021,60(SA):SAAB04.

    • [40] WANG Z,LI Q,YUAN Y,et al.N doped ZnO(N:ZnO)film prepared by reactive HiPIMS deposition technique[J].AIP Advances,2020,10(3):035122.

    • [41] MICKAN M,HELMERSSON U,HORWAT D.Effect of substrate temperature on the deposition of Al-doped ZnO thin films using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2018,347:245-251.

    • [42] REZEK J,NOVÁK P,HOUŠKA J,et al.High-rate reactive high-power impulse magnetron sputtering of transparent conductive Al-doped ZnO thin films prepared at ambient temperature[J].Thin Solid Films,2019,679:35-41.

    • [43] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [44] LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.

    • [45] TIRON V,VELICU IL,STANESCU D,et al.High visible light photocatalytic activity of nitrogen-doped ZnO thin films deposited by HiPIMS[J].Surface and Coatings Technology,2017,324:594-600.

    • [46] JI C,WU Z,WU X,et al.Optimization of metal-to-insulator phase transition properties in polycrystalline VO2 films for terahertz modulation applications by doping[J].Journal of Materials Chemistry C,2018,6(7):1722-1730.

    • [47] JI C,WU Z,WU X,et al.Al-doped VO2 films as smart window coatings:Reduced phase transition temperature and improved thermochromic performance[J].Solar Energy Materials and Solar Cells,2018,176:174-180.

    • [48] LU L,WU Z,JI C,et al.Effect of Fe doping on thermochromic properties of VO2 films[J].Journal of Materials Science:Materials in Electronics,2018,29(7):5501-5508.

    • [49] ZHANG H,WU Z,NIU R,et al.Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range[J].Applied Surface Science,2015,331:92-97.

    • [50] KRAMMER A,GREMAUD A,BOUVARD O,et al.In situphotoelectron spectroscopic characterization of reactively sputtered,doped vanadium oxide thin films[J].Surface and Interface Analysis,2016,48(7):440-444.

    • [51] KRAMMER A,MAGREZ A,VITALE W A,et al.Elevated transition temperature in Ge doped VO2 thin films[J].Journal of Applied Physics,2017,122:045304.

    • [52] CHANG C T,YANG Y C,LEE J W,et al.The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2014,572:161-168.

    • [53] AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [54] LIN T,WANG L,WANG X,et al.Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS[J].Surface and Coatings Technology,2016,305:110-115.

    • [55] LIMWICHEAN S,EIAMCHAI P,PONCHIO C,et al.Comparative investigations of DCMS/HiPIMS reactively sputtered WO3 thin films for photo-electrochemical efficiency enhancements[J].Vacuum,2021,185:109978.

    • [56] HÁLA M,VERNHES R,ZABEIDA O,et al.Growth and properties of high index Ta2O5 optical coatings prepared by HiPIMS and other methods[J].Surface and Coatings Technology,2014,241:33-37.

    • [57] GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341..

    • [58] CARRERI F C,SABELFELD A,GERDES H,et al.HIPIMS ITO films from a rotating cylindrical cathode[J].Surface and Coatings Technology,2016,290:65-72.

    • [59] REZEK J,HOUŠKA J,PROCHÁZKA M,et al.In-Ga-Zn-O thin films with tunable optical and electrical properties prepared by high-power impulse magnetron sputtering[J].Thin Solid Films,2018,658:27-32.

    • [60] WU C H,YANG F C,CHEN W C,et al.Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process[J].Surface and Coatings Technology,2016,303:209-214.

    • [61] HALBE A,JOHNSON P,JACKSON S,et al.High efficiency copper indium gallium diSelenide(CIGS)by high power impulse magnetron sputtering(HIPIMS):a promising and scalable application in thin-film photovoltaics[J].MRS Online Proceedings Library,2010,1210(1):609.

  • 参考文献

    • [1] GROVE W R.On the electro-chemical polarity of gases[J].Philosophical Magazine,1852,4(4):498-514.

    • [2] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [3] ZHANG H,CHERNG J S,CHEN Q.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.

    • [4] GHAILANE A,MAKHA M,LARHLIMI H,et al.Design of hard coatings deposited by HiPIMS and dcMS[J].Materials Letters,2020,280:128540.

    • [5] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)

    • [6] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [7] LIN J,SPROUL W D,WEI R,et al.Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses[J].Surface and Coatings Technology,2014,258:1212-1222.

    • [8] VELICU I L,TIRON V,POROSNICU C,et al.Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach[J].Applied Surface Science,2017,424:397-406.

    • [9] ROSS A E,SANGINÉS R,TREVERROW B,et al.Optimizing efficiency of Ti ionized deposition in HiPIMS[J].Plasma Sources Science and Technology,2011,20(3):035021.

    • [10] LI Y G,LU Y L,JIANG Z T,et al.On the influence of the micropulse on Nb thin films deposited by MPPMS and DOMS:a comparative study[J].Surface and Coatings Technology,2021,421:127464.

    • [11] 王浩琦,周茜,孙丽,等.深振荡磁控溅射制备柔性硬质纳米涂层的研究进展[J].稀有金属材料与工程.2021,50(8):2993-3002.WANG Haoqi,ZHOU Qian,SUN Li,et al.Research progress of flexible hard coating deposited by deep oscillating magnetron sputtering[J].Rare Metal Materials and Engineering,2021,50(8):2993-3002.(in Chinese)

    • [12] LIN J,MOORE J J,SPROUL W D,et al.Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2009,203(24):3676-3685.

    • [13] WANG Z,LI Q,YUAN Y,et al.The semi-conductor of ZnO deposited in reactive HiPIMS[J].Applied Surface Science,2019,494:384-390.

    • [14] MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.

    • [15] HAN M,LUO Y,LI H,et al.Effects of the dynamic cathode sheath on electron transport at the initial period of HiPIMS pulse studied by Langmuir probe measurements and 2D PIC-MCC simulation[J].Surface and Coatings Technology,2020,403:126371.

    • [16] HAN M,LUO Y,LI H,et al.Auxiliary capacitor to enhance oscillation in circuit and reduce current onset delay in HiPIMS discharge:theory,experiment and simulation[J].Surface and Coatings Technology,2021,405:126518.

    • [17] HÁLA M,ČAPEK J,ZABEIDA O,et al.Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies[J].Journal of Physics D:Applied Physics,2012,45(5):055204.

    • [18] LUNDIN D,SARAKINOS K.An introduction to thin film processing using high-power impulse magnetron sputtering[J].Journal of Materials Research,2012,27(5):780-792.

    • [19] AIEMPANAKIT M,HELMERSSON U,AIJAZ A,et al.Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide[J].Surface and Coatings Technology,2011,205(20):4828-4831.

    • [20] SURPI A,KUBART T,GIORDANI D,et al.HiPIMS deposition of TiOx in an industrial-scale apparatus:effects of target size and deposition geometry on hysteresis[J].Surface and Coatings Technology,2013,235:714-719.

    • [21] AGNARSSON B,MAGNUS F,TRYGGVASON T K,et al.Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering[J].Thin Solid Films,2013,545:445-450.

    • [22] KONSTANTINIDIS S,DAUCHOT J P,HECQ M.Titanium oxide thin films deposited by high-power impulse magnetron sputtering[J].Thin Solid Films,2006,515(3):1182-1186.

    • [23] AMIN A,KÖHL D,WUTTIG M.The role of energetic ion bombardment during growth of TiO2 thin films by reactive sputtering[J].Journal of Physics D:Applied Physics,2010,43(40):405303.

    • [24] LIN J,WANG B,SPROUL W D,et al.Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering[J].Journal of Physics D:Applied Physics,2013,46(8):084008.

    • [25] OLEJNÍČEK J,HUBIČKA Z,KMENT Š,et al.Investigation of reactive HiPIMS+MF sputtering of TiO2 crystalline thin films[J].Surface and Coatings Technology,2013,232:376-383.

    • [26] ZUBKINS M,ARSLAN H,BIKSE L,et al.High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere:the study of sputtering process and AZO films[J].Surface and Coatings Technology,2019,369:156-164.

    • [27] LIN T,WANG J,LIU G,et al.Influence of discharge current on phase transition properties of high quality polycrystalline VO2 thin film fabricated by HiPIMS[J].Materials.2017,10(6):633.

    • [28] VLČEK J,KOLENATÝ D,HOUŠKA J,et al.Controlled reactive HiPIMS-effective technique for low-temperature(300 °C)synthesis of VO2 films with semiconductor-to-metal transition[J].Journal of Physics D:Applied Physics,2017,50(38):38LT01.

    • [29] FORTIER J P,BALOUKAS B,ZABEIDA O,et al.Thermochromic VO2 thin films deposited by HiPIMS[J].Solar Energy Materials and Solar Cells,2014,125:291-296.

    • [30] CHEN S C,KUO T Y,LIN H C,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508:145106.

    • [31] SUN H,KUO T Y,CHEN S C,et al.Contribution of enhanced ionization to the optoelectronic properties of p-type NiO films deposited by high power impulse magnetron sputtering[J].Journal of the European Ceramic Society,2019,39(16):5285-5291.

    • [32] CHUANG T H,WEN C K,CHEN S C,et al.P-type semi-transparent conductive NiO films with high deposition rate produced by superimposed high power impulse magnetron sputtering[J].Ceramics International,2020,46(17):27695-27701.

    • [33] GAO X,ANDERSSON J,KUBART T,et al.Epitaxy of ultrathin NiSi2 films with predetermined thickness[J].Electrochemical and Solid-State Letters,2011,14(7):H268-H270.

    • [34] REED A N,SHAMBERGER P J,HU J J,et al.Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2015,579:30-37.

    • [35] PARTRIDGE J G,MAYES E L H,MCDOUGALL N L,et al.Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering(HiPIMS)[J].Journal of Physics D:Applied Physics,2013,46(16):165105.

    • [36] VU T D,LIU S,ZENG X,et al.High-power impulse magnetron sputtering deposition of high crystallinity vanadium dioxide for thermochromic smart windows applications[J].Ceramics International,2020,46(6):8145-8153.

    • [37] AIJAZ A,JI Y X,Montero J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [38] LOQUAI S,BALOUKAS B,ZABEIDA O,et al.HiPIMS-deposited thermochromic VO2 films on polymeric substrates[J].Solar Energy Materials and Solar Cells,2016,155:60-69.

    • [39] LIN K C,LIN C L,TSAI C A,et al.The effect of TiO2 buffer layer thickness on the thermochromic properties of VO2 thin-film fabricated by high density plasma source[J].Japanese Journal of Applied Physics,2021,60(SA):SAAB04.

    • [40] WANG Z,LI Q,YUAN Y,et al.N doped ZnO(N:ZnO)film prepared by reactive HiPIMS deposition technique[J].AIP Advances,2020,10(3):035122.

    • [41] MICKAN M,HELMERSSON U,HORWAT D.Effect of substrate temperature on the deposition of Al-doped ZnO thin films using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2018,347:245-251.

    • [42] REZEK J,NOVÁK P,HOUŠKA J,et al.High-rate reactive high-power impulse magnetron sputtering of transparent conductive Al-doped ZnO thin films prepared at ambient temperature[J].Thin Solid Films,2019,679:35-41.

    • [43] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [44] LI Q,YING M,LIU Z,et al.The low temperature growth of stable p-type ZnO films in HiPIMS[J].Plasma Science and Technology,2021,23(9):095503.

    • [45] TIRON V,VELICU IL,STANESCU D,et al.High visible light photocatalytic activity of nitrogen-doped ZnO thin films deposited by HiPIMS[J].Surface and Coatings Technology,2017,324:594-600.

    • [46] JI C,WU Z,WU X,et al.Optimization of metal-to-insulator phase transition properties in polycrystalline VO2 films for terahertz modulation applications by doping[J].Journal of Materials Chemistry C,2018,6(7):1722-1730.

    • [47] JI C,WU Z,WU X,et al.Al-doped VO2 films as smart window coatings:Reduced phase transition temperature and improved thermochromic performance[J].Solar Energy Materials and Solar Cells,2018,176:174-180.

    • [48] LU L,WU Z,JI C,et al.Effect of Fe doping on thermochromic properties of VO2 films[J].Journal of Materials Science:Materials in Electronics,2018,29(7):5501-5508.

    • [49] ZHANG H,WU Z,NIU R,et al.Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range[J].Applied Surface Science,2015,331:92-97.

    • [50] KRAMMER A,GREMAUD A,BOUVARD O,et al.In situphotoelectron spectroscopic characterization of reactively sputtered,doped vanadium oxide thin films[J].Surface and Interface Analysis,2016,48(7):440-444.

    • [51] KRAMMER A,MAGREZ A,VITALE W A,et al.Elevated transition temperature in Ge doped VO2 thin films[J].Journal of Applied Physics,2017,122:045304.

    • [52] CHANG C T,YANG Y C,LEE J W,et al.The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2014,572:161-168.

    • [53] AIJAZ A,JI Y X,MONTERO J,et al.Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,149:137-144.

    • [54] LIN T,WANG L,WANG X,et al.Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS[J].Surface and Coatings Technology,2016,305:110-115.

    • [55] LIMWICHEAN S,EIAMCHAI P,PONCHIO C,et al.Comparative investigations of DCMS/HiPIMS reactively sputtered WO3 thin films for photo-electrochemical efficiency enhancements[J].Vacuum,2021,185:109978.

    • [56] HÁLA M,VERNHES R,ZABEIDA O,et al.Growth and properties of high index Ta2O5 optical coatings prepared by HiPIMS and other methods[J].Surface and Coatings Technology,2014,241:33-37.

    • [57] GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341..

    • [58] CARRERI F C,SABELFELD A,GERDES H,et al.HIPIMS ITO films from a rotating cylindrical cathode[J].Surface and Coatings Technology,2016,290:65-72.

    • [59] REZEK J,HOUŠKA J,PROCHÁZKA M,et al.In-Ga-Zn-O thin films with tunable optical and electrical properties prepared by high-power impulse magnetron sputtering[J].Thin Solid Films,2018,658:27-32.

    • [60] WU C H,YANG F C,CHEN W C,et al.Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process[J].Surface and Coatings Technology,2016,303:209-214.

    • [61] HALBE A,JOHNSON P,JACKSON S,et al.High efficiency copper indium gallium diSelenide(CIGS)by high power impulse magnetron sputtering(HIPIMS):a promising and scalable application in thin-film photovoltaics[J].MRS Online Proceedings Library,2010,1210(1):609.

  • 手机扫一扫看