en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏永强(通信作者),男,1980年出生,博士,副教授,硕士研究生导师。主要研究方向为硬质涂层及制备方法。E-mail:yqwei2008@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220117001

参考文献 1
KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.
参考文献 2
BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.
参考文献 3
SARAKINOS K,ALAMI J,KLEVER C,et al.Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide[J].Surface & Coatings Technology,2008,202(20):5033-5035.
参考文献 4
LEROY W P,MAHIEU S,DEPLA D,et al.High power impulse magnetron sputtering using a rotating cylindrical magnetron[J].Journal of Vacuum Science & Technology A,2010,28(1):108-111.
参考文献 5
吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vacuum,2009,46(3):18-22.(in Chinese)
参考文献 6
ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surface & Coatings Technology,2020,394:125890.
参考文献 7
MARCELINO R B P,AMORIM C C,RATOVA M,et al.Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water[J].Chemical Engineering Journal,2019,370:1251-1261.
参考文献 8
QURESHI M W,MA X,TANG G,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.
参考文献 9
WU W Y,CHAN M Y,HSU Y H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,362:167-175.
参考文献 10
SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.
参考文献 11
YANG Z Y,CHEN Y H,LIAO B H,et al.Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering[J].Optical Materials Express,2016,6(2):540-551.
参考文献 12
ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.
参考文献 13
田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)
参考文献 14
李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposition of TiN coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)
参考文献 15
ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys & Compounds,2018,735:422-429.
参考文献 16
VEGA J,SCHEERER H,ANDERSOHN G,et al.Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods[J].Corrosion Science,2018,133:240-250.
参考文献 17
MA D,DENG Q,LIU H,et al.Effect of ion energy on the microstructure and properties of titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.
参考文献 18
XIE Q,FU Z,LIU Z,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.
参考文献 19
KIMURA T,YOSHIDA R,MISHIMA T,et al.Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges[J].Japanese Journal of Applied physics,2018,57(6S2):06JE02.
参考文献 20
TANG J F,HUANG S Y,LIN J H,et al.Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2022,434:128201.
参考文献 21
CHANG CL,LUO GJ,YANG FC,et al.Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS[J].Vacuum,2021,192:110449.
参考文献 22
CHANG C L,HO C T,CHEN P H,et al.Synergetic effect for improved deposition of titanium nitride films[J].Surface & Coatings Technology,2018,350:1098-1104.
参考文献 23
GHAILANE A,OLUWATOSIN A O,LARHLIMI H,et al.Titanium nitride,TixN(1−x),coatings deposited by HiPIMS for corrosion resistance and wear protection properties[J].Applied Surface Science,2022,574:151635.
参考文献 24
KUMAR P,SEEMA,GUPTA M,et al.Fully dense,highly conductive nanocrystalline TiN diffusion barrier on steel via reactive high power impulse magnetron sputtering[J].Thin Solid Films,2021,722:138578.
参考文献 25
VILOAN R P B,GU J B,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion-bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.
参考文献 26
VILOAN R P B,ZANÁŠKA M,LUNDIN D,et al.Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge[J].Plasma Sources Science & Technology,2021,29(12):125013.
参考文献 27
贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].表面技术,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostucture films prepared by ion source assisted HiPIMS[J].Surface Technology,2019,32(1):63-71.(in Chinese)
参考文献 28
CEMIN F,ABADIAS G,MINEA T,et al.Tuning high power impulse magnetron sputtering discharge and substrate bias conditions to reduce the intrinsic stress of TiN thin films[J].Thin Solid Films,2019,688:137335.
参考文献 29
朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及CrAlN涂层的性能[J].材料热处理学报,2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by HIPIMS technology[J].Transactions of Materials & Heat Treatment,2019,40(4):127-135.(in Chinese)
参考文献 30
LIN J,SPROUL W D,MOORE J J.Microstructure and properties of nanostructured thick CrN coatings[J].Materials Letters,2012,89:55-58.
参考文献 31
BATKOVÁ Š,ČAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface & Coatings Technology,2020,393:125773.
参考文献 32
GUI B,ZHOU H,LIU X,et al.Influence of N2 flow rate on microstructure and properties of CrNx ceramic films prepared by MPP technique at low temperature[J].Ceramics International,2021,47(15):20875-20884.
参考文献 33
HAYE E,COLAUX J L,MOSKOVKIN P,et al.Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitride[J].Surface & Coatings Technology,2018,350:84-94.
参考文献 34
CEDEÑO-VENTE M L,MONDRAGÓN-RODRÍGUEZ G C,CAMACHO N,et al.Tailoring the chemical composition and microstructure of CrxN deposited by HiPIMS through duty-cycle modifications[J].Surface & Coatings Technology,2021,422:127502.
参考文献 35
SÁNCHEZ-LÓPEZ J C,CARO A,ALCALÁ G,et al.Tailoring CrNx stoichiometry and functionality by means of reactive HiPIMS[J].Surface & Coatings Technology,2020,401:126235.
参考文献 36
PEI C,DENG L,LIU H,et al.Corrosion inhibition behaviors of ZrNx thin films with varied N vacancy concentration[J].Vacuum,2019,162:28-38.
参考文献 37
GUIMARAES M C R,CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface & Coatings Technology,2018,340:112-120.
参考文献 38
ZUO X,XIA F,ZHANG D,et al.The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system[J].International Journal of Modern Physics B,2017,31(16-19):1744032.
参考文献 39
ELO R,JACOBSON S,KUBART T.Tailoring residual stresses in CrNx films on alumina and silicon deposited by high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,397:125990.
参考文献 40
KUMAR A,BAURI R,NASKAR A,et al.Characterization of HiPIMS and DCMS deposited TiAlN coatings and machining performance evaluation in high speed dry machining of low and high carbon steel[J].Surface & Coatings Technology,2021,417:127180.
参考文献 41
ALHAFIAN M R,CHEMIN J B,FLEMING Y,et al.Comparison on the structural,mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J].Surface & Coatings Technology,2021,423:127529.
参考文献 42
LIU L,ZHOU L,TANG W,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface & Coatings Technology,2020,402:126315.
参考文献 43
CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science & Technology,2020,29(2):025016.
参考文献 44
ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface & Coatings Technology,2020,382:125007.
参考文献 45
ZAUNER L,BAHR A,KOZÁK T,et al.Time-averaged and time-resolved ion fluxes related to reactive HiPIMS deposition of Ti-Al-N films[J].Surface & Coatings Technology,2021,424:127638.
参考文献 46
郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.CrAlN coatings prepared by HiPIMS/pulsed DC cosputtering[J].Surface Technology,2019,48(4):137-144.(in Chinese)
参考文献 47
TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,386:125484.
参考文献 48
TANG J F,LIN C Y,YANG F C,et al.Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films[J].Coatings,2020,10(6):546.
参考文献 49
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Influence of a short reverse positive HPPMS pulse on the deposition of CrAlN[J].Surface & Coatings Technology,2021,423:127625.
参考文献 50
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Pulse synchronized substrate bias for the high power pulsed magnetron sputtering deposition of CrAlN[J].Thin Solid Films,2021,732:138792.
参考文献 51
RAJPUT S S,GANGOPADHYAY S,CAVALEIRO A,et al.Influence of Ag additions on the structure,mechanical properties and oxidation behaviour of CrAlNAg coatings deposited by sputtering[J].Surface & Coatings Technology,2021,426:127767.
参考文献 52
HOVSEPIAN P E,EHIASARIAN A P,PURANDARE Y P,et al.Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components[J].Journal of Alloys & Compounds,2018,746:583-593.
参考文献 53
AGÜERO A,JUEZ-LORENZO M,HOVSEPIAN P E,et al.Long-term behaviour of Nb and Cr nitrides nanostructured coatings under steam at 650 ℃.mechanistic considerations[J].Journal of Alloys & Compounds,2018,739:549-558.
参考文献 54
ILLANA A,MATO S,EHIASARIAN A,et al.Substrate finishing and niobium content effects on the hightemperature corrosion resistance in steam atmosphere of CrN/NbN superlattice coatings deposited by PVDHIPIMS[J].Oxidation of Metals,2017,87(3):455-467.
参考文献 55
BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,336:84-91.
参考文献 56
BISWAS B,PURANDARE Y,KHAN I,et al.Effect of substrate bias voltage on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,344:383-393.
参考文献 57
OU Y X,LIN J L,TONG S,et al.Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering[J].Applied Surface Science,2015,351:332-343.
参考文献 58
OU Y X,WANG H Q,LIAO B,et al.Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam[J].Ceramics International,2019,45(18):24405-24412.
参考文献 59
BAGCIVAN N,BOBZIN K,LUDWIG A,et al.CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering[J].Thin Solid Films,2014,572:153-160.
参考文献 60
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS[J].Surface & Coatings Technology,2017,332:253-261.
参考文献 61
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Smart PVD hard coatings with temperature sensor function[J].Surface & Coatings Technology,2021,423:127631.
参考文献 62
LIN J,ZHANG X,GE F,et al.Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance[J].Surface & Coatings Technology,2019,377:124922.
参考文献 63
SUGUMARAN A A,PURANDARE Y,SHUKLA K,et al.TiN/NbN nanoscale multilayer coatings deposited by high power impulse magnetron sputtering to protect medical-grade CoCrMo alloys[J].Coatings,2021,11(7):867.
参考文献 64
LIU H,YANG F C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,358:577-585.
参考文献 65
KOEHLER J S.Attempt to design a strong solid[J].Physical Review B,1970,2(2):547-551.
参考文献 66
LIU H,TANG J F,WANG X,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2019,37(5):051501.
参考文献 67
BOBZIN K,BRÖGELMANN T,MAYER J,et al.Thermal stability of CrAlN/AlCrN nanolaminate coating deposited by hybrid dcMS/HPPMS after heat treatment with continuous-wave laser[J].Applied Surface Science,2021,569:151024.
参考文献 68
CHANG K S,KAO J Y,HUANG C H,et al.The effect of a buffer layer on the structure and the performance of cutting-tools for ZrWN films that are deposited using DCMS and HIPIMS[J].Ceramics International,2018,44(8):9519-9525.
参考文献 69
MA D L,DENG Q Y,LIU H Y,et al.Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers[J].Surface & Coatings Technology,2021,425:127749.
参考文献 70
ZHU Yujie,MA Jingling,WANG GuangXin,et al.Corrosion behaviour of multilayer CrN coatings deposited by hybrid HIPIMS after oxidation treatment[J].Nanotechnology Reviews,2020,9(1):596.
参考文献 71
GU J,LI L,AI M,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface & Coatings Technology,2020,402:126270.
参考文献 72
李林儒,王振玉,左潇,等.直流磁控溅射和高功率脉冲磁控溅射TiSiN涂层的结构与性能比较[J].表面技术,2019,48(9):70-77.LI Linru,WANG Zhenyu,ZUO Xiao,et al.Comparative study on structure and properties of TiSiN coatings prepared by DCMS and HiPIMS[J].Surface Technology,2019,48(9):70-77.(in Chinese)
参考文献 73
王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influnce of N2 flow rate on the structures and mechanical properties of TiSiN coatings prepared by HIPIMS method[J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)
参考文献 74
FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering & Performance,2021,30(6):3912-3924.
参考文献 75
OLIVEIRA J C,FERNANDES F,FERREIRA F,et al.Tailoring the nanostructure of Ti–Si–N thin films by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2015,264:140-149.
参考文献 76
FERNANDES F,CALDERON V S,FERREIRA P J,et al.Low peak power deposition regime in HiPIMS:deposition of hard and dense nanocomposite Ti-Si-N films by DOMS without the need of energetic bombardment[J].Surface & Coatings Technology,2020,397:125996.
参考文献 77
GRECZYNSKI G,BAKHIT B,HULTMAN L,et al.High Si content TiSiN films with superior oxidation resistance[J].Surface & Coatings Technology,2020,398:126087.
参考文献 78
GRECZYNSKI G,PATSCHEIDER J,LU J,et al.Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS codeposition[J].Surface & Coatings Technology,2015,280:174-184.
参考文献 79
李玉阁,朱小鹏,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层对钛合金基体抗氧化性能的影响研究[J].表面技术,2020,49(12):220-227.LI Yuge,ZHU Xiaopeng,WU Bi,et al.Oxidation resistance of TiAlSiN nanocomposite coatings on titanium alloy prepared by modulated pulsed power magnetron sputtering[J].Surface Technology,2020,49(12):220-227.(in Chinese)
参考文献 80
CHEN H,ZHENG B C,LI Y G,et al.Flexible hard TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power[J].Thin Solid Films,2018,669:377-386.
参考文献 81
吴志立,李玉阁,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层结构调控与性能研究[J].无机材料学报,2015,30(12):1254-1260.WU Zhili,LI Yuge,WU Bi,et al.Microstructure controlling and properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Journal of Inorganic Materials,2015,30(12):1254-1260.(in Chinese)
参考文献 82
WU Z L,LI Y G,WU B,et al.Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Thin Solid Films,2015,597:197-205.
参考文献 83
HSU T W,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface & Coatings Technology,2021,427:127661.
参考文献 84
OU Y X,WANG H Q,LIAO B,et al.Scratch response and tribological properties of TiAlSiN coatings deposited by reactive deep oscillation magnetron sputtering[J].Materials Research Express,2019,6(11):116452.
参考文献 85
LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2018,353:274-281.
参考文献 86
MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.
参考文献 87
CAVALEIRO D,VEEREGOWDA D,CAVALEIRO A,et al.High temperature tribological behaviour of TiSiN(Ag)films deposited by HiPIMS in DOMS mode[J].Surface & Coatings Technology,2020,399:126176.
参考文献 88
CAVALEIRO D,CARVALHO S,CAVALEIRO A,et al.TiSiN(Ag)films deposited by HiPIMS working in DOMS mode:effect of Ag content on structure,mechanical properties and thermal stability[J].Applied Surface Science,2019,478:426-434.
参考文献 89
CAVALEIRO D,CAVALEIRO A,CARVALHO S,et al.Oxidation behaviour of TiSiN(Ag)films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2019,688:137423.
参考文献 90
WU Z,TANG P,WU Y,et al.Wear behavior of AlCrSiVN coatings at elevated temperature up to 700 °C[J].Vacuum,2019,169:108876.
参考文献 91
王铁钢,李柏松,张姣姣,等.沉积温度对高功率脉冲磁控溅射AlCrSiN涂层结构和性能的影响[J].稀有金属材料与工程,2018,47(8):2578-2584.WANG Tiegang,LI Baisong,ZHANG Jiaojiao,et al.Influence of deposition temperature on microstructures and mechanical properties of the Al-Cr-Si-N coatings deposited by HiPIMS technique[J].Rare Metal Materials & Engineering,2018,47(8):2578-2584.(in Chinese)
参考文献 92
DIYATMIKA W,CHENG C Y,LEE J W.Fabrication of Cr-Si-N coatings using a hybrid high-power impulse and radio-frequency magnetron co-sputtering:the role of Si incorporation and duty cycle[J].Surface & Coatings Technology,2020,403:126378.
参考文献 93
TANG Q L,WU Y C,LOU B S,et al.Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system[J].Surface & Coatings Technology,2019,376:59-67.
参考文献 94
LIU H,WANG X,PEI C,et al.Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS[J].Materials Research Express,2019,6(8):086432.
参考文献 95
KERAUDY J,BOYD R D,SHIMIZU T,et al.Phase separation within NiSiN coatings during reactive HiPIMS discharges:a new pathway to grow NixSi nanocrystals composites at low temperature[J].Applied Surface Science,2018,454:148-156.
参考文献 96
JIANG X,YANG F C,CHEN W C,et al.Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2017,320:138-145.
参考文献 97
DING J C,WANG Q M,LIU Z R,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys & Compounds,2019,772:112-121.
参考文献 98
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Investigation on the incorporation of oxygen and thermal stability of HPPMS TiAlCrSiON nanolayer coatings[J].Surface & Coatings Technology,2021,418:127231.
参考文献 99
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Wear behavior and thermal stability of HPPMS(Al,Ti,Cr,Si)ON,(Al,Ti,Cr,Si)N and(Ti,Al,Cr,Si)N coatings for cutting tools[J].Surface & Coatings Technology,2020,385:125370.
参考文献 100
唐鹏,黎海旭,吴正涛,等.氧含量对高功率脉冲磁控溅射AlCrSiON涂层高温摩擦学性能的影响[J].中国表面工程,2018,31(3):77-85.TANG Peng,LI Haixu,WU Zhengtao,et al.Effects of oxygen content on high-temperature tribological behaviors of AlCrSiON coatings deposited by high power impulse magnetron sputtering[J].China Surface Engineering,2018,31(3):77-85.(in Chinese)
参考文献 101
BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Correlation of HPPMS plasma and coating properties using artificial neural networks[J].Surface & Coatings Technology,2018,349:1130-1136.
参考文献 102
WANG H,OU Y,ZHANG X,et al.Tribocorrosion behaviors of TiSiCN nanocomposite coatings deposited by high power impulse magnetron sputtering[J].Materials Research Express,2020,7(7):076407.
参考文献 103
TILLMANN W,GRISALES D,STANGIER D,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface & Coatings Technology,2021,406:126664.
参考文献 104
LI Y,WANG C,MA D,et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering[J].Surface & Coatings Technology,2021,420:127325.
参考文献 105
ZENKIN S,GAYDAYCHUK A,MITULINSKY A,et al.Tailoring of optical,mechanical and surface properties of high-entropy Hf-Zr-Ce-Y-O ceramic thin films prepared by HiPIMS sputtering[J].Surface & Coatings Technology,2022,433:128164.
参考文献 106
XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.
参考文献 107
XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.
参考文献 108
LIU Z W,HSU C Y,WU M C,et al.The effect of substrate temperature on the properties of(AlCrNbSiTiV)N films deposited by HIPIMS[J].The International Journal of Advanced Manufacturing Technology,2019,104(9):4509-4516.
参考文献 109
CHANG C H,YANG C B,SUNG C C,et al.Structure and tribological behavior of(AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering[J].Thin Solid Films,2018,668:63-68.
参考文献 110
CHANG K S,CHEN K T,HSU C Y,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.
目录contents

    摘要

    高功率脉冲磁控溅射(HiPIMS)作为目前研究热门的物理气相沉积方法之一,已经在刀具材料、不锈钢、聚合物、复合材料等基体上实现硬质涂层、生物涂层、耐腐蚀涂层、耐高温氧化涂层、绝缘涂层等多种类型涂层制备。通过高功率脉冲磁控溅射与复合方法及后续热处理等工艺方法复合,调节高功率脉冲磁控溅射的脉冲频率、峰值功率、占空比、多脉冲和双极性实现对靶材离化率、等离子体空间分布、涂层沉积速率、相结构、微观结构、元素成分、内应力等等离子体参数和涂层物相结构的调整,以提高基体材料的硬度、耐磨损、耐腐蚀、耐高温氧化及生物相容性等综合使役性能。特别是在应用于金属氮化物涂层的制备及性能研究方面,具有巨大的工程应用价值。结合目前硬质涂层材料的应用现状,探讨高功率脉冲溅射技术沉积涂层的特性和技术优势,介绍 20 多年来高功率脉冲磁控溅射技术在制备单元单层、多元多层、纳米多层与多元复合、高熵合金及含 Si、O、C 等金属氮化物硬质涂层工艺及性能等方面应用的研究进展。

    Abstract

    As one of the most popular physical vapor deposition methods, high power impulse magnetron sputtering has been used for the preparation of hard coatings, biological coatings, corrosion-resistant coatings, high-temperature oxidation-resistant coatings, insulating coatings and other types of coatings on substrates such as tool materials, stainless steel, polymers, composite materials, etc. By high power impulse magnetron sputtering and combined method, subsequent heat treatment, the pulse frequency, peak power, duty cycle, multiple pulses and bipolarity of high power impulse magnetron sputtering to optimize and model the process to achieve the adjustment of plasma parameters such as target ionization, plasma spatial distribution, coating deposition rate, and coating phase structure such as phase structure, microstructure, element ratio, internal stress to improve the comprehensive application performance of the substrate material such as hardness, wear resistance, corrosion resistance, high temperature oxidation resistance and biocompatibility. In particular, HiPIMS has great engineering applications in the preparation and performance research of metal nitride coatings. In the context of the current application status of hard coating materials, the characteristics and technical advantages of coatings deposited by high power impulse sputtering technology are discussed. The research progress in the application of high power impulse magnetron sputtering technology such as processes in the preparation and performance of monolayers, multiple elements and multi-layers, nano-multilayers with multiple element composite, high entropy alloys and containing Si, O and C metal nitride hard coatings over the past more than 20 years are presented.

  • 0 前言

  • 在先进制造及航空材料领域,高温、腐蚀及高磨损等服役条件的限制,对材料的综合性能提出苛刻的要求,远远超出单一材料可以达到的性能范围。许多装备的失效始于关键零部件表面的弱化或破坏,比如在实际使用过程中飞机发动机的轴承和涡轮叶片的失效及先进制造领域的高速切削刀具磨损等,所以关键件的表面强化对于提高装备的性能、延长服役寿命是十分重要的。利用先进的表面工程技术,结合实际的使用条件和性能要求,在高强高温金属结构材料表面制备一层或多层具有优异高温耐磨损、抗高温氧化性能、低摩擦因数并与零件基体良好结合的优质涂层,成为提高基体材料使用性能的最有效措施之一。根据 Expert Market Research 全球涂层刀具市场报告显示,2020 年涂层刀具的份额就已达到 7.07 亿美元,并以每年 5.5%的速度增长,2026 年将达到 9.746 亿美元;另外 Data Bridge Market Research 报告显示 2027 年全球硬质涂层市场的份额将达到 14.8 亿美元,尤其是具有纳米结构的涂层刀具占硬质和超硬切削刀具表面涂层比例也将逐步增加。

  • 1 高功率脉冲磁控溅射简介

  • 为了提升磁控溅射的离化率,瑞典林雪平大学的KOUZNETSOV等[1]于1999年提出一种新磁控溅射模式——高功率脉冲磁控溅射技术(High power pulsed magnetron sputtering、High power impulse magnetron sputtering、Enhanced ionization sputtering,简称 HPPMS 或 HiPIMS),通过采用低频率(<10 kHz)、高峰值功率(kW / cm2)和较低的脉冲占空比(<10%)来实现溅射材料的高离化率,产生高达 1018~1019 m−3 数量级的等离子体密度,其溅射材料离化率在某些条件下可达 50%~90%,等离子体中离子的能量和致密度非常高,尤其是金属离子能量最高可达 100 eV,稀有气体 Ar+ 能量也可高达 30 eV,且可以产生大量的高价金属离子,离子平均电荷态通常大于 1,甚至出现高价态的 Ti4+离子[2]。在进行反应磁控溅射时,随着反应气体流量的变化, HiPIMS 不会产生反应滞后回线[3],同时成膜离子比例相对较高[4],有利于化合物涂层的反应沉积。

  • 相比于电弧离子镀,高功率脉冲磁控溅射通过高强度辉光放电产生高密度的金属离子束流,且不含“金属液滴”[5],结合基体的负偏压可调制离子能量和沉积角度实现定向沉积。HiPIMS 制备的涂层微观结构致密,缺陷少,涂层的应力可调,厚度均匀性好,较高的等离子体密度使多元涂层反应活性好,镀膜工艺可控性好(可不需加热),靶材利用率高,可沉积高品质绝缘涂层,可对复杂形状工件,甚至在 ABS[6]、PET[7]等聚合物及 TiBw / Ti6Al4V 复合材料基体[8-9]上沉积涂层。通过控制沉积过程,调节性能、优化涂层中的元素和化合物比例[10],刀具使用寿命和生产效率方面的效果显著提升[11]

  • 如图1 所示,在涂层沉积的过程中,离子的能量与空间分布对涂层的质量和性能有着非常重要的影响,在 Thornton 经典涂层生长结构区域模型的基础上,美国学者 ANDERS[12]提出包含等离子体沉积和离子刻蚀的改进型涂层生长结构区域模型,将 Thornton 结构区域模型中涂层微观结构与温度、气压的关系扩展到涂层微观结构与温度、离子能量的关系。

  • 图1 ANDERS 提出的改进型涂层生长结构区域模型[12]

  • Fig.1 ANDERS' improved film growth structure zone model

  • 随着沉积过程中离子能量的增加,区域 1 向区域 T、区域 2 和区域 3 转变的温度降低,在低温下可以制备高致密度的纤维晶和柱状晶涂层;当沉积离子的能量增加到大于 1~10 eV 量级时,沉积离子在涂层表面的离子轰击和刻蚀作用增强,微观结构致密化,低能离子的轰击引起涂层晶粒变小、纳米化和非晶化,进而改变涂层相结构的择优取向; 当离子能量继续增加到 102~103 eV 量级时,涂层沉积过程中的离子轰击作用大于沉积生长作用,离子对已经沉积的涂层组织刻蚀,引起涂层厚度降低。在 HiPIMS 涂层沉积过程中,其高度离化的等离子体束流,在负偏压的作用下轰击基材表面,对基体表面进行刻蚀,去除基体表面的污染并改变基体的表面结构,使涂层实现局部外延生长,获得化学键结合界面,改善涂层致密性和均匀性,增强涂层和基体之间的结合力;再通过调整基体的偏压,调节等离子体的能量,利用离子轰击效应促进涂层生长过程中的重复形核和再结晶,促进沉积涂层过程中的二次形核和晶粒组织细化,使涂层从致密的柱状晶向微细纳米晶转化,获得微观结构平滑的纳米晶组织。

  • 近年来,高功率脉冲磁控溅射相关的研究论文逐年增加,2011 年以来每年都在 100 篇以上,已经成为国内外学术和产业研究热点,如图2 所示。国外主要集中在瑞典林雪平大学、英国谢菲尔德大学、德国亚琛工业大学等及其相关的合作机构,在国内主要在哈尔滨工业大学、北京大学深圳研究生院、中国科学院宁波材料研究所、大连理工大学、北京航空航天大学、广东工业大学、重庆大学、西南交通大学、中国科学院力学研究所、天津职业技术师范大学等高校及研究所,研究内容主要集中在高功率脉冲磁控溅射放电特性、系列涂层新工艺研发及涂层性能研究等方面。

  • 图2 2011年以来高功率脉冲磁控溅射技术相关的论文数量 (截至 2022 年 8 月)

  • Fig.2 Statistics of the HiPIMS-related papers from 2011 (as of August 2022)

  • 2 单元单层氮化物涂层

  • 目前 HiPIMS 被广泛应用于 TiN 和 CrN 等单元单层氮化物涂层的制备,国内哈尔滨工业大学的田修波等[513-14]最早针对高功率脉冲磁控电源进行研究并制备了 TiN 涂层。相比于直流磁控溅射 TiN 涂层,HiPIMS 制备的 TiN 涂层致密度高、缺陷少,大幅提高了基体材料的抗腐蚀性能[15-16]。通常采用偏压幅值[17]或偏压电流[18]对离子能量进行调节,还有通过改进靶源结构,利用两面对靶结构装置进行Penning 放电[19]。CHANG 等[20-21]利用同步偏压模式,控制具有可触发延迟模式的同步脉冲直流偏压控制金属离子的行为,其与 HiPIMS 和直流磁控溅射(DC magnetron sputtering,DCMS)的关系如图3 所示,通过控制 Ti+ 和 N+ 的离子流量,提高涂层的沉积速率,如图4a 所示。

  • 图3 HiPIMS 与直流、同步脉冲直流之间关系[20]

  • Fig.3 Association between HiPIMS, DC and SP-DC bias

  • 图4 不同偏压模式下 TiN 涂层厚度、沉积速率、磨损率和膜基结合力[20]

  • Fig.4 Thickness, deposition rate, wear rate and adhesion of TiN coatings with different bias voltage modes

  • 残余应力从直流偏压的-6.7 GPa 减小到-4 GPa;如图4b 所示,膜基结合力从 62.7 N 提高到 83.7 N,硬度达到 31.1 GPa,最低磨损率2 ×10−5 mm 3 ·N−1 ·m−1。通过调整 HiPIMS 占空比来辅助电弧离子镀(Cathodic arc deposition,CAD)沉积 TiN 涂层[21],当占空比为 3%时,离子轰击效果使表面大颗粒数量最少,硬度、弹性模量和磨损率分别为 33.6 GP、507 GPa 和 3.32×10−6 mm 3 ·N−1 ·m−1,结合力达到 115 N 以上。对工艺顺序调整,发现 HiPIMS 涂层光滑致密的结构可防止 CAD 大颗粒的附着,表面更加光滑,采用 H-TiN / C-TiN 工序的涂层界面缺陷较少[22]

  • 在低氮气流量下,TiN 涂层以(111)晶面为择优取向,在高氮气流量下为(111)和(200)混合晶相,氮气流量增加引起涂层平均晶粒尺寸增大,沉积速率逐渐降低[23]。当氮气流量为 4 mL / min 时,涂层中 N / Ti 比值为 0.72,硬度达到最大值 28 GPa;在氮气流量为 2 mL / min 时,腐蚀电流密度为最小值 0.186 μA / cm2,腐蚀电位达到最大值-459 mV,保护效率达到最大值 98.9%。随着 HiPIMS 峰值功率从 2.6 kW 增加到 16.6 kW,TiN 涂层更加致密和更多纳米晶粒,密度达到 5.47 g / cm3,如图5a 所示,涂层的电阻率从 240 µΩ·cm 降低到 56 µΩ·cm,表面粗糙度从 3.8 nm 降低到 1.2 nm。在 16.6 kW 下, TiN 涂层电阻率比直流磁控溅射降低 23 倍,热稳定温度达到 900℃,如图5b 所示,铁的体扩散系数为 2.6×10−16 cm 2 / s,可用于钢铁材料的太阳能电池阻隔涂层[24]

  • 图5 不同脉冲功率下 TiN 涂层电阻率、密度和铁的体扩散系数[24]

  • Fig.5 Resistivity, density and bulk diffusivity of Fe of TiN coatings with different HiPIMS pulse peak power

  • 通过正负脉冲宽度来优化离子流的加速,在 HiPIMS 脉冲负电位之后施加 10~150 V 正电位以便实现双极性,基体不施加偏压,利用反向电位调节离子能量,引起离子能量增加[25-26]。通过优化 HiPIMS 多脉冲放电参数和基体脉冲偏压来减少 TiN 涂层的空隙[27]和内应力[28],调整入射离子中金属离子与惰性气体的比例,压应力降低为常规 HiPIMS 的 1 / 11,如图6a 所示,发现平均应力从 100 nm的-1.9 GPa降低到200 nm的-0.9 GPa,中等能量下涂层平均应力为-11 GPa,脉冲偏压 tbias=60 μs 时,压应力最大为-11.8 GPa,接地状态下压应力最低为-0.9 GPa,常规 DCMS 下涂层的拉应力达到稳定值+0.1 GPa。如图6b 所示,低能量下,直流偏压时压应力最大,随着涂层厚度增加逐渐减小,200 nm 时为-5.2 GPa;脉冲偏压可大幅减小压应力,200 nm 时最低为-0.35 GPa。

  • 图6 不同 HiPIMS 能量条件下 TiN 涂层的平均应力[28]

  • Fig.6 Average stress values of TiN coatings with different HiPIMS energy

  • 相比于电弧离子镀,HiPIMS 制备的 CrN 涂层组织结构更加致密,抗腐蚀和抗高温氧化性能大幅提升,膜基结合力高达 72 N[29]。LIN 等[30]利用 MPPMS 方法,以 10 μm / h 沉积速率制备结构致密、厚度20 μm的CrN涂层,涂层以(111)和(200)晶面为主,晶粒尺寸为 100~150 nm,硬度达到 24 GPa。对双极性HiPIMS三种放电模式下正脉冲电位(30~400 V)和基体电位研究发现[31],当基体处于悬浮电位时,正脉冲电位引起的变化不明显;当基体接地时,正脉冲电位作用效果显著,原因在于离子轰击向生长中涂层传输能量的差别。如图7 所示,基体接地模式下,90 V 和 120 V 正脉冲电位时,硬度分别为 23.5 GPa 和 23.1 GPa,残余应力分别为 1.7 GPa 和 1.5 GPa,可见双极性 HiPIMS 是一种有效调制涂层结构和性能的方法。

  • 图7 不同放电模式下 HiPIMS CrN 涂层硬度和应力[31]

  • Fig.7 Hardness and residual stress of CrN coatings prepared by HiPIMS with different discharge models

  • 当氮气流量从 75 mL / min 升高到 175 mL / min,发现等离子体密度急剧增加,涂层中 Cr 含量从 69.7 at.%逐渐降低到 57.5 at.%。氮气流量为 100 mL / min 时,涂层密度提高和细晶强化作用使硬度达到最大值 21.4 GPa,腐蚀电流密度达到最小值 44.2 nA / cm2[32]。随着 HiPIMS 峰值占空比的增加[33-34],涂层沉积速率和 Cr 含量显著增加。通过长脉冲、低频率可以降低 N / Cr 比例,产生更多位错结构,N 空位浓度使硬度和弹性模量增加,而抗氧化性能下降,通过提高峰值电流与基体偏压引起的离子轰击可以提高抗氧化性能[35],N 空位浓度还有利于提高涂层的抗腐蚀性能[36]

  • 通过 HiPIMS 制备单元单层氮化物涂层时,偏压的增加引起涂层压应力增大[37],但过高会导致硬度的下降[38],可见峰值占空比、基体偏压和氮气流量是影响涂层内应力的重要因素[39]。在制备 ZrN、 NbN、TaN、WN、NiN、MoN 和 HfN 等涂层时,通过控制和优化工艺过程中的偏压、工作气压、氮气流量结合峰值功率、氮气占比等工艺参数,实现涂层微观结构、相结构与力学、抗摩擦磨损、抗腐蚀性能方面的调控匹配和优化提升,扩展其在生物材料、电子材料等方面的应用。

  • 3 多元金属氮化物涂层

  • 目前 HiPIMS 及其复合工艺制备的多元金属氮化物有 TiAlN、AlCrN 和 CrAlNAg 等,通过加入两种及以上合金元素,来改善单元金属氮化物的微观结构,提升涂层的综合性能。

  • 相比其他 PVD 方法,HiPIMS 所制备的 TiAlN 涂层具有抗高温氧化、摩擦因数小、表面粗糙度低、硬度高、结合力和切削性能好等优良特性[40-41]。LIU 和 CHEN 等[42-43]通过仿真手段设计连续高功率磁控溅射(C-HPMS)技术并开发超大功率磁控阴极,沉积速率是 HiPIMS 的数十倍,且功率密度远低于峰值功率密度,实现了高离化快速沉积,大幅拓宽工艺窗口;将靶材利用率提高至接近 40%,通过设计复合闭合磁场抑制等离子体溢出减少损耗,引导等离子体进入镀膜区域提高沉积效率,等离子体溢出概率抑制在 3%以下,镀膜区等离子体占比提高至 40%~50%,还通过调整闭合磁场转角控制等离子体分布,以满足不同的镀膜需求。利用功率密度提升离化率和沉积速率,所制备 TiAlN 涂层沉积速率达到 0.45 μm / min,表面粗糙度为 17.8 nm,硬度达到 34.4 GPa。当 Al 含量不高于 0.55 at.%时,涂层为单相立方结构,硬度随Al含量增加而增大,Ti0.45Al0.55N 涂层硬度为 33 GPa,残余应力为-2 GPa。当峰值占空比低于 3%时,涂层厚度降低使硬度降为 31 GPa;当偏压为-50 V 时,Ti0.4Al0.6N 涂层硬度为 36 GPa,经过 700℃退火 1 h,硬度达到 40 GPa[44-45]

  • 随着偏压增加,CrAlN 涂层(111)晶面衍射峰强度逐渐减弱,当偏压为-30 V时,硬度达到最大值22.3 GPa;当偏压为-120 V 时,H / EH3 / E*2均达最大值 0.11、0.21 GPa[46]。通过改变氮氩流量比来调整涂层氮含量,在氮氩流量比小于 40%,涂层为非晶态; 由于氮化物溅射速率低于金属溅射速率,提高氮氩流量比会降低沉积速率,当氮氩流量比为 100%、偏压为-120 V 时,硬度和弹性模量分别达到最大值 35.4 GPa 和 426 GPa。随着氮氩流量比和偏压增加,磨损率减小到 2.11×10−6 mm 3 ·N−1 ·m−1[47-48]。在 HiPIMS 负脉冲之后产生短的正偏压脉冲来加速离子,可以降低涂层中的氮含量;与传统电源相比,涂层更加致密,表面粗糙度、硬度和膜基结合力也增加[49]。当脉冲偏压为-150 V 时,平均离子能量和离子流密度大幅提升,提高了涂层中氮含量和复杂形状工件的涂饰性[50]。添加 Ag 可以减小 CrAlN 涂层的晶粒尺寸,当 Ag 含量为 8.6 at.%时,涂层硬度达到最大值 23 GPa;如图8 所示,在高温下 CrAlN 涂层表面形成连续的 Cr2O3 保护层,但高温下 CrAlNAg 涂层中 Ag扩散使Cr-O层产生离子扩散通道,生成AgCrO2 相,引起涂层抗氧化性能降低[51]

  • 图8 不同 Ag 含量涂层在线性温度斜率下氧化增重曲线[51]

  • Fig.8 Thermogravimetric oxidation weight gain of coatings with different Ag content performed at constant linear temperature ramp

  • HiPIMS 及其复合工艺在制备 CrMoN、CrWN、 TiZrN、 TiMoN、 TiMgN、 CrNbN、 ZrNbN、 NbTiN、TiAlCrN、AlTiTaN、AlCrVN、MoCuVN、 MoNbNAg、AlTiVCuN 和 TiNbCrAlN 等多元涂层时,通过多元金属的固溶、掺杂等合金化效应,在抗高温氧化、固溶相强化、润滑耐磨、扩散阻隔等方面大幅延长涂层使用寿命和提升综合使用性能。

  • 4 纳米多层或超晶格氮化物涂层

  • 4.1 单元多层氮化物涂层

  • 在单元涂层制备的基础上,通过调制周期、靶材元素、偏压、氮气流量比等优化组合,实现纳米多层或超晶格涂层制备,目前利用 HiPIMS 及其复合方法沉积的单元多层氮化物涂层种类有 CrN / NbN、CrN / TiN、CrN / AlN 和 TiN / NbN 等。

  • 如图9 所示,为提升汽轮机叶片材料的局限性, HOVSEPIAN 等[52]利用 HiPIMS 制备调制周期 1.9 nm 多层超晶格结构的 CrN / NbN 涂层,对汽轮发电机应用领域的 P92 低铬钢进行保护。发现 HiPIMS 中 90%以上的金属离子提升了涂层性能,膜基结合力达到 80 N;在 5 MPa 气压、纯蒸汽环境下,其抗氧化温度达到 600℃,持续时间 1 000 h,尤其是克服氢气的不利影响。经过 2.4×106 次冲水滴冲击侵蚀测试,重量几乎无损失。

  • 图9 CrN / NbN 涂层的 TEM 截面形貌[52]

  • Fig.9 STEM of CrN / NbN multilayer coatings

  • 当 CrN / NbN 涂层中 Cr / Nb 原子比为 2.45∶1 时,在纯蒸汽环境 650℃条件持续 2 000 h;当 Cr /Nb 原子比为 1.16∶1 时,经过 12 650 h 高温氧化,发现基体缺陷引起涂层中氧化物结节生长,而 Nb 含量高的涂层氧化速度慢,大量涂层被氧化消耗,形成了含 Cr 和 Nb 的保护性氧化物,涂层与基体之间结合情况保持良好,可以防止基体进一步被蒸汽氧化。如图10 所示元素分布情况,在薄空隙处形成富铬氧化物而自我修复,阻止蒸汽到达基体表面[53],具有高铌含量和以最精细表面处理基体的 CrN / NbN 涂层性能最佳[54]。同时 CrN / NbN 涂层的摩擦性能受缺陷密度影响,当缺陷密度从 3.18% 降低到 1.37%,摩擦因数从 0.48 降低到 0.25[55]。直流偏压的增加使结节状和针孔缺陷占比从 3.13%增加到 4.3%,如图11 所示,在−65 V 时,摩擦因数最低为 0.48,磨损率为 2.68×10−15 m 3 ·N−1 ·m−1,抗磨损性能最好[56]

  • 图10 在 650℃纯流动蒸汽中经过 12 650 h 后 CrN/NbN多层涂层的 EDS 元素分布图[53]

  • Fig.10 EDS element distribution of CrN / NbN multilayer coating after 12 650 h in 650℃ pure flowing steam

  • 由于涂层 / 基体的协同变形随着涂层的韧性、内聚力 / 结合力和基材硬度增大而增加,直流偏压的增加,引起 CrN / TiN 涂层硬度和弹性模量增大[57],磨损由粘着磨损转变为磨蚀磨损。通过优化 Cr /(Cr+Ti)原子比和调制周期,使膜基结合力增加,提高了涂层抗点蚀和应力腐蚀开裂的能力。通过高强度脉冲离子束辐照 CrN / TiN 超晶格涂层[58],发现(111)晶面峰值宽度增加,晶粒尺寸细化,硬度达到 38.7 GPa,结合力达到 HF1 级。如图12 所示,在空气条件下,磨损机制从轻微氧化磨损转变为氧化磨损,摩擦因数和磨损率分别为 0.51~0.8 和 4.2~17.8×10−7 mm 3 ·N−1 ·m−1 。辐照使涂层表面完整、界面稳定和结构致密,在中等 HIPIB 辐照情况下,在海水中开路电位为 0.32 V,最低摩擦因数和磨损率分别为 0.14 和 6.1×10−8 mm 3 ·N−1 ·m−1,表面无点蚀现象。随着能量密度和辐照次数增加,空气条件下的磨损机制为黏着磨损和氧化磨损,海水中的摩擦腐蚀机制转变为犁磨损和点状腐蚀复合为主。

  • 图11 不同偏压下 CrN / NbN 涂层的摩擦因数和磨痕[56]

  • Fig.11 Friction factor and wear track profiles the CrN / NbN coatings with different bias voltage

  • 图12 HIPIB 辐照后 CrN/TiN 超晶格涂层的磨痕形貌、摩擦因数与滑动时间的函数关系[58]

  • Fig.12 Wear track and factorof friction for HIPIB-irradiated CrN/TiN superlattice coatings as a function of sliding time

  • 如图13 所示,在恒定平均功率下,调节转动速度 0.63~2.97 min−1 和脉冲宽度 40~200 μs,其对应的 CrN/AlN 纳米多层涂层的调制周期为4 7.8~10 nm 和 2.9~29.1 nm[59]。保持频率和平均功率相同条件下,随着脉冲宽度从 200 μs 降低到 40 μs,Cr 靶和 Al 靶电流增大,到达基体的离子通量增加,但涂层的沉积速率降低,只有 c-CrN 和 c-AlN 立方相。当调制周期为 6.2 nm 时,硬度为 31 GPa;当脉冲宽度 40 μs 时,调制周期为 2.9 nm,到达基体的离子流量和多层界面数量增加,离子轰击效应显著,硬度、弹性模量和残余应力分别达到最大值 40.8 GPa、562.4 GPa 和-4.37 GPa。

  • 图13 不同工艺下 CrN/AlN 涂层截面、HRTEM 和衍射图[59]

  • Fig.13 Cross-section TEM, HRTEM and diffraction patterns of the CrN/AlN coatings deposited with different process conditions

  • 如图14 所示,对调制周期为 13 nm的 CrN / AlN 涂层进行纳米划痕测试,定量分析涂层的塑性变形[60],发现 CrN / AlN 纳米多层结构抑制了塑性变形和裂纹形成,位错的产生和运动与涂层塑性流动无关,塑性变形主要在于纳米晶的晶粒旋转和大尺寸晶粒的晶界滑动。CrN / AlN 涂层还可以作为传感器的导电涂层进行温度测量[61],相稳定性和抗氧化性达到 700℃,涂层响应好,测量值的分散程度低。

  • 图14 纳米划痕试验后不同区域 CrN / AlN 涂层截面形貌[60]

  • Fig.14 Cross-section images of CrN / AlN after nanoscratch test

  • 利用热丝等离子体增强离子轰击和热能,获得调制周期在 5.4~6.7 nm、厚度达 20 μm、结构致密 CrN / AlN 超晶格涂层。随着热丝等离子体电流的增加,涂层从松散的锥形柱状晶转变为致密的细小柱状晶,提高了涂层的附着力和抗裂性[62]。如图15a 所示,当热丝等离子体电流为 4 A 时,硬度达到最大值 3 800 HV,喷砂侵蚀损失的质量最少;90°方向连续测试 3 720 s,刻蚀深度达到 9.4 μm,3 960 s时涂层被完全侵蚀。如图15b 所示,在 600℃至 1 000℃的空气环境中经过 30 min 摩擦磨损测试,发现 600℃时以对磨球 Al2O3磨损为主,磨损量达到 0.11 mm3,温度增加到 700℃、800℃时,涂层的磨损量分别增加到 0.028 mm3 和 0.061 mm3,对磨球 Al2O3 磨损降低;900℃时涂层的磨损量和磨痕深度分别达到 0.043 mm3 和 9.3 μm,磨损以粘着磨损和氧化磨损为主;1 000℃时涂层被磨破,磨损量达到 0.17 mm3

  • 图15 不同热丝电流下 CrN / AlN 涂层的最大侵蚀深度与时间关系和不同温度下的磨损量[62]

  • Fig.15 Maximum erosion depth as a function of erosion time and wear volume at different temperatures with different filament discharge currents

  • 如图16 所示,CoCrMo 医用级合金在 NaCl 和 Hank 溶液中的腐蚀电位 Ecorr 值分别为-533 mV 和-750 mV;经过 HiPIMS 沉积 TiN / NbN 涂层后,涂层致密和保护性钝化表面层的形成有效阻止腐蚀液的贯穿,腐蚀电位分别增加到-365 mV 和-470 mV[63]

  • 图16 CoCrMo 基体和经 TiN / NbN 涂层后的极化曲线[63]

  • Fig.16 Polarization curves of CoCrMo substrate and TiN / NbN multilayer coatings in different electrolytes

  • 4.2 多元多层氮化物涂层

  • 目前 HiPIMS 及其复合方法沉积的多元多层氮化物涂层有 TiAlSiN / CrN、CrAlN / AlCrN、 ZrWN / WN、TiAlCN / VCN、CrAlYN / CrN 和 TiAlN/TiAlCN 等,多元多层氮化物涂层具有应力分散、膜基结合力高、抗氧化性能好等特点。

  • 随着调制周期增加,TiAlSiN / CrN 涂层柱状晶尺寸减小,大量 3~4 nm 的 SiNx 纳米晶形成界面,阻碍晶粒边界的剪切,晶面应力减小和多层结构对柱状晶生长的抑制作用减弱,(111)和(200)晶面的晶粒尺寸增加;在调制周期为 8.5 nm 时,压痕边沿只有少量裂纹,划痕测试 Lc3 达到 73.8 N[64]。如图17 所示,当调制周期为 7.5 nm 时,多层结构界面效应和模量差异强化使硬度、弹性模量和 H3 / E2 分别达到最大值 26.6 GPa、 295 GPa 和 0.22,但是进一步减小调制周期,模量差异强化作用失效[65]

  • 图17 不同调制周期下 TiAlSiN / CrN 涂层的硬度、弹性模量、H / E* and H3 / E*2[64]

  • Fig.17 Hardness, elastic modulus, H / E* and H3 / E*2 of TiAlSiN / CrN coatings with different modulation periods

  • 随着 N2 / Ar 流量比的增加,TiAlSiN / CrN 多层涂层的沉积速率下降[66]。如图18 所示,随 N2 / Ar 流量比增大,TiAlSiN / CrN 涂层的厚度从 1.9 μm 降低到 0.5 μm,调制周期从 21.5 nm 降低到 6.6 nm,非晶相衍射环逐渐模糊,TiAlSiN 层的减小降低非晶态 SiNx 的含量,当 N2 / Ar 流量比为 80%时,TiAlSiN / CrN 涂层的硬度和弹性模量分别达到最大值 19.6 GPa 和 245 GPa。

  • 对于调制周期 18 nm、CrAlN和 AlCrN三元固溶体相组成 CrAlN / AlCrN 纳米多层涂层,通过采用连续激光热处理研究涂层尤其是近表面位置涂层的热稳定性[67]。如图19所示,厚度为6.1 μm涂层表面呈现菜花状形貌,柱状晶组织细小致密; 经过功率密度为 157 kW / cm2 激光热处理后,涂层出现熔融区、热影响区和无影响区三个区域,在热影响区附近,涂层结构几乎完全保持不变,不受激光热输入的影响,但形成富铝析出物;而较低的激光功率密度下,涂层不会熔化,在激光轨迹内出现菜花状形貌,连续激光热处理对涂层的压痕硬度和弹性模量影响不大。另外,氧等离子体对基体进行提前刻蚀可以提升 ZrWN / WN 多层涂层的结合力;干切削 SKD61 后发现涂层的表面粗糙度和侧面磨损量均显著降低,分别为 0.48 μm 和 9.3 μm[68]

  • 图18 不同 N2 / Ar 流量比下 TiAlSiN / CrN 涂层截面和选区衍射[66]

  • Fig.18 Cross-sectional TEM micrographs and SAED patterns of the TiAlSiN / CrN coatings with different N2 / Ar flow ratios

  • 图19 CrAlN / AlCrN 涂层截面形貌和 EDS 结果[67]

  • Fig.19 Cross-section morphology and EDS mapping of CrAlN / AlCrN multilayer coatings

  • 4.3 多层氮化物 / 金属涂层

  • 由于氮化物与金属晶体结构和滑移系统的不同,阻碍位错运动和裂纹扩展,使氮化物 / 金属多层涂层具有较高的硬度,目前 HiPIMS 及其复合方法沉积的氮化物 / 金属多层涂层种类主要有 AlN / Ti、CrN / Cr 和 TiAlSiN / Cr 等。

  • 对 Ti / AlN 涂层利用真空退火制备 Ti2AlN 涂层[69],发现 Ti / AlN 涂层的调制比和调制周期对 Ti2AlN 涂层结构和性能的影响较大。如图20 所示,退火前 Ti / AlN 涂层的衍射峰为 AlN、Ti 相和基体,退火后出现 Ti2AlN 相。当调制比为 6∶4 时,退火后 Ti2AlN 衍射峰强度最高,半高宽最小,结晶度最高。保持调制比为 6∶4,改变调制周期并退火处理,当调制周期为 30 nm 时,Ti / AlN 涂层具有最高的界面密度和最低的残余应力。如图21a所示多层结构致密,界面清晰;18 nm 厚的 Ti 层和 12 nm 厚的 AlN 层交错,如图21b 所示;Ti(002)晶面与 AlN (002)晶面晶格失配引起在界面附近出现位错,如图21c 所示。退火后 Ti / AlN 涂层的层状结构消失,如图22a 所示;Ti∶Al∶N 元素比接近 2∶1∶1,涂层中相为 Ti2AlN;Ti2AlN 涂层致密无裂纹,如图22b 所示;Ti2AlN(002)面与 XRD 结果一致,Ti2AlN 以 (002)晶面为择优取向,如图22c 所示。退火前,划痕载荷 45 N 开始剥离,退火后划痕载荷增加到 100 N 也未发生剥离,涂层结合力良好。

  • 图20 不同调制比下 Ti / AlN 涂层退火前后 XRD 图谱[69]

  • Fig.20 XRD patterns of as-deposited and annealed Ti / AlN multilayer coatings with different modulation ratios

  • 图21 Ti / AlN 涂层截面多层结构、EDS 和 HRTEM[69]

  • Fig.21 Cross-section TEM, EDS-line scan and HRTEM of the as-deposited Ti / AlN multilayer coatings

  • 图22 退火后 Ti / AlN 涂层截面、EDS 和 HRTEM 结果[69]

  • Fig.22 Cross-section TEM, EDS-line scan and HRTEM of the annealed Ti / AlN multilayer coatings

  • 在 Cr / CrN 多层涂层中,Cr 层的添加使硬度和压痕塑性都优于 CrN 单层,压痕试验发现内壁压痕较为均匀,边缘裂纹较少,结合强度较高。经过 800℃氧化后,涂层表面生成一层尺寸约 1 000 nm 的多面体氧化晶粒,与电弧离子镀涂层相比, HiPIMS 制备的 Cr / CrN 涂层中氧的扩散更困难,氧化深度更浅,具有更好的抗氧化性能。随着氧化温度的升高,涂层表面成分和结构发生改变,涂层表面生成一层耐蚀性很强的 Cr2O3 相,腐蚀电位为-0.181 V,腐蚀电流密度降为2.414×10−9 A·cm−2[70]。当 Cr 层沉积时间从 5 s 增加到 20 s 时,Cr 层厚度分别为 10 nm、21 nm、30 nm 和 41 nm。如图23 所示,TiAlSiN 涂层硬度和弹性模量分别为 34.5±0.8 GPa 和 339±7.2 GPa,随着 Cr 软层厚度增加, TiAlSiN / Cr 涂层硬度和弹性模量逐渐下降。当 Cr 层厚度 21 nm 时,H / E 达到最大值 0.105,韧性最佳[71]。通过控制多层结构中韧性金属层的厚度,为设计和优化具有防护固态粒子冲蚀和耐腐蚀性能的涂层提供了一种潜在的途径。

  • 图23 不同 Cr 层厚的 TiAlSiN / Cr 涂层硬度、弹性模量和 H / E 的比值[71]

  • Fig.23 Hardness, elastic modulus and H / E ratio of TiAlSiN / Cr multilayer coatings with different thicknesses of Cr layers

  • 通过调整多层结构、退火处理及添加 Al、Cr、 W、Nb、V、Y 过渡族元素或稀有金属元素等制备多元多层金属氮化物涂层,利用纳米多层结构、复杂合金化、晶粒细化及固溶强化等协同强化机理,结合不同元素在抗氧化、耐磨损、硬度和结合力等方面的使役性能,对涂层组织和性能进行调控。

  • 5 添加 Si 元素的氮化物涂层

  • 5.1 MeSiN 涂层

  • 在单元或多元氮化物的基础上,添加 Si 元素制备 MeSiN(Ti、Al、Cr、Ni、Zr 等金属元素),在涂层中形成非晶相或纳米晶,通过非晶 Si3N4 包裹纳米晶或晶粒嵌入非晶相层上形成的纳米非晶复合结构,实现涂层摩擦磨损、耐腐蚀、结合力、硬度和韧性等综合使役性能提升[72]

  • 在 TiSiN 涂层中,随着 N2 流量增加,等离子体放电程度减弱,离化率降低,TiSiN 涂层沉积速率降低,其 Ti 含量逐渐降低,Si 含量逐渐小幅度增加,晶粒尺寸逐渐增大,硬度和弹性模量逐渐降低,涂层硬度最高为 35.25±0.74 GPa[73]。通过改变 DOMS 峰值功率调整涂层生长过程中的能量粒子轰击,涂层有 TiN 面心立方相和 α-SiN 非晶相组成,峰值功率使涂层呈现 2 种沉积机制[74-76]:在低峰值功率(26 kW 和 29 kW)下,高通量的低能离子溅射轰击促进了原子的表面迁移率,避免原子强化作用,表面呈菜花状形貌;在高峰值功率(65 kW 和 71 kW)下,撞击基体能量粒子可以穿透生长中涂层的亚表面,强烈的原子强化效应产生大量缺陷,引起二次结晶成核,在 65 kW 和 110 kW 时硬度达到值 29 GPa 和最大值 33 GPa。如图24 所示,TiSiN 涂层截面呈现均匀柱状晶形态,柱状晶之间竞争生长,其尺寸随着涂层厚度的增加而增大,29 kW 时柱状晶尺寸最大达到 70 nm,71 kW 时柱状晶最细为 35 nm,而 DCMS 下涂层柱状晶尺寸为 55 nm。通过调控涂层中的 Si 含量(0.13≤x≤0.91),发现偏压与 HiPIMS 脉冲产生的 Si+ 等离子体协同促进固溶体形成,当 Si 含量超过 0.5 时,抗氧化性能迅速提升;当 Si 含量为 0.13≤x≤0.5 时,氧化层厚度在 150~200 nm;当 Si 含量为 0.91 时,氧化层厚度为 4 nm,比 Ti0.36Al0.64N 涂层低~30 倍;当 Si 含量为 0.13≤x≤0.26 时,硬度达到 42 GPa,压应力在-6.7~-8.5 GPa[7778]

  • 图24 不同峰值功率下 TiSiN 涂层 TEM 截面形貌和 SAED[76]

  • Fig.24 Cross-section BF-TEM images and corresponding SAED of TiSiN coatings with different peak power

  • 5.2 多元合金含 Si 涂层

  • 保持氮含量在 52~56.7 at.%,调控 TiAlSiN 涂层中 Al /(Al+Ti)原子比,形成了纳米晶 / 非晶复合结构 nc-TiAlN / a-Si3N4 / AlN[79-82]。随着原子比增加,非晶相的含量增加,当原子比为 0.5 时,硬度最高可达 28.7 GPa。随着 N2 / Ar 流量比由 10%增至 30%,涂层中 Si 含量由 6.1 at.%增加至 16.4 at.%,TiAlN 晶粒均匀镶嵌在非晶相上,涂层结构由非晶转变为 TiAlN 纳米晶和非晶相的混合结构。经过 800℃高温循环氧化 70 h 后,氧化层结构完整致密并呈现柱状晶特征,由上至下分别形成富α-Al2O3、α-TiO2及γ-TiO2三层结构。通过调节峰值功率从 24.8 kW 增加到 56.8 kW,涂层从柱状晶(Zone I)转变为致密的非晶(Zone T),硬度、 H / E* 和弹性恢复率分别为 31.3 GPa、0.091、57.4%[80]。添加 Si 使晶粒细化并形成 SiNz相,通过 Al+ / Si+ 相互替代的金属离子与偏压协同效应使涂层硬度保持在 30 GPa,压应力低于-3 GPa,残余应力 σ<0.5 GPa[83]。随着氮气流量比的增加,TiAlSiN 纳米复合涂层从 TiAlSi 单晶相转变为 nc-(Ti,Al)N / a-Si3N4相,N 含量的增加使晶粒细化,形貌光滑,结构致密,失效形式从脆性断裂转变为屈曲层裂;当氮气流量比为 10%时,Ti0.15Al0.39Si0.07N0.39 涂层硬度达到最大值 32.8 GPa,H / E*H3 / E*2分别为0.083 7 和0.23,屈曲层裂失效的LC1LC3分别为25.4 N、43.6 N,摩擦因数达到最小值0.41,磨损率为3.9×10−7 mm 3 ·N−1 ·m−1[84]。通过改变偏压制备不同成分的 TiAlSiN 多层涂层[85-86],通过切削试验发现单层涂层的切削寿命最短,多层结构使韧性和压应力增加,减缓切削过程中 Inconel718 硬质颗粒的冲击破坏,结合力的增加减小了剥离面积[85]。随着偏压增加,放电电流从 118 A 增加到 165 A,涂层晶粒择优取向由(220)转变为(200),表面粗糙度从 14.1 nm 下降到 7.4 nm,晶粒尺寸从 10.5 nm 减小到 7.4 nm,柱状晶转变为等轴晶,硬度从 30 GPa 增加到 42 GPa,但结合强度从 HF2 降低到 HF5[86]

  • 通过添加 Ag 元素,涂层的抗氧化性能提高, Ag 可以控制涂层中润滑元素的扩散,实现自润滑效应,阻碍磨屑与磨痕的粘附[87],减少摩擦因数和磨损量,但软质相的增加使 TiSiN(Ag)涂层硬度和弹性模量降低[87-89]。当 Ag 含量为 6%时,结构由柱状向致密结构的转变,沉积速率降低,晶格参数增大;当 Ag 含量为 29%时,涂层的结构、相组成和力学性能变化不大。如图25 所示,经过退火处理后, Ag 的扩散使涂层产生双层结构:富 Ag 区和 Ag 缺乏区[88],两种含量下双层结构的分布区域相反。

  • 如图26 所示,由动态热重分析结果发现 Ag 的加入并没有改变涂层的氧化起点,但引起氧化速率降低,尤其 Ag 蒸发或升华引起涂层质量的异常损失,在 900℃时,不同 Ag 含量的涂层产生两种不同的重量变化状态,初始重量增加速度较慢, 1 000℃时氧化速率加快,SiOx 氧化物层阻碍氧和金属离子的扩散,防止涂层进行一步氧化。当 Ag 含量为 17%时,涂层在低温下氧化速度较快, 1 000℃时曲线拐点表明涂层已完全氧化[89]

  • 图25 退火后 TiSiNAg6 和 TiSiNAg29 涂层截面形貌与元素线扫描结果[88]

  • Fig.25 Cross-section morphology and EDS line scan of annealed TiSiNAg6 and TiSiNAg29 coatings

  • 图26 恒定线性温度梯度下涂层热重氧化速率[89]

  • Fig.26 Thermogravimetric oxidation rate of TiSiN (Ag) coatings performed at a constant linear temperature ramp

  • 如图27a 所示,AlCrSiN 涂层硬度为 34.0± 1.1 GPa,随着涂层中 V 含量的增加,硬度逐渐下降,当 V 含量为 7.5%时,AlCrSiVN 涂层硬度达到最小值 26.3±2.4 GPa。如图27b 所示,室温下 AlCrSiVN 涂层的摩擦因数为 0.68~0.73,与涂层中 V 含量无关;当摩擦温度为 600℃时, AlCrSiVN 涂层表面形成 V2O5,在高温磨损过程中产生自润滑作用,磨损机制为磨粒磨损和黏着磨损,摩擦因数和磨损率分别达到最低值 0.66 和 1.66×10−15 m 3 ·N−1 ·m−1;当摩擦温度为 700℃ 时,V 使涂层抗磨损性能急剧下降,形成多孔结构的氧化物,引起严重的氧化磨损[90]

  • 图27 不同 V 含量下 AlCrSiVN 涂层硬度、弹性模量、H / E 和不同温度下的摩擦因数[90]

  • Fig.27 Hardness, elastic modulus, H / E ratios and friction factor of AlCrSiVN coatings with different V content

  • 通过改变 HiPIMS 的脉冲频率[91]、峰值占空比[92],再结合中频[93]和 RF 功率[94]、氮气流量[95]或氮氩流量比[96]和偏压[97]进行 CrSiN、ZrSiN、AlSiN、 NiSiN、TiCrSiN、CrMoSiN、AlCrSiN 和 TiAlCrSiN 等涂层制备,可以实现低温沉积结晶形态良好和表面光滑的高质量涂层,使沉积速率增加,膜基结合力和切削寿命显著提升。

  • 6 其他金属氮化物涂层

  • 6.1 含氧元素的氮化物涂层

  • 添加氧元素可以减少涂层的摩擦磨损,提升刀具的切削性能和使用寿命。通过调整氧气/氮气流量比和钛/铝比研究 TiAlCrSiON 涂层性能变化[98-99],发现氧元素引起涂层柱状晶结构生长,对位错运动阻碍作用降低,Ti21Al17Cr5Si3N54 硬度为 34±2 GPa, Ti23Al13Cr5Si3O21N35 硬度降低为 26±2 GPa;在 900℃时,氧含量为 37.5±0.2%,柱状晶结构引起抗氧化稳定性降低[98]。在切削试验中,TiAlCrSiN 涂层比 TiAlCrSiON 涂层刀具使用寿命略高,钛铝比增加提高氮化物涂层的刀具寿命[99]。通过 Ar / N2 / O2 混合气体制备的 AlCrSiON 涂层由(Cr,Al)N、 Cr2N 和(Cr,Al)(O,N)相组成,当涂层中氧含量增加至 24.3%,硬度达到最大值 20.1±3.0 GPa;氧含量增加至 30.4%时,膜基结合力的最大极限载荷为 90 N,摩擦温度从室温增加到 400℃过程中,涂层的摩擦因数由 0.6~0.7 增加至 0.9,当温度升至 800℃,摩擦因数降至 0.4,氧含量为 30.4%的涂层具有最优耐磨损性能[100]。通过人工神经网络方法分析 HiPIMS脉冲频率和气体比例对等离子体与CrAlON 涂层性能之间的非线性关系[101],利用等离子体诊断建立等离子体特征与 Al / Cr 比例和金属-离子流比例关系,再根据 Al / Cr 比例与涂层硬度关系,通过人工神经网络分析导出工艺参数、等离子体和涂层性能之间的有效关系,对于理解 PVD 工艺过程,简化产业化涂层制备工艺应用方面具有较大的潜力。

  • 6.2 含碳元素的氮化物涂层

  • TiSiN 涂层中通过添加 C 元素,形成具有纳米晶(TiN、TiC、TiCN)/ 非晶(Si3N4、SiC、sp 2-C)纳米复合结构的 TiSiCN 涂层,改变 TiSiN 涂层的摩擦磨损性能[102]。当功率为 8 kW 时,TiSiCN 涂层表面光滑,晶粒尺寸达到纳米级别,表界面结构致密,硬度和弹性模量达到最大值 43 GPa 和 360 GPa;随着功率从 4 kW 增加到 8 kW,洛氏压痕结合力等级由 HF2 升高到 HF1,如图28 所示。当功率为 7 kW 时,TiSiCN 涂层开路电压最高达到-0.07 V,H / E*H3 / E2 分别达到 0.123 和 0.61,涂层在滑动接触面位置具有再生自修复能力,腐蚀摩擦因数和磨损率分别达到最低值 0.25 和 4.78×10−5 mm 3 ·N−1 ·m−1。对于 TiAlN / TiAlCN 和 TiAlCN 涂层,C 元素降低了涂层的残余应力,摩擦因数较低,但磨损系数较高;而多层之间的残余应力差异较大,导致抗磨损和结合力要低于单层涂层[103]

  • 图28 不同功率下 TiSiCN 涂层硬度、弹性模量、H / E*H3 / E*2和洛氏压痕结合力[102]

  • Fig.28 Hardness, elastic modulus, H/E*, H3 /E*2 and HRC adhesion of TiSiCN coatings with different power

  • 6.3 高熵合金氮化物涂层

  • 近期,由 5 种及以上元素构成的新兴合金材料 ——高熵合金,打破了传统合金的设计理念,获得高硬度、高强度、抗高温氧化、耐腐蚀等综合性能,已经在刀具、发动机部件、MEMS 加工部件和热电材料上使用,目前 HiPIMS 及其复合工艺已应用于制备 CuNiTiNbCr 高熵合金涂层[104]、HfZrCeYO 高熵合金氧化物涂层 [105]、(AlCrTiVZr)N[106-107] 和(AlCrNbSiTiV)N[108-110]高熵合金氮化物涂层。

  • (AlCrTiVZr)N 高熵合金氮化物涂层[106-107]以(111)晶面为择优取向,增加氮气流量,引起离子能量降低,离子轰击作用减弱。如图29 所示,当偏压为-150 V 时,晶粒尺寸达到最小值 11.3 nm,残余压应力为-1.67 GPa,硬度达到 40 GPa 以上,最高达到 48.3 GPa[106],当氮气流量为 12 mL / min 时,涂层相结构以(200)为择优取向,硬度达到 41.8 GPa,磨损率为 2.3×10−7 mm 3 ·N−1 ·m−1[107]

  • 图29 不同偏压和氮气流量下(AlCrTiVZr)N 涂层硬度和弹性模量[106-107]

  • Fig.29 Hardness and modulus of AlCrTiVZr nitride coatings with different bias voltages and nitrogen flow rate

  • 随着沉积温度增加,原子表面迁移能力增强,(AlCrNbSiTiV)N 涂层致密度提高,400℃时硬度和弹性恢复率达到最大值 41.07 GPa 和 80.21%[108]。切削试验发现(AlCrNbSiTiV)N 涂层刀具寿命比未涂层刀具延长,涂层的硬度达到 2 415 HV,塑性恢复率增加到 55.83%。如图30 所示,(AlCrNbSiTiV)N 涂层表面粗糙度和侧面磨损量分别为 3.51 μm、12.71 μm,与干车削 SCM440 钢对比,刀具侧面磨损降低[109]。通过 Grey-Taguchi 方法优化沉积时间、直流偏压、直流功率、沉积温度等参数,发现涂层沉积速率为 12.92 nm / min 时,硬度提高到 3 028 HV,刀具寿命从直流磁控溅射的 25 件增加到 27 件[110]

  • 图30 切削后工件的表面粗糙度和氮气流量比为 40%(AlCrNbSiTiV)N 涂层陶瓷刀具的侧面磨损情况[109]

  • Fig.30 Roughness of the cutting surface of a work-piece and the flank wear of a cermet cutter with (AlCrNbSiTiV) N coatings at nitrogen flow ratio 40%

  • 7 结论与展望

  • 虽然 HiPIMS 工艺中存在的“放电不稳定”、 “沉积速率较低”和“沉积多元涂层中的再溅射”等问题,但随着国内外对 HiPIMS 等离子体放电机理、电源设备研发和关键工艺优化方面的研究深入,目前已经在低温沉积、高性能硬质涂层制备、涂层表界面优化等方面优势显著,在部分产业已经投入应用。

  • (1)通过 HiPIMS 与其他 PVD 方法等不同工艺方法的复合,再结合激光热处理、退火处理等后处理工艺,通过工艺参数优化来实现氮化物涂层在生长组织、相结构和性能上的精确调控,结合人工神经网络和数值仿真理论,开发涂层制备的新工艺新理论及具有自润滑、自修复及特殊使用功能需求的新涂层体系是未来的研究方向之一。比如连续高功率磁控溅射(C-HPMS),结合电场对离子吸引和磁场对离子引导作用,大幅提高涂层沉积速率,在涂层制备工业化推广应用方面存在巨大的潜力。

  • (2)通过氮化物 / 氮化物、金属 / 氮化物等纳米多层和超晶格涂层,添加 Si、C 和 O 等非金属元素,控制微观结构和非金属元素含量,实现硬质软质模量差异、多层界面交变应力场、位错阻碍、纳米晶与非晶复合结构及 Hall-Petch 理论等涂层强化机制,精准制备结构、元素可控、综合使役性能长期稳定的高质量涂层。

  • (3)HiPIMS 技术的发展将助力硬质涂层从传统刀具类产品逐步扩展到模具、连杆、轴承等部件及更多行业领域,为先进制造、生物、新能源与节能、光学、航空航天、电子信息、海洋工程及汽车领域等行业领域的发展带来巨大的机遇。

  • 参考文献

    • [1] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [2] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [3] SARAKINOS K,ALAMI J,KLEVER C,et al.Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide[J].Surface & Coatings Technology,2008,202(20):5033-5035.

    • [4] LEROY W P,MAHIEU S,DEPLA D,et al.High power impulse magnetron sputtering using a rotating cylindrical magnetron[J].Journal of Vacuum Science & Technology A,2010,28(1):108-111.

    • [5] 吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vacuum,2009,46(3):18-22.(in Chinese)

    • [6] ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surface & Coatings Technology,2020,394:125890.

    • [7] MARCELINO R B P,AMORIM C C,RATOVA M,et al.Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water[J].Chemical Engineering Journal,2019,370:1251-1261.

    • [8] QURESHI M W,MA X,TANG G,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.

    • [9] WU W Y,CHAN M Y,HSU Y H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,362:167-175.

    • [10] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.

    • [11] YANG Z Y,CHEN Y H,LIAO B H,et al.Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering[J].Optical Materials Express,2016,6(2):540-551.

    • [12] ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.

    • [13] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [14] 李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposition of TiN coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [15] ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys & Compounds,2018,735:422-429.

    • [16] VEGA J,SCHEERER H,ANDERSOHN G,et al.Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods[J].Corrosion Science,2018,133:240-250.

    • [17] MA D,DENG Q,LIU H,et al.Effect of ion energy on the microstructure and properties of titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.

    • [18] XIE Q,FU Z,LIU Z,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.

    • [19] KIMURA T,YOSHIDA R,MISHIMA T,et al.Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges[J].Japanese Journal of Applied physics,2018,57(6S2):06JE02.

    • [20] TANG J F,HUANG S Y,LIN J H,et al.Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2022,434:128201.

    • [21] CHANG CL,LUO GJ,YANG FC,et al.Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS[J].Vacuum,2021,192:110449.

    • [22] CHANG C L,HO C T,CHEN P H,et al.Synergetic effect for improved deposition of titanium nitride films[J].Surface & Coatings Technology,2018,350:1098-1104.

    • [23] GHAILANE A,OLUWATOSIN A O,LARHLIMI H,et al.Titanium nitride,TixN(1−x),coatings deposited by HiPIMS for corrosion resistance and wear protection properties[J].Applied Surface Science,2022,574:151635.

    • [24] KUMAR P,SEEMA,GUPTA M,et al.Fully dense,highly conductive nanocrystalline TiN diffusion barrier on steel via reactive high power impulse magnetron sputtering[J].Thin Solid Films,2021,722:138578.

    • [25] VILOAN R P B,GU J B,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion-bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.

    • [26] VILOAN R P B,ZANÁŠKA M,LUNDIN D,et al.Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge[J].Plasma Sources Science & Technology,2021,29(12):125013.

    • [27] 贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].表面技术,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostucture films prepared by ion source assisted HiPIMS[J].Surface Technology,2019,32(1):63-71.(in Chinese)

    • [28] CEMIN F,ABADIAS G,MINEA T,et al.Tuning high power impulse magnetron sputtering discharge and substrate bias conditions to reduce the intrinsic stress of TiN thin films[J].Thin Solid Films,2019,688:137335.

    • [29] 朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及CrAlN涂层的性能[J].材料热处理学报,2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by HIPIMS technology[J].Transactions of Materials & Heat Treatment,2019,40(4):127-135.(in Chinese)

    • [30] LIN J,SPROUL W D,MOORE J J.Microstructure and properties of nanostructured thick CrN coatings[J].Materials Letters,2012,89:55-58.

    • [31] BATKOVÁ Š,ČAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface & Coatings Technology,2020,393:125773.

    • [32] GUI B,ZHOU H,LIU X,et al.Influence of N2 flow rate on microstructure and properties of CrNx ceramic films prepared by MPP technique at low temperature[J].Ceramics International,2021,47(15):20875-20884.

    • [33] HAYE E,COLAUX J L,MOSKOVKIN P,et al.Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitride[J].Surface & Coatings Technology,2018,350:84-94.

    • [34] CEDEÑO-VENTE M L,MONDRAGÓN-RODRÍGUEZ G C,CAMACHO N,et al.Tailoring the chemical composition and microstructure of CrxN deposited by HiPIMS through duty-cycle modifications[J].Surface & Coatings Technology,2021,422:127502.

    • [35] SÁNCHEZ-LÓPEZ J C,CARO A,ALCALÁ G,et al.Tailoring CrNx stoichiometry and functionality by means of reactive HiPIMS[J].Surface & Coatings Technology,2020,401:126235.

    • [36] PEI C,DENG L,LIU H,et al.Corrosion inhibition behaviors of ZrNx thin films with varied N vacancy concentration[J].Vacuum,2019,162:28-38.

    • [37] GUIMARAES M C R,CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface & Coatings Technology,2018,340:112-120.

    • [38] ZUO X,XIA F,ZHANG D,et al.The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system[J].International Journal of Modern Physics B,2017,31(16-19):1744032.

    • [39] ELO R,JACOBSON S,KUBART T.Tailoring residual stresses in CrNx films on alumina and silicon deposited by high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,397:125990.

    • [40] KUMAR A,BAURI R,NASKAR A,et al.Characterization of HiPIMS and DCMS deposited TiAlN coatings and machining performance evaluation in high speed dry machining of low and high carbon steel[J].Surface & Coatings Technology,2021,417:127180.

    • [41] ALHAFIAN M R,CHEMIN J B,FLEMING Y,et al.Comparison on the structural,mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J].Surface & Coatings Technology,2021,423:127529.

    • [42] LIU L,ZHOU L,TANG W,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface & Coatings Technology,2020,402:126315.

    • [43] CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science & Technology,2020,29(2):025016.

    • [44] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface & Coatings Technology,2020,382:125007.

    • [45] ZAUNER L,BAHR A,KOZÁK T,et al.Time-averaged and time-resolved ion fluxes related to reactive HiPIMS deposition of Ti-Al-N films[J].Surface & Coatings Technology,2021,424:127638.

    • [46] 郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.CrAlN coatings prepared by HiPIMS/pulsed DC cosputtering[J].Surface Technology,2019,48(4):137-144.(in Chinese)

    • [47] TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,386:125484.

    • [48] TANG J F,LIN C Y,YANG F C,et al.Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films[J].Coatings,2020,10(6):546.

    • [49] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Influence of a short reverse positive HPPMS pulse on the deposition of CrAlN[J].Surface & Coatings Technology,2021,423:127625.

    • [50] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Pulse synchronized substrate bias for the high power pulsed magnetron sputtering deposition of CrAlN[J].Thin Solid Films,2021,732:138792.

    • [51] RAJPUT S S,GANGOPADHYAY S,CAVALEIRO A,et al.Influence of Ag additions on the structure,mechanical properties and oxidation behaviour of CrAlNAg coatings deposited by sputtering[J].Surface & Coatings Technology,2021,426:127767.

    • [52] HOVSEPIAN P E,EHIASARIAN A P,PURANDARE Y P,et al.Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components[J].Journal of Alloys & Compounds,2018,746:583-593.

    • [53] AGÜERO A,JUEZ-LORENZO M,HOVSEPIAN P E,et al.Long-term behaviour of Nb and Cr nitrides nanostructured coatings under steam at 650 ℃.mechanistic considerations[J].Journal of Alloys & Compounds,2018,739:549-558.

    • [54] ILLANA A,MATO S,EHIASARIAN A,et al.Substrate finishing and niobium content effects on the hightemperature corrosion resistance in steam atmosphere of CrN/NbN superlattice coatings deposited by PVDHIPIMS[J].Oxidation of Metals,2017,87(3):455-467.

    • [55] BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,336:84-91.

    • [56] BISWAS B,PURANDARE Y,KHAN I,et al.Effect of substrate bias voltage on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,344:383-393.

    • [57] OU Y X,LIN J L,TONG S,et al.Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering[J].Applied Surface Science,2015,351:332-343.

    • [58] OU Y X,WANG H Q,LIAO B,et al.Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam[J].Ceramics International,2019,45(18):24405-24412.

    • [59] BAGCIVAN N,BOBZIN K,LUDWIG A,et al.CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering[J].Thin Solid Films,2014,572:153-160.

    • [60] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS[J].Surface & Coatings Technology,2017,332:253-261.

    • [61] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Smart PVD hard coatings with temperature sensor function[J].Surface & Coatings Technology,2021,423:127631.

    • [62] LIN J,ZHANG X,GE F,et al.Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance[J].Surface & Coatings Technology,2019,377:124922.

    • [63] SUGUMARAN A A,PURANDARE Y,SHUKLA K,et al.TiN/NbN nanoscale multilayer coatings deposited by high power impulse magnetron sputtering to protect medical-grade CoCrMo alloys[J].Coatings,2021,11(7):867.

    • [64] LIU H,YANG F C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,358:577-585.

    • [65] KOEHLER J S.Attempt to design a strong solid[J].Physical Review B,1970,2(2):547-551.

    • [66] LIU H,TANG J F,WANG X,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2019,37(5):051501.

    • [67] BOBZIN K,BRÖGELMANN T,MAYER J,et al.Thermal stability of CrAlN/AlCrN nanolaminate coating deposited by hybrid dcMS/HPPMS after heat treatment with continuous-wave laser[J].Applied Surface Science,2021,569:151024.

    • [68] CHANG K S,KAO J Y,HUANG C H,et al.The effect of a buffer layer on the structure and the performance of cutting-tools for ZrWN films that are deposited using DCMS and HIPIMS[J].Ceramics International,2018,44(8):9519-9525.

    • [69] MA D L,DENG Q Y,LIU H Y,et al.Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers[J].Surface & Coatings Technology,2021,425:127749.

    • [70] ZHU Yujie,MA Jingling,WANG GuangXin,et al.Corrosion behaviour of multilayer CrN coatings deposited by hybrid HIPIMS after oxidation treatment[J].Nanotechnology Reviews,2020,9(1):596.

    • [71] GU J,LI L,AI M,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface & Coatings Technology,2020,402:126270.

    • [72] 李林儒,王振玉,左潇,等.直流磁控溅射和高功率脉冲磁控溅射TiSiN涂层的结构与性能比较[J].表面技术,2019,48(9):70-77.LI Linru,WANG Zhenyu,ZUO Xiao,et al.Comparative study on structure and properties of TiSiN coatings prepared by DCMS and HiPIMS[J].Surface Technology,2019,48(9):70-77.(in Chinese)

    • [73] 王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influnce of N2 flow rate on the structures and mechanical properties of TiSiN coatings prepared by HIPIMS method[J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)

    • [74] FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering & Performance,2021,30(6):3912-3924.

    • [75] OLIVEIRA J C,FERNANDES F,FERREIRA F,et al.Tailoring the nanostructure of Ti–Si–N thin films by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2015,264:140-149.

    • [76] FERNANDES F,CALDERON V S,FERREIRA P J,et al.Low peak power deposition regime in HiPIMS:deposition of hard and dense nanocomposite Ti-Si-N films by DOMS without the need of energetic bombardment[J].Surface & Coatings Technology,2020,397:125996.

    • [77] GRECZYNSKI G,BAKHIT B,HULTMAN L,et al.High Si content TiSiN films with superior oxidation resistance[J].Surface & Coatings Technology,2020,398:126087.

    • [78] GRECZYNSKI G,PATSCHEIDER J,LU J,et al.Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS codeposition[J].Surface & Coatings Technology,2015,280:174-184.

    • [79] 李玉阁,朱小鹏,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层对钛合金基体抗氧化性能的影响研究[J].表面技术,2020,49(12):220-227.LI Yuge,ZHU Xiaopeng,WU Bi,et al.Oxidation resistance of TiAlSiN nanocomposite coatings on titanium alloy prepared by modulated pulsed power magnetron sputtering[J].Surface Technology,2020,49(12):220-227.(in Chinese)

    • [80] CHEN H,ZHENG B C,LI Y G,et al.Flexible hard TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power[J].Thin Solid Films,2018,669:377-386.

    • [81] 吴志立,李玉阁,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层结构调控与性能研究[J].无机材料学报,2015,30(12):1254-1260.WU Zhili,LI Yuge,WU Bi,et al.Microstructure controlling and properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Journal of Inorganic Materials,2015,30(12):1254-1260.(in Chinese)

    • [82] WU Z L,LI Y G,WU B,et al.Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Thin Solid Films,2015,597:197-205.

    • [83] HSU T W,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface & Coatings Technology,2021,427:127661.

    • [84] OU Y X,WANG H Q,LIAO B,et al.Scratch response and tribological properties of TiAlSiN coatings deposited by reactive deep oscillation magnetron sputtering[J].Materials Research Express,2019,6(11):116452.

    • [85] LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2018,353:274-281.

    • [86] MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [87] CAVALEIRO D,VEEREGOWDA D,CAVALEIRO A,et al.High temperature tribological behaviour of TiSiN(Ag)films deposited by HiPIMS in DOMS mode[J].Surface & Coatings Technology,2020,399:126176.

    • [88] CAVALEIRO D,CARVALHO S,CAVALEIRO A,et al.TiSiN(Ag)films deposited by HiPIMS working in DOMS mode:effect of Ag content on structure,mechanical properties and thermal stability[J].Applied Surface Science,2019,478:426-434.

    • [89] CAVALEIRO D,CAVALEIRO A,CARVALHO S,et al.Oxidation behaviour of TiSiN(Ag)films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2019,688:137423.

    • [90] WU Z,TANG P,WU Y,et al.Wear behavior of AlCrSiVN coatings at elevated temperature up to 700 °C[J].Vacuum,2019,169:108876.

    • [91] 王铁钢,李柏松,张姣姣,等.沉积温度对高功率脉冲磁控溅射AlCrSiN涂层结构和性能的影响[J].稀有金属材料与工程,2018,47(8):2578-2584.WANG Tiegang,LI Baisong,ZHANG Jiaojiao,et al.Influence of deposition temperature on microstructures and mechanical properties of the Al-Cr-Si-N coatings deposited by HiPIMS technique[J].Rare Metal Materials & Engineering,2018,47(8):2578-2584.(in Chinese)

    • [92] DIYATMIKA W,CHENG C Y,LEE J W.Fabrication of Cr-Si-N coatings using a hybrid high-power impulse and radio-frequency magnetron co-sputtering:the role of Si incorporation and duty cycle[J].Surface & Coatings Technology,2020,403:126378.

    • [93] TANG Q L,WU Y C,LOU B S,et al.Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system[J].Surface & Coatings Technology,2019,376:59-67.

    • [94] LIU H,WANG X,PEI C,et al.Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS[J].Materials Research Express,2019,6(8):086432.

    • [95] KERAUDY J,BOYD R D,SHIMIZU T,et al.Phase separation within NiSiN coatings during reactive HiPIMS discharges:a new pathway to grow NixSi nanocrystals composites at low temperature[J].Applied Surface Science,2018,454:148-156.

    • [96] JIANG X,YANG F C,CHEN W C,et al.Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2017,320:138-145.

    • [97] DING J C,WANG Q M,LIU Z R,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys & Compounds,2019,772:112-121.

    • [98] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Investigation on the incorporation of oxygen and thermal stability of HPPMS TiAlCrSiON nanolayer coatings[J].Surface & Coatings Technology,2021,418:127231.

    • [99] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Wear behavior and thermal stability of HPPMS(Al,Ti,Cr,Si)ON,(Al,Ti,Cr,Si)N and(Ti,Al,Cr,Si)N coatings for cutting tools[J].Surface & Coatings Technology,2020,385:125370.

    • [100] 唐鹏,黎海旭,吴正涛,等.氧含量对高功率脉冲磁控溅射AlCrSiON涂层高温摩擦学性能的影响[J].中国表面工程,2018,31(3):77-85.TANG Peng,LI Haixu,WU Zhengtao,et al.Effects of oxygen content on high-temperature tribological behaviors of AlCrSiON coatings deposited by high power impulse magnetron sputtering[J].China Surface Engineering,2018,31(3):77-85.(in Chinese)

    • [101] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Correlation of HPPMS plasma and coating properties using artificial neural networks[J].Surface & Coatings Technology,2018,349:1130-1136.

    • [102] WANG H,OU Y,ZHANG X,et al.Tribocorrosion behaviors of TiSiCN nanocomposite coatings deposited by high power impulse magnetron sputtering[J].Materials Research Express,2020,7(7):076407.

    • [103] TILLMANN W,GRISALES D,STANGIER D,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface & Coatings Technology,2021,406:126664.

    • [104] LI Y,WANG C,MA D,et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering[J].Surface & Coatings Technology,2021,420:127325.

    • [105] ZENKIN S,GAYDAYCHUK A,MITULINSKY A,et al.Tailoring of optical,mechanical and surface properties of high-entropy Hf-Zr-Ce-Y-O ceramic thin films prepared by HiPIMS sputtering[J].Surface & Coatings Technology,2022,433:128164.

    • [106] XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.

    • [107] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [108] LIU Z W,HSU C Y,WU M C,et al.The effect of substrate temperature on the properties of(AlCrNbSiTiV)N films deposited by HIPIMS[J].The International Journal of Advanced Manufacturing Technology,2019,104(9):4509-4516.

    • [109] CHANG C H,YANG C B,SUNG C C,et al.Structure and tribological behavior of(AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering[J].Thin Solid Films,2018,668:63-68.

    • [110] CHANG K S,CHEN K T,HSU C Y,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.

  • 参考文献

    • [1] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [2] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [3] SARAKINOS K,ALAMI J,KLEVER C,et al.Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide[J].Surface & Coatings Technology,2008,202(20):5033-5035.

    • [4] LEROY W P,MAHIEU S,DEPLA D,et al.High power impulse magnetron sputtering using a rotating cylindrical magnetron[J].Journal of Vacuum Science & Technology A,2010,28(1):108-111.

    • [5] 吴忠振,朱宗涛,巩春志,等.高功率脉冲磁控溅射技术的发展与研究[J].真空,2009,46(3):18-22.WU Zhongzhen,ZHU Zongtao,GONG Chunzhi,et al.Development of high-power pulse magnetron sputtering technology[J].Vacuum,2009,46(3):18-22.(in Chinese)

    • [6] ZHANG D,ZUO X,WANG Z,et al.Comparative study on protective properties of CrN coatings on the ABS substrate by DCMS and HiPIMS techniques[J].Surface & Coatings Technology,2020,394:125890.

    • [7] MARCELINO R B P,AMORIM C C,RATOVA M,et al.Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water[J].Chemical Engineering Journal,2019,370:1251-1261.

    • [8] QURESHI M W,MA X,TANG G,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.

    • [9] WU W Y,CHAN M Y,HSU Y H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,362:167-175.

    • [10] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface & Coatings Technology,2010,204(11):1661-1684.

    • [11] YANG Z Y,CHEN Y H,LIAO B H,et al.Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering[J].Optical Materials Express,2016,6(2):540-551.

    • [12] ANDERS A.A structure zone diagram including plasma-based deposition and ion etching[J].Thin Solid Films,2010,518(15):4087-4090.

    • [13] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [14] 李希平.高功率复合脉冲磁控溅射等离子体特性及TiN薄膜制备[D].哈尔滨:哈尔滨工业大学,2008.LI Xiping.Property of high power pulsed magnetron sputtering plasma and deposition of TiN coatings[D].Harbin:Harbin Institute of Technology,2008.(in Chinese)

    • [15] ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys & Compounds,2018,735:422-429.

    • [16] VEGA J,SCHEERER H,ANDERSOHN G,et al.Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods[J].Corrosion Science,2018,133:240-250.

    • [17] MA D,DENG Q,LIU H,et al.Effect of ion energy on the microstructure and properties of titanium nitride thin films deposited by high power pulsed magnetron sputtering[J].Coatings,2021,11(5):579.

    • [18] XIE Q,FU Z,LIU Z,et al.Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current[J].Thin Solid Films,2022,749:139181.

    • [19] KIMURA T,YOSHIDA R,MISHIMA T,et al.Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges[J].Japanese Journal of Applied physics,2018,57(6S2):06JE02.

    • [20] TANG J F,HUANG S Y,LIN J H,et al.Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2022,434:128201.

    • [21] CHANG CL,LUO GJ,YANG FC,et al.Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS[J].Vacuum,2021,192:110449.

    • [22] CHANG C L,HO C T,CHEN P H,et al.Synergetic effect for improved deposition of titanium nitride films[J].Surface & Coatings Technology,2018,350:1098-1104.

    • [23] GHAILANE A,OLUWATOSIN A O,LARHLIMI H,et al.Titanium nitride,TixN(1−x),coatings deposited by HiPIMS for corrosion resistance and wear protection properties[J].Applied Surface Science,2022,574:151635.

    • [24] KUMAR P,SEEMA,GUPTA M,et al.Fully dense,highly conductive nanocrystalline TiN diffusion barrier on steel via reactive high power impulse magnetron sputtering[J].Thin Solid Films,2021,722:138578.

    • [25] VILOAN R P B,GU J B,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion-bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.

    • [26] VILOAN R P B,ZANÁŠKA M,LUNDIN D,et al.Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge[J].Plasma Sources Science & Technology,2021,29(12):125013.

    • [27] 贺贞,孙德恩,黄佳木.偏压对离子源辅助HiPIMS制备纳米TiN薄膜力学性能和耐蚀性能的影响[J].表面技术,2019,32(1):63-71.HE Zhen,SUN Deen,HUANG Jiamu.Effects of bias voltage on mechanical properties and corrosion resistance of TiN nanostucture films prepared by ion source assisted HiPIMS[J].Surface Technology,2019,32(1):63-71.(in Chinese)

    • [28] CEMIN F,ABADIAS G,MINEA T,et al.Tuning high power impulse magnetron sputtering discharge and substrate bias conditions to reduce the intrinsic stress of TiN thin films[J].Thin Solid Films,2019,688:137335.

    • [29] 朱宇杰,马景灵,王广欣,等.HIPIMS 技术制备CrN及CrAlN涂层的性能[J].材料热处理学报,2019,40(4):127-135.ZHU Yujie,MA Jingling,WANG Guangxin,et al.Properties of CrN and CrAlN coatings prepared by HIPIMS technology[J].Transactions of Materials & Heat Treatment,2019,40(4):127-135.(in Chinese)

    • [30] LIN J,SPROUL W D,MOORE J J.Microstructure and properties of nanostructured thick CrN coatings[J].Materials Letters,2012,89:55-58.

    • [31] BATKOVÁ Š,ČAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface & Coatings Technology,2020,393:125773.

    • [32] GUI B,ZHOU H,LIU X,et al.Influence of N2 flow rate on microstructure and properties of CrNx ceramic films prepared by MPP technique at low temperature[J].Ceramics International,2021,47(15):20875-20884.

    • [33] HAYE E,COLAUX J L,MOSKOVKIN P,et al.Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitride[J].Surface & Coatings Technology,2018,350:84-94.

    • [34] CEDEÑO-VENTE M L,MONDRAGÓN-RODRÍGUEZ G C,CAMACHO N,et al.Tailoring the chemical composition and microstructure of CrxN deposited by HiPIMS through duty-cycle modifications[J].Surface & Coatings Technology,2021,422:127502.

    • [35] SÁNCHEZ-LÓPEZ J C,CARO A,ALCALÁ G,et al.Tailoring CrNx stoichiometry and functionality by means of reactive HiPIMS[J].Surface & Coatings Technology,2020,401:126235.

    • [36] PEI C,DENG L,LIU H,et al.Corrosion inhibition behaviors of ZrNx thin films with varied N vacancy concentration[J].Vacuum,2019,162:28-38.

    • [37] GUIMARAES M C R,CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface & Coatings Technology,2018,340:112-120.

    • [38] ZUO X,XIA F,ZHANG D,et al.The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system[J].International Journal of Modern Physics B,2017,31(16-19):1744032.

    • [39] ELO R,JACOBSON S,KUBART T.Tailoring residual stresses in CrNx films on alumina and silicon deposited by high-power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,397:125990.

    • [40] KUMAR A,BAURI R,NASKAR A,et al.Characterization of HiPIMS and DCMS deposited TiAlN coatings and machining performance evaluation in high speed dry machining of low and high carbon steel[J].Surface & Coatings Technology,2021,417:127180.

    • [41] ALHAFIAN M R,CHEMIN J B,FLEMING Y,et al.Comparison on the structural,mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J].Surface & Coatings Technology,2021,423:127529.

    • [42] LIU L,ZHOU L,TANG W,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface & Coatings Technology,2020,402:126315.

    • [43] CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science & Technology,2020,29(2):025016.

    • [44] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface & Coatings Technology,2020,382:125007.

    • [45] ZAUNER L,BAHR A,KOZÁK T,et al.Time-averaged and time-resolved ion fluxes related to reactive HiPIMS deposition of Ti-Al-N films[J].Surface & Coatings Technology,2021,424:127638.

    • [46] 郭玉垚,王铁钢,李柏松,等.高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究[J].表面技术,2019,48(4):137-144.GUO Yuyao,WANG Tiegang,LI Baisong,et al.CrAlN coatings prepared by HiPIMS/pulsed DC cosputtering[J].Surface Technology,2019,48(4):137-144.(in Chinese)

    • [47] TANG J F,LIN C Y,YANG F C,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering[J].Surface & Coatings Technology,2020,386:125484.

    • [48] TANG J F,LIN C Y,YANG F C,et al.Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films[J].Coatings,2020,10(6):546.

    • [49] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Influence of a short reverse positive HPPMS pulse on the deposition of CrAlN[J].Surface & Coatings Technology,2021,423:127625.

    • [50] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Pulse synchronized substrate bias for the high power pulsed magnetron sputtering deposition of CrAlN[J].Thin Solid Films,2021,732:138792.

    • [51] RAJPUT S S,GANGOPADHYAY S,CAVALEIRO A,et al.Influence of Ag additions on the structure,mechanical properties and oxidation behaviour of CrAlNAg coatings deposited by sputtering[J].Surface & Coatings Technology,2021,426:127767.

    • [52] HOVSEPIAN P E,EHIASARIAN A P,PURANDARE Y P,et al.Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components[J].Journal of Alloys & Compounds,2018,746:583-593.

    • [53] AGÜERO A,JUEZ-LORENZO M,HOVSEPIAN P E,et al.Long-term behaviour of Nb and Cr nitrides nanostructured coatings under steam at 650 ℃.mechanistic considerations[J].Journal of Alloys & Compounds,2018,739:549-558.

    • [54] ILLANA A,MATO S,EHIASARIAN A,et al.Substrate finishing and niobium content effects on the hightemperature corrosion resistance in steam atmosphere of CrN/NbN superlattice coatings deposited by PVDHIPIMS[J].Oxidation of Metals,2017,87(3):455-467.

    • [55] BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,336:84-91.

    • [56] BISWAS B,PURANDARE Y,KHAN I,et al.Effect of substrate bias voltage on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings[J].Surface & Coatings Technology,2018,344:383-393.

    • [57] OU Y X,LIN J L,TONG S,et al.Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering[J].Applied Surface Science,2015,351:332-343.

    • [58] OU Y X,WANG H Q,LIAO B,et al.Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam[J].Ceramics International,2019,45(18):24405-24412.

    • [59] BAGCIVAN N,BOBZIN K,LUDWIG A,et al.CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering[J].Thin Solid Films,2014,572:153-160.

    • [60] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS[J].Surface & Coatings Technology,2017,332:253-261.

    • [61] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Smart PVD hard coatings with temperature sensor function[J].Surface & Coatings Technology,2021,423:127631.

    • [62] LIN J,ZHANG X,GE F,et al.Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance[J].Surface & Coatings Technology,2019,377:124922.

    • [63] SUGUMARAN A A,PURANDARE Y,SHUKLA K,et al.TiN/NbN nanoscale multilayer coatings deposited by high power impulse magnetron sputtering to protect medical-grade CoCrMo alloys[J].Coatings,2021,11(7):867.

    • [64] LIU H,YANG F C,TSAI Y J,et al.Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2019,358:577-585.

    • [65] KOEHLER J S.Attempt to design a strong solid[J].Physical Review B,1970,2(2):547-551.

    • [66] LIU H,TANG J F,WANG X,et al.Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of TiAlSiN/CrN multilayer coatings prepared using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2019,37(5):051501.

    • [67] BOBZIN K,BRÖGELMANN T,MAYER J,et al.Thermal stability of CrAlN/AlCrN nanolaminate coating deposited by hybrid dcMS/HPPMS after heat treatment with continuous-wave laser[J].Applied Surface Science,2021,569:151024.

    • [68] CHANG K S,KAO J Y,HUANG C H,et al.The effect of a buffer layer on the structure and the performance of cutting-tools for ZrWN films that are deposited using DCMS and HIPIMS[J].Ceramics International,2018,44(8):9519-9525.

    • [69] MA D L,DENG Q Y,LIU H Y,et al.Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers[J].Surface & Coatings Technology,2021,425:127749.

    • [70] ZHU Yujie,MA Jingling,WANG GuangXin,et al.Corrosion behaviour of multilayer CrN coatings deposited by hybrid HIPIMS after oxidation treatment[J].Nanotechnology Reviews,2020,9(1):596.

    • [71] GU J,LI L,AI M,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface & Coatings Technology,2020,402:126270.

    • [72] 李林儒,王振玉,左潇,等.直流磁控溅射和高功率脉冲磁控溅射TiSiN涂层的结构与性能比较[J].表面技术,2019,48(9):70-77.LI Linru,WANG Zhenyu,ZUO Xiao,et al.Comparative study on structure and properties of TiSiN coatings prepared by DCMS and HiPIMS[J].Surface Technology,2019,48(9):70-77.(in Chinese)

    • [73] 王振玉,徐胜,张栋,等.N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J].金属学报,2014,50(5):540-546.WANG Zhenyu,XU Sheng,ZHANG Dong,et al.Influnce of N2 flow rate on the structures and mechanical properties of TiSiN coatings prepared by HIPIMS method[J].Acta Metallurgica Sinica,2014,50(5):540-546.(in Chinese)

    • [74] FERREIRA F,CAVALEIRO A,OLIVEIRA J.Effect of peak power in deep oscillation magnetron sputtering on film properties[J].Journal of Materials Engineering & Performance,2021,30(6):3912-3924.

    • [75] OLIVEIRA J C,FERNANDES F,FERREIRA F,et al.Tailoring the nanostructure of Ti–Si–N thin films by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface & Coatings Technology,2015,264:140-149.

    • [76] FERNANDES F,CALDERON V S,FERREIRA P J,et al.Low peak power deposition regime in HiPIMS:deposition of hard and dense nanocomposite Ti-Si-N films by DOMS without the need of energetic bombardment[J].Surface & Coatings Technology,2020,397:125996.

    • [77] GRECZYNSKI G,BAKHIT B,HULTMAN L,et al.High Si content TiSiN films with superior oxidation resistance[J].Surface & Coatings Technology,2020,398:126087.

    • [78] GRECZYNSKI G,PATSCHEIDER J,LU J,et al.Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS codeposition[J].Surface & Coatings Technology,2015,280:174-184.

    • [79] 李玉阁,朱小鹏,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层对钛合金基体抗氧化性能的影响研究[J].表面技术,2020,49(12):220-227.LI Yuge,ZHU Xiaopeng,WU Bi,et al.Oxidation resistance of TiAlSiN nanocomposite coatings on titanium alloy prepared by modulated pulsed power magnetron sputtering[J].Surface Technology,2020,49(12):220-227.(in Chinese)

    • [80] CHEN H,ZHENG B C,LI Y G,et al.Flexible hard TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power[J].Thin Solid Films,2018,669:377-386.

    • [81] 吴志立,李玉阁,吴彼,等.高功率调制脉冲磁控溅射沉积TiAlSiN纳米复合涂层结构调控与性能研究[J].无机材料学报,2015,30(12):1254-1260.WU Zhili,LI Yuge,WU Bi,et al.Microstructure controlling and properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Journal of Inorganic Materials,2015,30(12):1254-1260.(in Chinese)

    • [82] WU Z L,LI Y G,WU B,et al.Effect of microstructure on mechanical and tribological properties of TiAlSiN nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Thin Solid Films,2015,597:197-205.

    • [83] HSU T W,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface & Coatings Technology,2021,427:127661.

    • [84] OU Y X,WANG H Q,LIAO B,et al.Scratch response and tribological properties of TiAlSiN coatings deposited by reactive deep oscillation magnetron sputtering[J].Materials Research Express,2019,6(11):116452.

    • [85] LI G,SUN J,XU Y,et al.Microstructure,mechanical properties,and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS[J].Surface & Coatings Technology,2018,353:274-281.

    • [86] MA Q,LI L,XU Y,et al.Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS[J].Applied Surface Science,2017,392:826-833.

    • [87] CAVALEIRO D,VEEREGOWDA D,CAVALEIRO A,et al.High temperature tribological behaviour of TiSiN(Ag)films deposited by HiPIMS in DOMS mode[J].Surface & Coatings Technology,2020,399:126176.

    • [88] CAVALEIRO D,CARVALHO S,CAVALEIRO A,et al.TiSiN(Ag)films deposited by HiPIMS working in DOMS mode:effect of Ag content on structure,mechanical properties and thermal stability[J].Applied Surface Science,2019,478:426-434.

    • [89] CAVALEIRO D,CAVALEIRO A,CARVALHO S,et al.Oxidation behaviour of TiSiN(Ag)films deposited by high power impulse magnetron sputtering[J].Thin Solid Films,2019,688:137423.

    • [90] WU Z,TANG P,WU Y,et al.Wear behavior of AlCrSiVN coatings at elevated temperature up to 700 °C[J].Vacuum,2019,169:108876.

    • [91] 王铁钢,李柏松,张姣姣,等.沉积温度对高功率脉冲磁控溅射AlCrSiN涂层结构和性能的影响[J].稀有金属材料与工程,2018,47(8):2578-2584.WANG Tiegang,LI Baisong,ZHANG Jiaojiao,et al.Influence of deposition temperature on microstructures and mechanical properties of the Al-Cr-Si-N coatings deposited by HiPIMS technique[J].Rare Metal Materials & Engineering,2018,47(8):2578-2584.(in Chinese)

    • [92] DIYATMIKA W,CHENG C Y,LEE J W.Fabrication of Cr-Si-N coatings using a hybrid high-power impulse and radio-frequency magnetron co-sputtering:the role of Si incorporation and duty cycle[J].Surface & Coatings Technology,2020,403:126378.

    • [93] TANG Q L,WU Y C,LOU B S,et al.Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system[J].Surface & Coatings Technology,2019,376:59-67.

    • [94] LIU H,WANG X,PEI C,et al.Tribological properties and corrosion resistance of CrSiN coatings prepared via hybrid HiPIMS and DCMS[J].Materials Research Express,2019,6(8):086432.

    • [95] KERAUDY J,BOYD R D,SHIMIZU T,et al.Phase separation within NiSiN coatings during reactive HiPIMS discharges:a new pathway to grow NixSi nanocrystals composites at low temperature[J].Applied Surface Science,2018,454:148-156.

    • [96] JIANG X,YANG F C,CHEN W C,et al.Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2017,320:138-145.

    • [97] DING J C,WANG Q M,LIU Z R,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys & Compounds,2019,772:112-121.

    • [98] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Investigation on the incorporation of oxygen and thermal stability of HPPMS TiAlCrSiON nanolayer coatings[J].Surface & Coatings Technology,2021,418:127231.

    • [99] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Wear behavior and thermal stability of HPPMS(Al,Ti,Cr,Si)ON,(Al,Ti,Cr,Si)N and(Ti,Al,Cr,Si)N coatings for cutting tools[J].Surface & Coatings Technology,2020,385:125370.

    • [100] 唐鹏,黎海旭,吴正涛,等.氧含量对高功率脉冲磁控溅射AlCrSiON涂层高温摩擦学性能的影响[J].中国表面工程,2018,31(3):77-85.TANG Peng,LI Haixu,WU Zhengtao,et al.Effects of oxygen content on high-temperature tribological behaviors of AlCrSiON coatings deposited by high power impulse magnetron sputtering[J].China Surface Engineering,2018,31(3):77-85.(in Chinese)

    • [101] BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al.Correlation of HPPMS plasma and coating properties using artificial neural networks[J].Surface & Coatings Technology,2018,349:1130-1136.

    • [102] WANG H,OU Y,ZHANG X,et al.Tribocorrosion behaviors of TiSiCN nanocomposite coatings deposited by high power impulse magnetron sputtering[J].Materials Research Express,2020,7(7):076407.

    • [103] TILLMANN W,GRISALES D,STANGIER D,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface & Coatings Technology,2021,406:126664.

    • [104] LI Y,WANG C,MA D,et al.Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering[J].Surface & Coatings Technology,2021,420:127325.

    • [105] ZENKIN S,GAYDAYCHUK A,MITULINSKY A,et al.Tailoring of optical,mechanical and surface properties of high-entropy Hf-Zr-Ce-Y-O ceramic thin films prepared by HiPIMS sputtering[J].Surface & Coatings Technology,2022,433:128164.

    • [106] XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.

    • [107] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [108] LIU Z W,HSU C Y,WU M C,et al.The effect of substrate temperature on the properties of(AlCrNbSiTiV)N films deposited by HIPIMS[J].The International Journal of Advanced Manufacturing Technology,2019,104(9):4509-4516.

    • [109] CHANG C H,YANG C B,SUNG C C,et al.Structure and tribological behavior of(AlCrNbSiTiV)N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering[J].Thin Solid Films,2018,668:63-68.

    • [110] CHANG K S,CHEN K T,HSU C Y,et al.Growth(AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system[J].Applied Surface Science,2018,440:1-7.

  • 手机扫一扫看