en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

丁啸云,男,1994年出生,博士研究生。主要研究方向为金属材料表面强化膜层优化设计。E-mail:dingxiaoyun@xs.ustb.edu.cn

通讯作者:

张津,女,1963年出生,博士,教授,博士研究生导师。主要研究方向为特殊功能涂层或膜层的设计、优化与制备。E-mail:zhangjin@ustb.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211230003

参考文献 1
SAGHI B M R,KHAMENEH A,NOROUZI S.A comparative research on corrosion behavior of a standard,crack-free and duplex hard chromium coatings[J].Surface and Coatings Technology,2010,205(7):2605-2610.
参考文献 2
LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.
参考文献 3
MENG Y,ZENG S,TENG Z,et al.Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J].Thin Solid Films,2021,730:138699.
参考文献 4
胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)
参考文献 5
BIKULČIUS G,ČEŠUNIENĖ A,SELSKIENĖ A,et al.Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths[J].Surface and Coatings Technology,2017,315:130-138.
参考文献 6
KUREK A P,SELLIN N,GELSLEICHTER M.Redução e substituição do ácido crômico na etapa de condicionamento de ABS para metalização[J].Polímeros,2009,19(3):248-254.KUREK A P,SELLIN N,GELSLEICHTER M.Reduction and substitution of chromic acid in the ABS conditioning step for metallization [J].Polímeros,2009,19(3):248-254.(in Portuguese)
参考文献 7
MAGALLON C L,PEREZ B J J,MEAS V Y,et al.Novel green process to modify ABS surface before its metallization:optophysic treatment[J].Journal of Coatings Technology and Research,2015,12(2):313-323.
参考文献 8
高文,张津,黄进峰,等.身管内膛镀铬层-钢基体界面损伤退化行为研究进展[J].材料导报,2017,31(13):90-98.GAO Wen,ZHANG Jin,HUANG Jinfeng,et al.Research Progress of degradation failure of interface of chromium coating and steel substrate in gun bores[J].Materials Reports,2017,31(13):91-98.(in Chinese)
参考文献 9
NAVINŠEK B,PANJAN P,MILOŠEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.
参考文献 10
付航涛,张津,黄进峰,等.热模钢渗氮与30SiMn2MoVA镀铬性能比较[J].中国表面工程,2015,28(6):1-6.FU Hangtao,ZHANG Jin,HUANG Jinfeng,et al.Comparison of nitrided hot work tool steel and chromium coated 30SiMn2MoVA[J].China Surface Engineering,2015,28(6):1-6.(in Chinese)
参考文献 11
SAVARIMUTHU A C,TABER H F,MEGAT I,et al.Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications[J].Journal of Thermal Spray Technology,2001,10(3):502-510.
参考文献 12
BEMPORAD E,PECCHIO C,DE ROSSI S,et al.Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating[J].Surface & Coatings Technology,2004,188:319-330.
参考文献 13
徐滨士,谭俊,陈建敏.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin.Science and technology development of surface engineering[J].China Surface Engineering,2011,24(2):1-12.(in Chinese)
参考文献 14
HURKMANS T,LEWIS D B,BROOKS J S,et al.Chromium nitride coatings grown by unbalanced magnetron(UBM)and combined arc/unbalanced magnetron(ABSTM)deposition techniques[J].Surface and Coatings Technology,1996,86-87(1):192-199.
参考文献 15
OLAYA J J,RODIL S E,MUHL S,et al.Influence of the energy parameter on the microstructure of chromium nitride coatings[J].Surface and Coatings Technology,2006,200(20-21):5743-5750.
参考文献 16
HOVSEPIAN P E,LEWIS D B,MUUNZ W D,et al.Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique[J].Surface & Coatings Technology,1999,116:727-734.
参考文献 17
RODRIGUEZ R J,GARCIA J A,MEDRANO A,et al.Tribological behaviour of hard coatings deposited by arc-evaporation PVD[J].Vacuum,2002,67(3-4):559-566.
参考文献 18
EHIASARIAN A P,HOVSEPIAN P E,HULTMAN L,et al.Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique[J].Thin Solid Films,2004,457(2):270-277.
参考文献 19
WANG H W,STACK M M,LYON S B,et al.Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry[J].Surface and Coatings Technology,2000,135(1):82-90.
参考文献 20
PETROV I,LOSBICHLER P,BERGSTROM D,et al.Ion-assisted growth of Ti1−xAlxN/Ti1−yNbyN multilayers by combined cathodic-arc/magnetron-sputter deposition[J].Thin Solid Films,1997,302(1):179-192.
参考文献 21
FENKER M,BALZER M,KAPPL H.Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering-Tests and improvements[J].Thin Solid Films,2006,515(1):27-32.
参考文献 22
WANG H W,STACK M M,LYON S B,et al.The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J].Surface and Coatings Technology,2000,126(2):279-287.
参考文献 23
PURANDARE Y P,STACK M M,HOVSEPIAN P E.Velocity effects on erosion–corrosion of CrN/NbN “superlattice” PVD coatings[J].Surface and Coatings Technology,2006,201(1):361-370.
参考文献 24
KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.
参考文献 25
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.
参考文献 26
HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.
参考文献 27
EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS up to now and a glance into the future,a review by a manufacturer introduction of the hiP-V hiPlus technology[J].Universal Journal of Physics and Application,2017,11(3):73-79.
参考文献 28
MASZL C,BREILMANN W,BENEDIKT J,et al.Origin of the energetic ions at the substrate generated during high power pulsed magnetron sputtering of titanium[J].Journal of Physics D:Applied Physics,2014,47(22):224002.
参考文献 29
BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.
参考文献 30
ZUO X,ZHANG D,CHEN R D,et al.Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J].Plasma Sources Science & Technology,2020,29(1):015013.
参考文献 31
艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)
参考文献 32
TILLMANN W,FEHR A,STANGIER D.Effects of heat treatments on the microstructure and the adhesion of Cr,Ti,Al,Zr HiPIMS films deposited on APS Al2O3 and ZrO2-8Y2O3 coatings[J].Surface and Coatings Technology,2020,393:125766.
参考文献 33
ZUO X,KE P L,CHEN R D,et al.Discharge state transition and cathode fall thickness evolution during chromium HiPIMS discharge[J].Physics of Plasmas,2017,24(8):083507.
参考文献 34
HULTMAN L,KADLEC S.Low-energy(~ 100 eV)ion irradiation during growth of TiN deposited by reactive magnetron sputtering:effects of ion flux on film microstructure[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1991,9(3):434-438.
参考文献 35
BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.
参考文献 36
HECIMOVIC A,EHIASARIAN A P.Time evolution of ion energies in HIPIMS of chromium plasma discharge[J].Journal of Physics D:Applied Physics,2009,42(13):135209.
参考文献 37
HECIMOVIC A,BURCALOVA K,EHIASARIAN A P.Origins of ion energy distribution function(IEDF)in high power impulse magnetron sputtering(HIPIMS)plasma discharge[J].Journal of Physics D:Applied Physics,2008,41(9):095203.
参考文献 38
GRECZYNSKI G,HULTMAN L.Time and energy resolved ion mass spectroscopy studies of the ion flux during high power pulsed magnetron sputtering of Cr in Ar and Ar/N2 atmospheres[J].Vacuum,2010,84(9):1159-1170.
参考文献 39
ROSSNAGEL S M.Gas density reduction effects in magnetrons[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1988,6(1):19-24.
参考文献 40
LUNDIN D,BRENNING N,JÄDERNÄS D,et al.Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering[J].Plasma Sources Science and Technology,2009,18(4):045008.
参考文献 41
GRECZYNSKI G,ZHIRKOV I,PETROV I,et al.Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar[J].Journal of Vacuum Science & Technology A,2017,35(6):060601.
参考文献 42
BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:Correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202.
参考文献 43
ANDERS A,PANJAN M,FRANZ R,et al.Drifting potential humps in ionization zones:the “propeller blades” of high power impulse magnetron sputtering[J].Applied Physics Letters,2013,103(14):144103.
参考文献 44
ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201.
参考文献 45
BARSHILIA H C,ANANTH A,KHAN J,et al.Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates[J].Vacuum,2012,86(8):1165-1173.
参考文献 46
SCHÖNJAHN C,EHIASARIAN A P,LEWIS D B,et al.Optimization of in situ substrate surface treatment in a cathodic arc plasma:a study by TEM and plasma diagnostics[J].Journal of Vacuum Science and Technology,Part A:Vacuum,Surfaces and Films,2001,19(4):1415-1420.
参考文献 47
LATTEMANN M,EHIASARIAN A P,BOHLMARK J,et al.Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel[J].Surface and Coatings Technology,2006,200(22):6495-6499.
参考文献 48
FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface and Coatings Technology,2014,258:249-256.
参考文献 49
GRECZYNSKI G,JENSEN J,HULTMAN L.Mitigating the geometrical limitations of conventional sputtering by controlling the ion-to-neutral ratio during high power pulsed magnetron sputtering[J].Thin Solid Films,2011,519(19):6354-6361.
参考文献 50
FERREIRA F,SERRA R,CAVALEIRO A,et al.Additional control of bombardment by deep oscillation magnetron sputtering:Effect on the microstructure and topography of Cr thin films[J].Thin Solid Films,2016,619:250-260.
参考文献 51
FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.
参考文献 52
KUO Chinchiuan,LIN Chunhui,LIN Yutse,et al.Effects of cathode voltage pulse width in high power impulse magnetron sputtering on the deposited chromium thin films[J].Coatings,2020,10(6):542.
参考文献 53
AKBARNEJAD E,SOLEIMANI E A,GHORANNEVIS Z.Chromium thin film deposition on ITO substrate by RF sputtering[J].Journal of Theoretical and Applied Physics,2014,8(3):129.
参考文献 54
LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.
参考文献 55
MONTEYNARD A D,SCHUSTER F,BILLARD A,et al.Properties of chromium thin films deposited in a hollow cathode magnetron powered by pulsed DC or HiPIMS[J].Surface and Coatings Technology,2017,330:241-248.
参考文献 56
SAMUELSSON M,LUNDIN D,SARAKINOS K,et al.Influence of ionization degree on film properties when using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2012,30(3):031507.
参考文献 57
ALAMI J,SARAKINOS K,USLU F,et al.On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering[J].Journal of Physics D:Applied Physics,2008,42(1):015304.
参考文献 58
BLEYKHER G A,SIDELEV D V,GRUDININ V A,et al.Surface erosion of hot Cr target and deposition rates of Cr coatings in high power pulsed magnetron sputtering[J].Surface and Coatings Technology,2018,354:161-168.
参考文献 59
GRUDININ V A,BLEYKHER G A,SIDELEV D V,et al.Chromium films deposition by hot target high power pulsed magnetron sputtering:Deposition conditions and film properties[J].Surface and Coatings Technology,2019,375:352-362.
参考文献 60
MERCS D,PERRY F,BILLARD A.Hot target sputtering:a new way for high-rate deposition of stoichiometric ceramic films[J].Surface and Coatings Technology,2006,201(6):2276-2281.
参考文献 61
MUSIL J,SATAVA V,BAROCH P.High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target[J].Thin Solid Films,2010,519(2):775-777.
参考文献 62
SIDELEV D V,BLEYKHER G A,KRIVOBOKOV V P,et al.High-rate magnetron sputtering with hot target[J].Surface and Coatings Technology,2016,308:168-173.
参考文献 63
SIDELEV D V,BESTETTI M,BLEYKHER G A,et al.Deposition of Cr films by hot target magnetron sputtering on biased substrates[J].Surface and Coatings Technology,2018,350:560-568.
参考文献 64
LIU Liangliang,ZHOU Lin,TANG Wei,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface and Coatings Technology,2020,402:126315.
参考文献 65
WU Z Z,TIAN X B,WEI Y Q,et al.Graded nanostructured interfacial layers fabricated by high power pulsed magnetron sputtering — plasma immersion ion implantation and deposition(HPPMS–PIII&D)[J].Surface and Coatings Technology,2013,236:320-325.
参考文献 66
WU H P,TIAN Q W,TIAN X B,et al.Enhancement of discharge and deposition rate in dual-pulse pulsed magnetron sputtering:Effect of ignition pulse width[J].Surface and Coatings Technology,2019,374:383-392.
参考文献 67
SOHI M H,KASHI A A,HADAVI S M M.Comparative tribological study of hard and crack-free electrodeposited chromium coatings[J].Journal of Materials Processing Technology,2003,138(1):219-222.
参考文献 68
CHOI Y,BAIK N I,HONG S I.Microstructural observation and wear properties of thin chrome layers prepared by pulse plating[J].Thin Solid Films,2001,397(1):24-29.
参考文献 69
GONG W J,CHEN H,ZHAN C Y,et al.Formation of voids in the Cr coatings with(110)-preferred orientation prepared by arc ion plating under an Au+ irradiation of 20 dpa[J].Surface and Coatings Technology,2021,425:127750.
参考文献 70
HE X J,TIAN Z H,SHI B H,et al.Effect of gas pressure and bias potential on oxidation resistance of Cr coatings[J].Annals of Nuclear Energy,2019,132:243-248.
参考文献 71
PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.
参考文献 72
ALMOTAIRI A,WARKENTIN A,FARHAT Z.Mechanical damage of hard chromium coatings on 416 stainless steel[J].Engineering Failure Analysis,2016,66:130-140.
参考文献 73
李洪涛,蒋百灵,杨波,等.一种新颖的磁控溅射纯Cr薄膜结构区域模型[J].人工晶体学报,2011,40(4):1071-1075.LI Hongtao,JIANG Bailing,YANG Bo,et al.A Novel structure zone model of pure cr films relating to the magnetron sputtering system[J].Journal of Synthetic Crystals,2011,40(4):1071-1075.(in Chinese)
参考文献 74
LINTYMER J,MARTIN N,CHAPPÉ J M,et al.Modeling of Young’s modulus,hardness and stiffness of chromium zigzag multilayers sputter deposited[J].Thin Solid Films,2006,503(1):177-189.
参考文献 75
DEKOVEN B M.Carbon thin film deposition using high power pulsed magnetron sputtering[C]//Society of Vacuum Coaters.Society of Vacuum Coaters 46th Annual Technical Conf.Proc.,May 3-8,2003,Albuquerque,NM,USA:Society of Vacuum Coaters,2003:158-165.
参考文献 76
KONSTANTINIDIS S,HEMBERG A,DAUCHOT J P,et al.Deposition of zinc oxide layers by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2007,25(3):19-21.
参考文献 77
SAMUELSSON M,LUNDIN D,JENSEN J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.
目录contents

    摘要

    Cr 膜层因其优异的耐高温、耐腐蚀和耐磨损性能,在航空航天、武器装备和核电能源等领域得到广泛应用。由于传统电镀硬铬技术具有一定的污染,人们一直致力于寻找一种无污染的高性能 Cr 膜层制备方式。具备清洁特性的物理气相沉积技术,尤其是具有高离化率和高结合力特点的高功率脉冲磁控溅射(HiPIMS)技术现已成为膜层研究领域的热点。介绍 HiPIMS-Cr 靶的放电特性,指出在 Cr 膜沉积过程中获得高 Cr 离化率的条件;对比 HiPIMS-Cr 膜层与传统工艺(电镀硬铬、直流磁控沉积溅射、电弧混合溅射等)制备的 Cr 膜层在表面形貌、微观组织和力学性能等方面的差异,概述不同工艺组合对 Cr 膜层沉积速率的影响,探讨不同影响因素对 HiPIMS-Cr 膜层的微观组织、力学性能的影响及相关研究进展。最后对 HiPIMS-Cr 膜层制备及其应用研究的趋势进行展望。

    Abstract

    Due to the excellent resistance to high temperature, corrosion and wear, chromium coating (Cr coating) is widely used in the areas of aerospace, weaponry and nuclear power. Since the traditional hard plating technology is environmentally hazardous, an unpolluted and high-performance preparation method of Cr coating is desired. Therefore, the physical vapor deposition technique with environment friend, especially the high power impulsed magnetron sputtering technique with high dissociation rate and bonding characteristic is obtained more focus. This paper introduces the discharge characteristics of the HiPIMS-Cr target and identifies the conditions for obtaining a high Cr dissociation rate during Cr coating deposition. The differences in surface morphology, microstructure and mechanical properties of the Cr coating prepared by the HiPIMS and the traditional technique (e.g., hard chromium plating, DC magnetron deposition sputtering, arc ion plating, etc.) are compared. The effect of different process combinations on the deposition rate of the Cr coating is outlined. Furthermore, the influential factors on the microstructure and performance of HiPIMS-Cr coatings are investigated and the related research progress is discussed. Finally, the future developing in the preparation and application of HiPIMS-Cr coatings is put forward.

  • 0 前言

  • 由于铬(Chromium,Cr)金属具有的高熔点、高耐磨性、高耐蚀性[1-2]和优异的耐高温氧化性能[3-4], Cr 膜层通常用作金属构件的耐磨、耐蚀表面处理[5]。表面电镀制备强化金属层这一手段是传统的 Cr 膜层制备工艺[6-8],代表性的电镀硬铬(Hard chromium plating,HCP)技术可以制备一系列具有薄、硬、耐磨和耐腐蚀等特性的强化膜层。然而,电镀中使用的 CrO3 会释放出六价铬(Cr6+)致癌蒸气,对环境和人体健康造成极大危害。同时,HCP 膜层多存在固有裂纹,影响使用性能。因此,在过去的 20 余年中,已经开始寻求一种高性能的“清洁”表面膜层制备方法以替代电镀铬技术[9-11]

  • 物理气相沉积技术(Physical vapor deposition,PVD)是电镀铬的优选替代方案之一,例如:阴极电弧蒸发(Cathodic arc evaporation,CAE)[12]、磁控溅射(Magnetron sputtering,MS)[13-15]、电弧混合溅射(Arc bond sputtering,ABS)[16]等技术。但是上述技术也有其局限性:在采用 CAE 技术的过程中出现的宏观颗粒[12-17]和 MS 技术过程中的空隙[18]等都会导致膜层出现缺陷,这些缺陷会成为 Cr 基膜层中的薄弱环节,不仅影响其力学性能[19-20],也通过促进“溶液路径”电偶腐蚀来影响其耐腐蚀性[21-23],促使人们开发具有致密微观结构的无缺陷膜层的沉积技术。

  • 高功率脉冲磁控溅射技术(High-power impulse magnetron sputtering,HiPIMS)拓宽了 PVD 的技术窗口[24-26],通过短时间内(<1 ms)向靶施加较高峰值功率(0.1~3 kW / cm2)和峰值电流(~4 kA),可以使得靶材高度电离并获得整体设备内高等离子体密度(~1019 / m3)。通过脉冲功率,平均靶功率保持在 MS 的低水平以避免靶过热,同时峰值靶功率接近兆瓦级[27-28],但与传统的阴极电弧技术不同, HiPIMS 技术产生的密集离子通量不含宏观颗粒,例如金属液滴。通过在衬板或转架上引入负偏置电压,带电粒子可以通过其电位变化来加速,并不断轰击生长表面,高能离子轰击提供了吸附原子的表面迁移能,有效地提高了 Cr 基膜层的密度[29-30]

  • 国内外学者对基于 HiPIMS 技术的 Cr 膜层组织性能及制备过程中的特殊放电特性进行了诸多探索[31-33],本文综述了近年来关于 HiPIMS 制备 Cr 膜层取得的研究进展,重点探讨其组织结构与相关性能的演变规律,最后对有待解决的问题和应用领域进行了展望。

  • 1 基于 HiPIMS 的 Cr 膜层放电特性

  • HiPIMS-Cr 膜层的优异表现引起了领域内研究人员较为广泛的关注,而排在第 1 位的就是明晰 HiP IMS-Cr 膜层制备过程中的放电特性问题。

  • HiPIMS 最吸引人的特征是等离子体中的高电子密度,促使了靶材材料的有效电离。此外,离子与中性粒子的通量比可以在一定程度上由脉冲电压控制。薄膜生长过程中离子轰击对所得膜层性能的影响已得到充分证明[34],由于 HiPIMS 工艺中的成膜离子浓度会显著超过直流磁控溅射技术(Direct current magnetron sputtering,DCMS),甚至离子占据总粒子数量的主导地位,这种影响可能会更加明显,因此了解在 HiPIMS 工艺下影响离子能分布函数 (Ion energy distribution function,IEDF)的因素至关重要。

  • BOHLMARK 等[35]报告了 HiPIMS 等离子体的第一次质谱测量,通过时间分辨试验,证明高能金属离子是在脉冲期间产生的,尤其是当峰值电流达到其最大值时。脉冲关闭后,由于与气体原子的能量交换产生低能量峰值(即热能化过程),IEDF 迅速缩小。HECIMOVIC 等[36-37]利用 Ar 气氛在实验室条件下探索了基于 HiPIMS 技术的 Cr 等离子体中 IEDF 的起源和时间演化,提出金属离子和氩气离子的 IEDF 符合两种麦克斯韦分布(分别描述低能和高能部分),在前一种情况下,是由溅射金属原子的有效热化引起的。发现金属 IEDF 的高能成分与靶电流的峰值成单调比例,而低能峰值保持不变,并发现在电流脉冲关闭后 ms 时间尺度内均可以在余辉等离子体中检测到靶材金属离子和气体离子。

  • GRECZYNSKI 等[38]对 Cr 在 Ar 气氛中 HiPIMS 放电时不同脉冲能量(等同于峰值电流)下的 IEDF 进行了研究,离子的时间平均、时间分辨 IEDF 分别如图1、2 所示,在金属模式下溅射期间增加脉冲能量会导致 Cr2+数量的快速(线性)增加(从 3 J 增加到 30 J 时增加 8 倍),而 Cr 信号的强度增加 2.5 倍并且 Ar 信号的强度保持不变,通过改变脉冲能量,可以显著改变离子通量的特性(离子流的组成和离子平均能量),在 Ep=3 J 下主要为 Cr+ 和 Ar+,每个离子的平均能量分别为 7.36×10−19 J(4.6 eV) 和 2.56×10−19 J(1.6 eV)。在 Ep=30 J 时,离子通量将由能量更高的 Cr+ 离子(每个离子的平均能量为 1.49×10−18 J(9.3 eV))主导,此外,Cr2+离子的数量大大增加,平均将具有 2.67×10−18 J(16.7 eV) 的能量。

  • 图1 离子的时间平均 IEDF[38]

  • Fig.1 Time-averaged IEDFs for ions

  • 图2 离子的时间分辨 IEDF[38]

  • Fig.2 Time-resolved IEDFs for ions

  • 同时,GRECZYNSKI[39]提出 0 μs 和 100 μs 之间的放电在典型的 HiPIMS 条件下运行,电流和电压有很大的动态变化,在第二阶段(100~200 μs) 稳定,类似于直流溅射,HiPIMS 脉冲放电的阶段发生严重的气体稀疏(溅射粒子与中性气体之间的碰撞会导致气体加热和稀疏),并认为这种类似 DCMS 的放电在 Ar 耗尽的条件下出现。这一观点与 LUNDIN 等[40]关于 HiPIMS 和普通 MS 的放电方式转变中所观察到的现象相吻合。随后 GRECZYNSKI 等[41]针对这一现象,对 HiPIMS 溅射期间入射到样品的金属和气体离子通量进行了能量和时间相关质谱分析,结果表明,时间和能量积分的金属 / 气体离子比NMe+/NAr+随着峰值靶电流密度的增加而增加,其根源在于气体稀疏现象,此外,该现象会随着金属离子质量的增加而增强。

  • BREILMANN 等 [42] 通过 ICCD 相机观测 Cr-HiPIMS 在不同靶功率密度下等离子体发射情况,图3 显示了其拍摄的 0.26 Pa 氩气环境中不同功率密度( kW / cm2)下铬靶的 ICCD 图像, BREILMANN 将其划分为四种典型模式:① 在 0.054 kW / cm2 的极低功率密度下,均匀的等离子体环面,这是 DCMS 的典型特征。② 在 0.1 kW / cm2 的功率密度以上,局部电离区[43](Ionization zones, IZ)开始变得可见,沿着 E×B 方向旋转,傅里叶变换表明,这些 IZ 自发地形成并消失,表现出随机性。③ 高于 0.6 kW / cm2 的功率密度,三辐条变得可见。在功率密度为 1.2~1.4 kW / cm2 时,辐条数将减少到 2。这是典型的轮辐模式的演变,随着功率密度的增加,模式数减少。④ 在 1.7 kW / cm2 的功率密度之上,均匀的等离子体环面变得可见。 HiPIMS-Cr 溅射工艺中的 IEDF 由 Cr 离子的低能区和高能区组成,认为只有当 IZ 以旋转辐条的形式或在极高功率密度下以均匀圆环的形式形成时,才会产生 Cr 离子。ŠLAPANSKÁ 等[44]针对 Cr-HiPIMS放电中从自组织(辐条状态)到均匀等离子体分布的转变进行了探索,研究发现,离子通量在辐条状态和均质等离子体状态之间的过渡处突然增加。同样,当等离子体环面变得均匀时,Cr 离子的密度表现出约 50 %的强烈增加。这些观察结果被解释为电子温度的升高和电子加热模式的变化,从二次电子加热和欧姆加热的组合到纯欧姆加热。

  • 图3 不同功率密度(kW / cm2)下铬靶的 ICCD 图像[42]

  • Fig.3 ICCD images of a chromium target at different power densities in kW / cm2

  • ZUO 等[30]通过结合碰撞辐射模型的光学发射光谱(Optical emission spectroscopy,OES)研究了 Cr-HiPIMS 在低气压(0.333~2.66 Pa)放电模式下的等离子体特性,低气压模式下 Cr 溅射过程的 HiPIMS 放电由氩原子的电子碰撞电离和 Cr 原子的激发主导。Cr 中性原子数密度主要由沉积气压决定,并随脉冲电压和放电功率的增大而减小,密度为 1017~1018 m−3 的 Cr 原子表明,尽管与 DCMS 相比,HiPIMS 提高了离子通量,但中性原子仍然有较大存在量。

  • 在明确 HiPIMS-Cr 膜层制备过程独特的放电特征的同时,我们也应意识到,相对于 HCP 较为简便的工艺控制,HiPIMS-Cr 膜层制备过程有着诸多的影响因素,明确不同影响因素对于 HiPIMS-Cr 膜层结构和性能的影响,具有极为重要的现实意义。

  • 2 不同影响因素对 HiPIMS-Cr 膜层组织结构与性能的影响

  • HiPIMS 工艺的可控影响因素较多,如镀前清洗、峰值功率、峰值电流、沉积气压、脉冲宽度和偏压等,均会对 Cr 膜层的组织结构与性能产生影响,下面分别对不同影响因素进行具体阐述。

  • (1)镀前清洗方面。在物理气相沉积之前通过离子蚀刻对基板表面进行原位清洁,可以有效增强膜层附着力和膜层性能[45]。在许多 PVD 工艺中,使用 Ar 等惰性气体离子来清洁基板表面。除了其低效的氧化物蚀刻速率外,在界面中掺入高浓度的 Ar 气体也是不利的,临界载荷划痕测试中的失效值可能相当低(Lc<40 N)[46]。LATTEMANN 等[47]使用包含 Cr+、Cr2+和 Ar+ 混合物的 HiPIMS 等离子体采用不同的离子能量和时间对不锈钢和高速钢基材的表面进行预处理。结果表明,清洁过程中的高离子能量(Ub=1 200 V)会导致再溅射和离子注入,并去除氧化物钝化层,使用 HiPIMS 预处理与 ABS 或过滤电弧不平衡磁控溅射工艺相当,均实现 40~65 N 的结合力,但在 HiPIMS 界面中没有明显的由液滴构成的预处理缺陷区域。

  • (2)峰值功率方面。不同峰值功率沉积的 Cr 薄膜的扫描电镜照片如图4 所示,FERREIRA 等[48] 对峰值功率对 HiPIMS-Cr 膜层的影响进行了探索,而随着峰值功率的增加,同样具有(110)优先取向,但 HiPIMS 沉积的 Cr 薄膜的沉积速率从 DCMS 沉积速率的 60 %下降到 30 %。增加峰值功率会将薄膜形态从柱状变为致密,如图4d 所示,并将硬度提高到 17 GPa(约 1 735 HV),增加晶格参数并减小晶粒尺寸,但薄膜的弹性模量始终与块状材料相同。

  • GRECZYNSKI 等[49]前期研究证明,在 Cr HiPIMS 放电中峰值电流增加时,产生的 Cr2+的数量变化最显著,其最高峰电流下增加了近 20 倍,甚至超过 Cr+ 离子的通量占比。在较高峰值功率下 Cr2+ 离子的相对数量增加可能是沉积更致密和更硬的薄膜的原因,用 Cr 离子轰击生长的薄膜可以几乎完全消除薄膜中的孔隙率,即克服阴影效应。在镀膜过程中,随着峰值功率的升高,离子的密度和高能离子的占比均显著提升[45],这使得吸附原子扩散迁移率能够进一步提升。

  • 图4 HiPIMS 不同峰值功率沉积的 Cr 薄膜的扫描电镜照片[48]

  • Fig.4 SEM micrographs of the Cr coatings deposited by HiPIMS with increasing values of PP

  • FERREIRA 等[50]也对不同气压下峰值功率的影响做了讨论,深度振荡磁控溅射(Deep oscillation magnetron sputtering,DOMS)在低 / 高峰值功率下沉积的 Cr 薄膜的 SEM 表面和横截面显微照片如图5 所示,低峰值功率和高气压下沉积的 Cr 薄膜具有柱状微观结构,高峰值功率下薄膜的横截面中仍然观测到一些柱状生长的残留物,但未出现从基板延伸到薄膜表面的柱状结构。相反,薄膜的横截面比以前的薄膜更加致密和不规则,类似于 FERREC 等[51]在 HiPIMS 沉积的 Cr 薄膜中发现的,薄膜的表面是各向同性的,没有清晰的边界。不同峰值功率下的磨层表面粗糙度如图6 所示,增加峰值功率会降低所有沉积气压下 HiPIMS-Cr 膜层的表面粗糙度。

  • (3)沉积气压方面。FERREIRA 等[50]针对不同沉积气压对 Cr 膜层薄膜微观结构和形貌的影响也进行了进一步的试验和分析讨论,不同气压下的DCMS 膜层与图4a 相仿,均呈现较为显著的柱状形态,降低沉积气压和增加偏压均可使得柱状组织呈现较为明显的细化,同时,降低气压用 Ar 离子轰击会导致柱状晶尺寸减小,膜层的致密性提高,但表面的整体各向异性基本保持不变。

  • 图5 DOMS 在低 / 高峰值功率下沉积的 Cr 薄膜的 SEM 表面和横截面显微照片(标尺适用于所有图片)[50]

  • Fig.5 SEM surface and cross-section micrographs of the Cr coatings deposited by DOMS at low and high Pp (Scales in panel h are valid for all the figures)

  • 图6 通过 AFM 扫描计算得出 DCMS(带偏置和不带偏置) 和 DOMS 在低峰值功率和高峰值功率下沉积的薄膜表面粗糙度[50]

  • Fig.6 Surface roughness calculated from the AFM scans of the coatings deposited by DCMS with and without bias and DOMS at low and high Peak power

  • DOMS 模式下 HiPIMS-Cr 的 SEM 图如图5 所示,在低峰值功率和高气压下沉积的 Cr 薄膜具有柱状微观结构,与 DCMS 薄膜相似。DOMS 在低峰值功率下、低气压沉积的 Cr 薄膜仍具有柱状微观结构,但其表面形态由更精细的等轴晶组成。不同工艺下的表面粗糙度如图6 所示,与 DCMS 沉积的薄膜相比,DOMS 沉积的薄膜的表面粗糙度要低得多,受沉积气压的影响也小得多。这在高沉积气压下更为明显,在不同功率下有效地抵消了阴影效应。 KUO 等[52]提出气压为 1.2 Pa 的 Cr 膜层表现出单独的四边形柱状形貌,与直流或射频磁控溅射沉积的 Cr 膜层相仿[53],同时,1.2 Pa 下的 HiPIMS-Cr 膜层沉积速率比 0.8 Pa 的 HiPIMS-Cr 膜层沉积速率低 1%~17 %。

  • (4)脉冲宽度和偏压方面。KUO 等[52]探讨了脉冲宽度(60 μs、200 μs、360 μs)对膜层结构与性能的影响,基底偏压为−30 V 时,不同脉冲宽度膜层表面与横截面二次电子像如图7 所示,60 μs、0.8 Pa 薄膜的形貌呈现为具有三角星状顶部的柱状晶。随着脉冲宽度的延长,柱顶部沿三个脊线变宽,柱状晶顶部呈现出相互缠结的三角星状,该结构与 FERREIRA 等[48]关于 DOMS 模式下 Cr 膜层的结构研究相吻合,他提出随着脉冲宽度的延长,Cr(110)的择优取向降低,且随着脉冲宽度的增加,由于气压不同造成的沉积速率的差异减小。他认为该现象源自溅射沉积过程中 Cr 离子的较高散射损耗与高沉积气压下靶材的较高溅射速率之间的综合作用。同时,通过试验发现,在其他参数不变的前提下,增加脉冲偏压或增大脉宽均可有效提升膜层致密性,并使得膜层表面更为平滑,在 0.8 Pa 气压中不同脉宽于偏压下沉积的 Cr 薄膜的横截面和表面二次电子像如图8 所示,更强的同步偏压和更长的脉冲宽度可以增强朝向试片的离子通量,从而将 Cr薄膜的择优取向从 Cr(110)更改为 Cr(200)和 Cr(211),减少柱间空隙,并实现更高的薄膜硬度(偏压−200 V 的情况下,60 μs、200 μs 的 Cr 膜层硬度分别可达到 684 HV 和 1 249 HV)。

  • 图7 在硅片上的基底偏压为 DC−30 V,沉积气压为 0.8 Pa 的 Cr 薄膜的表面(左侧)和横截面(右侧)二次电子像[52]

  • Fig.7 Top (left side) and cross-sectional (right side) SE micrographs of Cr coatings deposited at the substrate bias of DC −30 V, the deposition pressure of 0.8 Pa on a silicon wafer

  • 图8 在 0.8 Pa 气压下沉积的 Cr 薄膜的横截面和表面 (右上角)二次电子像[52]

  • Fig.8 Cross-sectional and top (right upper corner) SE micrographs of Cr coatings deposited at pressure of 0.8 Pa

  • (5)靶电流密度方面。LIN 等[54]通过 TEM 观测了 DCMS 和 HiPIMS 工艺下的 Cr 膜层,横截面明 / 暗场 TEM 照片以及 SAED 图案如图9 所示, HiPIMS-Cr 膜层随电流密度增大逐渐细化, 0.4 A / cm2 HiPIMS-Cr 膜层的晶粒尺寸如图9c 所示为 30~50 nm,1.2 A / cm2 下的膜层表现出极其致密的结构,包含大量晶粒尺寸小于 15 nm 的晶粒,没有柱状晶粒出现。该结果与其 XRD 结果一致。在性能方面,HiPIMS-Cr 膜层在 1.2 A / cm2 下的膜层纳米压痕硬度较 0.6 A / cm2 下 Cr 膜层硬度(8 GPa,约 816 HV)高出 8 GPa,残余应力则仅有 2 GPa 左右的增幅,HiPIMS-Cr 膜层在 1.2 A / cm2 下的残余应力约为−3.3 GPa。图10 显示了 Cr 膜层和 AISI 304不锈钢(304SS)样品在 3.5 wt.% NaCl 水溶液中获得的电位动力学极化曲线。HiPIMS Cr 膜层显示出更正的腐蚀电位和更低的电流密度,同时 DCMS Cr 膜层在腐蚀试验后表现出一定程度的损伤和变色,而 HiPIMS-Cr 膜层在腐蚀试验后表现出良好的膜层表面。这种改进主要归因于 HiPIMS 等离子体更强的离子轰击,膜层的结构从大柱状结构演变为致密的等轴晶粒结构,有效地限制了腐蚀性介质到基材的扩散路径。

  • 图9 沉积的 Cr 膜层的横截面明场和暗场 TEM 显微照片以及 SAED 图案[54]

  • Fig.9 Cross-sectional bright field and dark field TEM micrographs, and SAED patterns of the Cr coatings

  • (6)靶材类型方面。目前关于 Cr 膜层沉积的探索多采用平面靶材,MONTEYNARD 等[55]针对空心阴极靶材与 HiPIMS 的结合进行了探索,OES 表征表明 HiPIMS 驱动 Cr 靶时离子密度较高,膜层始终为(110)择优取向,并且当偏压增加时,择优取向更为明显。同时,在 HiPIMS 模式下沉积的膜层显微硬度达 1 200 HV0.025,是 DCMS 沉积膜层硬度的三倍。但是在抗氧化性方面(1 100℃,5 min) HiPIMS 膜层与 DCMS 膜层基本相近,并未由于更加致密表现出更好的耐氧化性。

  • 图10 Cr 膜层和 AISI 304L 在 3.5 wt. % NaCl 水溶液中获得的极化曲线[54]

  • Fig.10 Potentiodynamic polarization curves obtained for Cr coatings and AISI 304L in a3.5 wt.% NaCl aqueous solution

  • 综上,通过控制工艺过程的不同参数,可以实现 HiPIMS-Cr 膜层在组织和性能上的精确调控。但是,上述科研人员在探索不同影响因素对 HiPIMS-Cr 膜层组织与性能影响的同时,也纷纷提出,相较于其他制备工艺,HiPIMS 虽然具有诸多优点,但沉积速率相对较低。

  • 3 关于 HiPIMS-Cr 沉积速率的探索

  • 由于 HiPIMS 具有较低相对沉积速率[26],一些科研人员提出一个重要观点,降低电离度和接近DCMS 状态放电(如低峰值电流或峰值功率),可以有效平衡沉积速率损失和膜层的组织结构与性能。如 SAMUELSSON 等[56]对 DCMS 中掺杂 HiPIMS 进行探索,当 HiPIMS 功率分数增加时,沉积速率效率线性下降,对于纯 HiPIMS,可以获得 60%的纯 DCMS 功率归一化速率。其对比了使用 0%、45%和 100%的 HiPIMS 功率分数生长的薄膜的微观结构,薄膜的微观结构显得更致密,柱间距减小,表面变得更光滑,这一趋势与以前 ALAMI 等[57]关于膜层形貌的报道一致。其原因应为离子量增加和能量增加造成的吸附原子迁移率增加。随后,其通过表面粗糙度、电化学等表征对比,当 HiPIMS 平均功率小于 40%的总平均功率时,已经出现很大的改善,并获得大约 80%的功率归一化沉积速率,进一步提高 HiPIMS 功率分数虽然可以在一定程度上提升性能,但沉积速率效率会出现显著降低。

  • BLEYKHER 等[58-59]则提出另外的思路,磁控溅射系统中靶材的温度和物理状态会显著影响各种材料的膜层和薄膜的沉积速率[60],由于靶材料蒸发或升华[61],沉积速率可以增加一个数量级甚至更高。有研究表明[62],在采用直流或中频供电的磁控溅射沉积中,在溅射时沉积的薄膜的结构性能与强加热靶存在明显差异,薄膜的某些功能特性得到改善,但其他功能特性变得更糟。例如,Cr 薄膜在热靶溅射的情况下具有更强的膜基结合力,但与冷靶溅射的薄膜相比,它们的机械硬度较低[63]。由于强烈的升华作用,热靶直流预电离 HiPIMS 过程中 Cr 膜层的沉积速率可提高 10~30 倍[58]。随着升华强度的增加,自溅射在降低沉积速率方面的作用显著降低,同时,防止了辉光放电向电弧的不受控制的过渡。

  • GRUDININ[59]用不同功率的溅射冷靶和热靶获得的 Cr 薄膜的 SEM 横截面如图11 所示,经过计算,功率为 1 kW 时,冷 / 热靶沉积速率相差较小,分别为 1.15 nm / s 和 1.51 nm / s,随着平均功率的提升,冷 / 热靶沉积速率均有所提升,但冷靶沉积速率提升相对缓慢,在 2 kW 时也仅仅达到了 3.46 nm / s(与热靶 1.5 kW 相当),而热靶 2 kW 沉积速率已经达到了 10.88 nm / s,随后,冷靶 2.5 kW 时沉积速率继续缓慢提升至 4.21 nm / s,而同平均功率的热靶沉积速率呈现突增,达到 53.89 nm / s。通过溅射冷靶或较低功率热靶(<1.5 kW)获得的薄膜均具有柱状结构,厚度均匀。但热靶较大功率(>1.5 kW)下制备的膜层在基板附近观察到部分孔隙,并且随着薄膜的生长,孔隙消失,其原因可能是在沉积初期,基片的温度较低,表面扩散不活跃与大功率较多升华原子共同作用,随后其对基片进行了 523 K 预热,膜层中未出现空洞,连续而致密。GRUDININ 使用热靶溅射制备了厚度约为 10 μm 的 Cr 薄膜,与冷却靶沉积的薄膜相比,不同功率下表面粗糙度均可降低 10 %以上,在低功率密度(1.1 kW 左右)下热靶 Cr 膜层硬度(1 kW 时,冷靶约 685 HV,热靶约 765 HV)和弹性模量也有一定提升(1 kW 时,冷靶约 297 GPa,热靶约 310 GPa)。但在较大功率密度时,热靶制备的 Cr 力学性能相对略低。同时, BLEYKHER 等[58]发现,若热靶功率过大,也可能出现靶材裂纹,热靶工艺下如何保持靶材的安全稳定放电仍是一个亟待解决的问题。

  • 图11 不同功率的溅射冷靶和热靶获得的 Cr 薄膜 SEM 横截面图像[59]

  • Fig.11 SEM cross-section images of Cr coatings obtained by sputtering cooled and hot targets with different power

  • 同时,射频、中频、微波、ABS 和连续高功率磁控溅射[64]等工艺与 HiPIMS 的结合,尤其是 WU 等 [65] 提出的等离子体浸没离子注入 / 沉积与 HiPIMS 的结合都有进一步提升 HiPIMS-Cr 膜层沉积速率的潜力。对于 HiPIMS 工艺本身,WU 等[66] 提出的双脉冲 HiPIMS 工艺在 Cr 膜层制备中的潜力也值得关注。

  • 4 HiPIMS-Cr与其他传统工艺Cr膜层的对比

  • 在表面形貌和结构方面,传统的 HCP 具有极其精细的结构,内含氢 / 氧化物夹杂物以及高水平的内应力,这些结合在一起提供高硬度(高达 910~1 200 HV)的同时也使得整个膜层布满如图12b 所示的裂纹网络[67]

  • 裂纹会为腐蚀剂渗透到基材和 Cr 膜层的界面提供合适的路径,进而降低其耐蚀性。同时,HCP 的裂纹密度和残余应力,均随膜厚的增加而增加。为了克服这个问题,有报道提出,可以通过直流和直流脉冲电镀两种方式生产无裂纹的 Cr 膜层[68],无裂纹 Cr 膜层在液态盐浴中的耐腐蚀性比普通硬 Cr 膜层的耐腐蚀性高 10 倍,但是,无裂纹电镀铬的力学性能出现了极大幅度的下降,以硬度为例,仅有 350~510 HV[67],在磨损量方面,图12a 所示的 510 HV 无裂纹铬膜的磨损量分别为图12b 所示 910 HVHCP 膜的 12.8 倍和图12c 所示 650~900 HV 复合膜的 2 倍。

  • 图12 无裂纹、硬质和双相 Cr 电沉积物的 SEM 图像[67]

  • Fig.12 SEM micrographs of crack-free, hard, and duplex chromium electrodeposits

  • 图13 所示为通过电弧离子镀(Arc ion plating,AIP)技术制备的 Cr 膜层[69],XRD 结果表明,整体具有(110)优先取向,但 AIP-Cr 膜层极度粗糙。一方面 AIP-Cr 膜层表面的晶粒尺寸不均匀[70],另一方面表面具有很明显的液滴形成的大颗粒。虽然具有较好的耐高温氧化性能[71],但 AIP-Cr 膜层硬度仅有 3.18 GPa[69](约 324.5 HV)。

  • 图13 AIP-Cr 薄膜的典型 SEM 图像[69]

  • Fig.13 Typical SEM images of AIP-Cr coating

  • 图14 所示为 DCMS 制备的 Cr 膜层的表面和横截面图,与 HCP 横截面布满垂直于基板表面的微小不连续裂纹[72]不同,图14a 与 LI 等[73]提出的 Cr 薄膜结构区域模型相吻合,膜层结构上具有典型柱状形态,可以很明显的看到柱状晶的边界,与 AIP-Cr 均具有(110)优先取向,硬度在 7.2~8.5 GPa(735~867 HV),最大弹性模量为 255 GPa,始终低于块状材料的值(279 GPa)[74]。图14b 中,使用−110 V 偏压诱导Ar离子轰击膜层后Cr颗粒尺寸明显减小,但薄膜中始终存在一些孔隙。

  • FERREIRA 等[48]对 HiPIMS 和 DCMS 工艺下的 Cr 膜层结构与性能进行了比较,HiPIMS 沉积的 Cr 薄膜如图4所示,虽然图4a与图14所示的DCMS-Cr 薄膜具有相似的柱状结构,但就性能而言,硬度(9.8 GPa)和弹性模量(280 GPa)都高于 DCMS-Cr 薄膜,且弹性模量与块状材料相同,考虑是由于密度或致密度的提升。LIN 等[54]通过 TEM 观测了 DCMS 和 HiPIMS 工艺下的 Cr 膜层,DCMS 下 Cr 膜层表现出大而长的柱状晶粒结构,柱状晶粒的宽度在200~300 nm,边界清晰,柱状晶粒也出现位错和堆积断层。HiPIMS 在 1.2 A / cm2 下的膜层表现出极其致密和无柱状晶粒的结构,其中包含大量晶粒尺寸小于 15 nm 的细晶粒,存在精细的多晶结构。

  • 图14 DCMS 沉积的 Cr 薄膜的 SEM 图像[48]

  • Fig.14 SEM micrographs for the Cr coatings deposited by DCMS

  • 由于膜密度是许多类型膜层的重要参数,例如热障、耐蚀和耐磨性,因此研究这种特性颇为重要。 DEKOVEN 等[75]提出,在一定条件下,采用 HiPIMS 工艺可使得膜层致密度增加 30%,但 KONSTANTINIDIS 等[76]提出,相对中频和 DC 等工艺,仅有约为 10%左右的致密度提升。致密度提升的数量不仅取决于工艺条件和系统配置,而且在很大程度上取决于靶材,因此对于特定靶材,需要单独探讨其膜层致密化趋势。MATTIAS 等[77]采用硅片作为基体,不同靶材的薄膜密度如图15 所示,Cr 靶材采用 HiPIMS 工艺可提升 10 %以上的致密度。

  • 图15 不同靶材的薄膜密度[77]

  • Fig.15 Thin coatings density plot for different target materials

  • 如表1 所示,HiPIMS-Cr 膜层一定意义上集中了 HCP、DCMS-Cr、AIP-Cr 等工艺的诸多优点的同时规避了诸多传统工艺的缺陷,具有较为优异的综合性能。HiPIMS-Cr 膜层的诸多特点使得其成为替代 HCP 的有力候选者之一。

  • 表1 HiPIMS-Cr 与其他工艺 Cr 膜层对比

  • Table1 Comparison of Cr coatings prepared by HiPIMS and other processes

  • 5 结论

  • 国际前沿的高功率脉冲磁控溅射技术(HiPIMS) 作为新型的磁控溅射技术,在 Cr 膜层溅射沉积过程中,通过电源参数和沉积条件的调控,可以实现对 Cr 膜层成分、结构和性能的精细化控制。HiPIMS-Cr 基膜层在致密度、膜层结构和力学性能方面相对电镀和传统 PVD 工艺均有提升。

  • HiPIMS 溅射 Cr 靶放电过程中的离化特性已经较为清楚,问题在于如何精确表征不同放电区间内的离化特征与理论模型相互验证,其次,虽然目前存在一些提高离化率和沉积速率的方法,但如何提高 Cr 离子的传输效率仍然待研究。

  • 目前基于 HiPIMS 的 Cr 基膜层制备虽然在部分产业已经投入应用,有关 HiPIMS 制备致密、低表面粗糙度的 Cr 膜层研究也有不少学者进行了探索,但大多停留在参数调节-结构分析-性能表征上,对于快速大厚度 Cr 膜层制备技术、强韧兼具膜层产业化技术和高结合力的 Cr 膜层制备技术等领域,目前还在探索之中。因此,深入探索基于 HiPIMS 的 Cr 基膜层制备技术,制备高性能的 Cr 基膜层满足国防军工、汽车领域、新能源电池、风能、核电的迫切需求,具有颇为深远的意义。

  • 参考文献

    • [1] SAGHI B M R,KHAMENEH A,NOROUZI S.A comparative research on corrosion behavior of a standard,crack-free and duplex hard chromium coatings[J].Surface and Coatings Technology,2010,205(7):2605-2610.

    • [2] LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.

    • [3] MENG Y,ZENG S,TENG Z,et al.Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J].Thin Solid Films,2021,730:138699.

    • [4] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [5] BIKULČIUS G,ČEŠUNIENĖ A,SELSKIENĖ A,et al.Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths[J].Surface and Coatings Technology,2017,315:130-138.

    • [6] KUREK A P,SELLIN N,GELSLEICHTER M.Redução e substituição do ácido crômico na etapa de condicionamento de ABS para metalização[J].Polímeros,2009,19(3):248-254.KUREK A P,SELLIN N,GELSLEICHTER M.Reduction and substitution of chromic acid in the ABS conditioning step for metallization [J].Polímeros,2009,19(3):248-254.(in Portuguese)

    • [7] MAGALLON C L,PEREZ B J J,MEAS V Y,et al.Novel green process to modify ABS surface before its metallization:optophysic treatment[J].Journal of Coatings Technology and Research,2015,12(2):313-323.

    • [8] 高文,张津,黄进峰,等.身管内膛镀铬层-钢基体界面损伤退化行为研究进展[J].材料导报,2017,31(13):90-98.GAO Wen,ZHANG Jin,HUANG Jinfeng,et al.Research Progress of degradation failure of interface of chromium coating and steel substrate in gun bores[J].Materials Reports,2017,31(13):91-98.(in Chinese)

    • [9] NAVINŠEK B,PANJAN P,MILOŠEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.

    • [10] 付航涛,张津,黄进峰,等.热模钢渗氮与30SiMn2MoVA镀铬性能比较[J].中国表面工程,2015,28(6):1-6.FU Hangtao,ZHANG Jin,HUANG Jinfeng,et al.Comparison of nitrided hot work tool steel and chromium coated 30SiMn2MoVA[J].China Surface Engineering,2015,28(6):1-6.(in Chinese)

    • [11] SAVARIMUTHU A C,TABER H F,MEGAT I,et al.Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications[J].Journal of Thermal Spray Technology,2001,10(3):502-510.

    • [12] BEMPORAD E,PECCHIO C,DE ROSSI S,et al.Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating[J].Surface & Coatings Technology,2004,188:319-330.

    • [13] 徐滨士,谭俊,陈建敏.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin.Science and technology development of surface engineering[J].China Surface Engineering,2011,24(2):1-12.(in Chinese)

    • [14] HURKMANS T,LEWIS D B,BROOKS J S,et al.Chromium nitride coatings grown by unbalanced magnetron(UBM)and combined arc/unbalanced magnetron(ABSTM)deposition techniques[J].Surface and Coatings Technology,1996,86-87(1):192-199.

    • [15] OLAYA J J,RODIL S E,MUHL S,et al.Influence of the energy parameter on the microstructure of chromium nitride coatings[J].Surface and Coatings Technology,2006,200(20-21):5743-5750.

    • [16] HOVSEPIAN P E,LEWIS D B,MUUNZ W D,et al.Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique[J].Surface & Coatings Technology,1999,116:727-734.

    • [17] RODRIGUEZ R J,GARCIA J A,MEDRANO A,et al.Tribological behaviour of hard coatings deposited by arc-evaporation PVD[J].Vacuum,2002,67(3-4):559-566.

    • [18] EHIASARIAN A P,HOVSEPIAN P E,HULTMAN L,et al.Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique[J].Thin Solid Films,2004,457(2):270-277.

    • [19] WANG H W,STACK M M,LYON S B,et al.Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry[J].Surface and Coatings Technology,2000,135(1):82-90.

    • [20] PETROV I,LOSBICHLER P,BERGSTROM D,et al.Ion-assisted growth of Ti1−xAlxN/Ti1−yNbyN multilayers by combined cathodic-arc/magnetron-sputter deposition[J].Thin Solid Films,1997,302(1):179-192.

    • [21] FENKER M,BALZER M,KAPPL H.Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering-Tests and improvements[J].Thin Solid Films,2006,515(1):27-32.

    • [22] WANG H W,STACK M M,LYON S B,et al.The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J].Surface and Coatings Technology,2000,126(2):279-287.

    • [23] PURANDARE Y P,STACK M M,HOVSEPIAN P E.Velocity effects on erosion–corrosion of CrN/NbN “superlattice” PVD coatings[J].Surface and Coatings Technology,2006,201(1):361-370.

    • [24] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [25] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [26] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [27] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS up to now and a glance into the future,a review by a manufacturer introduction of the hiP-V hiPlus technology[J].Universal Journal of Physics and Application,2017,11(3):73-79.

    • [28] MASZL C,BREILMANN W,BENEDIKT J,et al.Origin of the energetic ions at the substrate generated during high power pulsed magnetron sputtering of titanium[J].Journal of Physics D:Applied Physics,2014,47(22):224002.

    • [29] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [30] ZUO X,ZHANG D,CHEN R D,et al.Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J].Plasma Sources Science & Technology,2020,29(1):015013.

    • [31] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [32] TILLMANN W,FEHR A,STANGIER D.Effects of heat treatments on the microstructure and the adhesion of Cr,Ti,Al,Zr HiPIMS films deposited on APS Al2O3 and ZrO2-8Y2O3 coatings[J].Surface and Coatings Technology,2020,393:125766.

    • [33] ZUO X,KE P L,CHEN R D,et al.Discharge state transition and cathode fall thickness evolution during chromium HiPIMS discharge[J].Physics of Plasmas,2017,24(8):083507.

    • [34] HULTMAN L,KADLEC S.Low-energy(~ 100 eV)ion irradiation during growth of TiN deposited by reactive magnetron sputtering:effects of ion flux on film microstructure[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1991,9(3):434-438.

    • [35] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [36] HECIMOVIC A,EHIASARIAN A P.Time evolution of ion energies in HIPIMS of chromium plasma discharge[J].Journal of Physics D:Applied Physics,2009,42(13):135209.

    • [37] HECIMOVIC A,BURCALOVA K,EHIASARIAN A P.Origins of ion energy distribution function(IEDF)in high power impulse magnetron sputtering(HIPIMS)plasma discharge[J].Journal of Physics D:Applied Physics,2008,41(9):095203.

    • [38] GRECZYNSKI G,HULTMAN L.Time and energy resolved ion mass spectroscopy studies of the ion flux during high power pulsed magnetron sputtering of Cr in Ar and Ar/N2 atmospheres[J].Vacuum,2010,84(9):1159-1170.

    • [39] ROSSNAGEL S M.Gas density reduction effects in magnetrons[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1988,6(1):19-24.

    • [40] LUNDIN D,BRENNING N,JÄDERNÄS D,et al.Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering[J].Plasma Sources Science and Technology,2009,18(4):045008.

    • [41] GRECZYNSKI G,ZHIRKOV I,PETROV I,et al.Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar[J].Journal of Vacuum Science & Technology A,2017,35(6):060601.

    • [42] BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:Correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202.

    • [43] ANDERS A,PANJAN M,FRANZ R,et al.Drifting potential humps in ionization zones:the “propeller blades” of high power impulse magnetron sputtering[J].Applied Physics Letters,2013,103(14):144103.

    • [44] ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201.

    • [45] BARSHILIA H C,ANANTH A,KHAN J,et al.Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates[J].Vacuum,2012,86(8):1165-1173.

    • [46] SCHÖNJAHN C,EHIASARIAN A P,LEWIS D B,et al.Optimization of in situ substrate surface treatment in a cathodic arc plasma:a study by TEM and plasma diagnostics[J].Journal of Vacuum Science and Technology,Part A:Vacuum,Surfaces and Films,2001,19(4):1415-1420.

    • [47] LATTEMANN M,EHIASARIAN A P,BOHLMARK J,et al.Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel[J].Surface and Coatings Technology,2006,200(22):6495-6499.

    • [48] FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface and Coatings Technology,2014,258:249-256.

    • [49] GRECZYNSKI G,JENSEN J,HULTMAN L.Mitigating the geometrical limitations of conventional sputtering by controlling the ion-to-neutral ratio during high power pulsed magnetron sputtering[J].Thin Solid Films,2011,519(19):6354-6361.

    • [50] FERREIRA F,SERRA R,CAVALEIRO A,et al.Additional control of bombardment by deep oscillation magnetron sputtering:Effect on the microstructure and topography of Cr thin films[J].Thin Solid Films,2016,619:250-260.

    • [51] FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.

    • [52] KUO Chinchiuan,LIN Chunhui,LIN Yutse,et al.Effects of cathode voltage pulse width in high power impulse magnetron sputtering on the deposited chromium thin films[J].Coatings,2020,10(6):542.

    • [53] AKBARNEJAD E,SOLEIMANI E A,GHORANNEVIS Z.Chromium thin film deposition on ITO substrate by RF sputtering[J].Journal of Theoretical and Applied Physics,2014,8(3):129.

    • [54] LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.

    • [55] MONTEYNARD A D,SCHUSTER F,BILLARD A,et al.Properties of chromium thin films deposited in a hollow cathode magnetron powered by pulsed DC or HiPIMS[J].Surface and Coatings Technology,2017,330:241-248.

    • [56] SAMUELSSON M,LUNDIN D,SARAKINOS K,et al.Influence of ionization degree on film properties when using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2012,30(3):031507.

    • [57] ALAMI J,SARAKINOS K,USLU F,et al.On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering[J].Journal of Physics D:Applied Physics,2008,42(1):015304.

    • [58] BLEYKHER G A,SIDELEV D V,GRUDININ V A,et al.Surface erosion of hot Cr target and deposition rates of Cr coatings in high power pulsed magnetron sputtering[J].Surface and Coatings Technology,2018,354:161-168.

    • [59] GRUDININ V A,BLEYKHER G A,SIDELEV D V,et al.Chromium films deposition by hot target high power pulsed magnetron sputtering:Deposition conditions and film properties[J].Surface and Coatings Technology,2019,375:352-362.

    • [60] MERCS D,PERRY F,BILLARD A.Hot target sputtering:a new way for high-rate deposition of stoichiometric ceramic films[J].Surface and Coatings Technology,2006,201(6):2276-2281.

    • [61] MUSIL J,SATAVA V,BAROCH P.High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target[J].Thin Solid Films,2010,519(2):775-777.

    • [62] SIDELEV D V,BLEYKHER G A,KRIVOBOKOV V P,et al.High-rate magnetron sputtering with hot target[J].Surface and Coatings Technology,2016,308:168-173.

    • [63] SIDELEV D V,BESTETTI M,BLEYKHER G A,et al.Deposition of Cr films by hot target magnetron sputtering on biased substrates[J].Surface and Coatings Technology,2018,350:560-568.

    • [64] LIU Liangliang,ZHOU Lin,TANG Wei,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface and Coatings Technology,2020,402:126315.

    • [65] WU Z Z,TIAN X B,WEI Y Q,et al.Graded nanostructured interfacial layers fabricated by high power pulsed magnetron sputtering — plasma immersion ion implantation and deposition(HPPMS–PIII&D)[J].Surface and Coatings Technology,2013,236:320-325.

    • [66] WU H P,TIAN Q W,TIAN X B,et al.Enhancement of discharge and deposition rate in dual-pulse pulsed magnetron sputtering:Effect of ignition pulse width[J].Surface and Coatings Technology,2019,374:383-392.

    • [67] SOHI M H,KASHI A A,HADAVI S M M.Comparative tribological study of hard and crack-free electrodeposited chromium coatings[J].Journal of Materials Processing Technology,2003,138(1):219-222.

    • [68] CHOI Y,BAIK N I,HONG S I.Microstructural observation and wear properties of thin chrome layers prepared by pulse plating[J].Thin Solid Films,2001,397(1):24-29.

    • [69] GONG W J,CHEN H,ZHAN C Y,et al.Formation of voids in the Cr coatings with(110)-preferred orientation prepared by arc ion plating under an Au+ irradiation of 20 dpa[J].Surface and Coatings Technology,2021,425:127750.

    • [70] HE X J,TIAN Z H,SHI B H,et al.Effect of gas pressure and bias potential on oxidation resistance of Cr coatings[J].Annals of Nuclear Energy,2019,132:243-248.

    • [71] PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.

    • [72] ALMOTAIRI A,WARKENTIN A,FARHAT Z.Mechanical damage of hard chromium coatings on 416 stainless steel[J].Engineering Failure Analysis,2016,66:130-140.

    • [73] 李洪涛,蒋百灵,杨波,等.一种新颖的磁控溅射纯Cr薄膜结构区域模型[J].人工晶体学报,2011,40(4):1071-1075.LI Hongtao,JIANG Bailing,YANG Bo,et al.A Novel structure zone model of pure cr films relating to the magnetron sputtering system[J].Journal of Synthetic Crystals,2011,40(4):1071-1075.(in Chinese)

    • [74] LINTYMER J,MARTIN N,CHAPPÉ J M,et al.Modeling of Young’s modulus,hardness and stiffness of chromium zigzag multilayers sputter deposited[J].Thin Solid Films,2006,503(1):177-189.

    • [75] DEKOVEN B M.Carbon thin film deposition using high power pulsed magnetron sputtering[C]//Society of Vacuum Coaters.Society of Vacuum Coaters 46th Annual Technical Conf.Proc.,May 3-8,2003,Albuquerque,NM,USA:Society of Vacuum Coaters,2003:158-165.

    • [76] KONSTANTINIDIS S,HEMBERG A,DAUCHOT J P,et al.Deposition of zinc oxide layers by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2007,25(3):19-21.

    • [77] SAMUELSSON M,LUNDIN D,JENSEN J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.

  • 参考文献

    • [1] SAGHI B M R,KHAMENEH A,NOROUZI S.A comparative research on corrosion behavior of a standard,crack-free and duplex hard chromium coatings[J].Surface and Coatings Technology,2010,205(7):2605-2610.

    • [2] LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.

    • [3] MENG Y,ZENG S,TENG Z,et al.Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior[J].Thin Solid Films,2021,730:138699.

    • [4] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [5] BIKULČIUS G,ČEŠUNIENĖ A,SELSKIENĖ A,et al.Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths[J].Surface and Coatings Technology,2017,315:130-138.

    • [6] KUREK A P,SELLIN N,GELSLEICHTER M.Redução e substituição do ácido crômico na etapa de condicionamento de ABS para metalização[J].Polímeros,2009,19(3):248-254.KUREK A P,SELLIN N,GELSLEICHTER M.Reduction and substitution of chromic acid in the ABS conditioning step for metallization [J].Polímeros,2009,19(3):248-254.(in Portuguese)

    • [7] MAGALLON C L,PEREZ B J J,MEAS V Y,et al.Novel green process to modify ABS surface before its metallization:optophysic treatment[J].Journal of Coatings Technology and Research,2015,12(2):313-323.

    • [8] 高文,张津,黄进峰,等.身管内膛镀铬层-钢基体界面损伤退化行为研究进展[J].材料导报,2017,31(13):90-98.GAO Wen,ZHANG Jin,HUANG Jinfeng,et al.Research Progress of degradation failure of interface of chromium coating and steel substrate in gun bores[J].Materials Reports,2017,31(13):91-98.(in Chinese)

    • [9] NAVINŠEK B,PANJAN P,MILOŠEV I.PVD coatings as an environmentally clean alternative to electroplating and electroless processes[J].Surface and Coatings Technology,1999,116-119:476-487.

    • [10] 付航涛,张津,黄进峰,等.热模钢渗氮与30SiMn2MoVA镀铬性能比较[J].中国表面工程,2015,28(6):1-6.FU Hangtao,ZHANG Jin,HUANG Jinfeng,et al.Comparison of nitrided hot work tool steel and chromium coated 30SiMn2MoVA[J].China Surface Engineering,2015,28(6):1-6.(in Chinese)

    • [11] SAVARIMUTHU A C,TABER H F,MEGAT I,et al.Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications[J].Journal of Thermal Spray Technology,2001,10(3):502-510.

    • [12] BEMPORAD E,PECCHIO C,DE ROSSI S,et al.Characterisation and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating[J].Surface & Coatings Technology,2004,188:319-330.

    • [13] 徐滨士,谭俊,陈建敏.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1-12.XU Binshi,TAN Jun,CHEN Jianmin.Science and technology development of surface engineering[J].China Surface Engineering,2011,24(2):1-12.(in Chinese)

    • [14] HURKMANS T,LEWIS D B,BROOKS J S,et al.Chromium nitride coatings grown by unbalanced magnetron(UBM)and combined arc/unbalanced magnetron(ABSTM)deposition techniques[J].Surface and Coatings Technology,1996,86-87(1):192-199.

    • [15] OLAYA J J,RODIL S E,MUHL S,et al.Influence of the energy parameter on the microstructure of chromium nitride coatings[J].Surface and Coatings Technology,2006,200(20-21):5743-5750.

    • [16] HOVSEPIAN P E,LEWIS D B,MUUNZ W D,et al.Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique[J].Surface & Coatings Technology,1999,116:727-734.

    • [17] RODRIGUEZ R J,GARCIA J A,MEDRANO A,et al.Tribological behaviour of hard coatings deposited by arc-evaporation PVD[J].Vacuum,2002,67(3-4):559-566.

    • [18] EHIASARIAN A P,HOVSEPIAN P E,HULTMAN L,et al.Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique[J].Thin Solid Films,2004,457(2):270-277.

    • [19] WANG H W,STACK M M,LYON S B,et al.Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry[J].Surface and Coatings Technology,2000,135(1):82-90.

    • [20] PETROV I,LOSBICHLER P,BERGSTROM D,et al.Ion-assisted growth of Ti1−xAlxN/Ti1−yNbyN multilayers by combined cathodic-arc/magnetron-sputter deposition[J].Thin Solid Films,1997,302(1):179-192.

    • [21] FENKER M,BALZER M,KAPPL H.Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering-Tests and improvements[J].Thin Solid Films,2006,515(1):27-32.

    • [22] WANG H W,STACK M M,LYON S B,et al.The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J].Surface and Coatings Technology,2000,126(2):279-287.

    • [23] PURANDARE Y P,STACK M M,HOVSEPIAN P E.Velocity effects on erosion–corrosion of CrN/NbN “superlattice” PVD coatings[J].Surface and Coatings Technology,2006,201(1):361-370.

    • [24] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [25] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [26] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [27] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS up to now and a glance into the future,a review by a manufacturer introduction of the hiP-V hiPlus technology[J].Universal Journal of Physics and Application,2017,11(3):73-79.

    • [28] MASZL C,BREILMANN W,BENEDIKT J,et al.Origin of the energetic ions at the substrate generated during high power pulsed magnetron sputtering of titanium[J].Journal of Physics D:Applied Physics,2014,47(22):224002.

    • [29] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [30] ZUO X,ZHANG D,CHEN R D,et al.Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode[J].Plasma Sources Science & Technology,2020,29(1):015013.

    • [31] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Mingyue,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [32] TILLMANN W,FEHR A,STANGIER D.Effects of heat treatments on the microstructure and the adhesion of Cr,Ti,Al,Zr HiPIMS films deposited on APS Al2O3 and ZrO2-8Y2O3 coatings[J].Surface and Coatings Technology,2020,393:125766.

    • [33] ZUO X,KE P L,CHEN R D,et al.Discharge state transition and cathode fall thickness evolution during chromium HiPIMS discharge[J].Physics of Plasmas,2017,24(8):083507.

    • [34] HULTMAN L,KADLEC S.Low-energy(~ 100 eV)ion irradiation during growth of TiN deposited by reactive magnetron sputtering:effects of ion flux on film microstructure[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1991,9(3):434-438.

    • [35] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [36] HECIMOVIC A,EHIASARIAN A P.Time evolution of ion energies in HIPIMS of chromium plasma discharge[J].Journal of Physics D:Applied Physics,2009,42(13):135209.

    • [37] HECIMOVIC A,BURCALOVA K,EHIASARIAN A P.Origins of ion energy distribution function(IEDF)in high power impulse magnetron sputtering(HIPIMS)plasma discharge[J].Journal of Physics D:Applied Physics,2008,41(9):095203.

    • [38] GRECZYNSKI G,HULTMAN L.Time and energy resolved ion mass spectroscopy studies of the ion flux during high power pulsed magnetron sputtering of Cr in Ar and Ar/N2 atmospheres[J].Vacuum,2010,84(9):1159-1170.

    • [39] ROSSNAGEL S M.Gas density reduction effects in magnetrons[J].Journal of Vacuum Science and Technology A:Vacuum,Surfaces and Films,1988,6(1):19-24.

    • [40] LUNDIN D,BRENNING N,JÄDERNÄS D,et al.Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering[J].Plasma Sources Science and Technology,2009,18(4):045008.

    • [41] GRECZYNSKI G,ZHIRKOV I,PETROV I,et al.Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar[J].Journal of Vacuum Science & Technology A,2017,35(6):060601.

    • [42] BREILMANN W,EITRICH A,MASZL C,et al.High power impulse sputtering of chromium:Correlation between the energy distribution of chromium ions and spoke formation[J].Journal of Physics D:Applied Physics,2015,48(29):295202.

    • [43] ANDERS A,PANJAN M,FRANZ R,et al.Drifting potential humps in ionization zones:the “propeller blades” of high power impulse magnetron sputtering[J].Applied Physics Letters,2013,103(14):144103.

    • [44] ŠLAPANSKÁ M,HECIMOVIC A,GUDMUNDSSON J T,et al.Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge[J].Journal of Physics D:Applied Physics,2020,53(15):155201.

    • [45] BARSHILIA H C,ANANTH A,KHAN J,et al.Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates[J].Vacuum,2012,86(8):1165-1173.

    • [46] SCHÖNJAHN C,EHIASARIAN A P,LEWIS D B,et al.Optimization of in situ substrate surface treatment in a cathodic arc plasma:a study by TEM and plasma diagnostics[J].Journal of Vacuum Science and Technology,Part A:Vacuum,Surfaces and Films,2001,19(4):1415-1420.

    • [47] LATTEMANN M,EHIASARIAN A P,BOHLMARK J,et al.Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel[J].Surface and Coatings Technology,2006,200(22):6495-6499.

    • [48] FERREIRA F,SERRA R,OLIVEIRA J C,et al.Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering(DOMS)mode[J].Surface and Coatings Technology,2014,258:249-256.

    • [49] GRECZYNSKI G,JENSEN J,HULTMAN L.Mitigating the geometrical limitations of conventional sputtering by controlling the ion-to-neutral ratio during high power pulsed magnetron sputtering[J].Thin Solid Films,2011,519(19):6354-6361.

    • [50] FERREIRA F,SERRA R,CAVALEIRO A,et al.Additional control of bombardment by deep oscillation magnetron sputtering:Effect on the microstructure and topography of Cr thin films[J].Thin Solid Films,2016,619:250-260.

    • [51] FERREC A,KERAUDY J,JACQ S,et al.Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J].Surface and Coatings Technology,2014,250:52-56.

    • [52] KUO Chinchiuan,LIN Chunhui,LIN Yutse,et al.Effects of cathode voltage pulse width in high power impulse magnetron sputtering on the deposited chromium thin films[J].Coatings,2020,10(6):542.

    • [53] AKBARNEJAD E,SOLEIMANI E A,GHORANNEVIS Z.Chromium thin film deposition on ITO substrate by RF sputtering[J].Journal of Theoretical and Applied Physics,2014,8(3):129.

    • [54] LIN J,DAHAN I.Nanostructured chromium coatings with enhanced mechanical properties and corrosion resistance[J].Surface and Coatings Technology,2015,265:154-159.

    • [55] MONTEYNARD A D,SCHUSTER F,BILLARD A,et al.Properties of chromium thin films deposited in a hollow cathode magnetron powered by pulsed DC or HiPIMS[J].Surface and Coatings Technology,2017,330:241-248.

    • [56] SAMUELSSON M,LUNDIN D,SARAKINOS K,et al.Influence of ionization degree on film properties when using high power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology A,2012,30(3):031507.

    • [57] ALAMI J,SARAKINOS K,USLU F,et al.On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering[J].Journal of Physics D:Applied Physics,2008,42(1):015304.

    • [58] BLEYKHER G A,SIDELEV D V,GRUDININ V A,et al.Surface erosion of hot Cr target and deposition rates of Cr coatings in high power pulsed magnetron sputtering[J].Surface and Coatings Technology,2018,354:161-168.

    • [59] GRUDININ V A,BLEYKHER G A,SIDELEV D V,et al.Chromium films deposition by hot target high power pulsed magnetron sputtering:Deposition conditions and film properties[J].Surface and Coatings Technology,2019,375:352-362.

    • [60] MERCS D,PERRY F,BILLARD A.Hot target sputtering:a new way for high-rate deposition of stoichiometric ceramic films[J].Surface and Coatings Technology,2006,201(6):2276-2281.

    • [61] MUSIL J,SATAVA V,BAROCH P.High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target[J].Thin Solid Films,2010,519(2):775-777.

    • [62] SIDELEV D V,BLEYKHER G A,KRIVOBOKOV V P,et al.High-rate magnetron sputtering with hot target[J].Surface and Coatings Technology,2016,308:168-173.

    • [63] SIDELEV D V,BESTETTI M,BLEYKHER G A,et al.Deposition of Cr films by hot target magnetron sputtering on biased substrates[J].Surface and Coatings Technology,2018,350:560-568.

    • [64] LIU Liangliang,ZHOU Lin,TANG Wei,et al.Study of TiAlN coatings deposited by continuous high power magnetron sputtering(C-HPMS)[J].Surface and Coatings Technology,2020,402:126315.

    • [65] WU Z Z,TIAN X B,WEI Y Q,et al.Graded nanostructured interfacial layers fabricated by high power pulsed magnetron sputtering — plasma immersion ion implantation and deposition(HPPMS–PIII&D)[J].Surface and Coatings Technology,2013,236:320-325.

    • [66] WU H P,TIAN Q W,TIAN X B,et al.Enhancement of discharge and deposition rate in dual-pulse pulsed magnetron sputtering:Effect of ignition pulse width[J].Surface and Coatings Technology,2019,374:383-392.

    • [67] SOHI M H,KASHI A A,HADAVI S M M.Comparative tribological study of hard and crack-free electrodeposited chromium coatings[J].Journal of Materials Processing Technology,2003,138(1):219-222.

    • [68] CHOI Y,BAIK N I,HONG S I.Microstructural observation and wear properties of thin chrome layers prepared by pulse plating[J].Thin Solid Films,2001,397(1):24-29.

    • [69] GONG W J,CHEN H,ZHAN C Y,et al.Formation of voids in the Cr coatings with(110)-preferred orientation prepared by arc ion plating under an Au+ irradiation of 20 dpa[J].Surface and Coatings Technology,2021,425:127750.

    • [70] HE X J,TIAN Z H,SHI B H,et al.Effect of gas pressure and bias potential on oxidation resistance of Cr coatings[J].Annals of Nuclear Energy,2019,132:243-248.

    • [71] PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.

    • [72] ALMOTAIRI A,WARKENTIN A,FARHAT Z.Mechanical damage of hard chromium coatings on 416 stainless steel[J].Engineering Failure Analysis,2016,66:130-140.

    • [73] 李洪涛,蒋百灵,杨波,等.一种新颖的磁控溅射纯Cr薄膜结构区域模型[J].人工晶体学报,2011,40(4):1071-1075.LI Hongtao,JIANG Bailing,YANG Bo,et al.A Novel structure zone model of pure cr films relating to the magnetron sputtering system[J].Journal of Synthetic Crystals,2011,40(4):1071-1075.(in Chinese)

    • [74] LINTYMER J,MARTIN N,CHAPPÉ J M,et al.Modeling of Young’s modulus,hardness and stiffness of chromium zigzag multilayers sputter deposited[J].Thin Solid Films,2006,503(1):177-189.

    • [75] DEKOVEN B M.Carbon thin film deposition using high power pulsed magnetron sputtering[C]//Society of Vacuum Coaters.Society of Vacuum Coaters 46th Annual Technical Conf.Proc.,May 3-8,2003,Albuquerque,NM,USA:Society of Vacuum Coaters,2003:158-165.

    • [76] KONSTANTINIDIS S,HEMBERG A,DAUCHOT J P,et al.Deposition of zinc oxide layers by high-power impulse magnetron sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2007,25(3):19-21.

    • [77] SAMUELSSON M,LUNDIN D,JENSEN J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.

  • 手机扫一扫看