en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李坤,男,1997年出生,硕士研究生。主要研究方向为光电薄膜制备及应用。E-mail:lwlikun123@163.com;

高岗,男,1993年出生,博士,助理教授。主要研究方向为透明导电薄膜、光学薄膜的制备及器件应用。E-mail:gaogang930227@163.com

通讯作者:

朱嘉琦,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为红外薄膜与晶体。E-mail:zhujq@hit.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220115002

参考文献 1
MUNZ W D,HOVSEPIAN P.Properties of niobium-based wear and corrosion resistant hard PVD coatings deposited on various steels[J].Metallurgia Italiana,2002,94(11-12):25-31.
参考文献 2
YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Recent development of magnetron sputtering processes[J].VACUUM,2009,46(2):19-25.
参考文献 3
XU Wanjing.Recent developments and applications in magnetron sputtering[J].Modern Instruments,2005(5):1-5.
参考文献 4
MISHRA A,KELLY P J,BRADLEY J W.The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate[J].Plasma Sources Science and Technology,2010,19(4):045014.
参考文献 5
GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):1360-1364.
参考文献 6
LATTEMANN M,HELMERSSON U,GREENE J E.Fully dense,non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias[J].Thin Solid Films,2010,518(21):5978-5980.
参考文献 7
HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.
参考文献 8
AIJAZ A,SARAKINOS K,LUNDIN D,et al.A strategy for increased carbon ionization in magnetron sputtering discharges[J].Diamond and Related Materials,2012,23:1-4.
参考文献 9
吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)
参考文献 10
GUI Gang,TIAN Xiubo,ZHU Zongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.
参考文献 11
EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vacuum in Forschung und Praxis,2017,29(2):40-44.
参考文献 12
ZHANG Yichen.Vacuum coating technology[M].Beijing:Metallurgical Industry Press,2009.
参考文献 13
FETISOV I K,FILIPPOV A A,KHODACHENKO G V,et al.Impulse irradiation plasma technology for film deposition[J].Vacuum,1999,53(1-2):133-136.
参考文献 14
KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.
参考文献 15
MOZGRIN D V,FETISOV I K,KHODACHENKO G V.High-current low-pressure quasi-stationary discharge in a magnetic field:experimental research[J].Plasma Physics reports,1995,21(5):400-409.
参考文献 16
GUO Shuai,YANG Lei,ZHANG Xiaopeng,et al.Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen[J].Ceramics International,2019,45(17):21590-21595.
参考文献 17
SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):1661-1684.
参考文献 18
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[C]//IEEE International Conference on Plasma Science.IEEE,2012:030801.
参考文献 19
HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/Spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.
参考文献 20
HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.
参考文献 21
ALAMI J.Enhanced ionized sputtering in HIPIMS[J].Vakuum in Forschung und Praxis,2013,25(5):19-23.
参考文献 22
BENZEGGOUTA D,HUGON M C,BRETAGNE J.Study of a HPPMS discharge in Ar/O2 mixture:II.Plasma optical emission and deposited RuOxfilm properties[J].PLASMA Sources Science and Technology,2009,18(4):045026.
参考文献 23
BENZEGGOUTA D,HUGON M C,BRETAGNE J,et al.Study of a HPPMS discharge in Ar/O2 mixture:I.Discharge characteristics with Ru cathode[J].PLASMA Sources Science and Technology,2009,18(4):045025.
参考文献 24
SARAKINOS K,ALAMI J,KLEVER C,et al.Films by high power pulsed magnetron sputtering from a compound TiO[J].Rev.Adv.Mater.Sci.,2007,15:44-48.
参考文献 25
BRITUN N,KONSTANTINIDIS S,SNYDERS R.An overview on time-resolved optical analysis of HiPIMS discharge[J].Plasma Processes and Polymers,2015,12(9):1010-1027.
参考文献 26
BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.
参考文献 27
WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.
参考文献 28
GANCIU M,KONSTANTINIDIS S,PAINT Y,et al.Preionised pulsed magnetron discharges for ionised physical vapour deposition[J].J.Optoelectron.Adv.Mater.,2005,7:2481-2484.
参考文献 29
KONSTANTINIDIS S,DAUCHOT J P,GANCIU M,et al.Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J].Journal of Applied Physics,2006,99(1):013307.
参考文献 30
BRITUN N,MINEA T,KONSTANTINIDIS S,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:A review[J].Journal of Physics D:Applied Physics,2014,47(22):224001.
参考文献 31
BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.II.Absolute density dynamics[J].Journal of Applied Physics,2015,117(16):163302.
参考文献 32
PAJDAROVA A D,VLCEK J,KUDLACEK P,et al.Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges[J].Plasma Sources Science and Technology,2009,18(2):025008.
参考文献 33
POOLCHARUANSIN P,BRADLEY J W.Short-and long-term plasma phenomena in a HiPIMS discharge[J].Plasma Sources Science and Technology,2010,19(2):025010.
参考文献 34
PALMUCCI M,BRITUN N,SILVA T,et al.Mass spectrometry diagnostics of short-pulsed HiPIMS discharges[J].Journal of Physics D:Applied Physics,2013,46(21):215201.
参考文献 35
BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.I.2D density mapping[J].Journal of Applied Physics,2015,117(16):163302.
参考文献 36
ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys and Compounds,2018,735:422-429.
参考文献 37
GUIMARAES M C R,DE CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings technology,2018,340:112-120.
参考文献 38
TIRON V,VELICU IL,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface and Coatings Technology,2018,352:690-698.
参考文献 39
OHRING M.Materials science of thin films[M].New York:Elsevier,2001.
参考文献 40
POWELL R,ULMAN A.Ionized physical vapor deposition[M].New York:Academic Press,1999.
参考文献 41
SIEMROTH P,SCHULKE T.Copper metallization in microelectronics using filtered vacuum arc deposition-principles and technological development[J].Surface and Coatings Technology,2000,133:106-113.
参考文献 42
HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.
参考文献 43
SCHILLER S,GOEDICKE K,RESCHKE J,et al.Pulsed magnetron sputter technology[J].Surface and Coatings Technology,1993,61(1-3):331-337.
参考文献 44
ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23(2):278-280.
参考文献 45
王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)
参考文献 46
GRECZYNSKI G,JENSEN J,HULTMAN L.CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering:a comparative study[J].IEEE Transactions on Plasma Science,2010,38(11):3046-3056.
参考文献 47
GRECZYNSKI G,JENSEN J,BOHLMARK J,et al.Microstructure control of CrNx films during high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(1):118-130.
参考文献 48
PAULITSCH J,SCHENKEL M,ZUFRAß T,et al.Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit[J].Thin Solid Films,2010,518(19):5558-5564.
参考文献 49
ELMKHAH H,ZHANG T F,ABDOLLAH-ZADEH A,et al.Surface characteristics for the Ti Al N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages[J].Journal of Alloys and Compounds,2016,688:820-827.
参考文献 50
NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.
参考文献 51
XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.
参考文献 52
ZHANG T F,GAN B,PARK SM,et al.Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2014,253:115-122.
参考文献 53
SOUCEK P,Daniel J,HNILICA J,et al.Superhard nanocomposite nc-TiC/a-C:h coatings:the effect of HiPIMS on coating microstructure and mechanical properties[J].Surface and Coatings Technology,2017,311:257-267.
参考文献 54
HSU TW,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface and Coatings Technology,2021,427.
参考文献 55
KOIDA T,FUJIWARA H,KONDO M.High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J].Solar Energy Materials and Solar Cells,2009,93(6-7):851-854.
参考文献 56
GUTTLER D,GROTZSCHEL R,MOLLER W.Lateral variation of target poisoning during reactive magnetron sputtering[J].Applied Physics Letters,2007,90:263562.
参考文献 57
ZHANG M Y,CHENG G J.Highly conductive and transparent alumina-doped ZnO films processed by direct pulsed laser recrystallization at room temperature[J].Applied Physics Letters,2011,99(5):051604.
参考文献 58
THORNTON J A.Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J].Journal of Vacuum SCIENCE and Technology,1974,11(4):666-670.
参考文献 59
MAHIEU S,GHEKIERE P,DEPLA D,et al.Biaxial alignment in sputter deposited thin films[J].Thin Solid Films,2006,515(4):1229-1249.
参考文献 60
MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.
参考文献 61
ANDERS A.Tutorial:Reactive high power impulse magnetron sputtering(R-HiPIMS)[J].Journal of Applied Physics,2017,121:171101.
参考文献 62
ZHANG M Y,NIAN Q,CHENG G J.Room temperature deposition of alumina-doped zinc oxide on flexible substrates by direct pulsed laser recrystallization[J].Applied Physics Letters,2012,100:151902.
参考文献 63
JULLIEN M,HORWAT D,MANZEH F,et al.Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films:an X-ray absorption study[J].Solar Energy Materials and Solar Cells,2011,95(8):2341-2346.
参考文献 64
CHOPRA K L,MAJOR S,PANDYA D K.Transparent conductors:a status review[J].Thin Solid Films,1983,102(1):1-46.
参考文献 65
HORWAT D,JULLIEN M,CAPON F,et al.On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films[J].Journal of Physics D:Applied Physics,2010,43(13):132003.
参考文献 66
HORWAT D,BILLARD A.Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering[J].Thin Solid Films,2007,515(13):5444-5448.
参考文献 67
WELZEL T,ELLMER K.The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering[J].Surface and Coatings Technology,2011,205:S294-S298.
参考文献 68
BIKOWSKI A,WELZEL T,ELLMER K.The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films[J].Applied Physics Letters,2013,102:242106.
参考文献 69
CHAMORRO W,HORWAT D,PIGEAT P,et al.Near-room temperature single-domain epitaxy of reactively sputtered ZnO films[J].Journal of Physics D:Applied Physics,2013,46:235107.
参考文献 70
GANESAN R,TREVERROW B,MURDOCH B,et al.Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium[J].Journal of Physics D:Applied Physics,2016,49:245201.
参考文献 71
GANESAN R,MURDOCH B J,TREVERROW B,et al.The role of pulse length in target poisoning during reactive HiPIMS:Application to amorphous HfO2[J].Plasma Sources Science and Technology,2015,24:035012.
参考文献 72
HORWAT D,ANDERS A.Compression and strong rarefaction in high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2010,108:123306.
参考文献 73
KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.
参考文献 74
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:Current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102:113303.
参考文献 75
GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Sources Science and Technology,2013,22:055012.
参考文献 76
RUSKE F,PFLUG A,SITTINGER V,et al.Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering[J].Thin Solid Films,2008,516(14):4472-4477.
参考文献 77
TIRON V,SIRGHI L,POPA G.Control of aluminum doping of ZnO:Al thin films obtained by high-power impulse magnetron sputtering[J].Thin Solid Films,2012,520(13):4305-4309.
参考文献 78
WALLIN E,HELMERSSON U.Hysteresis-free reactive high power impulse magnetron sputtering[J].Thin Solid Films,2008,516(18):6398-6401.
参考文献 79
AIEMPANAKIT M,KUBART T,LARSSON P,et al.Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides[J].Thin Solid Films,2011,519(22):7779-7784.
参考文献 80
YUSTE M,ESCOBAR GALINDO R,CARETTI I,et al.Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature[J].Journal of Physics D:Applied Physics,2012,45(2):025303.
目录contents

    摘要

    磁控溅射过程中的等离子体密度和离化率这些等离子体微观放电特性强烈影响着沉积薄膜的微观结构和性能,高功率脉冲磁控溅射技术(HiPIMS)凭借其较高的溅射粒子离化率的优势引起了广泛的研究和关注。为了探究 HiPIMS 的高离化率的产生原因和过程,掌握高功率脉冲磁控溅射技术对薄膜微观结构和性能的调控规律,从一般的磁控溅射技术原理出发,分析 HiPIMS 高离化率的由来及其与 DC 磁控溅射相比的技术优势,着重总结 HiPIMS 的宏观放电特点和微观等离子体特性; 总结梳理近几年 HiPIMS 在硬质膜和透明导电薄膜领域的应用研究,明晰 HiPIMS 对薄膜微观晶体结构的影响及其对薄膜的力学、光电性能等的调控规律及其优势。HiPIMS 独特的等离子体-靶相互作用,可以有效改善薄膜结晶特性,实现对光电性能的可控调控。

    Abstract

    The microstructure and properties of deposited films are strongly affected the plasma density and ionization rate during magnetron sputtering. High-power impulse magnetron sputtering (HiPIMS) are attracted extensive research and attention due to its advantages of high ionization rate of sputtering particles. In order to explore the cause and process of high ionization rate of HiPIMS and grasp the regulation rules of high power pulsed magnetron sputtering technology on the microstructure and properties of thin films, the origin of HiPIMS high ionization rate and its technical advantages compared with DC magnetron sputtering are analyzed based on the general principle of magnetron sputtering technology. The macroscopic discharge characteristics and microscopic plasma characteristics of HiPIMS are summarized emphatically. Next, the application research of HiPIMS in the field of hard and transparent conductive films in recent years is summarized, and the influence of HiPIMS on the microscopic crystal structure of thin films and its regulation rules and advantages on the mechanical and photoelectric properties of thin films are clarified. The unique plasma-target interaction of HiPIMS can effectively improve the crystallization characteristics of thin films and realize the controllable regulation of photoelectrical properties.

  • 0 前言

  • 随着工业技术的发展,物理气相沉积技术 (Physical vapor deposition,PVD)在超硬涂层、耐磨涂层以及各类光电涂层中得到广泛的应用[1]。作为 PVD 的典型代表,磁控溅射技术可以利用金属和陶瓷靶溅射沉积各类金属膜以及氧化物、氮化物薄膜,凭借其成膜致密光滑、沉积速率高的优势被广泛应用[2-3]。虽然传统的磁控溅射利用磁场改善了溅射技术的等离子体特性,但放电过程主要还是依靠气体电离,溅射出的靶材粒子主要以原子形式存在,离化率低。而目前的系列研究表明,PVD 过程中高比例的粒子离化率,可以显著提升薄膜的性能,高离化率更有利于薄膜沉积,可以有效改善薄膜化学稳定性、提高涂层硬度、致密度和膜基结合力等质量性能[4-6]

  • 因此,提高溅射过程中的离化率是一件十分有意义的事。近年来,多种技术被用来提升溅射原子的离化率,如感应耦合等离子磁控溅射、电子回旋共振磁控溅射、空心阴极磁控溅射和高功率脉冲磁控溅射(High-power impulse magnetron sputtering, HiPIMS)[7-8]。在直流磁控溅射(Direct current magnetron sputtering,DCMS)基础上,结合脉冲功率技术,改变放电特性,便成为高功率脉冲磁控溅射技术,HiPIMS 的最显著特征就是溅射粒子的高离化率[9-10],也正是凭借此优势成为涂层领域的研究热点[11]。HiPIMS 在各类涂层中均发挥出了一定的优势,可以显著提升硬质薄膜的力学性能,利用不同的溅射模式可以实现红外波段的透明导电以及改善性能分布的均匀性。

  • 本文首先介绍了高功率脉冲磁控溅射技术原理及优势,总结了 HiPIMS 的宏观放电特性和微观等离子体特性,以及时间分辨的等离子体粒子密度演化;在此基础上,以硬质膜和透明导电薄膜的 HiPIMS 沉积场景为例,回顾了 HiPIMS 对硬质薄膜微观晶体结构和宏观力学性能的调控规律,并详细分析了反应 HiPIMS 溅射中,不同溅射模式和对应的放电特性对薄膜光电性能的影响;最后总结并提出了一定的展望。

  • 1 HiPIMS 的放电特性

  • 1.1 磁控溅射技术

  • 作为一种典型的物理沉积工艺,磁控溅射技术[12](Magnetron sputtering,MS)被广泛用来沉积各类金属、氧化物等薄膜。磁控溅射技术利用电场加速电子飞向阳极基片,使之在飞行过程中撞击并使 Ar 原子电离成为 Ar+ 离子和一个电子 e,产生辉光放电现象,Ar+ 被电场加速飞向阴极靶面,通过高能轰击使靶材原子逸出靶面后在基底表面沉积为薄膜。溅射过程中同时存在 Ar+ 电离出的电子和 Ar+ 轰击靶材产生的二次电子,这些电子在维持等离子体过程中发挥着重要作用。通过施加磁场控制电子运动,进而影响等离子体特性,衍生出磁控溅射技术。利用磁体在阴极靶面上建立一个环形封闭磁场,产生一个平行于靶面的横向磁场分量,与原有的垂直于靶面的电场耦合形成一个正交电磁场,在靶面附近空间形成一个电子阱。被电子阱捕获的电子,在电场力加速作用和磁场洛伦兹力的共同控制作用下,在靶面附近等离子体空间以螺旋线和旋轮线的复合轨迹做回旋运动,运动行程大大延长,增加了电子和气体碰撞电离概率,大大提高气体原子离化率,形成高密度的等离子体。

  • 通过施加磁场,电磁场将电子束缚在磁场内,形成高密度电子聚集区,控制电子多次碰撞,将能量最大化的用于等离子体产生,与此同时最大化衰减了撞击阳极基片的电子能量和密度,有效减弱了基片损伤和过热问题;电磁场将等离子体束缚在靶面附近空间,高的等离子体密度促进了 Ar+ 对靶材的有效轰击,有利于提升溅射沉积速率;磁场促生的高等离子体密度确保低溅射气压下的正常镀膜工作,低压下的稀疏气体原子减少了对 Ar+ 离子和靶材原子的散射,进一步提高了镀膜速度。

  • 1.2 高功率脉冲磁控溅射

  • 一般来说,HiPIMS 脉宽在几微秒到数百微秒,重频一般为几十至几千赫兹,占空比为百分之几[513-15]。通过脉冲作用,将短时峰值高能量聚集作用在靶材上,产生极高的峰值电流和功率密度,产生更高能量的电离原子,极大提高了等离子体流的能量,促生比普通磁控溅射高 2~4 个数量级的极高等离子体密度(1013 cm−3),使得电子撞击电离概率增加,并因此极大提高了靶材原子离化率(30%~90%)[7],如图1 和表1 所示。反应溅射情况下,反应气体的引入(如 O2),氧原子与靶表面原子和溅射离子发生反应,产生不同的溅射模式。这些模式保持其特定的二次电子的产率,实际上反过来影响了所有的放电参数 [16]。因此,利用其高离化率和反应溅射中的不同模式,可以更有效地调控薄膜的结构和性能,在改善薄膜结晶度、致密度、结合键能、硬度、表面粗糙度、均匀性以及膜基结合力方面具有不可比拟的优势。

  • 图1 DCMS 和 HiPIMS 放电特性比较[18]

  • Fig.1 Comparison of discharge characteristics between DCMS and HiPIMS

  • 表1 HiPIMS 和 DCMS 参数比较

  • Table1 Comparison of HiPIMS and DCMS parameters

  • 在直流磁控溅射中,Penning 电离是主要的电离机制,因而溅射物质的电离最好情况也只有几个百分比,为了实现较高的电离率,必须促进电子碰撞效率,高频的电子碰撞电离可以通过作用在溅射源上的功率来增加电子密度实现[17],而功率过剩又会导致目标过热或超过磁控管磁体的居里温度。 HiPIMS 峰值功率密度可以高达 kW·cm−2,但平均功率密度依然维持在普通 DCMS 的 W·cm−2 量级,兼顾了高峰值功率和低平均功率,占空比较小又不至于使得脉冲高能作用增加靶材冷却系统要求。

  • 1.3 HiPIMS 宏观放电特性

  • HiPIMS 的放电特性和微观等离子体参数决定了薄膜的质量和性能。靶电流主要由轰击靶材表面的气体离子以及轰击产生的二次电子、靶材离子构成,分为峰值电流和平台电流两个阶段,其大小和波形宏观反映离子和电子的放电情况。HiPIMS 放电初期以 Ar 气的电离溅射为主,离化的 Ar+ 以及少量的金属离子轰击靶材,产生二次电子,持续放电一定时间,到达峰值电流,随后进入稳定平衡放电的平台电流阶段,此时放电以金属靶材的自溅射为主导,粒子源也由 Ar 变为靶材原子,如图2 所示,直至脉冲结束[19]

  • 图2 HiPIMS 的放电特性

  • Fig.2 Discharge characteristics of HiPIMS

  • “自溅射”是指溅射出的靶材原子大量离化,并在阴极作用下轰击靶材参与溅射过程[20]。靶材离化率与电子碰撞截面以及材料电离势有关[21],使用 Ar 气作为溅射气体,低电子碰撞电离截面和高电离势的材料电离率低,而高电子碰撞电离截面和低电离势的材料电离率也高。

  • 与 DCMS 相比,HiPIMS 中电子和离子密度较高,因而等离子体化学和等离子体-表面相互作用机制与 DCMS 具有较大不同。这与以下因素有关: ① 等离子体自由基、亚稳态和电离物质的存在[17]; ② 反应 HiPIMS(R-HiPIMS)过程中反应气体分子的解离和随后的进一步电离[22-23]

  • 1.4 HiPIMS 等离子体诊断

  • 等离子体特性对薄膜的结构和性能具有十分重要的调控作用,通过等离子体诊断测试可以测量金属在 HiPIMS 中的电离效率,对等离子特性的准确诊断和测量具有十分重要的意义。常见的等离子体诊断方法主要有:等离子体发射光谱法(Optical emission spectrometer,OES)[24],原子吸收光谱法 (Atomic absorption spectroscopy,AAS)[25],质谱仪法(Mass spectrometry,MS)[26],多栅式石英微天平法(G-QCM)[27]等。OES 是指物质的分子、原子、离子等粒子被等离子体等外界能量激发后返回基态时发出特征光谱的测试方法,特定元素的原子和离子的特征波长的光谱强度比值可以粗略表征等离子体的离化率。SARAKINOS 等[24]通过 OES 发现, HiPIMS 和 DCMS 的等离子体之间存在实质性差异, HiPIMS 中金属离子的发射强度要高得多,如图3a、 3b 所示,DCMS 只在谱的右端出现弱峰,HiPIMS 的光谱不仅在与 DCMS 的相同范围内呈现出较强的峰,而且在 300~500 nm 范围内也出现了一组强峰,这些强峰是由于 Ti+ 离子和中性 Ti 的出现而产生。 GANCIU[28]进行了时间平均 OES 观测,在 HiPIMS 放电情况下具有比 DCMS 更强的强 Ti+ 离子发射强度。

  • 图3 DCMS 和 HiPIMS 的光学发射光谱[2428]

  • Fig.3 Optical emission spectra of DCMS and HiPIMS

  • AAS 是指等离子体中的粒子会对参考光源发出的辐射产生特征共振吸收,吸光度与粒子浓度成正比,从而表征离化率。KONSTANTINIDIS 等[29] 利用共振光学吸收光谱法(ROAS)测试发现,在脉冲持续时间为 5 μs 时,金属气体的电离度 η 一般大于 50%,而在 20 μs 时是 80%。质谱仪法可以利用带电粒子的电场偏转特性分离检测等离子体组分。BOHLMARK 等[26]利用质谱仪法定量分析了利用 HiPIMS 溅射 Ti 靶过程中的等离子体,检测到了金属离化率分别高达 50%和 24%的 Ti1+和 Ti2+离子,其中高能粒子(Ei>20 eV)的比例超过 50%。此外,石英微天平监测表明,在 HiPIMS 放电过程中,膜沉积速率显著降低,有时仅相当于 DCMS 测量值的几个百分点,这也是其电离度很高的结果[29]

  • 将等离子发射光谱法和多栅式石英微天平法相结合,比较发现金属离化率均随着峰值功率密度的增加而显著增加,但用两种测量方法计算得出的结果存在一定的偏差,多栅式石英微天平法的结果准确度更高,这是由于外界光源和光纤传输校正等影响了等离子发射光谱法测试精度[27]。由此可以发现,等离子体的准确测量是一个难点,不同的测试方法均存在优点和弊端,导致测试结果存在差异,必须要选用合适的方法或者综合多种测试方法的结果来准确诊断等离子体。

  • 除了普通光谱外,利用时间分辨光谱可以获得某一短时间内对微观等离子体的演化机理,得到更加详尽的信息。根据时间分辨的粒子密度演化过程可以发现,在一个放电脉冲内,非反应性 HiPIMS 过程存在二次电子波的传播、稀薄和再填充三个不同的阶段[2530-31],如图4 所示。首先是脉冲初期,二次电子远离阴极运动,导致之前脉冲残留的 Ar 和 Ti 原子被激发,热电子的传播[32-33] 导致了亚稳态 Timet 和亚稳态 Armet 的形成以及 Ti 在脉冲时间内的密集电离。在脉冲结束时,由于 Ti 中性粒子的速度分布函数( Velocity distribution function,VDF)展宽[34]以及溅射中性粒子在这一区域的强电离[53135]可能导致 Ti 密度发生损耗。随着靶材上方的强烈激发和电离,随后发生气体的稀薄现象,同时发生着由电子与入射重离子的碰撞导致的电子冷却现象[32]。由于电子碰撞电离,溅射出的 Ti 的电离也发生在 20~100 μs 的时间间隔内。最后,除了上方的气体稀薄外,在 t=50~200 μs 的时间间隔内,溅射 Ti 对亚稳态 Ti 和 Ar 的淬灭也会导致 Timet 和 Armet 密度的显著降低,在 t>200 μs 时,Ar 在该区域再次填充,且由于物质的扩散,Ti 和 Ti+ 的基态密度在此时间段内逐渐减少。

  • 图4 ROAS 测量的 Ar-Ti HiPIMS 放电中主要粒子密度的时间分辨演化[25]

  • Fig.4 Time-resolved evolution of the density of major particles in Ar-Ti HiPIMS discharge measured by ROAS

  • 在反应 HiPIMS 中,观测了亚稳态 Omet 的时间分辨密度演化,与非反应过程一样,存在 Omet 密度的损耗、Omet 密度的增加、气体稀薄以及最后的再填充四个阶段[25],如图5 所示。脉冲结束前的时间内 Omet 的密度已经开始增加,这可能与 Armet 的时间分辨动力学有关,脉冲结束期间 Omet 和 Armet 同时存在的稀薄和再填充过程也进一步证实了这种相关性。二者之间的相似性以及相互接近的激发阈值说明了二次电子在 Omet 形成过程中发挥的作用,首先是 O2+e→O+O+e,随后发生 O+e →Omet+e。此外,Ar 亚稳态本身也可能在 Omet 的形成中发挥了重要作用,即 O2+e→O+O+e,随后是 O+Armet→Omet+Ar。

  • 图5 用 ROAS 测量 Ti 和 Ag 溅射靶在 Ar+20% O2 HiPIMS 放电时 O 亚稳原子绝对密度的时间分辨演化[25]

  • Fig.5 Time-resolved evolution of the absolute density of O metastable atoms in Ti and Ag sputtering targets at Ar+20% O2 HiPIMS was measured by ROAS

  • 2 HiPIMS 在硬质膜和透明导电薄膜中的应用

  • 2.1 HiPIMS 在硬质薄膜制备中的应用

  • 2.1.1 HiPIMS 制备的硬质薄膜形貌特征

  • HiPIMS 利用脉冲电压的作用,提高溅射靶材的短时峰值功率,使得沉积粒子溅射出来的离化率和能量都有所增大,同时粒子的运动轨迹也可以很好地通过电场和磁场来操纵,有效地克服 DCMS 沉积通量低的问题,可以获得均匀性及致密性较好的薄膜。

  • 图6a、6b 是 ATTARZADEH 等[36]分别利用 HiPIMS 和 DCMS 制备的 TiN 硬质膜。由图6a、6b 可以看出,HiPIMS 制备的 TiN 薄膜晶粒尺寸更加均匀,形貌更加平整光滑;而 DCMS 制备的 TiN 薄膜表面形貌较为粗糙,膜层表面存在较多的皲裂纹。图7a、7b 是 CASTILHO 等[37]制备的 CrN 薄膜,通过对比可以发现,HiPIMS 制备的薄膜具有较为致密的结构,而 DCMS 制备的 CrN 薄膜,膜层结构较为疏松,晶粒较为粗大且不均匀。

  • 图6 TiN 纳米涂层的表面形貌及截面 SEM 图[36]

  • Fig.6 Surface morphology and cross-section SEM of TiN nanocoating

  • 图7 不同偏压情况下 CrN 薄膜的截面 SEM 图[37]

  • Fig.7 SEM images of cross sections of CrN films under different bias pressures

  • 对于 HiPIMS 而言,脉冲时间和脉冲模式(单脉冲与多脉冲)对其制备的薄膜材料性能具有直接的影响。VELICU 等[38]采用 HiPIMS 的超短脉冲模式和多脉冲工作模式制备 TiN 薄膜,如图8 所示,对比结果发现,多脉冲工作模式制备的薄膜比超短脉冲制备的薄膜致密度要高约 12%。因此,通过调节 HiPIMS 的工作脉冲宽度、频率获得多脉冲工作模式对薄膜的致密性和均匀性有着至关重要的作用。

  • 图8 TiN 薄膜的 SEM 截面图像[38]

  • Fig.8 SEM cross section image of TiN films

  • HiPIMS 与 DCMS 相比,由于 DCMS 溅射出来的材料主要由中性粒子组成,溅射出来的中性粒子的运动轨迹由这些粒子在溅射靶材处的初始速度的角分布及沉积环境的气体散射所决定[39],这造成了沉积通量的高度各向异性[40]。因此在沉积通量低的区域,薄膜的生长会受到一定的影响,导致薄膜不均匀沉积、孔隙率和覆盖度差[41]

  • HiPIMS 为在复杂形状基底上成功沉积薄膜提供了另一种方法。图9 展示在一个面积为 1 cm2、深度为 2 cm 的沟槽的一侧夹紧负偏压(50 V)Si 衬底上,用 DCMS 和 HIPIMS 沉积的 Ta 薄膜的截面 SEM 图像。扫描电镜图像摄于沟槽中间位置,如图9 所示。DCMS 薄膜呈现多孔柱状结构,柱的取向偏离 Ta / Si 界面的正方向,而 HiPIMS 薄膜致密,柱垂直于 Ta / Si 界面生长(图9a)[42]。这些发现与 DCMS 是一种视线沉积方法的概念是一致的,即由于原子阴影,DCMS 会产生低密度薄膜,并表明 HiPIMS 过程可以缓解与此相关的一些问题,因此可以成功地实现更小特征的填充或均匀地包覆[43]。在切削刀片上沉积均匀的硬质氮化物涂层,进一步说明了 HiPIMS 对薄膜均匀性和致密性的有益用途。

  • 图9 在Si衬底上1 cm宽2 cm深的沟槽里分别利用HiPIMS 和 DCMS 生长的 Ta 薄膜的 SEM 截面图[44]

  • Fig.9 SEM cross sections of Ta films grown by HIPIMS and DCMS in a1 cm wide and 2 cm deep groove on Si substrate

  • 2.1.2 HiPIMS 制备的硬质薄膜结构特征

  • 薄膜材料的结构是决定其性质的关键指标,硬质薄膜的膜层结构致密性或者薄膜的结晶特性发生变化,会导致膜层的力学性能发生改变。 HiPIMS 沉积薄膜的过程中,溅射出来的粒子具有较高的粒子动能,使得粒子沉积在衬底上后,具有更大的迁移驱动力和结晶驱动力,改善了薄膜的均匀性、致密性和结晶性。HiPIMS 中的离子束流轰击可以促进沉积原子的重复形核和再结晶,抑制涂层中贯穿性的柱状晶粒的形成,促进薄膜晶粒细化,甚至改变涂层的择优取向,有效改善涂层性能[174245]

  • GRECZYNSKI 等[46]在对 CrNx 涂层的 HiPIMS 和 DCMS 沉积研究中发现,HiPIMS 涂层的硬度值为 28 GPa,DCMS 涂层的硬度值为 22 GPa,在HiPIMS 中,薄膜晶粒细化,导致晶界增加,阻碍不同取向晶粒间位错的滑移,从而提高薄膜硬度。薄膜的 XRD 图像和 SEM 图像分别如图10、11 所示,可以看出,HiPIMS 和 DCMS 沉积的纯 Cr 金属膜具有典型的竞争性生长特征的柱状结构,并表现出不同的生长取向,少量氮气的加入使得 HiPIMS 薄膜的微观结构发生改变。fN2/Ar = 0.02 时,Cr(110)衍射峰展宽,薄膜的柱状晶生长被抑制,呈现纳米晶生长模式,且具有较低的表面粗糙度。在 fN2/Ar = 0.5 的较高的氮气流量下,薄膜又以柱状晶的形式生长,并呈现出 CrNx(111)晶面的择优取向生长,衍射峰的偏移表明薄膜中存在残余压应力。纳米晶薄膜的出现可能是由于较高的衬底偏置电压干扰了柱状生长模式,随着偏压的降低,晶粒尺寸增大,即使是低氮含量的薄膜,如果在衬底偏压为 60 V 或更低,也会形成柱状[46-47]

  • 图10 HiPIMS 和 DCMS 薄膜的 XRD 图谱[46]

  • Fig.10 XRD patterns of HiPIMS and DCMS films

  • 图11 不同 fN2/Ar的 HiPIMS(a~d)和 DCMS(e~h)薄膜的微观组织演变的断面 SEM 显微图[46]

  • Fig.11 Cross-sectional SEM of microstructure evolution for both HiPIMS (a~d) and DCMS (e~h) films with different fN2/Ar microstructure evolution

  • PAULITSCH 等[48]比较发现,HiPIMS 制备的 TiN 薄膜硬度大于 DCMS,DCMS 薄膜的最大硬度为 16 GPa,而当脉冲时间为 100 μs 时,HiPIMS 薄膜的硬度达到了 20 GPa,随着脉冲时间进一步增加到 200 μs,硬度也随之增加到 25 GPa。晶粒细化、高密度的显微组织和较高的残余压应力是 HiPIMS 涂层硬度较高的主要原因。ELMKHAH 等[49]发现,将偏压从-50 V 改变到-150 V,由于晶粒细化, TiAlN 的硬度从 21 GPa 增加到 31 GPa。

  • 通过以上研究可以发现,HiPIMS 沉积方法结合偏压的辅助作用,可以调控薄膜的微观结构,这对调控薄膜的硬度等力学性能具有至关重要的作用,因此目前看来 HiPIMS 可广泛的应用于模具、切削刀刃等高强度工具的表面镀膜,可有效提高工具的使用效率和寿命。

  • 2.1.3 HiPIMS 的工艺参数对硬质薄膜使役性能的影响规律

  • 硬质薄膜的力学特性是其是否合格进行工业化应用的核心性能。不同的 HiPIMS 工艺参数可获得致密性较好、结晶特性优异的硬质薄膜。但是否致密性越好或薄膜的结晶特性越佳,硬质薄膜的力学性能就会越好,这一课题近年来得到行业内很多研究者的关注。

  • TIRON 等[38]通过调整 HIPIMS 脉冲持续时间和操作模式(单或多脉冲),对 TiN 薄膜的力学(硬度 H、弹性模量 E)进行了研究,如图12 所示。结果表明,在多层脉冲 HiPIMS(3×4 μs)模式下沉积的 TiN 膜最硬,H / E(0.063)和 H3 / E2(0.090)比值最高。在单脉冲模式下,H / EH3 / E2 比值除 16 μs 脉冲条件下的 H / EH3 / E2 比值最小外,其他差异不大。

  • 图12 不同的脉冲持续时间和工作模式下,用 HiPIMS 在硅衬底上沉积的纳米晶 TiN 薄膜的硬度估值、弹性模量、H / EH3 / E2比值[38]

  • Fig.12 Estimation of hardness, Young's modulus, H / E and H3 / E2 ratios of nanocrystalline TiN films deposited on silicon substrates by HiPIMS at different pulse durations and operating modes

  • NEDFORS 等[50]研究了 HiPIMS 脉冲频率以及沉积偏压对薄膜硬度和弹性模量的影响的规律,如图13 所示。发现脉冲频率的改变对薄膜的硬度影响较大,具体表现为适当的频率可以明显增加膜层硬度,可脉冲频率过高时,薄膜的硬度反而下降,这主要是由于在较低频率沉积的涂层测量到较高的压应力,应力阻碍位错运动,导致涂层变硬。

  • 图13 在不同的偏压方式下两组涂层的硬度及弹性模量随脉冲频率的变化规律(脉冲频率轴上的直流标签表示常规直流磁控溅射沉积的样品)[50]

  • Fig.13 Hardness and elastic modulus of the two groups of coatings vary with pulse frequency under different bias modes (The DC label on the pulse frequency axis indicates the hardness of the sample deposited by conventional DC magnetron sputtering)

  • 由近年来广大研究者的成果可以发现,在 HiPIMS 沉积薄膜的过程中,脉冲类型、频率、脉宽、峰值功率等工艺参数对薄膜的硬度存在较大的影响,但 HiPIMS 制备的薄膜硬度普遍较 DCMS 制备的薄膜要硬。此外,除 HiPIMS 本身特征参数对薄膜的硬度影响较大以外,薄膜在沉积过程中气体流速[51]、偏压[52]以及薄膜成分[53-54]等工艺参数均对薄膜的硬度存在较大的影响。

  • 2.2 HiPIMS 在制备透明导电薄膜中的应用

  • 当利用 HiPIMS 制备透明导电氧化物薄膜时,必须引入反应气体 O2,相应的溅射工程也变为反应高功率脉冲磁控溅射(R-HiPIMS),对于 R-HiPIMS 技术来说,随着氧流量的逐渐升高,薄膜生长模式会经历金属态、过渡态以及中毒态,不同溅射模式深刻影响着薄膜的结构和性能。

  • 2.2.1 不同 HiPIMS 溅射模式对薄膜透明导电性能的调控

  • GUO 等[16]在室温条件下,研究了 HiPIMS 的不同生长模式对 In2O3 薄膜光电性能的调控规律,并实现 In2O3 薄膜中红外波段的透明导电,如图14 所示。从金属态到中毒态,薄膜载流子浓度由 1.69×1021 cm−3 降低至 2.0×1011 cm-3 左右,载流子迁移率从 20 cm2 V−1 s−1 升至 770 cm2 V−1 s−1,电阻率由 1.7×10–4 Ω·cm 升高到 7.0×10–4 Ω·cm 附近。与此同时,薄膜在红外波段的透过率也由金属态的 20%增加至中毒态的 70%左右。

  • 在金属模式和过渡模式下,反应溅射处于缺氧状态,形成亚化学计量比薄膜 InOx,其内部存在大量缺陷,存在较多的氧空位和间隙铟,二者作为 In2O3 中的电子供体,提供了大量自由电子,因而具有很高的载流子浓度,但高密度缺陷增加了对载流子的散射作用,再加上晶界散射作用,使载流子迁移率处于较低水平[1655-56],高的载流子浓度可以将薄膜电阻率维持在较低水平。随着氧气流量增加,氧空位和间隙铟数量减少,对电子的散射作用减弱,载流子浓度降低的同时载流子迁移率逐渐升高。当氧流量增加到 10 mL / min 时,沉积将由过渡模式转变为中毒模式,此时形成化学计量比薄膜,缺陷密度低于非化学计量比薄膜,虽然载流子迁移率很高,但此时载流子浓度极低,使得薄膜绝缘。根据 Drude 自由电子理论,由金属态到过渡态,载流子浓度的降低极大使得薄膜的红外截止限红移,同时减弱对光的反射作用,导致薄膜光学性能的变化[16]

  • 图14 随着氧气流量变化在不同沉积状态下薄膜光电性能的变化[16]

  • Fig.14 Changes of photoelectric properties of thin films in different deposition states with the change of oxygen flow rate

  • HiPIMS 的高峰值电流和高功率导致了大量靶材原子和反应气体的电离,高电离率和高等离子体密度提高了薄膜的结晶度。在高电流密度下,到达基体的电离原子能量足以克服晶界的能量差,显著促进了晶体的生长,使得薄膜的结晶度超过 92%。在不同的氧流速下,晶粒均为致密的柱状晶。这些高结晶膜的形成也归因于晶粒细化,沉积薄膜的晶粒尺寸为 20~40 nm,但小晶粒导致了对载流子较大的晶界散射,降低了载流子迁移率[57]。根据 THORNTON[58]和 MAHIEU 等[59]的薄膜结构区模式,薄膜生长在 II 区或 T 区,在 HiPIMS 制备的 AZO 薄膜中观察到了同样的现象[60],这说明在生长过程中发生了无限的表面扩散[59]

  • 随着氧流量的增加,溅射模式由金属转变为中毒。中毒模式的二次电子发射系数超过了金属模式,且中毒模式下的二次电子电流越大,电离越大,沉积速率越快,但并未导致结晶度的恶化[61],薄膜均匀连续,结晶度高,晶粒间缺陷密度低,载流子迁移率增加[62]

  • 2.2.2 HiPIMS 对薄膜光电性能均匀性的影响

  • MICKAN 比较了 HiPIMS 和 DCMS 对 AZO 薄膜结构和性能的影响,发现两种方法制备的薄膜的光学透过率相当,但是 HiPIMS 独特的等离子体-靶材相互作用,显著提高了薄膜的电学性能,可以利用过渡态模式在大平面上低温沉积高透明导电的 AZO 薄膜[60]。HiPIMS 和 DCMS 薄膜的可见光平均透过率均大于 83%,且由亚化学计量比的原因, DCMS 薄膜透过率略高一点[63]。在红外波段, HiPIMS 薄膜透过率低于 DCMS 薄膜,且进一步随着 HiPIMS 放电电压的升高逐渐降低,红外透过率的降低与载流子浓度的增加有关,使得等离子频率由红外区向着高频的可见光方向移动,增加了自由载流子吸收[64]。电学性能的演化与光学规律相反,电压升高到 570 V 时,HiPIMS 沉积的薄膜具有最小的 0.4 mΩ·cm 数量级的电阻率,此时载流子浓度高达 11×1020 cm−3,载流子迁移率为 4~11 cm2 V−1 s−1,但此时 DCMS 薄膜具有很大的电阻率,电学性能很差。对于磁控溅射的透明导电 AZO 薄膜,基底上对应于靶材中心位置处的电阻率更低,刻蚀环位置处的电阻率较高,这种电学性能的不均匀性对 DCMS 更加明显[6365-66]。WELZEL 等[67]明确证明了 ZnO 反应溅射过程中产生了快速氧离子,并在生长时轰击薄膜,负氧离子起源于被氧化的靶表面,并加速穿过靶鞘。如果 AZO 薄膜生长过程中受到负氧离子的轰击,会导致 Al 掺杂剂失活[65],并生成间隙氧和锌空位,虽有一定补偿作用[68-69],但也导致了电学性能的不均匀。HiPIMS 较好地改善了这种不均匀性,且高的放电电压更有益于均匀性的改善[60]。由此可以推测,HiPIMS 沉积薄膜过程中,靶材氧化程度较低,极大地降低了负氧轰击作用,因而薄膜电学性能更加均匀。

  • HiPIMS 较低的靶材氧化可能由于脉冲作用对氧化层的部分清除[70-71]或者靶材表面较低的氧分压[72]。MICKAN 等[60]通过计算 HiPIMS 单个脉冲内溅射出的原子密度和 ZnO 表面原子数密度相比较,认为 HiPIMS 可以去除靶材表面氧化层或者至少降低了靶面氧化程度,从而处于过渡态溅射模式。利用反应 DCMS 制备 AZO 薄膜时,在固定放电电流下,溅射模式的转变对氧分压十分敏感,微小变动即可导致溅射模式由金属态向中毒态转变,对薄膜的光电性能具有很大影响[6366],但在 HiPIMS 中,随着氧气流量的增加,放电电流也在增加,提高了靶材表面离子密度和溅射速率,清除了脉冲间生长的氧化层,并且抑制了脉冲内新的氧化层的生长[60]。利用 HiPIMS 可以在过渡模式下,沉积亚化学计量比 AZO 薄膜,这意味着靶材没有被完全氧化,如前段所述,较少的靶材氧化就会导致较少的氧轰击。

  • 2.2.3 HiPIMS 放电特性对薄膜性能的影响

  • MICKAN 等[60]研究了 HiPIMS 中等离子体参数与氧流量的关系,放电电压恒定时,随着氧气流量的增加,放电电流逐渐增大,等离子体阻抗逐渐降低。相同条件下 HiPIMS 阻抗降低更严重,HiPIMS 阻抗降低量可达 86%,而 DC 仅为 39%。这是因为 HiPIMS 在中毒模式时的二次电子产率增加[61]以及分子氧的离解和电离作用增强,导致放电电流增加[61]。在 HiPIMS 放电脉冲开始时存在快速电子[33],这些快速电子可能会导致分子氧的离解和电离增加,提高了等离子体的电子密度和放电电流[61]。放电电压对等离子体阻抗有类似的影响,随着放电电压的增加,溅射粒子通量的增加会导致更强的压缩并通过电荷交换改善气相中的电离[60]

  • 高电流密度的短脉冲,促生了高密度的等离子体和溅射材料的大部分电离[73],溅射过程中会伴随着自溅射[74],强气体压缩和随后发生的稀薄[72]和强电离区[75],可以利用 HiPIMS 在不加热衬底的情况下提高薄膜的性能[76-77]。也有研究表明,反应性 HiPIMS 过程的滞后效应可以被减弱或完全抑制[78-79]

  • 从 DC 到 HiPIMS,以及随着放电电压的进一步增加,氧含量逐渐降低,且在晶畴的界面上发现了氧的高度局域化[60],YUSTE等[80]通过测量透明ZnO 薄膜的导带电子结构后认为,这可能是结合了分子氧的结果。晶畴内部氧浓度远低于化学计量氧化锌的氧浓度,考虑到晶界散射并不是影响薄膜电阻率的主要因素,亚化学计量晶粒对薄膜电阻率的影响较大。

  • 3 结论与展望

  • HiPIMS 与 DCMS 相比,其本质区别在于 HiPIMS 在高能脉冲的作用下可实现对靶材的多次高能轰击,实现高溅射产额和高离化率等离子体的产生,同时在电场作用下,使溅射出来的等离子体有着更高的动能,促进了溅射粒子在衬底上更好的迁移成膜,且可实现对膜层的轰击效果,完成高致密度高结晶性能膜层的生长。

  • 近年来,HiPIMS 在硬质薄膜、透明导电薄膜等功能性薄膜的制备方面受到了广泛的关注。通过对峰值功率、电流、电压、脉冲模式及脉宽等参数的调控,可以实现超硬薄膜(硬度大于 40 GPa)以及透明导电薄膜的有效制备,大大提高科研效率并缩减工业生产成本。

  • 除可见光透明导电薄膜以外,红外透明导电薄膜是一个值得研究且具有重大意义的研究课题,在航空航天及民用领域均有广泛的应用,比如红外窗口除霜除雾、红外光电探测等领域。红外透明导电薄膜指薄膜可实现在中远红外波段(2~14 μm)波段范围内的透明导电,载流子对红外光子的吸收和散射作用,使得透明导电薄膜仅能实现可见光区的透明与导电特性的兼容,红外波段仅有少部分导电性能较差的薄膜可以实现红外透明导电。利用 HiPIMS 方法实现对透明导电薄膜晶体结构调控、缺陷调控,有望实现高迁移率透明导电薄膜的制备,突破薄膜红外透明与导电矛盾的理论和实验技术瓶颈,促进红外透明导电薄膜在科学研究和应用领域的发展。

  • 参考文献

    • [1] MUNZ W D,HOVSEPIAN P.Properties of niobium-based wear and corrosion resistant hard PVD coatings deposited on various steels[J].Metallurgia Italiana,2002,94(11-12):25-31.

    • [2] YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Recent development of magnetron sputtering processes[J].VACUUM,2009,46(2):19-25.

    • [3] XU Wanjing.Recent developments and applications in magnetron sputtering[J].Modern Instruments,2005(5):1-5.

    • [4] MISHRA A,KELLY P J,BRADLEY J W.The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate[J].Plasma Sources Science and Technology,2010,19(4):045014.

    • [5] GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):1360-1364.

    • [6] LATTEMANN M,HELMERSSON U,GREENE J E.Fully dense,non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias[J].Thin Solid Films,2010,518(21):5978-5980.

    • [7] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [8] AIJAZ A,SARAKINOS K,LUNDIN D,et al.A strategy for increased carbon ionization in magnetron sputtering discharges[J].Diamond and Related Materials,2012,23:1-4.

    • [9] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [10] GUI Gang,TIAN Xiubo,ZHU Zongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.

    • [11] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vacuum in Forschung und Praxis,2017,29(2):40-44.

    • [12] ZHANG Yichen.Vacuum coating technology[M].Beijing:Metallurgical Industry Press,2009.

    • [13] FETISOV I K,FILIPPOV A A,KHODACHENKO G V,et al.Impulse irradiation plasma technology for film deposition[J].Vacuum,1999,53(1-2):133-136.

    • [14] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [15] MOZGRIN D V,FETISOV I K,KHODACHENKO G V.High-current low-pressure quasi-stationary discharge in a magnetic field:experimental research[J].Plasma Physics reports,1995,21(5):400-409.

    • [16] GUO Shuai,YANG Lei,ZHANG Xiaopeng,et al.Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen[J].Ceramics International,2019,45(17):21590-21595.

    • [17] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):1661-1684.

    • [18] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[C]//IEEE International Conference on Plasma Science.IEEE,2012:030801.

    • [19] HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/Spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.

    • [20] HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.

    • [21] ALAMI J.Enhanced ionized sputtering in HIPIMS[J].Vakuum in Forschung und Praxis,2013,25(5):19-23.

    • [22] BENZEGGOUTA D,HUGON M C,BRETAGNE J.Study of a HPPMS discharge in Ar/O2 mixture:II.Plasma optical emission and deposited RuOxfilm properties[J].PLASMA Sources Science and Technology,2009,18(4):045026.

    • [23] BENZEGGOUTA D,HUGON M C,BRETAGNE J,et al.Study of a HPPMS discharge in Ar/O2 mixture:I.Discharge characteristics with Ru cathode[J].PLASMA Sources Science and Technology,2009,18(4):045025.

    • [24] SARAKINOS K,ALAMI J,KLEVER C,et al.Films by high power pulsed magnetron sputtering from a compound TiO[J].Rev.Adv.Mater.Sci.,2007,15:44-48.

    • [25] BRITUN N,KONSTANTINIDIS S,SNYDERS R.An overview on time-resolved optical analysis of HiPIMS discharge[J].Plasma Processes and Polymers,2015,12(9):1010-1027.

    • [26] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [27] WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.

    • [28] GANCIU M,KONSTANTINIDIS S,PAINT Y,et al.Preionised pulsed magnetron discharges for ionised physical vapour deposition[J].J.Optoelectron.Adv.Mater.,2005,7:2481-2484.

    • [29] KONSTANTINIDIS S,DAUCHOT J P,GANCIU M,et al.Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J].Journal of Applied Physics,2006,99(1):013307.

    • [30] BRITUN N,MINEA T,KONSTANTINIDIS S,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:A review[J].Journal of Physics D:Applied Physics,2014,47(22):224001.

    • [31] BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.II.Absolute density dynamics[J].Journal of Applied Physics,2015,117(16):163302.

    • [32] PAJDAROVA A D,VLCEK J,KUDLACEK P,et al.Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges[J].Plasma Sources Science and Technology,2009,18(2):025008.

    • [33] POOLCHARUANSIN P,BRADLEY J W.Short-and long-term plasma phenomena in a HiPIMS discharge[J].Plasma Sources Science and Technology,2010,19(2):025010.

    • [34] PALMUCCI M,BRITUN N,SILVA T,et al.Mass spectrometry diagnostics of short-pulsed HiPIMS discharges[J].Journal of Physics D:Applied Physics,2013,46(21):215201.

    • [35] BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.I.2D density mapping[J].Journal of Applied Physics,2015,117(16):163302.

    • [36] ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys and Compounds,2018,735:422-429.

    • [37] GUIMARAES M C R,DE CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings technology,2018,340:112-120.

    • [38] TIRON V,VELICU IL,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface and Coatings Technology,2018,352:690-698.

    • [39] OHRING M.Materials science of thin films[M].New York:Elsevier,2001.

    • [40] POWELL R,ULMAN A.Ionized physical vapor deposition[M].New York:Academic Press,1999.

    • [41] SIEMROTH P,SCHULKE T.Copper metallization in microelectronics using filtered vacuum arc deposition-principles and technological development[J].Surface and Coatings Technology,2000,133:106-113.

    • [42] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [43] SCHILLER S,GOEDICKE K,RESCHKE J,et al.Pulsed magnetron sputter technology[J].Surface and Coatings Technology,1993,61(1-3):331-337.

    • [44] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23(2):278-280.

    • [45] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)

    • [46] GRECZYNSKI G,JENSEN J,HULTMAN L.CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering:a comparative study[J].IEEE Transactions on Plasma Science,2010,38(11):3046-3056.

    • [47] GRECZYNSKI G,JENSEN J,BOHLMARK J,et al.Microstructure control of CrNx films during high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(1):118-130.

    • [48] PAULITSCH J,SCHENKEL M,ZUFRAß T,et al.Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit[J].Thin Solid Films,2010,518(19):5558-5564.

    • [49] ELMKHAH H,ZHANG T F,ABDOLLAH-ZADEH A,et al.Surface characteristics for the Ti Al N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages[J].Journal of Alloys and Compounds,2016,688:820-827.

    • [50] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

    • [51] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [52] ZHANG T F,GAN B,PARK SM,et al.Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2014,253:115-122.

    • [53] SOUCEK P,Daniel J,HNILICA J,et al.Superhard nanocomposite nc-TiC/a-C:h coatings:the effect of HiPIMS on coating microstructure and mechanical properties[J].Surface and Coatings Technology,2017,311:257-267.

    • [54] HSU TW,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface and Coatings Technology,2021,427.

    • [55] KOIDA T,FUJIWARA H,KONDO M.High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J].Solar Energy Materials and Solar Cells,2009,93(6-7):851-854.

    • [56] GUTTLER D,GROTZSCHEL R,MOLLER W.Lateral variation of target poisoning during reactive magnetron sputtering[J].Applied Physics Letters,2007,90:263562.

    • [57] ZHANG M Y,CHENG G J.Highly conductive and transparent alumina-doped ZnO films processed by direct pulsed laser recrystallization at room temperature[J].Applied Physics Letters,2011,99(5):051604.

    • [58] THORNTON J A.Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J].Journal of Vacuum SCIENCE and Technology,1974,11(4):666-670.

    • [59] MAHIEU S,GHEKIERE P,DEPLA D,et al.Biaxial alignment in sputter deposited thin films[J].Thin Solid Films,2006,515(4):1229-1249.

    • [60] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [61] ANDERS A.Tutorial:Reactive high power impulse magnetron sputtering(R-HiPIMS)[J].Journal of Applied Physics,2017,121:171101.

    • [62] ZHANG M Y,NIAN Q,CHENG G J.Room temperature deposition of alumina-doped zinc oxide on flexible substrates by direct pulsed laser recrystallization[J].Applied Physics Letters,2012,100:151902.

    • [63] JULLIEN M,HORWAT D,MANZEH F,et al.Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films:an X-ray absorption study[J].Solar Energy Materials and Solar Cells,2011,95(8):2341-2346.

    • [64] CHOPRA K L,MAJOR S,PANDYA D K.Transparent conductors:a status review[J].Thin Solid Films,1983,102(1):1-46.

    • [65] HORWAT D,JULLIEN M,CAPON F,et al.On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films[J].Journal of Physics D:Applied Physics,2010,43(13):132003.

    • [66] HORWAT D,BILLARD A.Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering[J].Thin Solid Films,2007,515(13):5444-5448.

    • [67] WELZEL T,ELLMER K.The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering[J].Surface and Coatings Technology,2011,205:S294-S298.

    • [68] BIKOWSKI A,WELZEL T,ELLMER K.The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films[J].Applied Physics Letters,2013,102:242106.

    • [69] CHAMORRO W,HORWAT D,PIGEAT P,et al.Near-room temperature single-domain epitaxy of reactively sputtered ZnO films[J].Journal of Physics D:Applied Physics,2013,46:235107.

    • [70] GANESAN R,TREVERROW B,MURDOCH B,et al.Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium[J].Journal of Physics D:Applied Physics,2016,49:245201.

    • [71] GANESAN R,MURDOCH B J,TREVERROW B,et al.The role of pulse length in target poisoning during reactive HiPIMS:Application to amorphous HfO2[J].Plasma Sources Science and Technology,2015,24:035012.

    • [72] HORWAT D,ANDERS A.Compression and strong rarefaction in high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2010,108:123306.

    • [73] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [74] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:Current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102:113303.

    • [75] GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Sources Science and Technology,2013,22:055012.

    • [76] RUSKE F,PFLUG A,SITTINGER V,et al.Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering[J].Thin Solid Films,2008,516(14):4472-4477.

    • [77] TIRON V,SIRGHI L,POPA G.Control of aluminum doping of ZnO:Al thin films obtained by high-power impulse magnetron sputtering[J].Thin Solid Films,2012,520(13):4305-4309.

    • [78] WALLIN E,HELMERSSON U.Hysteresis-free reactive high power impulse magnetron sputtering[J].Thin Solid Films,2008,516(18):6398-6401.

    • [79] AIEMPANAKIT M,KUBART T,LARSSON P,et al.Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides[J].Thin Solid Films,2011,519(22):7779-7784.

    • [80] YUSTE M,ESCOBAR GALINDO R,CARETTI I,et al.Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature[J].Journal of Physics D:Applied Physics,2012,45(2):025303.

  • 参考文献

    • [1] MUNZ W D,HOVSEPIAN P.Properties of niobium-based wear and corrosion resistant hard PVD coatings deposited on various steels[J].Metallurgia Italiana,2002,94(11-12):25-31.

    • [2] YU Donghai,WANG Chengyong,CHENG Xiaoling,et al.Recent development of magnetron sputtering processes[J].VACUUM,2009,46(2):19-25.

    • [3] XU Wanjing.Recent developments and applications in magnetron sputtering[J].Modern Instruments,2005(5):1-5.

    • [4] MISHRA A,KELLY P J,BRADLEY J W.The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate[J].Plasma Sources Science and Technology,2010,19(4):045014.

    • [5] GUDMUNDSSON J T.The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool[J].Vacuum,2010,84(12):1360-1364.

    • [6] LATTEMANN M,HELMERSSON U,GREENE J E.Fully dense,non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias[J].Thin Solid Films,2010,518(21):5978-5980.

    • [7] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):A review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [8] AIJAZ A,SARAKINOS K,LUNDIN D,et al.A strategy for increased carbon ionization in magnetron sputtering discharges[J].Diamond and Related Materials,2012,23:1-4.

    • [9] 吴志立,朱小鹏,雷明凯.高功率脉冲磁控溅射沉积原理与工艺研究进展[J].中国表面工程,2012,25(5):15-20.WU Zhili,ZHU Xiaopeng,LEI Mingkai.Progress in deposition principle and process characteristics of high power pulse magnetron sputtering[J].China Surface Engineering,2012,25(5):15-20.(in Chinese)

    • [10] GUI Gang,TIAN Xiubo,ZHU Zongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.

    • [11] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vacuum in Forschung und Praxis,2017,29(2):40-44.

    • [12] ZHANG Yichen.Vacuum coating technology[M].Beijing:Metallurgical Industry Press,2009.

    • [13] FETISOV I K,FILIPPOV A A,KHODACHENKO G V,et al.Impulse irradiation plasma technology for film deposition[J].Vacuum,1999,53(1-2):133-136.

    • [14] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [15] MOZGRIN D V,FETISOV I K,KHODACHENKO G V.High-current low-pressure quasi-stationary discharge in a magnetic field:experimental research[J].Plasma Physics reports,1995,21(5):400-409.

    • [16] GUO Shuai,YANG Lei,ZHANG Xiaopeng,et al.Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen[J].Ceramics International,2019,45(17):21590-21595.

    • [17] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:A review on scientific and engineering state of the art[J].Surface and Coatings Technology,2010,204(11):1661-1684.

    • [18] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[C]//IEEE International Conference on Plasma Science.IEEE,2012:030801.

    • [19] HAN Mingyue,LI Liuhe,LI Hua,et al.Temporal/Spatial characteristics of plasma discharge by high power impulse magnetron sputtering(HiPIMS)[J].Surface Technology,2019,48(9):20-52.

    • [20] HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.

    • [21] ALAMI J.Enhanced ionized sputtering in HIPIMS[J].Vakuum in Forschung und Praxis,2013,25(5):19-23.

    • [22] BENZEGGOUTA D,HUGON M C,BRETAGNE J.Study of a HPPMS discharge in Ar/O2 mixture:II.Plasma optical emission and deposited RuOxfilm properties[J].PLASMA Sources Science and Technology,2009,18(4):045026.

    • [23] BENZEGGOUTA D,HUGON M C,BRETAGNE J,et al.Study of a HPPMS discharge in Ar/O2 mixture:I.Discharge characteristics with Ru cathode[J].PLASMA Sources Science and Technology,2009,18(4):045025.

    • [24] SARAKINOS K,ALAMI J,KLEVER C,et al.Films by high power pulsed magnetron sputtering from a compound TiO[J].Rev.Adv.Mater.Sci.,2007,15:44-48.

    • [25] BRITUN N,KONSTANTINIDIS S,SNYDERS R.An overview on time-resolved optical analysis of HiPIMS discharge[J].Plasma Processes and Polymers,2015,12(9):1010-1027.

    • [26] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [27] WU Baohua,LENG Yongxiang,HUANG Nan,et al.The plasma characteristics in high power pulsed impulsed magnetron sputtering(HiPIMS)and its effect on films properties[J].Surface Technology,2018,47(5):245-255.

    • [28] GANCIU M,KONSTANTINIDIS S,PAINT Y,et al.Preionised pulsed magnetron discharges for ionised physical vapour deposition[J].J.Optoelectron.Adv.Mater.,2005,7:2481-2484.

    • [29] KONSTANTINIDIS S,DAUCHOT J P,GANCIU M,et al.Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges[J].Journal of Applied Physics,2006,99(1):013307.

    • [30] BRITUN N,MINEA T,KONSTANTINIDIS S,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:A review[J].Journal of Physics D:Applied Physics,2014,47(22):224001.

    • [31] BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.II.Absolute density dynamics[J].Journal of Applied Physics,2015,117(16):163302.

    • [32] PAJDAROVA A D,VLCEK J,KUDLACEK P,et al.Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges[J].Plasma Sources Science and Technology,2009,18(2):025008.

    • [33] POOLCHARUANSIN P,BRADLEY J W.Short-and long-term plasma phenomena in a HiPIMS discharge[J].Plasma Sources Science and Technology,2010,19(2):025010.

    • [34] PALMUCCI M,BRITUN N,SILVA T,et al.Mass spectrometry diagnostics of short-pulsed HiPIMS discharges[J].Journal of Physics D:Applied Physics,2013,46(21):215201.

    • [35] BRITUN N,PALMUCCI M,KONSTANTINIDIS S,et al.Particle visualization in high-power impulse magnetron sputtering.I.2D density mapping[J].Journal of Applied Physics,2015,117(16):163302.

    • [36] ELMKHAH H,ATTARZADEH F,FATTAHALHOSSEINI A,et al.Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques[J].Journal of Alloys and Compounds,2018,735:422-429.

    • [37] GUIMARAES M C R,DE CASTILHO B C N M,NOSSA T D S,et al.On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings technology,2018,340:112-120.

    • [38] TIRON V,VELICU IL,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface and Coatings Technology,2018,352:690-698.

    • [39] OHRING M.Materials science of thin films[M].New York:Elsevier,2001.

    • [40] POWELL R,ULMAN A.Ionized physical vapor deposition[M].New York:Academic Press,1999.

    • [41] SIEMROTH P,SCHULKE T.Copper metallization in microelectronics using filtered vacuum arc deposition-principles and technological development[J].Surface and Coatings Technology,2000,133:106-113.

    • [42] HELMERSSON U,LATTEMANN M,BOHLMARK J,et al.Ionized physical vapor deposition(IPVD):a review of technology and applications[J].Thin Solid Films,2006,513(1-2):1-24.

    • [43] SCHILLER S,GOEDICKE K,RESCHKE J,et al.Pulsed magnetron sputter technology[J].Surface and Coatings Technology,1993,61(1-3):331-337.

    • [44] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23(2):278-280.

    • [45] 王启民,张小波,张世宏,等.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13,133.WANG Qimin,ZHANG Xiaobo,ZHANG Shihong,et al.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13,133.(in Chinese)

    • [46] GRECZYNSKI G,JENSEN J,HULTMAN L.CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering:a comparative study[J].IEEE Transactions on Plasma Science,2010,38(11):3046-3056.

    • [47] GRECZYNSKI G,JENSEN J,BOHLMARK J,et al.Microstructure control of CrNx films during high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(1):118-130.

    • [48] PAULITSCH J,SCHENKEL M,ZUFRAß T,et al.Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit[J].Thin Solid Films,2010,518(19):5558-5564.

    • [49] ELMKHAH H,ZHANG T F,ABDOLLAH-ZADEH A,et al.Surface characteristics for the Ti Al N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages[J].Journal of Alloys and Compounds,2016,688:820-827.

    • [50] NEDFORS N,MOCKUTE A,PALISAITIS J,et al.Influence of pulse frequency and bias on microstructure and mechanical properties of TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2016,304:203-210.

    • [51] XU Y,LI G,XIA Y.Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS[J].Applied Surface Science,2020,523:146529.

    • [52] ZHANG T F,GAN B,PARK SM,et al.Influence of negative bias voltage and deposition temperature on microstructure and properties of superhard TiB2 coatings deposited by high power impulse magnetron sputtering[J].Surface and Coatings Technology,2014,253:115-122.

    • [53] SOUCEK P,Daniel J,HNILICA J,et al.Superhard nanocomposite nc-TiC/a-C:h coatings:the effect of HiPIMS on coating microstructure and mechanical properties[J].Surface and Coatings Technology,2017,311:257-267.

    • [54] HSU TW,GRECZYNSKI G,BOYD R,et al.Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering[J].Surface and Coatings Technology,2021,427.

    • [55] KOIDA T,FUJIWARA H,KONDO M.High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J].Solar Energy Materials and Solar Cells,2009,93(6-7):851-854.

    • [56] GUTTLER D,GROTZSCHEL R,MOLLER W.Lateral variation of target poisoning during reactive magnetron sputtering[J].Applied Physics Letters,2007,90:263562.

    • [57] ZHANG M Y,CHENG G J.Highly conductive and transparent alumina-doped ZnO films processed by direct pulsed laser recrystallization at room temperature[J].Applied Physics Letters,2011,99(5):051604.

    • [58] THORNTON J A.Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J].Journal of Vacuum SCIENCE and Technology,1974,11(4):666-670.

    • [59] MAHIEU S,GHEKIERE P,DEPLA D,et al.Biaxial alignment in sputter deposited thin films[J].Thin Solid Films,2006,515(4):1229-1249.

    • [60] MICKAN M,HELMERSSON U,RINNERT H,et al.Room temperature deposition of homogeneous,highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering[J].Solar Energy Materials and Solar Cells,2016,157:742-749.

    • [61] ANDERS A.Tutorial:Reactive high power impulse magnetron sputtering(R-HiPIMS)[J].Journal of Applied Physics,2017,121:171101.

    • [62] ZHANG M Y,NIAN Q,CHENG G J.Room temperature deposition of alumina-doped zinc oxide on flexible substrates by direct pulsed laser recrystallization[J].Applied Physics Letters,2012,100:151902.

    • [63] JULLIEN M,HORWAT D,MANZEH F,et al.Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films:an X-ray absorption study[J].Solar Energy Materials and Solar Cells,2011,95(8):2341-2346.

    • [64] CHOPRA K L,MAJOR S,PANDYA D K.Transparent conductors:a status review[J].Thin Solid Films,1983,102(1):1-46.

    • [65] HORWAT D,JULLIEN M,CAPON F,et al.On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films[J].Journal of Physics D:Applied Physics,2010,43(13):132003.

    • [66] HORWAT D,BILLARD A.Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering[J].Thin Solid Films,2007,515(13):5444-5448.

    • [67] WELZEL T,ELLMER K.The influence of the target age on laterally resolved ion distributions in reactive planar magnetron sputtering[J].Surface and Coatings Technology,2011,205:S294-S298.

    • [68] BIKOWSKI A,WELZEL T,ELLMER K.The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films[J].Applied Physics Letters,2013,102:242106.

    • [69] CHAMORRO W,HORWAT D,PIGEAT P,et al.Near-room temperature single-domain epitaxy of reactively sputtered ZnO films[J].Journal of Physics D:Applied Physics,2013,46:235107.

    • [70] GANESAN R,TREVERROW B,MURDOCH B,et al.Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium[J].Journal of Physics D:Applied Physics,2016,49:245201.

    • [71] GANESAN R,MURDOCH B J,TREVERROW B,et al.The role of pulse length in target poisoning during reactive HiPIMS:Application to amorphous HfO2[J].Plasma Sources Science and Technology,2015,24:035012.

    • [72] HORWAT D,ANDERS A.Compression and strong rarefaction in high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2010,108:123306.

    • [73] KOUZNETSOV V,MACAK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2-3):290-293.

    • [74] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:Current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102:113303.

    • [75] GALLIAN S,HITCHON W N G,EREMIN D,et al.A phenomenological model for the description of rotating spokes in HiPIMS discharges[J].Plasma Sources Science and Technology,2013,22:055012.

    • [76] RUSKE F,PFLUG A,SITTINGER V,et al.Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering[J].Thin Solid Films,2008,516(14):4472-4477.

    • [77] TIRON V,SIRGHI L,POPA G.Control of aluminum doping of ZnO:Al thin films obtained by high-power impulse magnetron sputtering[J].Thin Solid Films,2012,520(13):4305-4309.

    • [78] WALLIN E,HELMERSSON U.Hysteresis-free reactive high power impulse magnetron sputtering[J].Thin Solid Films,2008,516(18):6398-6401.

    • [79] AIEMPANAKIT M,KUBART T,LARSSON P,et al.Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides[J].Thin Solid Films,2011,519(22):7779-7784.

    • [80] YUSTE M,ESCOBAR GALINDO R,CARETTI I,et al.Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature[J].Journal of Physics D:Applied Physics,2012,45(2):025303.

  • 手机扫一扫看