en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

崔岁寒,男,1989年出生,特聘研究员。主要研究方向为等离子体放电物理机制及仿真方法。E-mail:cuish@pku.edu.cn

通讯作者:

吴忠振,男,1984年出生,副教授,博士生导师。主要研究方向为等离子体涂层与薄膜材料制备与调控研究。E-mail:wuzz@pkusz.edu.cn

中图分类号:O539

DOI:10.11933/j.issn.1007−9289.20211226003

参考文献 1
GUDMUNDSSON J T.Physics and technology of magnetron sputtering discharges[J].Plasma Sources Science & Technology,2020,29(11):113001.
参考文献 2
DEPLA D,MAHIEU S.Reactive sputter deposition[M].Berlin:Springer,2008.
参考文献 3
BOGAERTS A,BULTINCK E,KOLEV I,et al.Computer modelling of magnetron discharges[J].Journal of Physics D:Applied Physics,2009,42(19):194018.
参考文献 4
CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.
参考文献 5
KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.
参考文献 6
GUDMUNDSSON J T,SIGURJONSSON P,LARSSON P,et al.On the electron energy in the high power impulse magnetron sputtering discharge[J].Journal of Applied Physics,2009,105(12):123302.
参考文献 7
OKS E,ANDERS A.Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer[J].Journal of Applied Physics,2009,105(9):093304.
参考文献 8
ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.
参考文献 9
EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.
参考文献 10
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.
参考文献 11
LUNDIN D,MINEA T,GUDMUNDSSON J T.High power impulse Mmagnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.
参考文献 12
KWON U H,CHOI S H,PARK Y H,et al.Multi-scale simulation of plasma generation and film deposition in a circular type dc magnetron sputtering system[J].Thin Solid Films,2005,475(1-2):17-23.
参考文献 13
LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].America:John Wiley and Sons Inc.,2005.
参考文献 14
SHERIDAN T E,GOECKNER M J,GOREE J.Model of energetic electron transport in magnetron discharges[J].Journal of Vacuum Science & Technology A,1990,8(1):30-37.
参考文献 15
MUSSCHOOT J,DEPLA D,BUYLE G,et al.Influence of the geometrical configuration on the plasma ionization distribution and erosion profile of a rotating cylindrical magnetron:a monte carlo simulation[J].Journal of Physics D:Applied Physics,2006,39(18):3989-3993.
参考文献 16
MUSSCHOOT J,DEPLA D,BUYLE G,et al.Investigation of the sustaining mechanisms of dc magnetron discharges and consequences for I-V characteristics[J].Journal of Physics D:Applied Physics,2007,41(1):015209.
参考文献 17
FAN Qihua,ZHOU Liqin,GRACIO J J.A cross-corner effect in a rectangular sputtering magnetron[J].Journal of Physics D:Applied Physics,2003,36(3):244-251.
参考文献 18
SHIDOJI E,NEMOTO M,NOMURA T.An anomalous erosion of a rectangular magnetron system[J].Journal of Vacuum Science & Technology A,2000,18(6):2858-63.
参考文献 19
SHIDOJI E,NEMOTO M,NOMURA T,et al.Three-dimensional simulation of target erosion in dc magnetron sputtering[J].Japanese Journal of Applied Physics,1994,33(7S):4281-4284.
参考文献 20
IDO S,KASHIWAGI M,TAKAHASHI M.Computational studies of plasma generation and control in a magnetron sputtering system[J].Japanese Journal of Applied Physics,1999,38(7S):4450-4454.
参考文献 21
RAUCH A,MENDELSBERG R J,SANDERS J M,et al.Plasma potential mapping of high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2012,111(8):083302.
参考文献 22
YUSUPOV M,BULTINCK E,DEPLA D,et al.Behavior of electrons in a dual-magnetron sputter deposition system:a Monte Carlo model[J].New Journal of Physics,2011,13(3):033018.
参考文献 23
BULTINCK E,BOGAERTS A.Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.
参考文献 24
COSTIN C,MINEA T M,POPA G.Electron transport in magnetrons by a posteriori Monte Carlo simulations[J].Plasma Sources Science and Technology,2014,23(1):015012.
参考文献 25
MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.
参考文献 26
BRENNING N,MERLINO R L,LUNDIN D,et al.Faster-than-Bohm cross-B electron transport in strongly pulsed plasmas[J].Physical Review Letters,2009,103(22):225003.
参考文献 27
LIEBERMAN M A.Model of plasma immersion ion implantation[J].Journal of Applied Physics,1989,66(7):2926-2929.
参考文献 28
EMMERT G A,HENRY M A.Numerical simulation of plasma sheath expansion,with applications to plasma-source ion implantation[J].Journal of Applied Physics,1992,71(1):113-117.
参考文献 29
XIA Zhongyi,CHAN Chung.Modeling and experiment on plasma source ion implantation[J].Journal of Applied Physics,1993,73(8):3651-3656.
参考文献 30
COSTIN C,MARQUES L,POPA G,et al.Two-dimensional fluid approach to the dc magnetron discharge[J].Plasma Sources Science and Technology,2005,14(1):168-176.
参考文献 31
KOLEV I,BOGAERTS A.Numerical models of the planar magnetron glow discharges[J].Contributions to Plasma Physics,2004,44(7-8):582-588.
参考文献 32
WOOD B P.Displacement current and multiple pulse effects in plasma source ion implantation[J].Journal of Applied Physics,1993,73(10):4770-4778.
参考文献 33
JIMENEZ F J,DEW S K.Comprehensive computer model for magnetron sputtering.I.Gas heating and rarefaction[J].Journal of Vacuum Science & Technology A,2012,30(4):041302.
参考文献 34
JIMENEZ F J,Dew S K,FIELD D J.Comprehensive computer model for magnetron sputtering.II.charged particle transport[J].Journal of Vacuum Science & Technology A,2014,32(6):061301.
参考文献 35
GALLIAN S,TRIESCHMANN J,MUSSENBROCK T,et al.Global modeling of HiPIMS systems:transition from homogeneous to self organized discharges[C/CD]//2014 IEEE 41st International Conference on Plasma Sciences(ICOPS)held with 2014 IEEE International Conference on High-Power Particle Beams(BEAMS),2014.
参考文献 36
BIRDSALL C K.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC[J].IEEE Transactions on Plasma Science,1991,19(2):65-85.
参考文献 37
NANBU K.Probability theory of electron-molecule,ion-molecule,molecule-molecule,and Coulomb collisions for particle modeling of materials processing plasmas and cases[J].IEEE Transactions on Plasma Science 2000,28(3):971-990.
参考文献 38
BOEUF J P,CHAUDHURY B.Rotating instability in low-temperature magnetized plasmas[J].Physical Review Letters,2013,111(15):155005.
参考文献 39
KOLEV I,BOGAERTS A.Calculation of gas heating in a dc sputter magnetron[J].Journal of Applied Physics,2008,104(9):093301.
参考文献 40
KOLEV I,BOGAERTS A.Numerical study of the sputtering in a dc magnetron[J].Journal of Vacuum Science & Technology A,2009,27(1):20-28.
参考文献 41
BULTINCK E,BOGAERTS A,Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.
参考文献 42
BULTINCK E,MAHIEU S,DEPLA D,BOGAERTS A.Reactive sputter deposition of TiNx films,simulated with a particle-in-cell/Monte Carlo collisions model[J].New Journal of Physics,2009,11(2):023039.
参考文献 43
KONDO S,NANBU K.Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas.II.radio frequency-driven discharge[J].Journal of Vacuum Science & Technology A,2001,19(3):838-847.
参考文献 44
KADLEC S.Simulation of neutral particle flow during high power magnetron impulse[J].Plasma Processes and Polymers,2007,4(S1):S419-S423.
参考文献 45
BOHLMARK J,HELMERSSON U,VANZEELAND M,et al.Measurement of the magnetic field change in a pulsed high current magnetron discharge[J].Plasma Sources Science and Technology,2004,13(4):654-661.
参考文献 46
REVEL A,MINEA T,COSTIN C.2D PIC-MCC simulations of magnetron plasma in HiPIMS regime with external circuit[J].Plasma Sources Science and Technology,2018,27(10):105009.
参考文献 47
YANG Yuchen,ZHOU Xue,LIU J X,et al.Evidence for breathing modes in direct current,pulsed,and high power impulse magnetron sputtering plasmas[J].Applied Physics Letters,2016,108(3):034101.
参考文献 48
REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701.
参考文献 49
CHRISTIE D J.Target material pathways model for high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,2005,23(2):330-335.
参考文献 50
VLČEK J,KUDLÁČEK P,BURCALOVÁ K,et al.High-power pulsed sputtering using a magnetron with enhanced plasma confinement[J].Journal of Vacuum Science & Technology A,2007,25(1):42-47.
参考文献 51
VLČEK J,BURCALOVÁ K.A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering[J].Plasma Sources Science and Technology,2010,19(6):065010.
参考文献 52
RAADU M A,AXNÄS I,GUDMUNDSSON J T,et al.An ionization region model for high-power impulse magnetron sputtering discharges[J].Plasma Sources Science and Technology,2011,20(6):065007.
参考文献 53
ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:a global plasma model and experiments[J].Journal of Applied Physics,2015,117(20):203302.
参考文献 54
BRENNING N,HUO Chunqing,LUNDIN D,et al.Understanding deposition rate loss in high power impulse magnetron sputtering:I.Ionization-driven electric fields[J].Plasma Sources Science and Technology,2012,21(2):025005.
参考文献 55
GUDMUNDSSON J T,LUNDIN D,BRENNING N,et al.An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge[J].Plasma Sources Science and Technology,2016,25(6):065004.
参考文献 56
HUO Chunqing,RAADU M A,LUNDIN D,et al.Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses[J].Plasma Sources Science and Technology,2012,21(4):045004.
参考文献 57
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.
参考文献 58
HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.
参考文献 59
HUO Chunqing,LUNDIN D,RAADU M A,et al.On sheath energization and Ohmic heating in sputtering magnetrons[J].Plasma Sources Science and Technology,2013,22(4):045005.
参考文献 60
GUDMUNDSSON J T,LUNDIN D,STANCU G D,et al.Are the argon metastables important in high power impulse magnetron sputtering discharges[J].Physics of Plasmas,2015,22(11):113508.
参考文献 61
STANCU G D,BRENNING N,VITELARU C,et al.Argon metastables in HiPIMS:validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics[J].Plasma Sources Science and Technology,2015,24(4):045011.
参考文献 62
HUO Chunqing,LUNDIN D,GUDMUNDSSON J T,et al.Particle-balance models for pulsed sputtering magnetrons[J].Journal of Physics D:Applied Physics,2017,50(35):354003.
参考文献 63
BRENNING N,GUDMUNDSSON J T,RAADU M A,et al.A unified treatment of self-sputtering,process gas recycling,and runaway for high power impulse sputtering magnetrons[J].Plasma Sources Science and Technology,2017,26(12):125003.
参考文献 64
RUDOLPH M,BRENNING N,RAADU M A,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.
参考文献 65
ZHENG Bocong,WU Zhili,WU Bi,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901.
参考文献 66
CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Nano-second temporal particle behavior in high-power impulse magnetron sputtering discharge in a cylindrical cathode[J].Journal of Applied Physics,2020,127(2):023301.
参考文献 67
LUNDIN D,GUDMUNDSSON J T,BRENNING N,et al.A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model[J].Journal of Applied Physics,2017,121(17):171917.
参考文献 68
CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.
参考文献 69
CUI Suihan,WU Zhongzhen,LIN Hai,et al.Hollow cathode effect modified time-dependent global model and high-power impulse magnetron sputtering discharge and transport in cylindrical cathode[J].Journal of Applied Physics,2019,125(6):063302.
参考文献 70
WESTWOOD W D,MANIV S,SCANLON P J.The current-voltage characteristic of magnetron sputtering systems[J].Journal of Applied Physics,1983,54(12):6841-6846.
参考文献 71
肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):185202.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):185202.(in Chinese)
参考文献 72
崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):095203.(in Chinese)CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source[J].Acta Physica Sinica,2017,66(9):095203.(in Chinese)
参考文献 73
崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):195204.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta Physica Sinica,2019,68(19):195204.(in Chinese)
参考文献 74
李体军,崔岁寒,刘亮亮,等.筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.Li Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode[J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)
参考文献 75
崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):055203.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):055203.(in Chinese)
目录contents

    摘要

    磁控溅射技术广泛用于制备多种功能涂层 / 薄膜材料,随着材料加工的精密化和功能器件的微型化,其已成为工业生产中必要环节。磁控溅射的发生基于等离子体放电,但由于等离子体负载的非线性和不稳定性,试验研究相对困难,促使其仿真技术在过去的几十年快速发展,并逐渐成为新型真空涂层装备开发和工艺验证重要且高效的手段。尤其是随着高离化磁控溅射等新技术的提出,等离子体的不确定性加强,检测越来越难,使仿真技术得到进一步的发展和推进。针对高功率脉冲磁控溅射(HiPIMS)技术,对近年来等离子体仿真技术研究进展及其在 HiPIMS 放电机理和等离子体特性方面的应用进行综述。以多种等离子体仿真模型为切入点,分别介绍检验电子 Monte Carlo 模型、流体模型、粒子网格 / 蒙特卡洛(PIC / MCC) 模型、参数路径模型以及整体模型等仿真模型的原理、优缺点及其在 HiPIMS 技术研究中的贡献和不足。随着等离子体放电技术的进步,等离子体特性越来越复杂,等离子体仿真技术也相应地向更高维度、精度和自由度的方向不断升级,最后总结等离子体仿真技术的研究方向,并对其发展及其对 HiPIMS 可能的推动作用进行展望。

    Abstract

    Magnetron sputtering (MS) technique is widely used to prepare various functional coating materials. With the increase of the material processing accuracy and the miniaturization of functional devices, MS is become a necessary part in industrial production. However, due to the fact that MS is based on the plasma discharge which is nonlinear and unstable, experimental studies on MS are relatively difficult. Consequently, simulation technique is rapidly developed in the past few decades and gradually become an important and efficient method of the vacuum equipment development and the process validation. In particular, with the development of high ionization magnetron sputtering, the detection of the plasma becomes more and more difficult because of the increasing uncertainty, further promoting the development of the simulation technique. Aimed at high power impulse magnetron sputtering (HiPIMS), the recent research progress of plasma simulation technique and its application in investigating the discharge mechanism and the plasma characteristics of HiPIMS are reviewed. Five models are introduced in detail, including test-electron Monte Carlo model, fluid model, particle-in-cell / Monte Carlo collision model, pathway model and global model. Their principles, advantages, disadvantages, contributions and shortcomings in HiPIMS research are discussed, respectively. At present, plasma simulation technique is constantly upgrading towards higher dimensions, accuracy and freedom, because the plasma properties are more and more complex with the progress of the plasma discharge technique. Finally, the research direction of plasma simulation technique is summarized, and its development and possible promotion to HiPIMS are prospected.

  • 0 前言

  • 经过几十年的发展,磁控溅射技术[1]已经广泛应用于制备各种功能涂层或薄膜材料,是诸如航空航天、电子器件、机械加工、半导体、生物医学等重要的工业领域内的必要技术之一。然而,由于等离子体的复杂性,磁控溅射设备的研发和涂层制备工艺的探索主要依赖试验试错方法,繁琐且重复性差,导致设备开发、调试、优化所需成本高,工艺方案可行性论证周期长[2]。因此,通过仿真手段研究磁控溅射过程,减少试错成本,实现对沉积速率、涂层均匀性、工艺重复性以及靶材寿命等重要参数的快速预测成为等离子体研究热点[3]

  • 随着科技的发展,产业界对涂层性能的要求不断提高,磁控溅射技术也正朝着高功率、高离化率的方向发展[4]。1999 年,KOUZNETSOV 等[5]提出高功率脉冲磁控溅射技术(High power impulse magnetron sputtering,HiPIMS),能够获得高密度[6]、高离化[7]的等离子体,制备得到的涂层综合性能优异[8-9],迅速受到学术界和产业界的广泛关注[10]。为了更好的理解和应用 HiPIMS 技术,磁控溅射仿真技术也不断向着高维度、高精度、高自由度的方向发展,以适应 HiPIMS 技术的脉冲放电形式及高密度、高离化的等离子体特性。因此,HiPIMS 仿真技术本质上延续了传统的磁控溅射仿真技术,以实际工艺过程中的各参数作为输入,并仿真整个磁控溅射及沉积过程,最终目的是输出涂层性能,业内称之为“虚拟磁控溅射”[11]。这其中主要包涵五大类仿真,分别为①磁场模拟,②磁控放电模拟,③等离子体与靶材相互作用(即溅射过程)模拟,④溅射粒子的输运模拟,以及⑤粒子沉积和涂层生长模拟[12]。因为 HiPIMS 技术主要改变传统磁控溅射技术中等离子体的放电形式,所以相应的 HiPIMS 仿真研究主要体现在上述②、③和④三个部分,代表性的模型包括:检验电子 Monte Carlo(MC)方法模型、流体模型、粒子网格 / 蒙特卡洛 (Particle-in-cell / Monte Carlo Collision,PIC / MCC) 模型、参数路径模型以及整体模型。尽管各模型的侧重点不同,且都有一定局限性,但相互之间可以形成优势互补,共同使用能够实现对 HiPIMS 技术中放电—溅射—沉积全过程的仿真,并输出等离子体密度、空间分布、离化率、电子温度、沉积速率等重要参数,用以解析与诊断 HiPIMS 的放电输运特性,对深入认识和理解 HiPIMS 放电机理,完善或拓宽其产业应用有重要的参考或指导意义。

  • 本文旨在介绍近年来 HiPIMS 仿真技术的研究进展,通过回顾大量具有代表性的工作对各种仿真模型的特点和应用进行了全面的总结,并讨论了其优势和局限,在此基础上分析每一种模型对 HiPIMS 机理认识和产业发展的促进作用。基于此,进一步讨论基于 HiPIMS 的仿真技术研究中存在的问题和局限性,可能面临的挑战以及未来的发展方向。

  • 1 HiPIMS 仿真技术研究进展

  • 1.1 检验电子 Monte Carlo 模型

  • 检验电子 Monte Carlo(MC)模型是一种以电子为仿真对象,通过牛顿方程计算电子在电磁场中的运动状态,并通过生成随机数判断碰撞情况,计算大量的电子轨迹以表征等离子体放电输运特性的仿真方法[3]。该模型最重要的假设是背景电磁场不随时间变化,也不受等离子体的影响[3],因此在仿真过程中不需要利用 Maxwell 方程组或者泊松方程求解等离子体的自洽电势[13],故而该方法简便快捷,具有较高的计算速度,且适应性广,能够处理具有复杂几何结构的仿真域。检验电子 MC 模型最早由 SHERIDAN 等[14]提出,并被用来模拟平面圆形阴极的磁控放电过程,如图1a 所示。图中电子每次发生电离碰撞的位置用黑色小点表示,进一步通过统计可得到电离碰撞发生几率的空间分布,如图1b 所示,可见仿真计算与试验测量结果基本吻合,表明检验电子 MC 模型可以准确的反映等离子体的离化强度及空间位置。

  • 事实上,电离反应发生的位置即为离子生成的位置。因此,检验电子 MC 模型可用来快速仿真等离子体的空间分布特性[15-16],并自此基础上研究阴极的放电及刻蚀行为[17-20]。例如,FAN 等[17]通过检验电子 MC 模型仿真矩形阴极的磁控溅射过程,并将电离碰撞的位置等效为靶面刻蚀的位置,在此基础上分析平面阴极普遍存在的对角线效应,如图2 所示。进一步对该模型计算的电子状态进行统计的发现,电子在阴极放电跑道拐角处的漂移速度大于直道部分,从导致阴极拐角处电离碰撞发生概率更大,最终引发对角线效应。

  • 图1(a)检验电子 MC 模型求出的电离碰撞发生的位置;(b)仿真与试验获得的电离碰撞发生几率的空间分布[14]

  • Fig.1 (a) Locations of ionization collisions simulated by test-electrons MC model; (b) spatial distribution of the ionization collision probability obtained by simulation and experiment[14]

  • 图2 检验电子 MC 模型计算得到的电离碰撞分布在靶面的投影[17]

  • Fig.2 Projections of ionization collision on the target surfaces calculated by test-electrons MC model[17]

  • 然而,检验电子 MC 模型只仿真电子运动行为的方法,在运算带来简便的同时,也引入电势不自洽的缺陷[14]。常规的解决方案[18]是设置一个电势与到靶面距离的关系,并将其近似视为背景电场,但该方法对于诸如 HiPIMS 技术等高功率放电的情况并不适用,这是因为高功率磁控溅射过程中,靶面附近的电势分布同时具有较大的法向梯度和切向梯度[21],故而无法用简单的一维关系进行描述。 YUSUPOV 等[22]在研究闭合磁场作用时,针对上述问题对检验电子 MC 模型进行了升级,提出先利用普通的 PIC / MCC 模型[23]计算出二维自洽电势作为背景电场分布,再利用检验电子 MC 模型批量计算电子轨迹,如图3 所示。模拟结果表明,闭合磁场将电子束缚在阴极之间强化放电,而镜像磁场则引导电子迅速向外运动,与试验结果完全吻合。在此基础上,进一步指出,检验电子 MC 模型可继续推广并与其他等离子体放电模型耦合,增强精确度和适用范围,在获得自洽背景场的同时实现高速计算。

  • 图3 PIC / MCC 模型计算出的自洽电场分布及(b1)闭合磁场和(b2)镜像磁场的电子密度分布[22]

  • Fig.3 Self-consistent electric field calculated by PIC / MCC model; electron density distribution in (b1) closed and (b2) mirrored magnetic field[22]

  • 此外,HiPIMS 的脉冲放电形式会产生一个时间依赖的电场,该电场不均匀、梯度大、不稳定、且与磁场夹角不断变化[11]。而检验电子 MC 模型需要假设背景场与时间无关,因此难以处理 HiPIMS 的放电过程。针对此问题,COSTIN 等[24]基于上述 YUSUPOV 等[22]的工作,利用脉冲 PIC / MCC 模型[25]得到短脉冲 HiPIMS 放电的背景场,如图4 所示。可见磁场是时间无关的,而等离子体密度分布和电场分布呈现出时间相关性。随后将分别来自离子轰击和电离碰撞的电子云在阴极表面和放电区域内释放,再通过检验电子 MC 模型仿真电子云的运动状态,来研究 HiPIMS 技术中电子的迁移特性。结果表明 HiPIMS 的电子 Bohm 扩散系数远高于普通直流磁控溅射,且电子的漂移速度和扩散系数取决于其释放位置,在放电跑道中央释放时最小。该工作进一步验证了“faster-than-Bohm” 扩散的存在,即 HiPIMS 技术的扩散系数能够超过 Bohm 极限[26]

  • 图4 HiPIMS 放电不同时刻的背景场[24]

  • Fig.4 Background field of HiPIMS discharge at different time[24]

  • 1.2 流体模型

  • 流体模型由鞘层扩展解析模型发展而来,其思想由 LIBERMAN[27]提出,并研究等离子体鞘层扩展过程。EMMERT 等[28]在此基础上进一步建立平板坐标系流体模型,实现对等离子体时空演化规律的仿真,并获得良好的拟合效果[29]。流体模型将等离子体视为连续的,在此基础上,通过解连续性方程和运动(漂移扩散)方程来获得体系内各组分浓度的时空特性。与测试电子 MC 方法相比,流体模型最大的优势是可以同时对电子和离子的运动状态进行仿真,并引入泊松方程以求解空间等离子体自洽电势分布,如图5 所示[30]。模型假设电子能量分布满足 Maxwellian 分布,并利用能量平衡方程求解平均电子温度。因此,当前流体模型可由一个偏微分方程组描述,通常包含离子连续性方程、动量守恒方程、泊松方程和电子 Boltzmann 关系式[30](或能量平衡方程),在计算速度方面具有一定的优势[1]

  • 然而,流体模型的适用性有限[131],因为低气压下的工作气体不能再视作连续流体,导致流体模型的基本假设不再成立。此外,运动(漂移扩散)方程实际上假定粒子仅仅在浓度梯度和电场作用下运动,而忽略了磁场的影响,显然这对磁控溅射不适用,尤其是在背景磁场较强的情况下。鉴于此,COSTIN 等[30] 通过改进算法将磁流体方程引入了流体模型,通过仿真成功得到了直流磁控溅射中电子和离子的密度分布(图6),该方法为进一步考虑高功率放电条件下的压强的各向异性分布、电子惯性项以及电离强度等重要因素奠定了基础。然而,该方法使得原偏微分方程组的形式变得及其复杂,导致修改后模型的计算速度大幅下降。

  • 图5 流体模型计算得出的自洽电场分布[30]

  • Fig.5 Distribution of self-consistent electric filed calculated by fluid model[30]

  • 图6 考虑磁场的流体模型计算得到的电子密度和离子密度(109 cm−3)的分布图[30]

  • Fig.6 Distribution of electron density and ion density calculated by fluid model[30]

  • KOLEV 等[31]的研究进一步表明,在仿真复杂且不均匀(具有较大梯度)电磁场中的等离子体密度分布时,流体模型需要精细的网格划分和冗长的计算,导致该模型的计算效率较低。尤其是对于脉冲放电,由于等离子体自洽电场随时间变化,且分布较为复杂,流体模型的适用性进一步降低。WOOD[32]利用一维流体模型在不考虑背景磁场的条件下,实现高脉冲电压下的弱离化等离子体的仿真,分析等离子体鞘层的变化规律,发现若前一个脉冲的等离子体恢复不完全,下一脉冲内等离子体状态将会受到影响,高压脉冲放电条件下电场及鞘层厚度随时间的变化,如图7 所示。然而,对于 HiPIMS 放电,流体模型则需要考虑较强的背景磁场(及其梯度)、随时间变化的自洽电势分布,以及高度离化的等离子体。这些因素为流体模型的使用带来的极大的困难,因此传统的流体模型仍然较难用于 HiPIMS 放电的仿真。

  • 图7 高压脉冲放电条件下电场及鞘层厚度随时间的变化[32]

  • Fig.7 Temporal variation of electric field and sheath thickness under high voltage pulse discharge[32]

  • 针对流体模型适用性问题,JIMENEZ 等[33]提出将流体模型和 MC 模型结合,建立混合模型,并以此仿真整个磁控溅射过程,解析所有相关的现象,其流程如图8 所示。其中,流体模型输出中性原子的密度和背景温度,作为 MC 模型的输入,而 MC 模型则用于计算粒子之间以及粒子和靶面的相互作用,输出各个反应的反应系数,反过来作为流体模型的输入。通过该混合模型,JIMENEZ 等[34]实现对三维等离子体放电的仿真,并得到良好的试验吻合度,使得该模型的适用性得到大幅的提高。

  • 图8 混合模型流程示意图[33]

  • Fig.8 Process diagram of hybrid model[33]

  • 然而,又经过多年的发展,流体模型及相应的混合模型仍没能成功地应用在 HiPIMS 的仿真中。 2014 年,GALLIAN 等[35]尝试用流体模型分别仿真高峰值功率和低峰值功率下的 HiPIMS 放电,但发现流体模型的计算结果是不切实际的。 GUDMUNDSSON[1]进一步指出本质原因:一方面是仿真 HiPIMS 放电产生的高密度等离子体需要极细的网格,而另一方面求解 HiPIMS 需要计算一个脉冲周期内的等离子体演变趋势,而这个趋势是非稳态的,这两个因素导致流体模型在仿真 HiPIMS 放电时收敛性和精度同时下降。

  • 1.3 PIC / MCC 模型

  • PIC / MCC 模型,是利用 PIC 粒子模拟直接跟踪带电粒子在电磁场作用下的运动,同时利用 MCC 方法描述粒子间短程随机碰撞过程的磁控溅射仿真方法[36]。与普通的 MC 模型相比,PIC / MCC 模型最大的特点是利用泊松方程基于带电粒子的位置计算空间电势,并可以获得等离子体的时间、空间特性,也因此成为当前仿真磁控溅射技术最有效的仿真方法[1]。2000 年,NANBU[37]证明在宏粒子数目趋近于无穷大、空间步长趋近于无穷小时,PIC 粒子模拟等效于求解 Boltzmann 方程。因此,只要宏粒子和网格数足够多,PIC / MCC 模型可实现对任何形式等离子体的仿真,其适用性远强于流体模型。 PIC / MCC 模型的基础结果包括电压分布、等离子体密度分布、电子和离子的能量分布,如图9 所示[38]。在此基础上,等离子体体系中的多种物理过程及关键参数,都可以通过对基础结果的后处理反映出来。例如 KOLEV 等[39]在 PIC / MCC 中引入高速的工作气体原子和溅射金属原子,成功地仿真气体背景温度的变化。在此基础上,KOLEV 等[40]又进一步仿真溅射过程,并准确预测 Cu 靶在 Ar 环境下放电的刻蚀形貌。2009 年,BULTINCK 等[41-42] 在传统的 2d3v 的 PIC / MCC 模型的基础上,引入靶材溅射、二次电子发射、电子反射、原子吸附和靶中毒等因素,先后解析了 Ti 靶在 Ar / O2 [41]和 Ar / N2 [42]中的反应溅射过程,并预测基片上 TiOx和 TiNx涂层的沉积速率及化学含量比 x 的值。

  • 图9 PIC / MCC 模型的计算结果图:(a)电压分布;(b)电子密度分布;(c)电子动能分布和(d)离子能量分布[38]

  • Fig.9 Distribution of (a) potential, (b) electron density, (c) electron kinetic energy and (d) ion energy calculated by PIC / MCC model

  • 然而,要实现更精确的模拟,PIC / MCC 方法需要足够小的时空步长以分辨电子振荡周期和 Debye 长度[36],这导致该方法需要大量的计算资源。同时,求解基于大量密集网格或者不规则网格的泊松方程过程极为复杂,且速度较慢[1-3],导致 PIC / MCC 方法对高密度、长时间以及复杂空间等离子体仿真变得非常困难。此外,由于仿真粒子为宏粒子,代表一群实际粒子,因此MC 碰撞会引入噪声,导致PIC / MCC 的仿真结果不稳定。对于磁控溅射技术,PIC / MCC 方法的仿真时间至少需要达到 10−5 s 量级才能够到达稳态[2],因此该方法多用于仿真直流磁控溅射的稳态等离子体。对于脉冲放电,其放电环境随时间不断变化,变化频率可达上千赫兹,因此实现对脉冲放电一个周期内等离子体特性的仿真极具有挑战性。 KONDO 等[43]将电压设置为时间的余弦函数,实现对低功率下射频磁控溅射(RFMS)的仿真,获得周期性变化的等离子体特性,如图10 所示。

  • 图10 PIC / MCC模型计算出的射频RFMS一个周期内的等离子体演变趋势:(a)电子密度;(b)电荷密度;(c)电子电流和(d)离子电流[43]

  • Fig.10 Evolution of plasma in one period of RFMS calculated by PIC / MCC model: (a) electron density, (b) charge density, (c) electron current and (d) ion current

  • 然而,HiPIMS 的峰值功率远高于射频磁控溅射(RFMS),故利用 PIC / MCC 模型实现对 HiPIMS 放电过程的仿真仍面临三大挑战[11]。首先是 HiPIMS 的等离子体密度超过 1018 m−3,此时德拜长度在 1~10 μm 量级,这要求仿真 HiPIMS 的空间网格需要更加密集[11]。其次,HiPIMS 的放电过程中伴随着强烈的气体稀薄作用,在长脉宽(>10 μs)的条件下更为明显[44],这要求仿真将背景中性气体密度作为单独的研究对象,并考虑其随时间和空间的变化。最后,根据 BOHLMARK 等[45]的研究,过大的放电电流会对阴极的磁场造成影响,导致大电流 HiPIMS 中的背景磁场成为随时间变化的参量。鉴于此, MINEA 等 [25] 在耦合电压随时间变化的 PIC / MCC 模型的基础上,假设等离子体在一个高功率脉冲之前发生预离化放电(图11),使得 PIC / MCC 仿真的放电电流能够更快的到达稳态 (~2 μs)。在此基础上,该工作进一步模拟短脉冲 (3 μs)的 HiPIMS 放电,以排除气体稀薄作用的影响,获得合理的仿真结果,如图12 所示。REVEL 等[46]针对 HiPIMS 放电带来的不均匀的等离子体密度分布及其较大的分布梯度,在 PIC / MCC 模型中设置随等离子体密度变化的网格。即在高密度放电区域,电子的德拜长度较小,故设置网格的尺寸较小,形成稠密的分布;而在低密度放电区域,电子的德拜长度较大,故设置网格的尺寸较大,形成稀疏的分布,如图13 所示。该设置的优势是在保证运算准确性的同时,尽可能的降低模型的计算量。

  • 图11 设置预离化的 HiPIMS 电压波形图[25]

  • Fig.11 Voltage waveform of HiPIMS with pre-ionization

  • 图12 PIC / MCC 模型计算得到 HiPIMS 条件下的等离子体密度分布及电势分布[25]

  • Fig.12 Distribution of plasma density and potential under HiPIMS calculated by PIC / MCC model

  • 图13 HiPIMS 技术德拜长度的空间分布[46]

  • Fig.13 Spatial distribution of Debye length in HiPIMS discharge

  • 此外,常规的 2D PIC / MCC 模型是假设第三个维度上具有对称性,因此它无法描述 HiPIMS 放电可能带来的等离子体不稳定性以及辐条现象[47]。鉴于此, REVEL 等[48]将三维空间投影为三个平面,分别计算电场分布,再通过矢量叠加求得 3 维空间的自洽电场,成功地将 2D PIC / MCC 模型拓展为伪 3D PIC / MCC模型,如图14 所示。该伪 3D PIC / MCC 模型能够解决电子漂移引起的空间不对称性,并实现对平面靶三维 HiPIMS 放电的仿真。然而截至目前,利用 PIC / MCC 模型仿真 HiPIMS 放电仍停留在短脉冲的前提下,由于计算能力有限,尚无法在模型中耦合温度和“溅射风”引起的气体稀薄效应。

  • 图14 伪 3DPIC / MCC 模型求解背景电场的流程示意图[48]

  • Fig.14 Flow diagram of solving the background electric field with Pseudo-3D PIC / MCC model

  • 1.4 参数路径模型

  • 与其他模型相比,等离子体参数路径模型更为简单快捷。该模型思想最早由 CHRISTIE [49]基于等离子体放电体系中溅射元素和气体元素组分提出,用于仿真磁控溅射的涂层沉积过程,其最初模型示意图如图15 所示。该模型的基本方法是将磁控溅射过程分解为气体放电循环和金属自溅射循环,利用离化率、离子返回概率、二次电子发射系数以及离子溅射产额等参数,表示靶面以及基片上的离子束流和原子束流的组成,以此分析涂层的沉积过程。利用该模型, CHRISTIE[49]求解到达基片的靶材粒子中离子束流的占比,成功解释 HiPIMS 技术中沉积速率低的原因。然而,原始的参数路径模型简化了溅射原子的电离过程,因此仅能用于求解基片上的沉积过程,无法对整个等离子体的放电过程进行描述。

  • 图15 原始参数路径模型示意图[49]

  • Fig.15 Schematic diagram of the original pathway model

  • 鉴于此,VLČEK 等[50]一方面考虑溅射原子在等离子体区的额外电离,另一方面简化沉积过程中溅射离子束流损失,其模型示意图如图16 所示[11]。可见,靶材和基片之间的空间被划分为离化区域(Ionization region,IR)和扩散区域(Diffusion region,DR),可对靶材原子在两个区域内的电离过程进行分别处理。利用这种方法,参数路径模型被进一步拓展,用于描述整个放电过程,其适用范围得到大幅提高。

  • 在此基础上,VLČEK 和 BURCALOVÁ[51]利用参数路径模型,仿真直流复合 HiPIMS 放电条件下 Cu 靶的放电过程,并快速得出多组等离子体放电特性的相关参数,如图17 所示。图中的计算参数包括溅射材料的离化率 β、溅射材料离子返回靶面再次溅射的概率 σ、基片上溅射粒子束流中离子的占比θ,以及单位功率密度下的沉积速率 α 等。

  • 图16 改进的参数路径模型示意图[11]

  • Fig.16 Schematic diagram of the modified pathway model

  • 图17 利用参数路径模型仿真 Cu 放电过程得到的等离子体放电特性[51]

  • Fig.17 Plasma properties of Cu HiPIMS discharge simulated by pathway model

  • 参数路径模型计算简便,可用于仿真各种放电条件,然而,仍存在两点不足:一是该模型为稳态模型,不能描述随时间变化的放电过程,二是该模型采用了许多未知的速率系数,只能唯象的给出各参数间的关系,而无法探究放电过程的物理本质。因此,该模型使用的频率较低,其计算结果精度不高,更适合快速粗算等离子体放电特性。

  • 1.5 整体模型

  • 整体模型,也称为离化区域(Ionization region, IR)模型,是目前针对磁控溅射放电仿真最为合适且精度较高的方法[1]。鉴于传统的等离子体仿真模型无法快速精确地响应 HiPIMS 的脉冲放电形式,RAADU 等[52]针对HiPIMS 等离子体离化区域建立了空间平均的、时间依赖的等离子体化学平衡模型。该模型牺牲了对等离子体空间分布的描述,换取了等离子体放电特性随时间的演变过程,可以描述等离子体体系中各组分所发生的各种反应细节。因此,该模型具有极高的灵活性,对 HiPIMS 脉冲中以及脉冲后的等离子体行为均可实现良好的仿真效果。以 Ar / Cu 的等离子体体系为例,其内部各组分以及相互之间的反应过程示意图如图18 所示[53]。根据体系内各组分的生成与消耗过程列出反应平衡方程,同时综合各反应强度列出能量平衡方程,形成一个各组分密度和电子温度对时间的一阶常微分方程组。整体模型以实际的放电数据(具体包括电流、电压、工作气体、气压、背景温度、溅射率、各反应系数以及离化区域几何尺寸等) 作为输入,通过设置拟合参数[1]求解上述偏微分方程组,得到仿真电流和电压。若仿真电流、电压与实际电流、电压相同,则认为仿真结果反映了实际试验中的等离子体放电特性。最后输出电子、各种离子、各种中性粒子以及电子温度在离化区域内的平均值,如图19 所示[52]。整体模型可使用不同的拟合参数进行求解,其中最常用的包括离子被阴极回吸的概率[54]、电子有效功率传递系数[54]、二次电子发射系数[55],以及霍尔系数[53]等。

  • 图18 Ar / Cu 等离子体体系的整体模型示意图[53]

  • Fig.18 Schematic diagram of global model for Ar / Cu HiPIMS system

  • 图19 整体模型的输入和输出示意图[52]

  • Fig.19 Schematic diagram of inputs and outputs of the global model

  • 根据整体模型,计算得到离化区域内的各组分密度及电子温度随时间的演化规律,进一步进行后处理获得 HiPIMS 等离子体放电特性,从而可以解释 HiPIMS 放电中发生的物理过程。以 Ar / Al 的 HiPIMS 放电体系为例,HUO 等[56]利用整体模型解析了 Ar / Al 体系中背景 Ar 原子可能发生的所有反应的速率(图20),并由此发现 HiPIMS 中强烈气体稀薄效应主要原因是电子冲击电离反应消耗 Ar 原子,同时金属溅射风将一部分 Ar 原子撞出离化区域。BRENNING 等[54]针对 HiPIMS 沉积速率低的痛点,利用整体模型解析离化区域内电压降在一个脉冲内的演变趋势(图21),证明了 HiPIMS 放电过程中存在严重的回吸现象,是导致沉积速率低的主要原因。基于 ANDERS 提出的自持自溅射条件[57], HUO 等[58]利用整体模型求解金属元素离化率 α、离子返回概率 β 和自溅射产额 YSS(图22),并解析了 HiPIMS 放电过程中自溅射的强度随电压上升的演变过程。此外,离化区域内的欧姆加热效应[59]、激发态 Ar 原子的作用[60-61]、靶电流的成分[62-63]、等离子体沉积束流组分[64]等一系列试验不易测量的物理参数都可以通过整体模型进行解析。

  • 图20 Ar / Al 的 HiPIMS 体系中 Ar 原子的反应机制[56]:(a)Ar 原子浓度变化;(b)外界冷 Ar 原子补充;(c)Ar+ 溅射后形成热 ArH反弹;(d)热 ArH向外的扩散;(e)电荷交换 Ar+ +Al=>Al+ +Ar;(f)热 ArH的电离;(g)金属溅射风将 Ar 撞离离化区;(h)电离反应 Ar+e=>Ar+ +2e

  • Fig.20 Reaction mechanism of Ar atoms in Ar / Al HiPIMS system: (a) variation of Ar atom density; (b) diffusional refill of cold argon from the bulk plasma; (c) returning ArH from the target; (d) escaping ArH to the bulk plasma; (e) charge exchange Ar+ +Al=>Al+ +Ar; (f) electron impact ionization of the hot ArH component; (g) kick-out of cold Ar atoms by the sputter wind and (h) ionization Ar+e=>Ar+ +2e

  • 图21 一个脉冲内离化区域内电压降的演变[54]

  • Fig.21 Evolution of the IR voltage drop in a pulse

  • 图22 不同电压下的金属元素离化率 α,离子返回概率 β 和自溅射产额 YSS[58]

  • Fig.22 Metal ionization rate α, ion return probability β and self-sputtering yield YSS

  • 最近,针对 HiPIMS 反应溅射过程,整体模型被进一步应用于研究多元或多气氛等复杂体系的反应机制[65-68]。例如,GUDMUNDSSON 等[55]利用整体模型计算 Ti 靶在 Ar / O2气氛中的 HiPIMS 放电过程,并在此基础上解析靶电流的成分,发现金属放电模式下 Ar+ 和 Ti+ 同时占主导,而中毒模式下 Ar+ 占绝对主导,如图23 所示。ZHENG 等[65]利用整体模型仿真 Ti / Al / Si 复合靶在 Ar / N2气氛中的放电过程,探究 N2 分压对等离子体放电强度的影响,成功的预测 TiAlSiN 涂层的性能变化规律。

  • 图23 Ar / O2 / Ti 的 HiPIMS 放电中的靶电流成分[55]

  • Fig.23 Temporal variation of the discharge current composition

  • 此外,通过整体模型对等离子体放电输运特性进行解析,可进一步辅助设备开发和技术升级,这里以北京大学深圳研究生院吴忠振课题组的相关研究工作为例。CUI 等[69]首先通过整体模型仿真环形磁控阴极中 Ar / Cu 体系的 HiPIMS 放电过程,发现利用类空心阴极效应可以更进一步的提 HiPIMS 的等离子体密度和离化率,如图24 所示。利用环形阴极内向放电的特性延缓等离子体扩散损耗,CUI 等[66]进一步通过整体模型模拟环形阴极内 Ar / N2 / Cr 的 HiPIMS 放电过程,通过分析每种组分密度曲线的拐点解析体系中的各种主要反应细节及不同组分的放电顺序,获得试验良好的验证,如图25 所示[66]。基于此研究,CHEN 等[4]提出在原有脉冲整体模型的基础上引入热电子的快速溢出和离化区域的温度作用,成功地将整体模型推广至高功率直流磁控溅射的仿真。该工作进一步提出连续高功率磁控溅射技术(Continues high power magnetic sputtering,C-HPMS),并结合改进的整体模型和伏安特性外推法[70]对其等离子体特性进行放电解析,发现金属离化率可达到 HiPIMS 技术的 90%,同时沉积速率可提高至 HiPIMS 技术的数十倍,初步实现高离化快速沉积,如图26 所示。在此基础上,CUI 等[68]进一步利用此改进的整体模型仿真 Al 靶在 Ar / O2 气氛下的 C-HPMS 放电过程,发现高功率密度可以降低等离子体中的 O / Al 比和靶面的化合物含量,提高靶中毒时的极限氧气含量,大幅拓宽工艺窗口,如图27 所示。可见,利用仿真手段对真空镀膜设备以及真空镀膜技术进行设计开发[71-75],可大幅降低试验的试错成本,有效地提高了研发的效率。

  • 图24 类空心阴极效应对体系中主要粒子密度和金属离化率及离子返回概率的影响[69]

  • Fig.24 Influence of the like-hollow cathode effect on densities of major particles in the system and metal ionization rate and ion return probability

  • 图25 Ar / N2 / Cr 的 HiPIMS 放电中(a)N 原子,(b)Ar+ 离子和(c)Cr 元素各组分密度变化曲线的细节以及(d)不同组分的放电顺序[66]

  • Fig.25 Density evolution of (a) N atoms, (b) Ar+ ions and (c) Cr particles; (d) discharge order of different components

  • 图26 C-HPMS 放电的等离子体放电特性及沉积速率[4]

  • Fig.26 Plasma discharge properties and deposition rate of C-HPMS

  • 图27 Ar / O2 / Al 的 C-HPMS 放电中体系内的等离子体 O / Al 比和靶面化合物含量[68]

  • Fig.27 O / Al ratios in the plasma and coverage of the poisoning compound on the target surface under Ar / O2 / Al C-HPMS

  • 2 HiPIMS 仿真技术面临的问题及相应的发展方向

  • 对于 HiPIMS 放电,尽管现有的仿真模型涵盖了对背景场、等离子体放电过程、离子溅射过程和粒子输运沉积过程的仿真,但是仍然存在一定的局限性,具体表现如下:

  • (1)HiPIMS 的放电不同于普通的 dcMS,其脉冲的放电形式是一个非稳态过程,这使得时间成为了模型中新的自变量。因此,与 dcMS 放电相比,仿真 HiPIMS 放电则需要更高的计算资源。尤其是对于涉及自洽电势计算的流体模型和 PIC / MCC 模型,时间参数的引入导致其收敛性较差,同时计算速度较慢,因此为了保证模型的顺利运行,不得不牺牲一部分计算精度。

  • (2) 当前的模型无法同时实现对 HiPIMS 等离子体的时间演变特性和空间分布特性的仿真,因此不得不在二者之间做出妥协。实际上,当前的模型仿真得到的 HiPIMS 的放电特性,一般为空间平均值或(和)近似稳态值,这导致对 HiPIMS 等离子体放电行为的认识还存在很大局限。

  • (3)磁控溅射技术的本质目的是制备涂层,因此仿真虚拟磁控溅射的终极目标是输出涂层的特性[2] (例如沉积速率,硬度,电导率等),如图28 所示。遗憾的是,当前的 HiPIMS 模拟方法还没有涉及到涂层生长过程,因此无法给出目标涂层的内部结构和相应的性能。因此,仿真对试验(例如工艺探索、设备开发等)的指导意义仍然停留在等离子体放电和输运过程的优化,无法保证最终制备涂层的特性满足需求。

  • 图28 虚拟磁控溅射示意图[2]

  • Fig.28 Schematic diagram of virtual magnetron sputtering

  • 针对 HiPIMS 仿真技术的局限性,可推断其未来的发展方向可能在于以下几个方面:

  • (1)针对各 HiPIMS 仿真模型,优化其算法以适应非定常的物理场仿真,在保证收敛性的条件下,同时提高计算精度和速度。

  • (2)组合当前的各 HiPIMS 仿真模型,利用各模型之间不同的侧重点,将等离子体时间演变特性仿真和空间分布特性仿真加以结合,建立起更高级的混合 HiPIMS 仿真模型。

  • (3)在对 HiPIMS 的仿真中进一步引入分子动力学或第一性原理,通过等离子体放电输运特性仿真得到基片上沉积粒子的种类、分布、能量以及入射角等参数,计算涂层内部的原子排列结构,在此基础上进一步计算得到涂层相应的性能作为输出。

  • 总之,未来的 HiPIMS 仿真模型应成为一套磁控溅射过程仿真体系,输入背景场和工艺参数,仿真从等离子体放电、溅射、输运至最终沉积的一系列流程,输出相应的涂层性能,真正起到代替试验试错的作用。

  • 3 结论与展望

  • 磁控溅射技术经过多年的发展,目前正在向高功率、高离化的方向前进,为更好的理解新型放电机制和等离子体特性,验证设备研制和工艺试验的可行性,节约试错成本和时间,相应的仿真技术也将随之不断革新。本文总结近年来针对 HiPIMS 技术的仿真研究工作,介绍五种常用的 HiPIMS 仿真技术的发展脉络,并讨论这些模型的特点和应用,以及相应的优势和局限。在此基础上进一步根据各模型的侧重点和局限性,总结 HiPIMS 仿真技术当前面临的问题,并引申出可能的发展方向。最后对未来的新型放电技术的仿真提出设想,即形成一套放电-输运-沉积耦合的过程仿真体系,能快速将工艺参数设想转化为涂层结构和性能,降低试验试错成本,最终实现对试验方案可行性的精确论证。

  • 参考文献

    • [1] GUDMUNDSSON J T.Physics and technology of magnetron sputtering discharges[J].Plasma Sources Science & Technology,2020,29(11):113001.

    • [2] DEPLA D,MAHIEU S.Reactive sputter deposition[M].Berlin:Springer,2008.

    • [3] BOGAERTS A,BULTINCK E,KOLEV I,et al.Computer modelling of magnetron discharges[J].Journal of Physics D:Applied Physics,2009,42(19):194018.

    • [4] CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.

    • [5] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.

    • [6] GUDMUNDSSON J T,SIGURJONSSON P,LARSSON P,et al.On the electron energy in the high power impulse magnetron sputtering discharge[J].Journal of Applied Physics,2009,105(12):123302.

    • [7] OKS E,ANDERS A.Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer[J].Journal of Applied Physics,2009,105(9):093304.

    • [8] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.

    • [9] EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.

    • [10] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.

    • [11] LUNDIN D,MINEA T,GUDMUNDSSON J T.High power impulse Mmagnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.

    • [12] KWON U H,CHOI S H,PARK Y H,et al.Multi-scale simulation of plasma generation and film deposition in a circular type dc magnetron sputtering system[J].Thin Solid Films,2005,475(1-2):17-23.

    • [13] LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].America:John Wiley and Sons Inc.,2005.

    • [14] SHERIDAN T E,GOECKNER M J,GOREE J.Model of energetic electron transport in magnetron discharges[J].Journal of Vacuum Science & Technology A,1990,8(1):30-37.

    • [15] MUSSCHOOT J,DEPLA D,BUYLE G,et al.Influence of the geometrical configuration on the plasma ionization distribution and erosion profile of a rotating cylindrical magnetron:a monte carlo simulation[J].Journal of Physics D:Applied Physics,2006,39(18):3989-3993.

    • [16] MUSSCHOOT J,DEPLA D,BUYLE G,et al.Investigation of the sustaining mechanisms of dc magnetron discharges and consequences for I-V characteristics[J].Journal of Physics D:Applied Physics,2007,41(1):015209.

    • [17] FAN Qihua,ZHOU Liqin,GRACIO J J.A cross-corner effect in a rectangular sputtering magnetron[J].Journal of Physics D:Applied Physics,2003,36(3):244-251.

    • [18] SHIDOJI E,NEMOTO M,NOMURA T.An anomalous erosion of a rectangular magnetron system[J].Journal of Vacuum Science & Technology A,2000,18(6):2858-63.

    • [19] SHIDOJI E,NEMOTO M,NOMURA T,et al.Three-dimensional simulation of target erosion in dc magnetron sputtering[J].Japanese Journal of Applied Physics,1994,33(7S):4281-4284.

    • [20] IDO S,KASHIWAGI M,TAKAHASHI M.Computational studies of plasma generation and control in a magnetron sputtering system[J].Japanese Journal of Applied Physics,1999,38(7S):4450-4454.

    • [21] RAUCH A,MENDELSBERG R J,SANDERS J M,et al.Plasma potential mapping of high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2012,111(8):083302.

    • [22] YUSUPOV M,BULTINCK E,DEPLA D,et al.Behavior of electrons in a dual-magnetron sputter deposition system:a Monte Carlo model[J].New Journal of Physics,2011,13(3):033018.

    • [23] BULTINCK E,BOGAERTS A.Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.

    • [24] COSTIN C,MINEA T M,POPA G.Electron transport in magnetrons by a posteriori Monte Carlo simulations[J].Plasma Sources Science and Technology,2014,23(1):015012.

    • [25] MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.

    • [26] BRENNING N,MERLINO R L,LUNDIN D,et al.Faster-than-Bohm cross-B electron transport in strongly pulsed plasmas[J].Physical Review Letters,2009,103(22):225003.

    • [27] LIEBERMAN M A.Model of plasma immersion ion implantation[J].Journal of Applied Physics,1989,66(7):2926-2929.

    • [28] EMMERT G A,HENRY M A.Numerical simulation of plasma sheath expansion,with applications to plasma-source ion implantation[J].Journal of Applied Physics,1992,71(1):113-117.

    • [29] XIA Zhongyi,CHAN Chung.Modeling and experiment on plasma source ion implantation[J].Journal of Applied Physics,1993,73(8):3651-3656.

    • [30] COSTIN C,MARQUES L,POPA G,et al.Two-dimensional fluid approach to the dc magnetron discharge[J].Plasma Sources Science and Technology,2005,14(1):168-176.

    • [31] KOLEV I,BOGAERTS A.Numerical models of the planar magnetron glow discharges[J].Contributions to Plasma Physics,2004,44(7-8):582-588.

    • [32] WOOD B P.Displacement current and multiple pulse effects in plasma source ion implantation[J].Journal of Applied Physics,1993,73(10):4770-4778.

    • [33] JIMENEZ F J,DEW S K.Comprehensive computer model for magnetron sputtering.I.Gas heating and rarefaction[J].Journal of Vacuum Science & Technology A,2012,30(4):041302.

    • [34] JIMENEZ F J,Dew S K,FIELD D J.Comprehensive computer model for magnetron sputtering.II.charged particle transport[J].Journal of Vacuum Science & Technology A,2014,32(6):061301.

    • [35] GALLIAN S,TRIESCHMANN J,MUSSENBROCK T,et al.Global modeling of HiPIMS systems:transition from homogeneous to self organized discharges[C/CD]//2014 IEEE 41st International Conference on Plasma Sciences(ICOPS)held with 2014 IEEE International Conference on High-Power Particle Beams(BEAMS),2014.

    • [36] BIRDSALL C K.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC[J].IEEE Transactions on Plasma Science,1991,19(2):65-85.

    • [37] NANBU K.Probability theory of electron-molecule,ion-molecule,molecule-molecule,and Coulomb collisions for particle modeling of materials processing plasmas and cases[J].IEEE Transactions on Plasma Science 2000,28(3):971-990.

    • [38] BOEUF J P,CHAUDHURY B.Rotating instability in low-temperature magnetized plasmas[J].Physical Review Letters,2013,111(15):155005.

    • [39] KOLEV I,BOGAERTS A.Calculation of gas heating in a dc sputter magnetron[J].Journal of Applied Physics,2008,104(9):093301.

    • [40] KOLEV I,BOGAERTS A.Numerical study of the sputtering in a dc magnetron[J].Journal of Vacuum Science & Technology A,2009,27(1):20-28.

    • [41] BULTINCK E,BOGAERTS A,Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.

    • [42] BULTINCK E,MAHIEU S,DEPLA D,BOGAERTS A.Reactive sputter deposition of TiNx films,simulated with a particle-in-cell/Monte Carlo collisions model[J].New Journal of Physics,2009,11(2):023039.

    • [43] KONDO S,NANBU K.Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas.II.radio frequency-driven discharge[J].Journal of Vacuum Science & Technology A,2001,19(3):838-847.

    • [44] KADLEC S.Simulation of neutral particle flow during high power magnetron impulse[J].Plasma Processes and Polymers,2007,4(S1):S419-S423.

    • [45] BOHLMARK J,HELMERSSON U,VANZEELAND M,et al.Measurement of the magnetic field change in a pulsed high current magnetron discharge[J].Plasma Sources Science and Technology,2004,13(4):654-661.

    • [46] REVEL A,MINEA T,COSTIN C.2D PIC-MCC simulations of magnetron plasma in HiPIMS regime with external circuit[J].Plasma Sources Science and Technology,2018,27(10):105009.

    • [47] YANG Yuchen,ZHOU Xue,LIU J X,et al.Evidence for breathing modes in direct current,pulsed,and high power impulse magnetron sputtering plasmas[J].Applied Physics Letters,2016,108(3):034101.

    • [48] REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701.

    • [49] CHRISTIE D J.Target material pathways model for high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,2005,23(2):330-335.

    • [50] VLČEK J,KUDLÁČEK P,BURCALOVÁ K,et al.High-power pulsed sputtering using a magnetron with enhanced plasma confinement[J].Journal of Vacuum Science & Technology A,2007,25(1):42-47.

    • [51] VLČEK J,BURCALOVÁ K.A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering[J].Plasma Sources Science and Technology,2010,19(6):065010.

    • [52] RAADU M A,AXNÄS I,GUDMUNDSSON J T,et al.An ionization region model for high-power impulse magnetron sputtering discharges[J].Plasma Sources Science and Technology,2011,20(6):065007.

    • [53] ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:a global plasma model and experiments[J].Journal of Applied Physics,2015,117(20):203302.

    • [54] BRENNING N,HUO Chunqing,LUNDIN D,et al.Understanding deposition rate loss in high power impulse magnetron sputtering:I.Ionization-driven electric fields[J].Plasma Sources Science and Technology,2012,21(2):025005.

    • [55] GUDMUNDSSON J T,LUNDIN D,BRENNING N,et al.An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge[J].Plasma Sources Science and Technology,2016,25(6):065004.

    • [56] HUO Chunqing,RAADU M A,LUNDIN D,et al.Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses[J].Plasma Sources Science and Technology,2012,21(4):045004.

    • [57] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [58] HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.

    • [59] HUO Chunqing,LUNDIN D,RAADU M A,et al.On sheath energization and Ohmic heating in sputtering magnetrons[J].Plasma Sources Science and Technology,2013,22(4):045005.

    • [60] GUDMUNDSSON J T,LUNDIN D,STANCU G D,et al.Are the argon metastables important in high power impulse magnetron sputtering discharges[J].Physics of Plasmas,2015,22(11):113508.

    • [61] STANCU G D,BRENNING N,VITELARU C,et al.Argon metastables in HiPIMS:validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics[J].Plasma Sources Science and Technology,2015,24(4):045011.

    • [62] HUO Chunqing,LUNDIN D,GUDMUNDSSON J T,et al.Particle-balance models for pulsed sputtering magnetrons[J].Journal of Physics D:Applied Physics,2017,50(35):354003.

    • [63] BRENNING N,GUDMUNDSSON J T,RAADU M A,et al.A unified treatment of self-sputtering,process gas recycling,and runaway for high power impulse sputtering magnetrons[J].Plasma Sources Science and Technology,2017,26(12):125003.

    • [64] RUDOLPH M,BRENNING N,RAADU M A,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.

    • [65] ZHENG Bocong,WU Zhili,WU Bi,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901.

    • [66] CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Nano-second temporal particle behavior in high-power impulse magnetron sputtering discharge in a cylindrical cathode[J].Journal of Applied Physics,2020,127(2):023301.

    • [67] LUNDIN D,GUDMUNDSSON J T,BRENNING N,et al.A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model[J].Journal of Applied Physics,2017,121(17):171917.

    • [68] CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.

    • [69] CUI Suihan,WU Zhongzhen,LIN Hai,et al.Hollow cathode effect modified time-dependent global model and high-power impulse magnetron sputtering discharge and transport in cylindrical cathode[J].Journal of Applied Physics,2019,125(6):063302.

    • [70] WESTWOOD W D,MANIV S,SCANLON P J.The current-voltage characteristic of magnetron sputtering systems[J].Journal of Applied Physics,1983,54(12):6841-6846.

    • [71] 肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):185202.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):185202.(in Chinese)

    • [72] 崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):095203.(in Chinese)CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source[J].Acta Physica Sinica,2017,66(9):095203.(in Chinese)

    • [73] 崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):195204.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta Physica Sinica,2019,68(19):195204.(in Chinese)

    • [74] 李体军,崔岁寒,刘亮亮,等.筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.Li Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode[J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)

    • [75] 崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):055203.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):055203.(in Chinese)

  • 参考文献

    • [1] GUDMUNDSSON J T.Physics and technology of magnetron sputtering discharges[J].Plasma Sources Science & Technology,2020,29(11):113001.

    • [2] DEPLA D,MAHIEU S.Reactive sputter deposition[M].Berlin:Springer,2008.

    • [3] BOGAERTS A,BULTINCK E,KOLEV I,et al.Computer modelling of magnetron discharges[J].Journal of Physics D:Applied Physics,2009,42(19):194018.

    • [4] CHEN L,CUI S,TANG W,et al.Modeling and plasma characteristics of high-power direct current discharge[J].Plasma Sources Science and Technology,2020,29(2):025016.

    • [5] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface and Coatings Technology,1999,122(2):290-293.

    • [6] GUDMUNDSSON J T,SIGURJONSSON P,LARSSON P,et al.On the electron energy in the high power impulse magnetron sputtering discharge[J].Journal of Applied Physics,2009,105(12):123302.

    • [7] OKS E,ANDERS A.Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer[J].Journal of Applied Physics,2009,105(9):093304.

    • [8] ALAMI J,PERSSON P O Å,MUSIC D,et al.Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces[J].Journal of Vacuum Science & Technology A,2005,23(2):278-280.

    • [9] EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.

    • [10] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.

    • [11] LUNDIN D,MINEA T,GUDMUNDSSON J T.High power impulse Mmagnetron sputtering:fundamentals,technologies,challenges and applications[M].Amsterdam:Elsevier,2020.

    • [12] KWON U H,CHOI S H,PARK Y H,et al.Multi-scale simulation of plasma generation and film deposition in a circular type dc magnetron sputtering system[J].Thin Solid Films,2005,475(1-2):17-23.

    • [13] LIEBERMAN M A,LICHTENBERG A J.Principles of plasma discharges and materials processing[M].America:John Wiley and Sons Inc.,2005.

    • [14] SHERIDAN T E,GOECKNER M J,GOREE J.Model of energetic electron transport in magnetron discharges[J].Journal of Vacuum Science & Technology A,1990,8(1):30-37.

    • [15] MUSSCHOOT J,DEPLA D,BUYLE G,et al.Influence of the geometrical configuration on the plasma ionization distribution and erosion profile of a rotating cylindrical magnetron:a monte carlo simulation[J].Journal of Physics D:Applied Physics,2006,39(18):3989-3993.

    • [16] MUSSCHOOT J,DEPLA D,BUYLE G,et al.Investigation of the sustaining mechanisms of dc magnetron discharges and consequences for I-V characteristics[J].Journal of Physics D:Applied Physics,2007,41(1):015209.

    • [17] FAN Qihua,ZHOU Liqin,GRACIO J J.A cross-corner effect in a rectangular sputtering magnetron[J].Journal of Physics D:Applied Physics,2003,36(3):244-251.

    • [18] SHIDOJI E,NEMOTO M,NOMURA T.An anomalous erosion of a rectangular magnetron system[J].Journal of Vacuum Science & Technology A,2000,18(6):2858-63.

    • [19] SHIDOJI E,NEMOTO M,NOMURA T,et al.Three-dimensional simulation of target erosion in dc magnetron sputtering[J].Japanese Journal of Applied Physics,1994,33(7S):4281-4284.

    • [20] IDO S,KASHIWAGI M,TAKAHASHI M.Computational studies of plasma generation and control in a magnetron sputtering system[J].Japanese Journal of Applied Physics,1999,38(7S):4450-4454.

    • [21] RAUCH A,MENDELSBERG R J,SANDERS J M,et al.Plasma potential mapping of high power impulse magnetron sputtering discharges[J].Journal of Applied Physics,2012,111(8):083302.

    • [22] YUSUPOV M,BULTINCK E,DEPLA D,et al.Behavior of electrons in a dual-magnetron sputter deposition system:a Monte Carlo model[J].New Journal of Physics,2011,13(3):033018.

    • [23] BULTINCK E,BOGAERTS A.Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.

    • [24] COSTIN C,MINEA T M,POPA G.Electron transport in magnetrons by a posteriori Monte Carlo simulations[J].Plasma Sources Science and Technology,2014,23(1):015012.

    • [25] MINEA T M,COSTIN C,REVEL A,et al.Kinetics of plasma species and their ionization in short-HiPIMS by particle modeling[J].Surface and Coatings Technology,2014,255:52-61.

    • [26] BRENNING N,MERLINO R L,LUNDIN D,et al.Faster-than-Bohm cross-B electron transport in strongly pulsed plasmas[J].Physical Review Letters,2009,103(22):225003.

    • [27] LIEBERMAN M A.Model of plasma immersion ion implantation[J].Journal of Applied Physics,1989,66(7):2926-2929.

    • [28] EMMERT G A,HENRY M A.Numerical simulation of plasma sheath expansion,with applications to plasma-source ion implantation[J].Journal of Applied Physics,1992,71(1):113-117.

    • [29] XIA Zhongyi,CHAN Chung.Modeling and experiment on plasma source ion implantation[J].Journal of Applied Physics,1993,73(8):3651-3656.

    • [30] COSTIN C,MARQUES L,POPA G,et al.Two-dimensional fluid approach to the dc magnetron discharge[J].Plasma Sources Science and Technology,2005,14(1):168-176.

    • [31] KOLEV I,BOGAERTS A.Numerical models of the planar magnetron glow discharges[J].Contributions to Plasma Physics,2004,44(7-8):582-588.

    • [32] WOOD B P.Displacement current and multiple pulse effects in plasma source ion implantation[J].Journal of Applied Physics,1993,73(10):4770-4778.

    • [33] JIMENEZ F J,DEW S K.Comprehensive computer model for magnetron sputtering.I.Gas heating and rarefaction[J].Journal of Vacuum Science & Technology A,2012,30(4):041302.

    • [34] JIMENEZ F J,Dew S K,FIELD D J.Comprehensive computer model for magnetron sputtering.II.charged particle transport[J].Journal of Vacuum Science & Technology A,2014,32(6):061301.

    • [35] GALLIAN S,TRIESCHMANN J,MUSSENBROCK T,et al.Global modeling of HiPIMS systems:transition from homogeneous to self organized discharges[C/CD]//2014 IEEE 41st International Conference on Plasma Sciences(ICOPS)held with 2014 IEEE International Conference on High-Power Particle Beams(BEAMS),2014.

    • [36] BIRDSALL C K.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC[J].IEEE Transactions on Plasma Science,1991,19(2):65-85.

    • [37] NANBU K.Probability theory of electron-molecule,ion-molecule,molecule-molecule,and Coulomb collisions for particle modeling of materials processing plasmas and cases[J].IEEE Transactions on Plasma Science 2000,28(3):971-990.

    • [38] BOEUF J P,CHAUDHURY B.Rotating instability in low-temperature magnetized plasmas[J].Physical Review Letters,2013,111(15):155005.

    • [39] KOLEV I,BOGAERTS A.Calculation of gas heating in a dc sputter magnetron[J].Journal of Applied Physics,2008,104(9):093301.

    • [40] KOLEV I,BOGAERTS A.Numerical study of the sputtering in a dc magnetron[J].Journal of Vacuum Science & Technology A,2009,27(1):20-28.

    • [41] BULTINCK E,BOGAERTS A,Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films[J].New Journal of Physics,2009,11(10):103010.

    • [42] BULTINCK E,MAHIEU S,DEPLA D,BOGAERTS A.Reactive sputter deposition of TiNx films,simulated with a particle-in-cell/Monte Carlo collisions model[J].New Journal of Physics,2009,11(2):023039.

    • [43] KONDO S,NANBU K.Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas.II.radio frequency-driven discharge[J].Journal of Vacuum Science & Technology A,2001,19(3):838-847.

    • [44] KADLEC S.Simulation of neutral particle flow during high power magnetron impulse[J].Plasma Processes and Polymers,2007,4(S1):S419-S423.

    • [45] BOHLMARK J,HELMERSSON U,VANZEELAND M,et al.Measurement of the magnetic field change in a pulsed high current magnetron discharge[J].Plasma Sources Science and Technology,2004,13(4):654-661.

    • [46] REVEL A,MINEA T,COSTIN C.2D PIC-MCC simulations of magnetron plasma in HiPIMS regime with external circuit[J].Plasma Sources Science and Technology,2018,27(10):105009.

    • [47] YANG Yuchen,ZHOU Xue,LIU J X,et al.Evidence for breathing modes in direct current,pulsed,and high power impulse magnetron sputtering plasmas[J].Applied Physics Letters,2016,108(3):034101.

    • [48] REVEL A,MINEA T,TSIKATA S.Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas[J].Physics of Plasmas,2016,23(10):100701.

    • [49] CHRISTIE D J.Target material pathways model for high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A,2005,23(2):330-335.

    • [50] VLČEK J,KUDLÁČEK P,BURCALOVÁ K,et al.High-power pulsed sputtering using a magnetron with enhanced plasma confinement[J].Journal of Vacuum Science & Technology A,2007,25(1):42-47.

    • [51] VLČEK J,BURCALOVÁ K.A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering[J].Plasma Sources Science and Technology,2010,19(6):065010.

    • [52] RAADU M A,AXNÄS I,GUDMUNDSSON J T,et al.An ionization region model for high-power impulse magnetron sputtering discharges[J].Plasma Sources Science and Technology,2011,20(6):065007.

    • [53] ZHENG Bocong,MENG D,CHE H L,et al.On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering:a global plasma model and experiments[J].Journal of Applied Physics,2015,117(20):203302.

    • [54] BRENNING N,HUO Chunqing,LUNDIN D,et al.Understanding deposition rate loss in high power impulse magnetron sputtering:I.Ionization-driven electric fields[J].Plasma Sources Science and Technology,2012,21(2):025005.

    • [55] GUDMUNDSSON J T,LUNDIN D,BRENNING N,et al.An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge[J].Plasma Sources Science and Technology,2016,25(6):065004.

    • [56] HUO Chunqing,RAADU M A,LUNDIN D,et al.Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses[J].Plasma Sources Science and Technology,2012,21(4):045004.

    • [57] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [58] HUO C,LUNDIN D,RAADU M A,et al.On the road to self-sputtering in high power impulse magnetron sputtering:particle balance and discharge characteristics[J].Plasma Sources Science and Technology,2014,23(2):025017.

    • [59] HUO Chunqing,LUNDIN D,RAADU M A,et al.On sheath energization and Ohmic heating in sputtering magnetrons[J].Plasma Sources Science and Technology,2013,22(4):045005.

    • [60] GUDMUNDSSON J T,LUNDIN D,STANCU G D,et al.Are the argon metastables important in high power impulse magnetron sputtering discharges[J].Physics of Plasmas,2015,22(11):113508.

    • [61] STANCU G D,BRENNING N,VITELARU C,et al.Argon metastables in HiPIMS:validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics[J].Plasma Sources Science and Technology,2015,24(4):045011.

    • [62] HUO Chunqing,LUNDIN D,GUDMUNDSSON J T,et al.Particle-balance models for pulsed sputtering magnetrons[J].Journal of Physics D:Applied Physics,2017,50(35):354003.

    • [63] BRENNING N,GUDMUNDSSON J T,RAADU M A,et al.A unified treatment of self-sputtering,process gas recycling,and runaway for high power impulse sputtering magnetrons[J].Plasma Sources Science and Technology,2017,26(12):125003.

    • [64] RUDOLPH M,BRENNING N,RAADU M A,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.

    • [65] ZHENG Bocong,WU Zhili,WU Bi,et al.A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges[J].Journal of Applied Physics,2017,121(17):171901.

    • [66] CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Nano-second temporal particle behavior in high-power impulse magnetron sputtering discharge in a cylindrical cathode[J].Journal of Applied Physics,2020,127(2):023301.

    • [67] LUNDIN D,GUDMUNDSSON J T,BRENNING N,et al.A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model[J].Journal of Applied Physics,2017,121(17):171917.

    • [68] CUI Suihan,LIU Liangliang,JIN Zheng,et al.Characteristics of continuous high power magnetron sputtering(C-HPMS)in reactive O2/Ar atmospheres[J].Journal of Applied Physics,2021,129(24):243301.

    • [69] CUI Suihan,WU Zhongzhen,LIN Hai,et al.Hollow cathode effect modified time-dependent global model and high-power impulse magnetron sputtering discharge and transport in cylindrical cathode[J].Journal of Applied Physics,2019,125(6):063302.

    • [70] WESTWOOD W D,MANIV S,SCANLON P J.The current-voltage characteristic of magnetron sputtering systems[J].Journal of Applied Physics,1983,54(12):6841-6846.

    • [71] 肖舒,吴忠振,崔岁寒,等.筒形高功率脉冲磁控溅射源的开发与放电特性[J].物理学报,2016,65(18):185202.XIAO Shu,WU Zhongzhen,CUI Suihan,et al.Cylindric high power impulse magnetron sputtering source and its discharge characteristics[J].Acta Physica Sinica,2016,65(18):185202.(in Chinese)

    • [72] 崔岁寒,吴忠振,肖舒,等.筒内高功率脉冲磁控放电的电磁控制与优化[J].物理学报,2017,66(9):095203.(in Chinese)CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source[J].Acta Physica Sinica,2017,66(9):095203.(in Chinese)

    • [73] 崔岁寒,吴忠振,肖舒,等.外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究[J].物理学报,2019,68(19):195204.CUI Suihan,WU Zhongzhen,XIAO Shu,et al.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field[J].Acta Physica Sinica,2019,68(19):195204.(in Chinese)

    • [74] 李体军,崔岁寒,刘亮亮,等.筒形溅射阴极的磁场优化及其高功率放电特性研究[J].物理学报,2021,70(4):045202.Li Tijun,CUI Suihan,LIU Liangliang,et al.Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode[J].Acta Physica Sinica,2021,70(4):045202.(in Chinese)

    • [75] 崔岁寒,郭宇翔,陈秋皓,等.闭合磁场的作用原理与布局逻辑[J].物理学报,2022,71(5):055203.CUI Suihan,GUO Yuxiang,CHEN Qiuhao,et al.Working principle and layout logic of closed magnetic field in sputtering[J].Acta Physica Sinica,2022,71(5):055203.(in Chinese)

  • 手机扫一扫看