en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱祥瑞,男,1998年出生,硕士研究生。主要研究方向为表面工程。E-mail:841993299@qq.com

通讯作者:

李刘合,男,1970年出生,博士,教授。主要研究方向为表面工程。E-mail:liliuhe@buaa.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220114002

参考文献 1
LI C L,WANG L G,SHANG L L,et al.Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD[J].Ceramics International,2021,47(20):29285-29294.
参考文献 2
PARK G D,YANG J H,et al.Ultra-high corrosion resistance of Al-Mg-Si film on steel sheet formed by PVD Mg coating and heat treatment[J].Corrosion Science,2021,192:109829.
参考文献 3
孔德军,付永忠,吴永忠,等.PVD 法制备TiN涂层界面特征与摩擦磨损性[J].真空科学与技术学报,2012,32:1078-1083.KONG Dejun,FU Yongzhong,WU Yongzhong,et al.Interfacial characteristics and Tribological Properties of TiN coatings prepared by PVD method[J].Journal of Vacuum Science and technology,2012,32:1078-1083.(in Chinese)
参考文献 4
李健,韦习成.物理气相沉积技术的新进展[J].材料保护,2000,1:91-94.LI Jian,WEI Xicheng.New development of physical vapor deposition technology[J].Material Protection,2000,1:91-94.(in Chinese)
参考文献 5
凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展 [J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996,1:1-12.(in Chinese)
参考文献 6
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.
参考文献 7
CAPEK J,HALA M,ZABEIDA O,et al.Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field[J].Journal of Applied Physics,2012,111(2):023301.
参考文献 8
HE Y,LIANG M,SZOTT M M,et al.Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering[J].Plasma Sources Science & Technology,2013,22(4):045012.
参考文献 9
LIN J L,WEI R H.A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance[J].Surface & Coatings Technology,2018,338:84-95.
参考文献 10
GRECZYNSKI G,HULTMAN L.Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering [J].Vacuum,2016,124:1-4.
参考文献 11
GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341.
参考文献 12
李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53:84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong,et al.Enhancement of high-speed deposition characteristics of HiPIMS by high ionization rate electro-magnetic field[J].Journal of Harbin Institute of Technology,2021,53:84-92.(in Chinese)
参考文献 13
王玉龙,张豪,冉小玉,等.偏压对磁控溅射TiN涂层微观结构及性能的影响[J].江西科技师范大学学报,2019(6):36-39.WANG Yulong,ZHANG Hao,RAN Xiaoyu,et al.Effect of bias voltage on microstructure and properties of magnetron sputtering TiN coating[J].Journal of Jiangxi Normal University of Science and Technology,2019:36-39.(in Chinese)
参考文献 14
林松盛,高迪,苏一凡,等.偏压对高功率脉冲磁控溅射DLC膜层结构及性能的影响[J].材料研究与应用,2020,14:1-8.LIN Songsheng,GAO Di,SU Yifan,et al.Effect of bias voltage on the structure and properties of DLC films deposited by high power pulsed magnetron sputtering[J].Material research and Application,2020,14:1-8.(in Chinese)
参考文献 15
HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.
参考文献 16
AVINO F,SUBLET A,TABORELLI M.Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse [J].Plasma Sources Science and Technology,2019,28(1):01LT03.
参考文献 17
BRITUN N,MICHIELS M,GODFROID T,et al.Ion density evolution in a high-power sputtering discharge with bipolar pulsing[J].Applied Physics Letters,2018,112(23):234103.
参考文献 18
KERAUDY J,VILOAN RPB,RAADU MA,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition [J].Surface and Coatings Technology,2019,359:433-437.
参考文献 19
HIPPLER R,CADA M,HUBICKA Z.Time-resolved Langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge [J].Applied Physics Letters,2020,116(6):064101.
参考文献 20
HIPPLER R,CADA M,HUBICKA Z.Time-resolved diagnostics of a bipolar HiPIMS discharge [J].Journal of Applied Physics,2020,127(20):203303.
参考文献 21
TIRON V,VELICU I L.Understanding the ion acceleration mechanism in bipolar HiPIMS:the role of the double layer structure developed in the after-glow plasma [J].Plasma Sources Science and Technology,2020,29(1):015003.
参考文献 22
YU M,ZHANG J Z,LI D X,et al.Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD[J].Surface & Coatings Technology,2006,201(3-4):1243-1249.
参考文献 23
WU B H,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films prepared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.
参考文献 24
VELICU I L,IANOS G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359:97-107.
参考文献 25
VILOAN R P B,HELMERSSON U,LUNDIN D.Copper thin films deposited using different ion acceleration strategies in HiPIMS[J].Surface and Coatings Technology,2021,422:127487.
参考文献 26
CYRIAC F,YI TX,POORNACHARY SK,et al.Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces[J].Tribology International,2021,164:107199.
参考文献 27
MENG K K,ZHANG Z Y,TAN X,et al.Microstructure evolution and wettability regulation of air-exposed hydrogen-free diamond-like carbon films[J].Diamond and Related Materials,2021,120:108609.
参考文献 28
SHAH N M R,SONG J G,YEO C D.Thermomechanical properties and frictional contact behavior of oxygen doped DLC film through molecular dynamics simulation[J].Diamond and Related Materials,2021,120:108653.
参考文献 29
ZUO S W,MIAO Q,LIANG W P,et al.A study on the mechanical performance and medium temperature tribological behavior of plasma nitrocarburizing/TiAlSiN/DLC composite coating[J].Surfaces and Interfaces,2021,27:101489.
参考文献 30
MA Z Y,HUANG R X,YUAN X S,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.
参考文献 31
LI L,WANG J K,ZHAO G F,et al.Percutaneous DLC-Based total cavopulmonary assist achieves 96-Hour survival in lethal cavopulmonary failure sheep[J].Journal of the American College of Cardiology,2021,78(5):538-540.
参考文献 32
SANTIAGO J A,FERNANDEZ-MART I,KOZAK T,et al.The influence of positive pulses on HiPIMS deposition of hard DLC coatings[J].Surface and Coatings Technology,2019,358:43-49.
参考文献 33
TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494:871-879.
参考文献 34
GARCIA J A,RIVERO P J.,BARBA E,et al.A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses[J].Metals,2020,10(2):174.
参考文献 35
LI S D,ZHOU D Y,SHI Z X,et al.Involvement of unsaturated switching in the endurance cycling of Si-doped HfO(2)ferroelectric thin films[J].Advanced Electronic Materials,2020,6(8):2000264.
参考文献 36
KIM T S,PARK S S,LEE B T.Characterization of nano-structured TiN thin films prepared by RF magnetron sputtering[J].Materials Letters,2005,59(29-30):3929-3932.
参考文献 37
郑彤,王霄.牙科合金表面涂镀 TiN/TiAlN 薄膜的研究进展[J].现代口腔医学杂志,2016,30:303-308.ZHENG Tong,WANG Xiao.Research progress of TiN/TiAlN coating on dental alloys[J].Journal of Modern Stomatology,2016,30:303-308.(in Chinese)
参考文献 38
张广安,王立平,刘千喜,等.CrN 基复合薄膜的结构及摩擦磨损性能研究[J].摩擦学学报,2011,31:181-186.ZHANG Guangan,WANG Liping,LIU Qianxi,et al.Study on structure and friction and wear properties of CrN based composite films[J].Journal of Tribology,2011,31:181-186.(in Chinese)
参考文献 39
徐哲,席慧智,阮霞.磁控溅射TiN薄膜工艺参数对显微硬度的影响[J].应用科技,2007,34(5):1-3.XU Zhe,XI Huizhi,RUAN Xia.Effect of process parameters on microhardness of TiN films prepared by magnetron sputtering[J].Applied Technology,2007,34(5):1-3.(in Chinese)
参考文献 40
VILOAN RPB,GU Jiabin,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.
参考文献 41
BATKOVA S,CAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface and Coatings Technology,2020,393:125773.
参考文献 42
AVINO F,FONNESU D,KOETTIG T,et al.Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse[J].Thin Solid Films,2020,706:138058.
参考文献 43
TIRON V,BULAI G,COSTIN C,et al.Growth and characterization of W thin films with controlled Ne and Ar contents deposited by bipolar HiPIMS[J].Nuclear Materials and Energy,2021,29:101091.
参考文献 44
SERGIEVSKAVA A,OREILLY A,CHAUVIN A,et al.Magnetron sputter deposition of silver onto castor oil:the effect of plasma parameters on nanoparticle properties[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,615:126286.
参考文献 45
DU H,ZANASKA M,BRENNING N,et al.Bipolar HiPIMS:the role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films[J].Surface and Coatings Technology,2021,416:127152.
目录contents

    摘要

    双极高功率脉冲磁控溅射技术(BP-HiPIMS)在保持靶材粒子高离化率的同时,通过调节“泵出”脉冲电压,控制离子能量和流量,从而改善薄膜的性能,正在得到工业界的广泛关注。在无法施加基体偏压的绝缘基体或薄膜的制备上, BP-HiPIMS 拥有更加显著的优势,同时基体接地可以克服悬浮基体快速充电的问题,从而有助于沉积离子向下游扩散增能。 BP-HiPIMS 选择相对较短的正负脉冲间隔时间、负脉冲持续时间以及较高的正脉冲电压幅值,有利于优化薄膜的性能。近年来国内外学者应用 BP-HiPIMS 技术制备薄膜取得了显著的成果。相对于常规 HiPIMS,BP-HiPIMS 所制备的铜膜(Cu)、类金刚石碳基薄膜(DLC)、氮化钛薄膜(TiN)、氮化铬薄膜(CrN)等都表现出更加优异的力学性能,而不同工艺下薄膜沉积速率的变化在不同试验中存在分歧,其影响机制有待进一步探索。

    Abstract

    As an extensive attention in the industry, the bipolar pulsed high power impulse magnetron sputtering (BP-HiPIMS) is carried out at a high ionization rate of target particles and high density plasma vapor, and employs a "pump out" positive pulse voltage to control the energy and flux of ions, in this way to improve the properties of deposited films. BP-HiPIMS has a more significant advantage in the preparation of insulating substrates or films which cannot be biased, while the problem of rapid charging of floated substrate can be overcome by the substrate grounded, thus contributing to the diffusion and energy enhancement of deposited ions to the downstream. The application of BP-HiPIMS with relatively short interval of positive and negative pulse, negative pulse duration and high positive pulse voltage amplitude is conductive to optimizing the properties of the films. In recent years, the focus is paid on the various films with relatively excellent properties prepared via the advanced BP-HiPIMS approach. In summary, compared with the films treated by the conventional HiPIMS discharge, the mechanical properties of the Cu, DLC, TiN, CrN films prepared by the BP-HiPIMS are effectively improved. However, the increase in film deposition rate is divergent in different experiments which needs to be further explored.

  • 0 前言

  • 物理气相沉积(Physics vapor deposition,PVD) 技术以其低工艺温度、低污染以及可镀覆的薄膜材料种类丰富等优点,在耐腐蚀薄膜、超硬薄膜、光学薄膜、耐摩擦薄膜以及复合多层薄膜的制备等领域都得到广泛的应用[1-4]。PVD 技术主要包括蒸镀技术、阴极电弧沉积技术和磁控溅射技术,其中阴极电弧沉积技术兼具高的沉积速率以及较高靶材粒子离化率,但工艺过程中大液滴的产生,影响了薄膜的致密性和均匀性[5]。磁控溅射技术以其沉积温度低、制备薄膜致密、表面光滑等优点在现代先进材料表面改性上具有广泛的应用。

  • 传统的直流磁控溅射(Direct current magnetron sputtering,DCMS)在放电过程中,腔室内的金属粒子离化率很低,靶材离子温度低,膜基结合力较差。通过将直流磁控溅射技术搭配脉冲功率技术发展起来的高功率脉冲磁控溅射技术(High power impulse magnetron sputtering,HiPIMS)具有很高峰值功率(高于平均功率两个数量级)[6]。HiPIMS 技术能得到高密度等离子体,溅射的靶材粒子具有较高的离化率(甚至超过 90%),用于沉积的离子具有较高的峰值能量,离子加速获得额外能量撞击基体表面对于提升薄膜的硬度、致密性以及提高膜基结合力等方面都具有很大的优势[7]。然而在相同的平均功率下,HiPIMS 的沉积速率低于 DCMS,这也成为HiPIMS技术在工程应用中的主要局限性问题,因而分析 HiPIMS 沉积速率较低的原因并探索提高沉积速率的方法是该项技术发展过程中的一个重要难题。HiPIMS 较低的沉积速率主要缘于溅射原子的回吸效应、溅射产额增加与离子能量增加的非线性变化、磁场对金属离子的约束、离子的传输机制以及长脉冲下的气体稀薄效应等因素[8-10]

  • 对于 HiPIMS 的研究与优化主要致力于通过改变磁场结构、工作气压、基体偏压等参数提高其沉积速率和薄膜的力学性能。GANESAN 等[11]使用 HiPIMS 制备 HfO2 薄膜时,通过改变工作气压控制等离子体密度和离化率,进一步控制薄膜表面的离子通量和能量,达到优化薄膜性能的效果。李春伟等[12]使用电-磁场协同增强高功率脉冲磁控溅射技术 ( Electromagnetic field high power impulse magnetron sputtering,(E-MF)HiPIMS),钒靶平板工件基体离子电流密度增加 6 倍,沉积速率增加约 30%,铜靶放电时,筒状工件基体离子电流密度增加 12 倍,沉积速率增加约 50%。王玉龙等[13-14]分别研究了基体偏压对 HiPIMS 制备 TiN 和类金刚石碳基薄膜(Darmond like carbon,DLC)薄膜的影响,均发现适当增加基体偏压有助于改善薄膜表面的光洁度和致密性。

  • 常规的 HiPIMS 技术的溅射离子处于热运动状态,在高电阻率基体或涂层的镀膜过程中,难以对粒子在基体上的形核迁移生长进行有效的控制,进而限制了薄膜微观结构的改善和性能的提升。2013 年,北航先进表面涂层技术实验室率提出“带有离子泵出功能”的双极高功率脉冲磁控溅射技术 (Bipolar high power impulse magnetron sputtering, BP-HiPIMS)涂层制备新方法,利用大功率负脉冲产生高密度等离子体,结合正脉冲提升等离子体电位,优化沉积离子能量和流量。试验和模拟表明, BP-HiPIMS 放电技术可实现将靶材离子从靶表面附近泵出,且在离子泵出过程中,到达基片的能量为正脉冲电压乘以离子荷电数,因此该方法能够主动控制离子能量[15],可以改善薄膜的密度,薄膜与基体的结合力,膜内压应力以及薄膜的硬度、韧性、耐磨性等力学性能。该方法一经报道,就得到国内外学者和工业界的广泛关注。

  • 鉴于高端设备、航空航天领域、电子行业对高性能薄膜的迫切需求,BP-HiPIMS 在提高等离子体中粒子离化率以及调控沉积离子能量上的突出优势,使其有望成为薄膜制备主流技术。国内外学者对该技术制备薄膜的效果仍处于初步探索阶段,本综述将结合团队对 BP-HiPIMS 技术的研究,总结国内外近年来 BP-HiPIMS 技术镀膜特性的成果,并对该项技术未来的发展趋势和亟待解决的问题进行讨论与展望。

  • 1 BP-HiPIMS 技术的基本原理

  • 1.1 BP-HiPIMS 的放电特征

  • BP-HiPIMS 放电模式下,通过大功率负脉冲提高腔室内等离子体的密度,再迅速施加反向的正脉冲以抬升等离子体电位。离子通过电场作用向基体运动的过程中获得增能,实现高能离子轰击基体,从而有效提高薄膜的性能。研究 BP-HiPIMS 典型的电流电压曲线,对于深入理解放电机制、进一步探索粒子的传输机制特点具有重要的指导意义[16]

  • BP-HiPIMS 电流电压曲线总体上可分为三个主要阶段(图1a),依时间分别为负脉冲区(τ)、死区(τ±)、正脉冲区(τ+)。负脉冲阶段与常规的 HiPIMS 具有相似的放电特性,电流随着负脉冲的施加呈现指数变化趋势,在负脉冲结束时达到峰值。介于稳定正脉冲和负脉冲阶段的几微秒称为死区,在这一阶段电流随电压的迅速改变发生断崖式变化。正脉冲持续稳定施加的区域称为正脉冲区,靶前的电场发生改变导致了反向电流的产生。

  • 正脉冲阶段在电场作用下可以实现离子的有效增能从而优化薄膜的性能,同时反向正脉冲的存在减轻了靶材离子的回吸效应,对提升沉积速率具有重要的作用。BRITUN 等[17]对正脉冲阶段电流变化及峰值的影响因素展开研究(图1b~1e)。正脉冲 I+呈现两个峰值,其中一个靠近于正脉冲的起始时间,可能是在等离子体负脉冲末端阴极极性转换的瞬间,由靶表面附近区域电子运动形成。该峰值主要随负脉冲时间 τ和负脉冲峰值电流 I-P 的增加而升高(在更长的负脉冲时间下,会产生更多的电子),随着死区时间 τ±的增加而降低(死区时间的增加使得产生的电子在更长的时间下逐渐消散),但对正脉冲电压大小改变并无明显的变化。

  • 另一个较宽的峰值出现于正脉冲持续的过程中,可能是磁约束下的电子距离阴极较远,需要更长的时间运动到阴极表面,因此呈现出了一个滞后的宽峰。该峰值随正脉冲电压 V+、死区时间 τ±以及负脉冲峰值电流 I-P 的增加而升高,对负脉冲持续时间 τ的改变发生的变化并不明显。总体上看,指向基材方向的电流会随着死区时间 τ±减小和负脉冲峰值电流 I-P 的增高而成比例的提高,而同负脉冲持续时间 τ的关联不明显。

  • 图1 典型的 BP-HiPIMS 的电流电压曲线(a),正脉冲电压 V+(b)、死区时间 τ±(c)、负脉冲区持续时间 τ(d)和负脉冲峰值电流I-P(e)对正脉冲阶段电流 I+变化的影响,f = 80 Hz[17]

  • Fig.1 General current and voltage waveforms in the BPH case (a) , along with the influence of V+ (b) , τ± (c) , τ (d) , and I-P (e) on the I+ current shape during the positive voltage pulse. In the case of (e) , f = 80 Hz

  • 1.2 BP-HiPIMS 的增能机制

  • BP-HiPIMS 放电过程中高能离子作用于基体上的生长薄膜能够优化薄膜的结构和性能。为控制离子能量和流量的高低,理解局部等离子体密度和电位并探究离子的增能机制具有重要的意义。

  • 施加正脉冲后,随着靶前电磁场结构的改变,电子在电场作用下向靶表面运动,离开磁阱范围,造成靶前离化区域的收缩。BRITUN 等[17]利用激光诱导荧光成像技术观察不同 BP-HiPIMS 正脉冲下,靶前区域 Ti+ 密度随时间的变化情况,延迟时间从正脉冲施加开始计算,其中所有图像离子密度数值均做归一化处理(图2)。在前 40 μs 内,不同正脉冲的 Ti+ 的密度变化相似,离子对电场的反应不敏感。在 100 μs 后,不同正脉冲电压下的离子分布情况出现显著的差异,更高的正脉冲电压表现出更快的离子加速和离子密度的再分布。相对于常规的 HiPIMS,300 V 正脉冲条件下的 BP-HiPIMS 在离子密度再分布完成时的整体离子密度衰减了 1~2 个数量级。靶前离子密度的衰减也印证了放电离子在垂直于靶材方向的显著加速。

  • 图2 阴极上方 Ti+ 时间分辨的演化图像,其中正脉冲电压为 0 V,100 V,300 V,负脉冲峰值电流为 26 A,频率为 300 Hz,负脉冲持续时间为 20 μs,正负脉冲间隔时间为 10 μs,延迟时间从正脉冲施加开始计算,其中所有图像离子密度数值均做归一化处理[17]

  • Fig.2 Time-resolved Ti+ ground state density evolution above the cathode at V+ = 0 V, 100 V, and 300 V. I-P = 26 A, f = 300 Hz, τ = 20 μs, and τ±= 10 μs. The delay time starting from the plasma pulse beginning is shown on the left. All images are normalized to one value. Logarithmic color space is used

  • 等离子体的空间电位 Vp 的分布直接影响的空间离子的输运,空间等离子体电位差可以促进离子的增能。一方面 Vp 的梯度分布可以使得离子通过获得加速,另一方面在基体鞘层附近的电位差也能够促进离子的增能[18]。HIPPLER 等[19-20]对 BP-HiPIMS 悬浮电位的时间演化进行了诊断,+60 V 正脉冲阶段下的悬浮电位呈现两个不同的阶段,悬浮电位迅速上升达到+55 V 后,紧接着在 38 V 后保持相对稳定(图3)。同时时间分辨的质谱检测表现了三种不同的能峰(0~25 eV 的低能峰、约 40 eV、约 57 eV),且高能峰仅在正脉冲阶段出现,57 eV 的能峰出现在正脉冲的初始阶段,持续约 50 μs,该能峰随着时间延长逐渐被 40 eV 的能峰所取代,且强度随时间逐渐降低(图4)。由此 HIPPLER 等[19-20]提出了两种正脉冲阶段高能离子的形成机制。首先负脉冲阶段阴极附近区域被约束的离子在正脉冲开始时,在电场的作用下迅速被释放加速,第二种机制是正脉冲阶段产生的二次放电形成的高能粒子。

  • 图3 BP-HiPIMS 放电过程中,不同正脉冲电压及距离磁场阴极不同距离处的悬浮电位随时间的变化情况,氩气气压 1.85 Pa,气流速率 40 mL / min,放电功率 100 W[20]

  • Fig.3 Floating potential vs time for a HiPIMS plasma in argon. Argon gas pressure p = 1.85 Pa, gas flow rate40 mL / min, discharge power 100 W

  • 图4 BP-HiPIMS 放电过程中不同电压下的 Ar+ 的离子能量分布(氩气气压为 1.85 Pa,气流速率为 40 mL / min,放电功率为 100 W)[20]

  • Fig.4 Ion energy distribution of Ar+ (m / z = 40) ions for a bipolar HiPIMS discharge with a positive pulse of different voltage (Argon gas pressure p = 1.85 Pa, gas flow rate40 mL / min, discharge power P = 100 W)

  • TIRON 等[21]应用发射探针探究了 BP-HiPIMS 等离子体电位的时空演化,通过能量分辨的质谱分析探究了脉冲结构对于离子能量分布的影响情况,提出后辉等离子体中形成的助于离子增能的双层膜结构(图5)。施加持续时间 10 μs,幅值为−900 V 的负脉冲搭配持续时间 40 μs,幅值为+200 V 的正脉冲的 BP-HiPIMS,双层膜结构的形成发生在反向正脉冲施加后的前 10 μs。正脉冲施加 18 μs 后,跑道轴向不同距离处等离子体电位差几乎为 0,双层膜结构破坏,剩余的离子仅仅在基体鞘层处实现离子的增能(图6)。因此,对与导电的接地基体上金属薄膜的制备,由于较高的等离子体-基体电位差,延长正脉冲的持续时间可以提高金属离子的增能。而对于绝缘基体或薄膜的制备,由于基体较高的悬浮电位形成,基体与等离子体之间的电位差很低,不能实现有效的离子增能,此时离子的增能效应主要发生于正脉冲施加后的双层膜结构,因此施加短的正脉冲对于绝缘基体或薄膜的制备更加高效。同时,随着反向正脉冲幅值的增大(50~200 V),双层膜结构的维持时间延长,而较低的正脉冲不足以形成一个强大稳定的双层膜结构,即低的正脉冲下,离子增能主要发生在基体前的等离子体鞘层压降。

  • 图5 BP-HiPIMS(正脉冲持续时间为 10 μs,振幅为+200 V)反向脉冲期间不同时间下离子的位置及双层膜结构,字母 A 和 B 代表电离区(磁阱)内外反向脉冲开始时的电离区[21]

  • Fig.5 Chart-flow of BP-HiPIMS (positive pulse duration of 10 μs and amplitude of +200 V) , illustrating the position of ions and DL structure at different times during the reverse pulse. The letters A and B mark the ion regions located at the onset of reverse pulse inside and outside of the ionization region (magnetic trap)

  • 图6 BP-HiPIMS(负脉冲持续时间为 10 μs,幅值为−900 V 正脉冲持续时间为 40 μs,幅值为+200 V)不同延迟时间下等离子电位的轴向分布(发射探针沿着跑道正上方,平行于中轴的一条线放置)[21]

  • Fig.6 Axial distribution of the plasma potential plotted at different delay times during BP-HiPIMS with negative pulse duration of 10 μs and amplitude of −900 V and positive pulse duration of 40 μs and amplitude of +200 V. The emissive probe measurements were performed along a single line, parallel to the central axis, directly above the racetrack

  • 2 BP-HiPIMS 制备薄膜的应用

  • 2.1 Cu 膜

  • 在超大规模的集成电路应用等相关行业中,Cu 以其高化学稳定性、低电阻率和优异的抗电迁移性能成为了硅基半导体器件金属化的新材料[22]。但由于 Cu 和 Si 在理化性质上存在较大的差异,得到致密、低残余应力以及优异膜基结合力的薄膜是较为困难的。BP-HiPIMS 技术通过调控泵出离子的能量大小可以控制薄膜在基体上的生长过程,为 Cu 薄膜的制备开辟了新的方法。

  • WU 等[23]应用 BP-HiPIMS 技术在 Si 基体上制备了 Cu 薄膜,相对于传统的 HiPIMS,施加反向正脉冲电压后的薄膜晶粒得到了明显的细化,在一定范围内增大正脉冲电压持续时间和正脉冲电压幅值可进一步细化晶粒。VELICU 等[24]在此基础上探究了 BP-HiPIMS 不同正脉冲电压幅值下(0 V、50 V、 100 V、150 V、200 V)在 Si 基体制备 Cu 膜的放电过程及薄膜性能。在 200 V 正脉冲电压下,相对于常规的 HiPIMS,薄膜的硬度提高约 18 %,且结合力得到明显的改善(图7)。

  • 图7 单极和双极 HiPIMS 在 Si 基体上沉积 Cu 膜的划痕轨迹图[24]

  • Fig.7 Optical images showing a panoramic view of the scratch tracks performed on copper thin films deposited on silicon substrates by mono-and bipolar HiPIMS

  • VILOAN 等[25]将 BP-HiPIMS 技术与施加基体负偏压的 HiPIMS 技术进行比较(图8),四种沉积方案分别为悬浮基体的 BP-HiPIMS、接地基体的 BP-HiPIMS、持续负偏压的 HiPIMS、同步负偏压的 HiPIMS)。悬浮基体 BP-HiPIMS 技术制备 Cu 膜的晶向同传统 HiPIMS 未发生明显改变,没有观察到明显的离子加速过程,而其他三种沉积方案下制备的 Cu 膜都存在明显的晶向改变即存在明显的离子加速过程。持续负偏压的 HiPIMS 技术下,所有负脉冲阶段产生的离子都得到显著加速,而接地基体的 BP-HiPIMS 与同步负偏压的 HiPIMS 技术下,只有在施加正脉冲或负偏压过程中到达基体鞘层的离子才能得到加速。对于接地基体的 BP-HiPIMS,成膜的性能与施加同步基体偏压时相差不大,其中相同电压下薄膜的电阻率略低于施加负偏压的 HiPIMS(图9)。随着正脉冲电压提高,薄膜的电阻率进一步提高,这是不同条件下薄膜沉积速率不同,从而导致膜厚的变化,进而影响薄膜的导电性。

  • 关于 Cu 膜的沉积速率,目前学界普遍认为, BP-HiPIMS 施加正脉冲实现了离子的增能,高能离子轰击基体使得薄膜表面的原子被溅射出来,这种再溅射效应会在一定程度上降低薄膜的沉积速率。而 WU[23]等应用了幅值 50 V,持续时间 100 μs 的反向正脉冲电压,实现了薄膜沉积速率同常规 HiPIMS 提高约 18 %,这或许是由磁场结构的差异造成的,具体原因还有待考证。

  • 图8 四种沉积方案电压示意图,其中负脉冲持续时间为 20 μs,正脉冲和脉冲同步负偏压持续时间为 200 μs [25]

  • Fig.8 Schematic of the deposition schemes with the length of the HiPIMS pulse20 μs, the positive pulse and the pulsed synchronized bias 200 μs

  • 图9 四种沉积方案下薄膜电阻率随正脉冲电压或负偏压的变化关系[25]

  • Fig.9 Variation of film resistivity with positive pulse voltage or negative bias voltage under four deposition schemes

  • 2.2 DLC 膜

  • 类金刚石碳基薄膜(Diamond like carbon based films,DLC)以其高硬度和良好的摩擦磨损性能在制造业、生物医学及微电子学上都具有广泛的应用前景[26-29]。DLC 薄膜的性能很大程度上取决于 sp 3 和 sp 2 杂化键的比例,sp 3 含量的提高可以增大薄膜的致密度和硬度,并影响薄膜的弹性模量和残余应力[30-31]。传统的 HiPIMS 虽然提供了高密度的等离子体和高度离化的碳离子,但难以控制薄膜中 sp 3 的含量。应用 BP-HiPIMS 技术制备 DLC 薄膜,通过调控施加的正脉冲电压和持续时间可以改变碳离子的能量和通量,进而控制薄膜中 sp 3 含量,影响薄膜的力学性能。

  • SANTIAGO 等[32]采用了不同梯度的正脉冲电压在镜面抛光的 M2 上钢材制备 DLC 薄膜,随着正脉冲电压的升高,薄膜的硬度和弹性模量显著提高,残余压应力呈现增大的趋势。500 V 的正脉冲电压下,同传统的 HiPIMS 相比,薄膜的硬度提高约 2 倍,弹性模量提高约 1.5 倍。TIRON 等[33]在低电阻率的镜面抛光基体 Si 上应用 BP-HiPIMS 技术制备 DLC 薄膜。同传统的 HiPIMS 相比,900 V 负脉冲电压下,施加+ 200 V 的正脉冲电压时,薄膜中 sp 3含量得到明显的增加(图10),薄膜的致密度提高、表面更加光滑(图11)、硬度高(达到 23 GPa),具有良好的抗弹性形变失效和抗塑性变形的能力。 GARCIA 等[34]在 1.237 9 钢上应用 BP-HiPIMS 技术分别制备了四面体非晶碳膜(ta-C)和碳化钨-碳薄膜(WC:C),二者都表现出了高硬度、高抗塑性变形能力、高结合力和很低的摩擦学因数,其中 ta-C 薄膜的摩擦因数较基体降低了约两个数量级。

  • 图10 HiPIMS 与 BP-HiPIMS 技术所制备 DLC 薄膜的 sp3 含量、D 峰与 G 峰的强度比[33]

  • Fig.10 sp3 content and intensity ratio of D and G peaks, I (D) / I (G) , versus target voltage during HiPIMS and BP-HiPIMS

  • 图11 HiPIMS 与 BP-HiPIMS 技术所制备 DLC 薄膜的表面形貌[33]

  • Fig.11 3D AFM images of DLC thin films deposited with monopolar and bipolar HiPIMS

  • 应用 BP-HiPIMS 技术制备 DLC 薄膜的沉积速率随正脉冲电压的增大呈现先减小后增大的趋势 (图12)[32],SANTIAGO 将这种变化解释为两种因素协同作用的结果。一方面,较高的离子能量导致了涂层结构的致密化,导致了沉积速率的降低。另一方面,增加脉冲电压导致了更高的离子通量,促进了离子在薄膜上的生长,从而增加了沉积速率。因此薄膜结构的致密化解释了当正脉冲电压低于 300 V 时沉积速率的降低。而对于更高的正脉冲电压,离子通量的增加可能对物质进一步结合到涂层起更重要的作用。同时高能离子轰击生长薄膜产生的再溅射效应在一定程度上降低了沉积速率,多种因素协同作用表现为在 300 V 时薄膜的沉积速率最低。

  • 图12 BP-HiPIMS 技术制备 DLC 薄膜的沉积速率和残余应力同正脉冲电压的关系[32]

  • Fig.12 Compressive residual stresses and deposition rates as a function of positive overshoot voltages

  • 2.3 TiN / CrN 薄膜

  • 过渡金属氮化物如 TiN、CrN 等薄膜硬度高,耐腐蚀且具有良好的摩擦磨损性能,在刀具涂层、生物医学和航空工业中具有广泛的应用前景[35-38]。 TiN 薄膜中含有 Ti-Ti 金属键和 Ti-N 共价键,金属键比例的升高使薄膜呈现类似金属的性能,共价键比例的升高使薄膜硬度得到提高。应用磁控溅射技术制备 TiN 薄膜时,不同入射粒子能量会影响薄膜中成键的比例,在一定范围内增大入射粒子的能量,有助于形成饱和的共价键,在增大薄膜硬度的同时使得薄膜表面更加致密。但过高的入射粒子能量会引起较强的反溅射效应,高能粒子轰击薄膜表面使表面粒子发生溅射,导致薄膜缺陷增多且硬度降低[39]。 BP-HiPIMS 技术通过调控正脉冲电压可以控制入射离子的能量高低,从而更加精确地控制所制备薄膜的组织结构和力学性能,得到更加优异稳定的薄膜。

  • VILOAN 等[40]采用 BP-HiiPIMS 技术制备 TiN 薄膜。正脉冲电压 150 V 的条件下,相对于常规的 HiPIMS,薄膜密度由约 5.1 g / cm3 增加到约 5.3 g / cm3,硬度由 23.9 GPa 增大到 34 GPa,同时薄膜的压应力由 2.1 GPa 增大到 4.7 GPa。随着正脉冲电压的提高,薄膜的沉积速率呈下降趋势(图13)。

  • BATKOVA 等[41]应用三种不同的放电结构(悬浮基体的 BP-HiPIMS、接地基体的 BP-HiPIMS、带有直流基体偏压的单极 HiPIMS)制备了 CrN 薄膜。悬浮绝缘基体的快速冲电导致用于加速离子的等离子体-基体电位差大幅降低,正脉冲电压的提高无法改变作用于基体的离子能量,而应用接地基体所形成的双层离子加速结构则可避免这一情况。同带有直流偏压的单极HiPIMS相比,接地基体的BP-HiPIMS 技术在相同偏压下拥有较高的沉积速率,但离子的平均能量较低。随着正脉冲电压的提高,离子能量逐渐提高,在施加 90 V 和 120 V 正脉冲电压时,得到了高硬度和低残余应力的薄膜(图14)。

  • 图13 TiN 薄膜压应力、硬度、密度、沉积速率随正脉冲电压的变化情况[40]

  • Fig.13 Measured stress, hardness and density of the deposited TiN thin films as a function of the reversed pulse potential, Urev

  • 图14 悬浮基体 BP-HiPIMS(黑色三角形)、接地基体 BP-HiPIMS(红色圆形)、带有直流基体偏压的 HiPIMS(绿色正方形)和 DCMS(蓝色菱形)技术制备 CrN 薄膜硬度和压应力随正脉冲电压 / 基体偏压的变化情况[41]

  • Fig.14 Hardness and residual stress of the CrN films prepared by bipolar HiPIMS with a floating substrate holder (black triangles) , bipolar HiPIMS with a grounded substrate holder (red circles) and unipolar HiPIMS with a DC biased substrate holder (green squares) at different applied voltage values. Three films prepared by standard DCMS at the same average power density are included for comparison (blue diamonds)

  • 2.4 其他应用

  • BP-HiPIMS 在金属薄膜、金属氧化物薄膜以及纳米颗粒制备等领域也具有良好的应用价值。 AVINO 等[42]以 Cu 基体上制备 Nb 薄膜为背景,探究了不同溅射技术下离子的入射角对薄膜形态和性能的影响。当 Cu 试样与靶材平行时,几种溅射技术都得到了致密的薄膜。当 Cu 试样与靶材垂直时,到达基体处离子的平均能量显著降低,不同技术下所制备的薄膜观察到了显著的差异,双极模式下所制备的薄膜较常规 HiPIMS 和 DCMS 模式更加致密,这很好地印证了 BP-HiPIMS 技术实现了有效的离子增能。TIRON 等[43]采用单极和双极 HiPIMS 在石墨基体上制备了 Ne / Ar 掺杂的 W 薄膜,BP-HiPIMS 技术能够控制 W 薄膜中的掺杂元素含量。调控正负脉冲持续时间可以改变基体附近的离子能量和流量,随着正脉冲电压的提高和负脉冲持续时间的减少,Ne 和 Ar 元素在 W 中的含量增加(图15)。SERGIEVSKAVA 等[44]应用 BP-HiPIMS 技术在蓖麻油上沉积银以获得银的纳米颗粒,相比于直流磁控溅射技术,BP-HiPIMS 技术在相同工况下制备的银纳米颗粒具有更稳定的分散和更大的纳米粒子尺寸。

  • 图15 正脉冲电压与负脉冲持续时间对 Ar 和 Ne 元素在 W-Ar-Ne 混合薄膜百分含量的影响(气压 P=1 Pa,Ne / Ar 的质量流量比为 1 / 1)[43]

  • Fig.15 Influence of the positive pulse voltage and negative pulse duration on Ar and Ne amount in the W-Ar-Ne layers co-deposited in bipolar HiPIMS (P = 1 Pa, Ar / Ne mass flow of 1/1)

  • 在金属氧化物的制备上,DU 等[45]应用接地基体的 BP-HiPIMS 技术分别在 Si 和蓝宝石基体上制备了(Al,Cr)2O3,揭示出膜厚及基体厚度对离子增能的影响。随着正脉冲电压的升高,硅基体上制备薄膜的残余应力由拉应力逐渐转化为压应力,薄膜晶粒尺寸和晶格常数发生显著的变化,而蓝宝石基体上制备的薄膜的参数对正脉冲电压的改变并不敏感。不同的膜厚(基体厚度)具有不同的电容,从而影响薄膜充放电的速率,因此过厚的薄膜或基体会削减离子增能的作用。

  • 3 结论与展望

  • BP-HiPIMS 技术在提高粒子离化率和调控沉积粒子能量上所展现的优势吸引了国内外学者的广泛关注,应用该项技术所制备的 Cu、DLC、TiN、CrN 膜在薄膜结构和性能上较于常规 HiPIMS 技术都得到了显著的改善。BP-HiPIMS 技术目前仍处于初步探索阶段,正脉冲阶段下离子的输运与增能机制还有待丰富,不同的工艺参数如气压、温度及磁场结构对 BP-HiPIMS 放电的影响还需要进一步探索。目前低沉积速率的特性很大程度上限制了 BP-HiPIMS 投入工业生产,如何在保证高离子能量和流量的同时实现沉积速率的提高将是今后该项技术研究的重点,相信在广大学者的共同努力下,BP-HiPIMS 将会迎来更好的未来。

  • 参考文献

    • [1] LI C L,WANG L G,SHANG L L,et al.Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD[J].Ceramics International,2021,47(20):29285-29294.

    • [2] PARK G D,YANG J H,et al.Ultra-high corrosion resistance of Al-Mg-Si film on steel sheet formed by PVD Mg coating and heat treatment[J].Corrosion Science,2021,192:109829.

    • [3] 孔德军,付永忠,吴永忠,等.PVD 法制备TiN涂层界面特征与摩擦磨损性[J].真空科学与技术学报,2012,32:1078-1083.KONG Dejun,FU Yongzhong,WU Yongzhong,et al.Interfacial characteristics and Tribological Properties of TiN coatings prepared by PVD method[J].Journal of Vacuum Science and technology,2012,32:1078-1083.(in Chinese)

    • [4] 李健,韦习成.物理气相沉积技术的新进展[J].材料保护,2000,1:91-94.LI Jian,WEI Xicheng.New development of physical vapor deposition technology[J].Material Protection,2000,1:91-94.(in Chinese)

    • [5] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展 [J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996,1:1-12.(in Chinese)

    • [6] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.

    • [7] CAPEK J,HALA M,ZABEIDA O,et al.Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field[J].Journal of Applied Physics,2012,111(2):023301.

    • [8] HE Y,LIANG M,SZOTT M M,et al.Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering[J].Plasma Sources Science & Technology,2013,22(4):045012.

    • [9] LIN J L,WEI R H.A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance[J].Surface & Coatings Technology,2018,338:84-95.

    • [10] GRECZYNSKI G,HULTMAN L.Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering [J].Vacuum,2016,124:1-4.

    • [11] GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341.

    • [12] 李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53:84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong,et al.Enhancement of high-speed deposition characteristics of HiPIMS by high ionization rate electro-magnetic field[J].Journal of Harbin Institute of Technology,2021,53:84-92.(in Chinese)

    • [13] 王玉龙,张豪,冉小玉,等.偏压对磁控溅射TiN涂层微观结构及性能的影响[J].江西科技师范大学学报,2019(6):36-39.WANG Yulong,ZHANG Hao,RAN Xiaoyu,et al.Effect of bias voltage on microstructure and properties of magnetron sputtering TiN coating[J].Journal of Jiangxi Normal University of Science and Technology,2019:36-39.(in Chinese)

    • [14] 林松盛,高迪,苏一凡,等.偏压对高功率脉冲磁控溅射DLC膜层结构及性能的影响[J].材料研究与应用,2020,14:1-8.LIN Songsheng,GAO Di,SU Yifan,et al.Effect of bias voltage on the structure and properties of DLC films deposited by high power pulsed magnetron sputtering[J].Material research and Application,2020,14:1-8.(in Chinese)

    • [15] HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.

    • [16] AVINO F,SUBLET A,TABORELLI M.Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse [J].Plasma Sources Science and Technology,2019,28(1):01LT03.

    • [17] BRITUN N,MICHIELS M,GODFROID T,et al.Ion density evolution in a high-power sputtering discharge with bipolar pulsing[J].Applied Physics Letters,2018,112(23):234103.

    • [18] KERAUDY J,VILOAN RPB,RAADU MA,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition [J].Surface and Coatings Technology,2019,359:433-437.

    • [19] HIPPLER R,CADA M,HUBICKA Z.Time-resolved Langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge [J].Applied Physics Letters,2020,116(6):064101.

    • [20] HIPPLER R,CADA M,HUBICKA Z.Time-resolved diagnostics of a bipolar HiPIMS discharge [J].Journal of Applied Physics,2020,127(20):203303.

    • [21] TIRON V,VELICU I L.Understanding the ion acceleration mechanism in bipolar HiPIMS:the role of the double layer structure developed in the after-glow plasma [J].Plasma Sources Science and Technology,2020,29(1):015003.

    • [22] YU M,ZHANG J Z,LI D X,et al.Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD[J].Surface & Coatings Technology,2006,201(3-4):1243-1249.

    • [23] WU B H,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films prepared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.

    • [24] VELICU I L,IANOS G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359:97-107.

    • [25] VILOAN R P B,HELMERSSON U,LUNDIN D.Copper thin films deposited using different ion acceleration strategies in HiPIMS[J].Surface and Coatings Technology,2021,422:127487.

    • [26] CYRIAC F,YI TX,POORNACHARY SK,et al.Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces[J].Tribology International,2021,164:107199.

    • [27] MENG K K,ZHANG Z Y,TAN X,et al.Microstructure evolution and wettability regulation of air-exposed hydrogen-free diamond-like carbon films[J].Diamond and Related Materials,2021,120:108609.

    • [28] SHAH N M R,SONG J G,YEO C D.Thermomechanical properties and frictional contact behavior of oxygen doped DLC film through molecular dynamics simulation[J].Diamond and Related Materials,2021,120:108653.

    • [29] ZUO S W,MIAO Q,LIANG W P,et al.A study on the mechanical performance and medium temperature tribological behavior of plasma nitrocarburizing/TiAlSiN/DLC composite coating[J].Surfaces and Interfaces,2021,27:101489.

    • [30] MA Z Y,HUANG R X,YUAN X S,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.

    • [31] LI L,WANG J K,ZHAO G F,et al.Percutaneous DLC-Based total cavopulmonary assist achieves 96-Hour survival in lethal cavopulmonary failure sheep[J].Journal of the American College of Cardiology,2021,78(5):538-540.

    • [32] SANTIAGO J A,FERNANDEZ-MART I,KOZAK T,et al.The influence of positive pulses on HiPIMS deposition of hard DLC coatings[J].Surface and Coatings Technology,2019,358:43-49.

    • [33] TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494:871-879.

    • [34] GARCIA J A,RIVERO P J.,BARBA E,et al.A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses[J].Metals,2020,10(2):174.

    • [35] LI S D,ZHOU D Y,SHI Z X,et al.Involvement of unsaturated switching in the endurance cycling of Si-doped HfO(2)ferroelectric thin films[J].Advanced Electronic Materials,2020,6(8):2000264.

    • [36] KIM T S,PARK S S,LEE B T.Characterization of nano-structured TiN thin films prepared by RF magnetron sputtering[J].Materials Letters,2005,59(29-30):3929-3932.

    • [37] 郑彤,王霄.牙科合金表面涂镀 TiN/TiAlN 薄膜的研究进展[J].现代口腔医学杂志,2016,30:303-308.ZHENG Tong,WANG Xiao.Research progress of TiN/TiAlN coating on dental alloys[J].Journal of Modern Stomatology,2016,30:303-308.(in Chinese)

    • [38] 张广安,王立平,刘千喜,等.CrN 基复合薄膜的结构及摩擦磨损性能研究[J].摩擦学学报,2011,31:181-186.ZHANG Guangan,WANG Liping,LIU Qianxi,et al.Study on structure and friction and wear properties of CrN based composite films[J].Journal of Tribology,2011,31:181-186.(in Chinese)

    • [39] 徐哲,席慧智,阮霞.磁控溅射TiN薄膜工艺参数对显微硬度的影响[J].应用科技,2007,34(5):1-3.XU Zhe,XI Huizhi,RUAN Xia.Effect of process parameters on microhardness of TiN films prepared by magnetron sputtering[J].Applied Technology,2007,34(5):1-3.(in Chinese)

    • [40] VILOAN RPB,GU Jiabin,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.

    • [41] BATKOVA S,CAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface and Coatings Technology,2020,393:125773.

    • [42] AVINO F,FONNESU D,KOETTIG T,et al.Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse[J].Thin Solid Films,2020,706:138058.

    • [43] TIRON V,BULAI G,COSTIN C,et al.Growth and characterization of W thin films with controlled Ne and Ar contents deposited by bipolar HiPIMS[J].Nuclear Materials and Energy,2021,29:101091.

    • [44] SERGIEVSKAVA A,OREILLY A,CHAUVIN A,et al.Magnetron sputter deposition of silver onto castor oil:the effect of plasma parameters on nanoparticle properties[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,615:126286.

    • [45] DU H,ZANASKA M,BRENNING N,et al.Bipolar HiPIMS:the role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films[J].Surface and Coatings Technology,2021,416:127152.

  • 参考文献

    • [1] LI C L,WANG L G,SHANG L L,et al.Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD[J].Ceramics International,2021,47(20):29285-29294.

    • [2] PARK G D,YANG J H,et al.Ultra-high corrosion resistance of Al-Mg-Si film on steel sheet formed by PVD Mg coating and heat treatment[J].Corrosion Science,2021,192:109829.

    • [3] 孔德军,付永忠,吴永忠,等.PVD 法制备TiN涂层界面特征与摩擦磨损性[J].真空科学与技术学报,2012,32:1078-1083.KONG Dejun,FU Yongzhong,WU Yongzhong,et al.Interfacial characteristics and Tribological Properties of TiN coatings prepared by PVD method[J].Journal of Vacuum Science and technology,2012,32:1078-1083.(in Chinese)

    • [4] 李健,韦习成.物理气相沉积技术的新进展[J].材料保护,2000,1:91-94.LI Jian,WEI Xicheng.New development of physical vapor deposition technology[J].Material Protection,2000,1:91-94.(in Chinese)

    • [5] 凌国伟,沈辉宇,周福堂.阴极电弧沉积技术及其发展 [J].真空,1996,1:1-12.LING Guowei,SHEN Huiyu,ZHOU Futang.Cathode arc deposition technology and its development[J].Vacuum,1996,1:1-12.(in Chinese)

    • [6] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30(3):030801.

    • [7] CAPEK J,HALA M,ZABEIDA O,et al.Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field[J].Journal of Applied Physics,2012,111(2):023301.

    • [8] HE Y,LIANG M,SZOTT M M,et al.Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering[J].Plasma Sources Science & Technology,2013,22(4):045012.

    • [9] LIN J L,WEI R H.A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance[J].Surface & Coatings Technology,2018,338:84-95.

    • [10] GRECZYNSKI G,HULTMAN L.Peak amplitude of target current determines deposition rate loss during high power pulsed magnetron sputtering [J].Vacuum,2016,124:1-4.

    • [11] GANESAN R,MURDOCH B J,PARTRIDGE J G,et al.Optimizing HiPIMS pressure for deposition of high-k(k=18.3)amorphous HfO2[J].Applied Surface Science,2016,365:336-341.

    • [12] 李春伟,田修波,姜雪松,等.高离化率电-磁场协同增强HiPIMS高速沉积特性[J].哈尔滨工业大学学报,2021,53:84-92.LI Chunwei,TIAN Xiubo,JIANG Xuesong,et al.Enhancement of high-speed deposition characteristics of HiPIMS by high ionization rate electro-magnetic field[J].Journal of Harbin Institute of Technology,2021,53:84-92.(in Chinese)

    • [13] 王玉龙,张豪,冉小玉,等.偏压对磁控溅射TiN涂层微观结构及性能的影响[J].江西科技师范大学学报,2019(6):36-39.WANG Yulong,ZHANG Hao,RAN Xiaoyu,et al.Effect of bias voltage on microstructure and properties of magnetron sputtering TiN coating[J].Journal of Jiangxi Normal University of Science and Technology,2019:36-39.(in Chinese)

    • [14] 林松盛,高迪,苏一凡,等.偏压对高功率脉冲磁控溅射DLC膜层结构及性能的影响[J].材料研究与应用,2020,14:1-8.LIN Songsheng,GAO Di,SU Yifan,et al.Effect of bias voltage on the structure and properties of DLC films deposited by high power pulsed magnetron sputtering[J].Material research and Application,2020,14:1-8.(in Chinese)

    • [15] HAN M Y,LUO Y,LI L H,et al.Optimizing the ion diffusion in bipolar-pulse HiPIMS discharge(BP-HiPIMS)via an auxiliary anode[J].Plasma Sources Science and Technology,2021,30(9):095016.

    • [16] AVINO F,SUBLET A,TABORELLI M.Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse [J].Plasma Sources Science and Technology,2019,28(1):01LT03.

    • [17] BRITUN N,MICHIELS M,GODFROID T,et al.Ion density evolution in a high-power sputtering discharge with bipolar pulsing[J].Applied Physics Letters,2018,112(23):234103.

    • [18] KERAUDY J,VILOAN RPB,RAADU MA,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition [J].Surface and Coatings Technology,2019,359:433-437.

    • [19] HIPPLER R,CADA M,HUBICKA Z.Time-resolved Langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge [J].Applied Physics Letters,2020,116(6):064101.

    • [20] HIPPLER R,CADA M,HUBICKA Z.Time-resolved diagnostics of a bipolar HiPIMS discharge [J].Journal of Applied Physics,2020,127(20):203303.

    • [21] TIRON V,VELICU I L.Understanding the ion acceleration mechanism in bipolar HiPIMS:the role of the double layer structure developed in the after-glow plasma [J].Plasma Sources Science and Technology,2020,29(1):015003.

    • [22] YU M,ZHANG J Z,LI D X,et al.Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD[J].Surface & Coatings Technology,2006,201(3-4):1243-1249.

    • [23] WU B H,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films prepared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.

    • [24] VELICU I L,IANOS G T,POROSNICU C,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359:97-107.

    • [25] VILOAN R P B,HELMERSSON U,LUNDIN D.Copper thin films deposited using different ion acceleration strategies in HiPIMS[J].Surface and Coatings Technology,2021,422:127487.

    • [26] CYRIAC F,YI TX,POORNACHARY SK,et al.Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces[J].Tribology International,2021,164:107199.

    • [27] MENG K K,ZHANG Z Y,TAN X,et al.Microstructure evolution and wettability regulation of air-exposed hydrogen-free diamond-like carbon films[J].Diamond and Related Materials,2021,120:108609.

    • [28] SHAH N M R,SONG J G,YEO C D.Thermomechanical properties and frictional contact behavior of oxygen doped DLC film through molecular dynamics simulation[J].Diamond and Related Materials,2021,120:108653.

    • [29] ZUO S W,MIAO Q,LIANG W P,et al.A study on the mechanical performance and medium temperature tribological behavior of plasma nitrocarburizing/TiAlSiN/DLC composite coating[J].Surfaces and Interfaces,2021,27:101489.

    • [30] MA Z Y,HUANG R X,YUAN X S,et al.Tribological performance and scuffing behaviors of several automobile piston rings mating with chrome-plated cylinder liner[J].Friction,2021,10(8):1245-1257.

    • [31] LI L,WANG J K,ZHAO G F,et al.Percutaneous DLC-Based total cavopulmonary assist achieves 96-Hour survival in lethal cavopulmonary failure sheep[J].Journal of the American College of Cardiology,2021,78(5):538-540.

    • [32] SANTIAGO J A,FERNANDEZ-MART I,KOZAK T,et al.The influence of positive pulses on HiPIMS deposition of hard DLC coatings[J].Surface and Coatings Technology,2019,358:43-49.

    • [33] TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494:871-879.

    • [34] GARCIA J A,RIVERO P J.,BARBA E,et al.A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses[J].Metals,2020,10(2):174.

    • [35] LI S D,ZHOU D Y,SHI Z X,et al.Involvement of unsaturated switching in the endurance cycling of Si-doped HfO(2)ferroelectric thin films[J].Advanced Electronic Materials,2020,6(8):2000264.

    • [36] KIM T S,PARK S S,LEE B T.Characterization of nano-structured TiN thin films prepared by RF magnetron sputtering[J].Materials Letters,2005,59(29-30):3929-3932.

    • [37] 郑彤,王霄.牙科合金表面涂镀 TiN/TiAlN 薄膜的研究进展[J].现代口腔医学杂志,2016,30:303-308.ZHENG Tong,WANG Xiao.Research progress of TiN/TiAlN coating on dental alloys[J].Journal of Modern Stomatology,2016,30:303-308.(in Chinese)

    • [38] 张广安,王立平,刘千喜,等.CrN 基复合薄膜的结构及摩擦磨损性能研究[J].摩擦学学报,2011,31:181-186.ZHANG Guangan,WANG Liping,LIU Qianxi,et al.Study on structure and friction and wear properties of CrN based composite films[J].Journal of Tribology,2011,31:181-186.(in Chinese)

    • [39] 徐哲,席慧智,阮霞.磁控溅射TiN薄膜工艺参数对显微硬度的影响[J].应用科技,2007,34(5):1-3.XU Zhe,XI Huizhi,RUAN Xia.Effect of process parameters on microhardness of TiN films prepared by magnetron sputtering[J].Applied Technology,2007,34(5):1-3.(in Chinese)

    • [40] VILOAN RPB,GU Jiabin,BOYD R,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688:137350.

    • [41] BATKOVA S,CAPEK J,REZEK J,et al.Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure,microstructure and mechanical properties of CrN films[J].Surface and Coatings Technology,2020,393:125773.

    • [42] AVINO F,FONNESU D,KOETTIG T,et al.Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse[J].Thin Solid Films,2020,706:138058.

    • [43] TIRON V,BULAI G,COSTIN C,et al.Growth and characterization of W thin films with controlled Ne and Ar contents deposited by bipolar HiPIMS[J].Nuclear Materials and Energy,2021,29:101091.

    • [44] SERGIEVSKAVA A,OREILLY A,CHAUVIN A,et al.Magnetron sputter deposition of silver onto castor oil:the effect of plasma parameters on nanoparticle properties[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2021,615:126286.

    • [45] DU H,ZANASKA M,BRENNING N,et al.Bipolar HiPIMS:the role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films[J].Surface and Coatings Technology,2021,416:127152.

  • 手机扫一扫看