en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

巩春志,男,1979年出生,博士,副研究员。主要研究方向为表面工程。E-mail:chunzhigong@163.com;

通讯作者:

田修波,男,1969年出生,博士,教授,博士研究生导师。主要研究方向为表面工程及应用。E-mail:xiubotian@163.com

中图分类号:TN86

DOI:10.11933/j.issn.1007−9289.20220228001

参考文献 1
KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.
参考文献 2
LIN J,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.
参考文献 3
MATTIAS S,DANIEL L,JENS J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.
参考文献 4
BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.
参考文献 5
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.
参考文献 6
ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface and Coatings Technology,2011,205:s1-s9.
参考文献 7
ANDERS A,PAVEL N,ALBERT R.Drifting localization of ionization runaway:unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304.
参考文献 8
EHIASARIAN A P,HECIMOVIC A,ARCOS T D L,et al.High power impulse magnetron sputtering discharges:Instabilities and plasma self-organization[J].Applied Physics Letters,2012,100(11):114101.
参考文献 9
NIKOLAY B,TIBERIU M,STEPHANOS K,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:a review[J].Journal of Physics D:Applied Physics,2014,47:224001.
参考文献 10
MARTIN R,NILS B,MICHAEL A R,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.
参考文献 11
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2012,30(3):030801.
参考文献 12
SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface and Coatings Technology.2010,204(11):1661-1684.
参考文献 13
EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.
参考文献 14
ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257(25):308-325.
参考文献 15
ANDERS A.Deposition rates of high power impulse magnetron sputtering:Physics and economics[J].Journal of Vacuum Science & Technology A,2010,28(14):783-790.
参考文献 16
ZHANG Haibao,SHIARN C,CHEN Qiang.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.
参考文献 17
JI Chengding,QI Minwang,ZHE Renliu,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys and Compounds,2019,772(25):112-121.
参考文献 18
WAN Yuwu,MAN Y C,YU H H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,362(25):167-175.
参考文献 19
ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:Influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface and Coatings Technology,2020,382(25):125007.
参考文献 20
SHENG Chichen,TSUNG Yenkuo,HSIN Chihlin,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508(1):145106.
参考文献 21
BRENNING N,BUTLER A,HAJIHOSEINI H,et al.Optimization of HiPIMS discharges:the selection of pulse power,pulse length,gas pressure,and magnetic field strength[J].Journal of Vacuum Science & Technology A,2020,38(3):033008.
参考文献 22
THÖRNBERG J,PALISAITIS J,HELLGREN N,et al.Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS[J].Surface and Coatings Technology,2020,404(25):126537.
参考文献 23
MEI Haijuan,DING Jicheng,XIAO Xiaolan,et al.Influence of pulse frequency on microstructure and mechanical properties of Al-Ti-V-Cu-N coatings deposited by HIPIMS[J].Ceramics International,2021,405(15):126514.
参考文献 24
YATSUI K,JIANG W,SUEMATSU H,et al.Industrial applications of pulsed particle beams and pulsed power technologies[C]//2004 International Conference on High-Power Particle Beams,July 18-23,2004,St.Petersburg.IEEE,2004:613-617.
参考文献 25
江伟华.高重复频率脉冲功率技术及其应用:概述[J].强激光与粒子束,2012,24:10-15.JIANG Weihua.Repetition rate pulsed power technology and its applications:(i)Introduction[J].High Power Laser and Particle Beams,2012,24:10-15.(in Chinese)
参考文献 26
LEYH G E.The marx modulator development program for the international linear collider[C]//Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium,May 14-18,2006,Arlington,VA,USA.IEEE,2006:423-426.
参考文献 27
VISWANATHAN K,ORUGANTI R,SRINIVASAN D.A Novel tri-state boost converter with fast dynamics[J].IEEE Transactions on Power Electronics,2002,17(5):677-683.
参考文献 28
VISWANATHAN K,ORUGANTI R,SRINIVASAN D.Dual-mode control of tri-state boost converter for improved performance[J].IEEE Transactions on Power Electronics,2005,20(4):790-797.
参考文献 29
RANA N,KUMAR M,GHOSH A,et al.A novel interleaved tri-state boost converter with lower ripple and improved dynamic response[J].IEEE Transactions on Industrial Electronics,2018,65(7):5456-5465.
参考文献 30
谷雨.宽重复频率独立式脉冲功率直流电源系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2017.GU Yu.Research on key technique of independent wide repeat frequency pulsed power DC power supply system[D].Harbin:Harbin Institute of Technology,2017.(in Chinese)
参考文献 31
RUAN X B,LI B,CHEN Q H,et al.Fundamental considerations of three-level DC/DC converters:topologies,analyses,and control[J].IEEE Transactions on Power Electronics,2008,55(11):3733-3743.
参考文献 32
LIU C,LAI J S.Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load[J].IEEE Transactions on Power Electronics,2007,22(4):1429-1436.
参考文献 33
ZHAO Y,LI W,HE X.Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell[J].IEEE Transactions on Power Electronics,2012,27(6):2869-2878.
参考文献 34
HUBER L,JANG Y Z,JOVANOVIC M M.Performance evaluation of bridgeless PFC boost rectifiers[J].IEEE transactions on power electronics,2008,23(3):1381-1390.
参考文献 35
JEONG S G,KWON J M,KWON B H.High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles[J].IEEE Transactions on Industrial Electronics,2019,66(1):215-222.
参考文献 36
VALIZADEH A,VARJANI A Y.A bridgeless soft switching PFC AC/DC converter with active clamping auxiliary circuit[C]//12th Power Electronics,Drive Systems,and Technologies Conference(PEDSTC).February 2-4,2021,Tabriz,Iran.IEEE,2021:1-6.
参考文献 37
ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.
参考文献 38
PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2011(5):1123-1126.
参考文献 39
桂刚,田修波,朱宗涛,等.1 kA 高功率脉冲磁控溅射电源研制及试验研究[J].真空,2011,48(4):46-50.GUI Gang,TIAN Xiubo,ZHU Zhongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.(in Chinese)
参考文献 40
田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)
参考文献 41
王洪国,陈庆川,韩大凯,等.高功率脉冲磁控溅射电源的研制[J].真空科学与技术学报,2013,33(2):168-170.WANG Hongguo,CHEN Qingchuan,HAN Dakai,et al.Novel type of power supply for high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(2):168-170.(in Chinese)
参考文献 42
张秀梅,李红泽,刘洋,等.8 MW 单极性脉冲磁控溅射电源的设计[J].电力电子技术,2017,51(6):75-76.ZHANG Xiumei,LI Hongze,LIU Yang,et al.Design of 8 MW unipolar pulse magnetron sputtering power supply[J].Power Electronics,2017,51(6):75-76.(in Chinese)
参考文献 43
魏松.可调脉冲高功率磁控溅射电源研制及AlCrN薄膜制备[D].哈尔滨:哈尔滨工业大学,2013.WEI Song.Development of modulated pulsed power magnetron sputtering system and preparation of alcrn films[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
参考文献 44
KARKARI S K,ELLINGBOE A R,GAMAN C,et al.Electron density modulation in an asymmetric bipolar pulsed dc magnetron discharge[J].Journal of Applied Physics,2007(6):135-142.
参考文献 45
KRAUSE U,LIST M,FUCHS H.Requirements of power supply parameters for high-power pulsed magnetron sputtering[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2001(2):1123-1128.
参考文献 46
PHITSANU P,BERND L,JAMES B.Plasma parameters in a pre-ionized HIPIMS discharge operating at low pressure[J].IEEE Transactions on Plasma Science,2010,38(11):3007-3015.
参考文献 47
WU B,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films pre-pared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.
参考文献 48
吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system[J].Vacuum,2019,56(6):1-6.(in Chinese)
参考文献 49
OSKIRKO V O,ZAKHAROV A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum,2020,181:109670.
参考文献 50
OSKIRKO V O,ZAKHAROVA A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum.2020,181:109670.
参考文献 51
LIN JIANLIANG,MOORE J J.,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.
参考文献 52
LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface and Coatings Technology,2011,205(10):3226-3234.
参考文献 53
GRECZYNSKI G,LU J,JENSEN J,et al.A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering[J].Surface and Coatings Technology,2014,257(25):15-25.
参考文献 54
JULIEN K,ROMMEL P B V,MICHAEL A R,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition[J].Surface and Coatings Technology,2019,359(15):433-437.
参考文献 55
IOANA L V,GABRIELA T I,CORNELIU P,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359(15):97-107.
参考文献 56
HIPPLER R,CADA M,STRANAK V,et al.Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target[J].Plasma Sources Science and Technology,2019,28(11):115020.
参考文献 57
ROMMEL P B V,GU Jiabin,ROBERT B,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688(31):137350.
参考文献 58
TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:Ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494(15):871-879.
参考文献 59
EMILE H A,AMINE A A,ABDELOUADOUD G B C D et al.Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle[J].Electrochimica Acta,2019,324(20):134890.
参考文献 60
RAINER H,MARTIN C,ZDENEK H.Time-resolved langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge[J].Applied Physics Letters,2020,116(6):064101.
参考文献 61
JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2021,405(15):126542.
参考文献 62
WOLFGANG T,DIEGO G,DOMINIC S,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface and Coatings Technology,2021,406(25):126664.
参考文献 63
GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47(6):8175-8183.
参考文献 64
NILS B,HAMIDREZA H,MARTIN R,et al.HiPIMS optimization by using mixed high-power and low-power pulsing[J].Plasma Sources Science and Technology,2021,30(1):015015.
参考文献 65
KIMIYASU S,YUICHI T,YUSUKE I.Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices:a Review[J].Nanomaterials,2020,10(3):448.
参考文献 66
ZHANG Y C,GE X L,WANG H M,et al.A novel three-pulse equivalent power loss profile for simplified thermal estimation[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(6):6875-6885.
参考文献 67
SMIRNOV V I,SERGEEV V A,SHORIN A M,et al.Thermal impedance meter for power MOSFET and IGBT transistors[J].IEEE Transactions on Power Electronics,2018,33(7):6211-6216.
参考文献 68
TAN K,COULBECK L.Proper pulsewidth setting to avoid underestimated switching loss in HVIGBT characterization[J].IEEE Transactions on Power Electronics,2022,37(4):3781-3785.
参考文献 69
CHRISTIE D J,TOMASEL F,SPROUL W D,et al.Power supply with arc handling for high peak power magnetron sputtering[J].Journal of Vacuum Science & Technology,A.Vacuum,Surfaces,and Films,2004(4):256-260.
参考文献 70
OSKIRKO V O,SEMENOV V D,SOLOVYEV A A,et al.Arc energy minimization in high-power impulse magnetron sputtering[J].Vacuum,2022,202:111213.
参考文献 71
ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257:308-325.
参考文献 72
GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30:3,030801.
参考文献 73
CARTER D C.Arc prevention in magnetron sputtering processes[C].51st annual technical conference proceedings,Chicago,IL,2008:0737-5921.
参考文献 74
Generate high density plasmas for superior deposition results:TruPlasma Highpulse Series 4000 for HIPIMS processes[EB/OL].https://www.trumpf.cn/zh_CN/truplasma-bipolar-serie-4000-g21/.
参考文献 75
SAMAEI A,CHAUDHURI S.Multiphysics modeling of metal surface cleaning using atmospheric pressure plasma[J].Journal of Applied Physics,2020,128(5):054903.
参考文献 76
SANNER R M,ESLOTINE J J.Gaussian networks for direct adaptive control[J].IEEE Trans on Neural Networks,1992,3(6):837-863.
目录contents

    摘要

    作为高功率脉冲磁控溅射(HiPIMS)技术的核心组成部分,HiPIMS 电源在很大程度上决定着 HiPIMS 技术的研究进展和应用潜能。关于 HiPIMS 电源的研究整体上可以分为三个部分,分别是 AC-DC 功率变换器的研究、DC-DC 功率变换器的研究以及 HiPIMS 功率负载的研究。其中,功率变换器是 HiPIMS 电源的直流供电端,技术特征依赖于脉冲电源共性技术,而功率负载部分则与 HiPIMS 放电模式相互影响。在综述脉冲电源的核心技术高动态响应、低输入电流纹波、高电压增益、高性能功率校正因数等研究现状的基础上,进一步总结基于 HiPIMS 放电特性的脉冲功率负载设计的研究现状,并展望 HiPIMS 电源亟待解决的关键问题,最终得出大功率 HiPIMS 电源需要从电力电子技术和等离子体物理技术两方面同步开展研究,指出基于真空等离子体物理特性的复合脉冲放电技术,将成为 HiPIMS 电源技术跳跃发展的必由之路。通过 HiPIMS 电源的设计基础及研究进展,为 HiPIMS 电源的进一步发展提供一定参考。

    Abstract

    As the core component of high power magnetron sputtering (HiPIMS) technology, HiPIMS power supply largely determines the research progress and application potential of HiPIMS technology. On the whole, the research on HiPIMS power supply can be divided into three parts: the research of AC-DC power converter, DC-DC power converter and HiPIMS plasma power load. Among them, the power converter is the DC power supply end of HiPIMS power supply, and its technical characteristics depend on the common technology of pulse power supply, while the power load part interacts with the discharge mode of HiPIMS. On the basis of summarizing the research status of the core technologies of pulse power supply: high dynamic response, low input current ripple, high voltage gain and high performance power correction factor. The research status of pulse power load design based on HiPIMS discharge characteristics are summarized, and finally the key problems to be solved in HiPIMS power supply is discussed, it is expected to provide some reference for the further development of HiPIMS.

  • 0 前言

  • 自 1999 年瑞典科学家 KOUZNETSOV[1]提出高功率脉冲磁控溅射(High power impulse magnetron sputtering,HiPIMS)技术之后,各国研究者对 HiPIMS 技术的放电机理、等离子体特性和膜层性能以及极端放电环境的技术适用性等进行大量深入研究。HiPIMS 技术具有离化率高、获得的膜层表面无大颗粒、膜基结合力好等显著优点[2-10],被认为是物理气相沉积发展史上近 40 年来的一个重要里程碑,并成为目前镀膜工业中应用最为活跃的技术之一[11],广泛应用于超硬薄膜、耐蚀耐摩薄膜、超导薄膜、磁性薄膜和光学薄膜,以及各种具有特殊电学性能薄膜的制备[12-23]。作为核心硬件,高性能 HiPIMS 电源是推动 HiPIMS 技术提升的主要动力。作为一项共性关键技术,脉冲功率技术的发展水平在很大程度上决定着 HiPIMS 电源的发展进程。脉冲功率技术又称高功率脉冲技术,即通过对一定能量的时间宽度进行压缩而产生脉冲功率,是一个研究如何有效存储大量能量,并利用开关器件快速开关动作,将储能元件中的能量在短时间内迅速可靠的传输至负载的新兴领域技术[24]。经过几十年的迅速发展,其广泛涉及电力电子技术、脉冲电子技术、通用高电压技术、应用物理学及材料科学等领域,已成为当代高新科技集中的重大研究领域之一。典型的脉冲功率系统主要包括脉冲功率储能、脉冲功率转换及脉冲功率负载三个基本组成部分[25]。其中,脉冲功率储能部分和脉冲功率转换部分构成完整的脉冲功率电源系统,而脉冲功率负载部分与应用方向即负载特性直接相关,具有很强的应用指向性。例如:对于 HiPIMS 电源设计,前两部分是基础平台,以提供可靠高功率直流源,第三部分的设计则决定 HiPIMS 等离子体特性以及高性能膜层的制备。

  • 本文介绍脉冲功率电源系统涉及的几个关键技术,并结合 HiPIMS 负载特性,总结目前 HiPIMS 电源的研究进展,最后,提出 HiPIMS 电源亟待解决的主要问题。

  • 1 脉冲功率电源系统关键技术现状

  • 1.1 高动态响应脉冲功率变换器

  • 提高工作开关频率可有效提高变换器的动态响应速度,但是在大功率应用中较高的开关频率同时意味着较高的开关损耗及较差的电磁环境。在常规 DC-DC 结构中,传统的 Boost 变换器及 Buck 变换器拓扑往往难以满足高动态响应的脉冲功率供电需求 [26]。传统升压式 Boost 拓扑因存在右半平面零点 (RHP zero)问题,导致在动态切换初期,瞬间增大的占空比往往导致输出电压不升反降,严重恶化变换器的动态响应能力。为了消除传统 boost 变换器在连续导通模式下的控制输出传递函数中出现的右半平面(RHP)零点,VISWANATHAN 等[27-28]提出一种具有额外 boost 电感自由转动间隔的三态 boost 变换器,并分别采用恒定电容电压充电时间控制主开关管占空比的电压控制模式,和分别单独控制电感电流上升时间与电感续流时间的双线性控制模式,消除了 Boost 变换器的 RHP 零点,具有更快的负载瞬态性能。RANA 等[29]首次将三态 boost 变换器拓扑应用于交错并联 Boost 变换器,如图1 所示,即交错并联三态 Boost 变换器,其不仅能减小输入电流纹波,还消除了 RHP 零点,从而提高了负载瞬态响应速度,适用于低输入电流纹波和快速动态响应需求的应用场合。谷雨[30]基于已有拓扑的 boost 变换器动态响应提升方法,通过引入耦合电感及辅助电容,解决了由右半平面零点导致变换器动态响应差的问题。同时又提出基于磁集成技术的升压式高动态响应变换器拓扑,不仅可消除 Boost 变换器中存在的右半平面零点,同时还实现对其输入-输出电流纹波的抑制。

  • 图1 交错三态 boost 变换器电路结构[29]

  • Fig.1 Power circuit of ITBC[29]

  • 传统 Buck 变换器不存在右半平面零点问题,被广泛应用于各种高动态响应降压工作场合。基于进一步提高动态响应的要求,增加等效开关频率及减小输出电感是两个有效途径。例如,RUAN 等[31] 基于半桥三电平基本拓扑结构,推导出生成三电平转换器拓扑的系统方法,从而衍生出一系列三电平转换器,并对其进行改进和简化,如图2 所示。相对于传统的 Buck 变换器,三电平 Buck 变换器输出电感值更小且动态响应更快。

  • 图2 改进型三电平 Buck 变换器电路结构[31]

  • Fig.2 Improvement of the buck TL converter[31]

  • 由于 Buck 变换器输出电压较低,脉冲功率应用时变换器输出电流较大,实际应用中多采用多相交错并联的工作模式,该模式不仅对于功率变化下的动态响应能力明显提高,而且能有效降低变换器输出电流纹波,但也存在控制电路复杂、各相功率均衡性等问题。

  • 1.2 低输入电流纹波高电压增益变换器

  • 电力电子技术及材料科学的不断进步,使得脉冲功率负载需求朝着高脉冲能量、大平均功率和快速脉冲重复频率三个主要方向发展[32]。因此,如何进一步扩宽电压输出范围,并降低脉冲功率负载到来时电流纹波对电源系统直流母线稳定工作的影响,也是脉冲功率直流电源系统中的研究重点之一。高增益大功率变换器常用多结构倍压组合、开关电容、开关电感、耦合电感、交错并联等升压技术。为了提升输出电压,早期通常采用多结构倍压技术 (图3),将不同简单 DC-DC 变换器进行组合形成新型 DC-DC 变换器,比如直接将 DC-DC 变换器串联或并联,将 DC-DC 电源模块串联或并联,该技术对电压增益有一定程度提高。但存在后级器件电压应力高、增益提升有限、半导体器件多、损耗大、成本高等问题,适用于负载较小场合。同样,在传统 DC-DC 变换器拓扑基础上,出现通过增加倍压结构来升压,形成拓扑相对简单,保留原变换器工作性能的开关电容和开关电感技术,但在高电压等级要求场合该技术难以满足要求。为了满足更高电压要求,学者提出一种磁耦合升压方法,将隔离型变换器中变压器引入非隔离变换器中,通过调节变压器匝比和占空比数值大幅度提高电压增益 [33]。在高增益基础上,为解决寄生电容谐振、耦合电感数值较大等问题,该方法衍生出多种 Boost 拓扑结构,且输入电流纹波过大,甚至达到平均电流的两倍,如何消除输入电流纹波也是一个重要考虑因素。通过对变换器交错并联可以有效降低电流纹波,如前文提到的多相交错并联 Boost 变换器,将多个 DC-DC 变换器模块进行交错并联,并控制相位角互相错开,各单元电流叠加,不仅提高动态响应速度,也有效降低了电流纹波,但实现零电流纹波受占空比限制。在电流型输入 DC-DC 变换器输入侧增加纹波电流注入单元,通过电流纹波叠加实现零纹波的纹波电流注入技术受到更多的研究。特别是无源纹波电流注入技术,不受占空比限制,单元可模块化设计,将其与高增益变换器组合,更具有应用优势,如图4 所示。

  • 图3 多结构倍压技术示意图[33]

  • Fig.3 Schematic diagram of multi-structure pressure doubling technology[33]

  • 图4 无源纹波电流注入变换器[33]

  • Fig.4 Ripple current injection type zero input current ripple DC / DC converter[33]

  • 1.3 高性能功率因数校正(PFC)变换器

  • 由于需要高功率因数来减少谐波污染,提高传输效率,并防止对整体电能质量产生不利影响,几乎所有电源和 AC-DC 转换器都需要 PFC 转换器。传统的 AC-DC PFC 变换器通常有一个二极管桥式整流器连接到交流电压源。为了提高 PFC 变换器的效率,人们进行大量研究,设计了无桥 AC-DC 变换器拓扑,减少电流传导路径中功率开关的元件数量,从而减少传导损耗。几乎所有类型的 AC-DC 变换器都可以使用无桥配置,包括 buck 变换器、 boost 变换器、SEPIC 变换器、反激变换器等。其中, boost 变换器具有良好的开关电流和电压应力水平,以及良好的线电流整形能力,是功率因数校正应用中最流行的变换器之一。图5 显示著名的无桥升压拓扑[34]。在这种无桥 AC-DC 变换器中,整流器侧电流路径中的 MOSFET 和二极管的最大总数为两个,这比常见的无桥 AC-DC 变换器在电流路径中少了一个分量。因此,与传统的 AC-DC 变换器相比,无桥 AC-DC 拓扑的传导损耗更少。

  • 图5 传统的无桥升压变换器[34]

  • Fig.5 Basic bridgeless PFC boost rectifier[34]

  • 为了通过降低开关损耗来提高无桥变换器的效率,带有辅助零电压转换(ZVT)电路的无桥升压变换器获得大量研究。然而,这些变换器中引入的辅助零电压过渡电路通常是复杂的电路结构,带有许多 MOSFET、二极管和无源元件,这进一步使整个无桥 PFC 升压变换器的结构和设计复杂化。这些变换器 ZVT 辅助电路中的功率开关通常具有 ZCS 关断。JEONG 等[35]提出了一种简单的图腾极无桥升压 AC-DC 变换器。串联谐振电路用于为输出二极管提供零电流条件。然而,升压型 MOSFET 具有硬开关特性,这限制了变换器开关频率的提高。 VALIZADEH 等[36]提出一种软开关无桥 AC-DC 变换器,通过为转换器电压源频率的每半个周期指定两条独立的电流路径,使用真正的无桥电路配置来降低传导损耗。使用辅助有源箝位支路为功率 MOSFET 提供 ZVS 导通,并使用串联谐振电路为输出二极管提供 ZCS 条件,从而降低开关损耗,图6 所示是所提出的转换器电路模型。

  • 图6 新型图腾极无桥升压变换器[36]

  • Fig.6 Proposed bridgeless PFC AC \ DC converter[36]

  • 2 基于 HiPIMS 放电特性的脉冲功率负载设计

  • 2.1 HiPIMS 负载特性

  • 随着 HiPIMS 技术的推广,其放电特性已受到了深入而系统的研究[37]。HiPIMS 负载特性具有的显著特点是高峰值功率密度和低平均功率密度。 HiPIMS 中靶表面的峰值功率密度可达 1~5 kW / cm2,而其平均功率密度仅为 1~5 W / cm2,比常规磁控溅射的功率密度还要低。脉冲功率需要与磁控靶溅射区域或“跑道”区域成比例(跑道区域是磁力线基本平行于磁控靶表面的区域,也是发生最强烈溅射的区域),对于常用的长度达 1 m 的矩形或圆柱形旋转磁控靶,峰值功率需要在 1 MW 的级别,在某些情况下甚至在 10 MW 的级别。典型 HiPIMS 电源参数的设计分别对应三种不同放电模式:脉宽 10~100 μs 和频率 0.05~10 kHz 的“气体-金属”放电模式,脉宽 100~1 000 μs 和频率 0.01~1 kHz 的“金属”放电模式、脉宽 1~5 ms 和频率 0.01~0.5 kHz 的“金属-气体”模式。在单个脉冲时间内,电流通常会急剧上升,脉冲形状或多或少呈三角形。其中,对于小于 100 µs 的短脉冲高功率放电,因为在此短脉冲条件下对磁控靶打弧不太敏感,且较小的脉宽要求大大降低电源设计难度和成本,因此该电源模式一直较为流行。不过,该模式下脉冲初期以气体离子放电为主,在脉冲后期转为金属离子放电为主,在等离子体负载中金属离子占比较低。而对于长脉宽的 HiPIMS 放电,通常在每个脉冲期间使用不同的瞬时功率密度以降低电弧风险,即为调制脉冲功率(MPP)™溅射,MPP 电源对智能控制系统要求更严格,且电压及输出的脉冲功率设置更依赖于磁控靶结构、溅射材料、气压等,需要积累大量工艺经验[38]

  • 2.2 HiPIMS 电源模块研究现状

  • 经过 20 余年的发展,提高脉冲功率等级和实现多样化应用是 HiPIMS 电源研究中最重要的两点。近年来,具有高重复频率、大脉宽、多波形特征的 HiPIMS 越来越受到人们的青睐。技术需求也为电源设计带来更大的挑战,HiPIMS 电源研究重点也转为提高放电密度和研制更柔性的智能控制系统[39-40]。美国 Advanced Energy(AE)公司的磁控溅射电源设备在高端产品中一直占据领先地位,通常其电源设备和镀膜设备成套出售,价格昂贵。产品输出功率从 10~200 kW,频率从 2~100 kHz 大范围变化,各类型高功率电源互通性较好。德国的 Huttinger 的 Tru Plasma Highpulse4000 高功率脉冲电源最高功率可达 8 MW,最高电压 2 kV,最高电流 4 kA,可以产生超高等离子体密度和高离子流密度。Zpulser 公司主要研发高功率电源,Zpulser cypriμmTM、 Zpulser SoloTM、 Zpulser axiaTM 三个系列的 HiPIMS 电源在脉冲波形调制方面具有相当的特点,其利用高频短脉宽振荡实现 3 ms 的长脉宽高功率输出。另外,Hauzer 和 Cemecon 等涂层技术公司也有致力于相应的 HiPIMS 电源研制。国内 HiPIMS 电源研制虽和国外相比仍有一定差距,但已具备显著的自身特点。王洪国等[41]采用直流斩波技术研制 HiPIMS 电源,解决了大电流对斩波开关电压过冲的问题。张秀梅等[42]提出全固态 Marx 脉冲发生电路结构,设计 8 MW 单极性 HiPIMS 电源,并在模拟负载条件下进行了试验分析。魏松[43]采用 IGBT 串并联拓扑结构,提出脉冲波形规整电路结构,研制了可调制脉冲 HiPIMS 电源,其 HiPIMS 放电具有可控低离子能量、高金属离子流的特点。同时,一些国内涂层电源生产企业等(例如东莞新铂,成都同创等)也在进行 HiPIMS 电源的研制及推广。

  • 2.3 脉冲放电模式

  • 相比传统直流磁控溅射(Direct current magnetron sputtering,DCMS),HiPIMS 也存在沉积速率低、靶材成分受限的问题。随着对 HiPIMS 等离子体放电物理机制的深入理解,新的“预电离” 理念在 HiPIMS 技术中获得重视,成为 HiPIMS 电源的另一个发展方向。通过多变的控制方式,对脉冲波形进行优化及复合,以弥补传统 HiPIMS 电源的不足[44-45]。例如,直流复合 HiPIMS 模式: PHITSANU 等[46]提出 DC-HiPIMS 技术,直流预离化使得 HiPIMS 等离子体的引燃延迟时间从 50 μs到小于 5 μs,工作气压降低到 0.08 Pa;双极性脉冲 HiPIMS 模式:WU 等[47]提出在 HiPIMS 脉冲结束后施加正向脉冲,使其 Cu 沉积速率较传统 HiPIMS 提高 19%。吴厚朴等[48]提出两段式双极性高功率 HiPIMS 技术,其平均基体电流较常规双极性 HiPIMS 提高 47%,更有利于在绝缘材料基体制备高结合力涂层;HiPIMS+MFMS 的双靶 HiPIMS 模式:OSKIRKO 等[49]提出一种新型双磁控溅射的电源模式,可提供中频和高功率脉冲磁控溅射叠加的放电输出,因灵活的可调参数大大增强 HiPIMS 系统的能力。另外,多脉冲波形模式、脉冲偏压匹配 HiPIMS 模式、超高功率 DCMS 模式以及多种放电模式同样受到广泛关注和研究[50-64]

  • 3 HiPIMS 电源亟待解决的主要问题

  • 3.1 超高功率的热管理技术

  • 在 HiPIMS 电源功率进一步提升的过程中,脉冲功率负载与平均功率负载并存的问题日益突出,对功率开关器件(IGBT 等)热管理要求越来越高。而 IGBT 功率半导体模块耐过压过热性能不足,它处理热量的能力限制其高功率的应用。在优化电路拓扑结构的同时,进一步对 IGBT 功率器件进行热管理设计,是解决 IGBT 功率器件热失效的必要措施和有效手段[65-68],也是 HiPIMS 向超高功率发展的必经之路。

  • 3.2 弧管理技术

  • 根据气体放电 V-I 曲线,HiPIMS 超高脉冲放电工作在异常辉光放电区,极易引起辉光向弧放电的转变。如何抑制打弧现象的发生是评定 HiPIMS 电源稳定工作的关键技术指标,也是制备高质量膜层的基本要求,因此电源弧管理技术越发受到重视[69-72]。国外 AE[73]、Huttinger[74]等公司在电源拓扑结构等方面均有独特的电弧抑制电路,极大地降低了电弧残余能量,实现高密度稳定等离子体放电。如何进一步压缩电弧能量,需要在电源内部从检测、反馈、抑制、吸收等多个环节综合进行管理。

  • 3.3 电源系统架构发展

  • 作为硬件核心,HiPIMS 电源系统已不能独立于镀膜整机系统之外,而是与整机系统深度融合。电源系统监控装置作为中枢控制器,不仅需要不间断地对电源内部重要节点运行参数和各个模块工况进行检测,并及时做出相应的调整和保护,而且也需要实时监测放电工艺参数、等离子体物理参数、膜层沉积特征等[75-76]。因此,如何架构 HiPIMS 电源智能控制系统,也将成为促进 HiPIMS 技术应用的重要推动力。

  • 4 结论与展望

  • 本文综述了 HiPIMS 电源的研究现状及需解决的问题。HiPIMS 电源研制有单脉冲大功率模式和复合 HiPIMS 模式两种设计思路,前者更依赖于对脉冲功率电源电力电子基础,而后者则从 HiPIMS 等离子体放电角度研制新型电源,对 HiPIMS 技术的发展都有着巨大的推动力。与国际涂层公司相比,国内 HiPIMS 电源研制起步较晚,专业电源技术人员与等离子体研究人员脱节,导致技术水平相对较落后,商业化水平有待进一步提高,而从等离子体放电特征设计电源模式更为适合国内技术的跳跃式发展。推动 HiPIMS 电源工程化应用亟待解决的技术问题主要包括热管理、弧管理和电源系统架构等。应针对这些问题积极开展研究,以迅速破解制约 HiPIMS 技术工程化应用的技术瓶颈。

  • 参考文献

    • [1] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [2] LIN J,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.

    • [3] MATTIAS S,DANIEL L,JENS J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.

    • [4] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [5] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [6] ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface and Coatings Technology,2011,205:s1-s9.

    • [7] ANDERS A,PAVEL N,ALBERT R.Drifting localization of ionization runaway:unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304.

    • [8] EHIASARIAN A P,HECIMOVIC A,ARCOS T D L,et al.High power impulse magnetron sputtering discharges:Instabilities and plasma self-organization[J].Applied Physics Letters,2012,100(11):114101.

    • [9] NIKOLAY B,TIBERIU M,STEPHANOS K,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:a review[J].Journal of Physics D:Applied Physics,2014,47:224001.

    • [10] MARTIN R,NILS B,MICHAEL A R,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.

    • [11] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2012,30(3):030801.

    • [12] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface and Coatings Technology.2010,204(11):1661-1684.

    • [13] EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.

    • [14] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257(25):308-325.

    • [15] ANDERS A.Deposition rates of high power impulse magnetron sputtering:Physics and economics[J].Journal of Vacuum Science & Technology A,2010,28(14):783-790.

    • [16] ZHANG Haibao,SHIARN C,CHEN Qiang.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.

    • [17] JI Chengding,QI Minwang,ZHE Renliu,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys and Compounds,2019,772(25):112-121.

    • [18] WAN Yuwu,MAN Y C,YU H H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,362(25):167-175.

    • [19] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:Influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface and Coatings Technology,2020,382(25):125007.

    • [20] SHENG Chichen,TSUNG Yenkuo,HSIN Chihlin,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508(1):145106.

    • [21] BRENNING N,BUTLER A,HAJIHOSEINI H,et al.Optimization of HiPIMS discharges:the selection of pulse power,pulse length,gas pressure,and magnetic field strength[J].Journal of Vacuum Science & Technology A,2020,38(3):033008.

    • [22] THÖRNBERG J,PALISAITIS J,HELLGREN N,et al.Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS[J].Surface and Coatings Technology,2020,404(25):126537.

    • [23] MEI Haijuan,DING Jicheng,XIAO Xiaolan,et al.Influence of pulse frequency on microstructure and mechanical properties of Al-Ti-V-Cu-N coatings deposited by HIPIMS[J].Ceramics International,2021,405(15):126514.

    • [24] YATSUI K,JIANG W,SUEMATSU H,et al.Industrial applications of pulsed particle beams and pulsed power technologies[C]//2004 International Conference on High-Power Particle Beams,July 18-23,2004,St.Petersburg.IEEE,2004:613-617.

    • [25] 江伟华.高重复频率脉冲功率技术及其应用:概述[J].强激光与粒子束,2012,24:10-15.JIANG Weihua.Repetition rate pulsed power technology and its applications:(i)Introduction[J].High Power Laser and Particle Beams,2012,24:10-15.(in Chinese)

    • [26] LEYH G E.The marx modulator development program for the international linear collider[C]//Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium,May 14-18,2006,Arlington,VA,USA.IEEE,2006:423-426.

    • [27] VISWANATHAN K,ORUGANTI R,SRINIVASAN D.A Novel tri-state boost converter with fast dynamics[J].IEEE Transactions on Power Electronics,2002,17(5):677-683.

    • [28] VISWANATHAN K,ORUGANTI R,SRINIVASAN D.Dual-mode control of tri-state boost converter for improved performance[J].IEEE Transactions on Power Electronics,2005,20(4):790-797.

    • [29] RANA N,KUMAR M,GHOSH A,et al.A novel interleaved tri-state boost converter with lower ripple and improved dynamic response[J].IEEE Transactions on Industrial Electronics,2018,65(7):5456-5465.

    • [30] 谷雨.宽重复频率独立式脉冲功率直流电源系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2017.GU Yu.Research on key technique of independent wide repeat frequency pulsed power DC power supply system[D].Harbin:Harbin Institute of Technology,2017.(in Chinese)

    • [31] RUAN X B,LI B,CHEN Q H,et al.Fundamental considerations of three-level DC/DC converters:topologies,analyses,and control[J].IEEE Transactions on Power Electronics,2008,55(11):3733-3743.

    • [32] LIU C,LAI J S.Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load[J].IEEE Transactions on Power Electronics,2007,22(4):1429-1436.

    • [33] ZHAO Y,LI W,HE X.Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell[J].IEEE Transactions on Power Electronics,2012,27(6):2869-2878.

    • [34] HUBER L,JANG Y Z,JOVANOVIC M M.Performance evaluation of bridgeless PFC boost rectifiers[J].IEEE transactions on power electronics,2008,23(3):1381-1390.

    • [35] JEONG S G,KWON J M,KWON B H.High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles[J].IEEE Transactions on Industrial Electronics,2019,66(1):215-222.

    • [36] VALIZADEH A,VARJANI A Y.A bridgeless soft switching PFC AC/DC converter with active clamping auxiliary circuit[C]//12th Power Electronics,Drive Systems,and Technologies Conference(PEDSTC).February 2-4,2021,Tabriz,Iran.IEEE,2021:1-6.

    • [37] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [38] PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2011(5):1123-1126.

    • [39] 桂刚,田修波,朱宗涛,等.1 kA 高功率脉冲磁控溅射电源研制及试验研究[J].真空,2011,48(4):46-50.GUI Gang,TIAN Xiubo,ZHU Zhongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.(in Chinese)

    • [40] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [41] 王洪国,陈庆川,韩大凯,等.高功率脉冲磁控溅射电源的研制[J].真空科学与技术学报,2013,33(2):168-170.WANG Hongguo,CHEN Qingchuan,HAN Dakai,et al.Novel type of power supply for high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(2):168-170.(in Chinese)

    • [42] 张秀梅,李红泽,刘洋,等.8 MW 单极性脉冲磁控溅射电源的设计[J].电力电子技术,2017,51(6):75-76.ZHANG Xiumei,LI Hongze,LIU Yang,et al.Design of 8 MW unipolar pulse magnetron sputtering power supply[J].Power Electronics,2017,51(6):75-76.(in Chinese)

    • [43] 魏松.可调脉冲高功率磁控溅射电源研制及AlCrN薄膜制备[D].哈尔滨:哈尔滨工业大学,2013.WEI Song.Development of modulated pulsed power magnetron sputtering system and preparation of alcrn films[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [44] KARKARI S K,ELLINGBOE A R,GAMAN C,et al.Electron density modulation in an asymmetric bipolar pulsed dc magnetron discharge[J].Journal of Applied Physics,2007(6):135-142.

    • [45] KRAUSE U,LIST M,FUCHS H.Requirements of power supply parameters for high-power pulsed magnetron sputtering[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2001(2):1123-1128.

    • [46] PHITSANU P,BERND L,JAMES B.Plasma parameters in a pre-ionized HIPIMS discharge operating at low pressure[J].IEEE Transactions on Plasma Science,2010,38(11):3007-3015.

    • [47] WU B,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films pre-pared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.

    • [48] 吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system[J].Vacuum,2019,56(6):1-6.(in Chinese)

    • [49] OSKIRKO V O,ZAKHAROV A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum,2020,181:109670.

    • [50] OSKIRKO V O,ZAKHAROVA A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum.2020,181:109670.

    • [51] LIN JIANLIANG,MOORE J J.,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.

    • [52] LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface and Coatings Technology,2011,205(10):3226-3234.

    • [53] GRECZYNSKI G,LU J,JENSEN J,et al.A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering[J].Surface and Coatings Technology,2014,257(25):15-25.

    • [54] JULIEN K,ROMMEL P B V,MICHAEL A R,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition[J].Surface and Coatings Technology,2019,359(15):433-437.

    • [55] IOANA L V,GABRIELA T I,CORNELIU P,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359(15):97-107.

    • [56] HIPPLER R,CADA M,STRANAK V,et al.Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target[J].Plasma Sources Science and Technology,2019,28(11):115020.

    • [57] ROMMEL P B V,GU Jiabin,ROBERT B,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688(31):137350.

    • [58] TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:Ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494(15):871-879.

    • [59] EMILE H A,AMINE A A,ABDELOUADOUD G B C D et al.Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle[J].Electrochimica Acta,2019,324(20):134890.

    • [60] RAINER H,MARTIN C,ZDENEK H.Time-resolved langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge[J].Applied Physics Letters,2020,116(6):064101.

    • [61] JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2021,405(15):126542.

    • [62] WOLFGANG T,DIEGO G,DOMINIC S,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface and Coatings Technology,2021,406(25):126664.

    • [63] GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47(6):8175-8183.

    • [64] NILS B,HAMIDREZA H,MARTIN R,et al.HiPIMS optimization by using mixed high-power and low-power pulsing[J].Plasma Sources Science and Technology,2021,30(1):015015.

    • [65] KIMIYASU S,YUICHI T,YUSUKE I.Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices:a Review[J].Nanomaterials,2020,10(3):448.

    • [66] ZHANG Y C,GE X L,WANG H M,et al.A novel three-pulse equivalent power loss profile for simplified thermal estimation[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(6):6875-6885.

    • [67] SMIRNOV V I,SERGEEV V A,SHORIN A M,et al.Thermal impedance meter for power MOSFET and IGBT transistors[J].IEEE Transactions on Power Electronics,2018,33(7):6211-6216.

    • [68] TAN K,COULBECK L.Proper pulsewidth setting to avoid underestimated switching loss in HVIGBT characterization[J].IEEE Transactions on Power Electronics,2022,37(4):3781-3785.

    • [69] CHRISTIE D J,TOMASEL F,SPROUL W D,et al.Power supply with arc handling for high peak power magnetron sputtering[J].Journal of Vacuum Science & Technology,A.Vacuum,Surfaces,and Films,2004(4):256-260.

    • [70] OSKIRKO V O,SEMENOV V D,SOLOVYEV A A,et al.Arc energy minimization in high-power impulse magnetron sputtering[J].Vacuum,2022,202:111213.

    • [71] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257:308-325.

    • [72] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30:3,030801.

    • [73] CARTER D C.Arc prevention in magnetron sputtering processes[C].51st annual technical conference proceedings,Chicago,IL,2008:0737-5921.

    • [74] Generate high density plasmas for superior deposition results:TruPlasma Highpulse Series 4000 for HIPIMS processes[EB/OL].https://www.trumpf.cn/zh_CN/truplasma-bipolar-serie-4000-g21/.

    • [75] SAMAEI A,CHAUDHURI S.Multiphysics modeling of metal surface cleaning using atmospheric pressure plasma[J].Journal of Applied Physics,2020,128(5):054903.

    • [76] SANNER R M,ESLOTINE J J.Gaussian networks for direct adaptive control[J].IEEE Trans on Neural Networks,1992,3(6):837-863.

  • 参考文献

    • [1] KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al.A novel pulsed magnetron sputter technique utilizing very high target power densities[J].Surface & Coatings Technology,1999,122(2-3):290-293.

    • [2] LIN J,MOORE J J,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.

    • [3] MATTIAS S,DANIEL L,JENS J,et al.On the film density using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2010,205(2):591-596.

    • [4] BOHLMARK J,LATTEMANN M,GUDMUNDSSON J T,et al.The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J].Thin Solid Films,2006,515(4):1522-1526.

    • [5] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltage-time characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [6] ANDERS A.Discharge physics of high power impulse magnetron sputtering[J].Surface and Coatings Technology,2011,205:s1-s9.

    • [7] ANDERS A,PAVEL N,ALBERT R.Drifting localization of ionization runaway:unraveling the nature of anomalous transport in high power impulse magnetron sputtering[J].Journal of Applied Physics,2012,111(5):053304.

    • [8] EHIASARIAN A P,HECIMOVIC A,ARCOS T D L,et al.High power impulse magnetron sputtering discharges:Instabilities and plasma self-organization[J].Applied Physics Letters,2012,100(11):114101.

    • [9] NIKOLAY B,TIBERIU M,STEPHANOS K,et al.Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges:a review[J].Journal of Physics D:Applied Physics,2014,47:224001.

    • [10] MARTIN R,NILS B,MICHAEL A R,et al.Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering[J].Plasma Sources Science and Technology,2020,29(5):05LT01.

    • [11] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2012,30(3):030801.

    • [12] SARAKINOS K,ALAMI J,KONSTANTINIDIS S.High power pulsed magnetron sputtering:a review on scientific and engineering state of the art[J].Surface and Coatings Technology.2010,204(11):1661-1684.

    • [13] EHIASARIAN A P,WEN J G,PETROV I.Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion[J].Journal of Applied Physics,2007,101(5):054301.

    • [14] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257(25):308-325.

    • [15] ANDERS A.Deposition rates of high power impulse magnetron sputtering:Physics and economics[J].Journal of Vacuum Science & Technology A,2010,28(14):783-790.

    • [16] ZHANG Haibao,SHIARN C,CHEN Qiang.Recent progress on high power impulse magnetron sputtering(HiPIMS):the challenges and applications in fabricating VO2 thin film[J].AIP Advances,2019,9(3):035242.

    • [17] JI Chengding,QI Minwang,ZHE Renliu,et al.Influence of bias voltage on the microstructure,mechanical and corrosion properties of AlSiN films deposited by HiPIMS technique[J].Journal of Alloys and Compounds,2019,772(25):112-121.

    • [18] WAN Yuwu,MAN Y C,YU H H,et al.Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,362(25):167-175.

    • [19] ZAUNER L,ERTELTHALER P,WOJCIK T,et al.Reactive HiPIMS deposition of Ti-Al-N:Influence of the deposition parameters on the cubic to hexagonal phase transition[J].Surface and Coatings Technology,2020,382(25):125007.

    • [20] SHENG Chichen,TSUNG Yenkuo,HSIN Chihlin,et al.Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering[J].Applied Surface Science,2020,508(1):145106.

    • [21] BRENNING N,BUTLER A,HAJIHOSEINI H,et al.Optimization of HiPIMS discharges:the selection of pulse power,pulse length,gas pressure,and magnetic field strength[J].Journal of Vacuum Science & Technology A,2020,38(3):033008.

    • [22] THÖRNBERG J,PALISAITIS J,HELLGREN N,et al.Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS[J].Surface and Coatings Technology,2020,404(25):126537.

    • [23] MEI Haijuan,DING Jicheng,XIAO Xiaolan,et al.Influence of pulse frequency on microstructure and mechanical properties of Al-Ti-V-Cu-N coatings deposited by HIPIMS[J].Ceramics International,2021,405(15):126514.

    • [24] YATSUI K,JIANG W,SUEMATSU H,et al.Industrial applications of pulsed particle beams and pulsed power technologies[C]//2004 International Conference on High-Power Particle Beams,July 18-23,2004,St.Petersburg.IEEE,2004:613-617.

    • [25] 江伟华.高重复频率脉冲功率技术及其应用:概述[J].强激光与粒子束,2012,24:10-15.JIANG Weihua.Repetition rate pulsed power technology and its applications:(i)Introduction[J].High Power Laser and Particle Beams,2012,24:10-15.(in Chinese)

    • [26] LEYH G E.The marx modulator development program for the international linear collider[C]//Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium,May 14-18,2006,Arlington,VA,USA.IEEE,2006:423-426.

    • [27] VISWANATHAN K,ORUGANTI R,SRINIVASAN D.A Novel tri-state boost converter with fast dynamics[J].IEEE Transactions on Power Electronics,2002,17(5):677-683.

    • [28] VISWANATHAN K,ORUGANTI R,SRINIVASAN D.Dual-mode control of tri-state boost converter for improved performance[J].IEEE Transactions on Power Electronics,2005,20(4):790-797.

    • [29] RANA N,KUMAR M,GHOSH A,et al.A novel interleaved tri-state boost converter with lower ripple and improved dynamic response[J].IEEE Transactions on Industrial Electronics,2018,65(7):5456-5465.

    • [30] 谷雨.宽重复频率独立式脉冲功率直流电源系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2017.GU Yu.Research on key technique of independent wide repeat frequency pulsed power DC power supply system[D].Harbin:Harbin Institute of Technology,2017.(in Chinese)

    • [31] RUAN X B,LI B,CHEN Q H,et al.Fundamental considerations of three-level DC/DC converters:topologies,analyses,and control[J].IEEE Transactions on Power Electronics,2008,55(11):3733-3743.

    • [32] LIU C,LAI J S.Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load[J].IEEE Transactions on Power Electronics,2007,22(4):1429-1436.

    • [33] ZHAO Y,LI W,HE X.Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell[J].IEEE Transactions on Power Electronics,2012,27(6):2869-2878.

    • [34] HUBER L,JANG Y Z,JOVANOVIC M M.Performance evaluation of bridgeless PFC boost rectifiers[J].IEEE transactions on power electronics,2008,23(3):1381-1390.

    • [35] JEONG S G,KWON J M,KWON B H.High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles[J].IEEE Transactions on Industrial Electronics,2019,66(1):215-222.

    • [36] VALIZADEH A,VARJANI A Y.A bridgeless soft switching PFC AC/DC converter with active clamping auxiliary circuit[C]//12th Power Electronics,Drive Systems,and Technologies Conference(PEDSTC).February 2-4,2021,Tabriz,Iran.IEEE,2021:1-6.

    • [37] ANDERS A,ANDERSSON J,EHIASARIAN A.High power impulse magnetron sputtering:current-voltagetime characteristics indicate the onset of sustained self-sputtering[J].Journal of Applied Physics,2007,102(11):113303.

    • [38] PAPA F,GERDES H,BANDORF R,et al.Deposition rate characteristics for steady state high power impulse magnetron sputtering(HIPIMS)discharges generated with a modulated pulsed power(MPP)generator[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2011(5):1123-1126.

    • [39] 桂刚,田修波,朱宗涛,等.1 kA 高功率脉冲磁控溅射电源研制及试验研究[J].真空,2011,48(4):46-50.GUI Gang,TIAN Xiubo,ZHU Zhongtao,et al.Development of 1 kA high power pulsed magnetron sputtering power supply[J].Vacuum,2011,48(4):46-50.(in Chinese)

    • [40] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控溅射电源研制及放电特性研究[J].真空,2010,47(3):44-47.TIAN Xiubo,WU Zhongzhen,SHI Jingwei,et al.Development and discharge behavior of high power density pulse magnetron sputtering system[J].Vacuum,2010,47(3):44-47.(in Chinese)

    • [41] 王洪国,陈庆川,韩大凯,等.高功率脉冲磁控溅射电源的研制[J].真空科学与技术学报,2013,33(2):168-170.WANG Hongguo,CHEN Qingchuan,HAN Dakai,et al.Novel type of power supply for high-power pulsed magnetron sputtering[J].Chinese Journal of Vacuum Science and Technology,2013,33(2):168-170.(in Chinese)

    • [42] 张秀梅,李红泽,刘洋,等.8 MW 单极性脉冲磁控溅射电源的设计[J].电力电子技术,2017,51(6):75-76.ZHANG Xiumei,LI Hongze,LIU Yang,et al.Design of 8 MW unipolar pulse magnetron sputtering power supply[J].Power Electronics,2017,51(6):75-76.(in Chinese)

    • [43] 魏松.可调脉冲高功率磁控溅射电源研制及AlCrN薄膜制备[D].哈尔滨:哈尔滨工业大学,2013.WEI Song.Development of modulated pulsed power magnetron sputtering system and preparation of alcrn films[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [44] KARKARI S K,ELLINGBOE A R,GAMAN C,et al.Electron density modulation in an asymmetric bipolar pulsed dc magnetron discharge[J].Journal of Applied Physics,2007(6):135-142.

    • [45] KRAUSE U,LIST M,FUCHS H.Requirements of power supply parameters for high-power pulsed magnetron sputtering[J].Thin Solid Films:An International Journal on the Science and Technology of Thin and Thick Films,2001(2):1123-1128.

    • [46] PHITSANU P,BERND L,JAMES B.Plasma parameters in a pre-ionized HIPIMS discharge operating at low pressure[J].IEEE Transactions on Plasma Science,2010,38(11):3007-3015.

    • [47] WU B,HAEHNLEIN I,SHCHELKANOV I,et al.Cu films pre-pared by bipolar pulsed high power impulse magnetron sputtering[J].Vacuum,2018,150:216-221.

    • [48] 吴厚朴,田钦文,田修波,等.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空,2019,56(6):1-6.WU Houpu,TIAN Qinwen,TIAN Xiubo,et al.Development and discharge behavior of novel double bipolar pulse high power impulse magnetron sputtering system[J].Vacuum,2019,56(6):1-6.(in Chinese)

    • [49] OSKIRKO V O,ZAKHAROV A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum,2020,181:109670.

    • [50] OSKIRKO V O,ZAKHAROVA A N,PAVLOV A P,et al.Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J].Vacuum.2020,181:109670.

    • [51] LIN JIANLIANG,MOORE J J.,SPROUL W D,et al.The structure and properties of chromium nitride coatings deposited using dc,pulsed dc and modulated pulse power magnetron sputtering[J].Surface and Coatings Technology,2010,204(14):2230-2239.

    • [52] LIN Jianliang,WILLIAM D S,JOHN J M,et al.High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP)magnetron sputtering[J].Surface and Coatings Technology,2011,205(10):3226-3234.

    • [53] GRECZYNSKI G,LU J,JENSEN J,et al.A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering[J].Surface and Coatings Technology,2014,257(25):15-25.

    • [54] JULIEN K,ROMMEL P B V,MICHAEL A R,et al.Bipolar HiPIMS for tailoring ion energies in thin film deposition[J].Surface and Coatings Technology,2019,359(15):433-437.

    • [55] IOANA L V,GABRIELA T I,CORNELIU P,et al.Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J].Surface and Coatings Technology,2019,359(15):97-107.

    • [56] HIPPLER R,CADA M,STRANAK V,et al.Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target[J].Plasma Sources Science and Technology,2019,28(11):115020.

    • [57] ROMMEL P B V,GU Jiabin,ROBERT B,et al.Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias[J].Thin Solid Films,2019,688(31):137350.

    • [58] TIRON V,URSU E L,CRISTEA D,et al.Overcoming the insulating materials limitation in HiPIMS:Ion-assisted deposition of DLC coatings using bipolar HiPIMS[J].Applied Surface Science,2019,494(15):871-879.

    • [59] EMILE H A,AMINE A A,ABDELOUADOUD G B C D et al.Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle[J].Electrochimica Acta,2019,324(20):134890.

    • [60] RAINER H,MARTIN C,ZDENEK H.Time-resolved langmuir probe diagnostics of a bipolar high power impulse magnetron sputtering discharge[J].Applied Physics Letters,2020,116(6):064101.

    • [61] JING P P,MA D L,GONG Y L,et al.Influence of Ag doping on the microstructure,mechanical properties,and adhesion stability of diamond-like carbon films[J].Surface and Coatings Technology,2021,405(15):126542.

    • [62] WOLFGANG T,DIEGO G,DOMINIC S,et al.Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS[J].Surface and Coatings Technology,2021,406(25):126664.

    • [63] GUI Binhua,ZHOU Hui,ZHENG Jun,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47(6):8175-8183.

    • [64] NILS B,HAMIDREZA H,MARTIN R,et al.HiPIMS optimization by using mixed high-power and low-power pulsing[J].Plasma Sources Science and Technology,2021,30(1):015015.

    • [65] KIMIYASU S,YUICHI T,YUSUKE I.Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices:a Review[J].Nanomaterials,2020,10(3):448.

    • [66] ZHANG Y C,GE X L,WANG H M,et al.A novel three-pulse equivalent power loss profile for simplified thermal estimation[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(6):6875-6885.

    • [67] SMIRNOV V I,SERGEEV V A,SHORIN A M,et al.Thermal impedance meter for power MOSFET and IGBT transistors[J].IEEE Transactions on Power Electronics,2018,33(7):6211-6216.

    • [68] TAN K,COULBECK L.Proper pulsewidth setting to avoid underestimated switching loss in HVIGBT characterization[J].IEEE Transactions on Power Electronics,2022,37(4):3781-3785.

    • [69] CHRISTIE D J,TOMASEL F,SPROUL W D,et al.Power supply with arc handling for high peak power magnetron sputtering[J].Journal of Vacuum Science & Technology,A.Vacuum,Surfaces,and Films,2004(4):256-260.

    • [70] OSKIRKO V O,SEMENOV V D,SOLOVYEV A A,et al.Arc energy minimization in high-power impulse magnetron sputtering[J].Vacuum,2022,202:111213.

    • [71] ANDERS A.A review comparing cathodic arcs and high power impulse magnetron sputtering(HiPIMS)[J].Surface and Coatings Technology,2014,257:308-325.

    • [72] GUDMUNDSSON J T,BRENNING N,LUNDIN D,et al.High power impulse magnetron sputtering discharge[J].Journal of Vacuum Science & Technology A,2012,30:3,030801.

    • [73] CARTER D C.Arc prevention in magnetron sputtering processes[C].51st annual technical conference proceedings,Chicago,IL,2008:0737-5921.

    • [74] Generate high density plasmas for superior deposition results:TruPlasma Highpulse Series 4000 for HIPIMS processes[EB/OL].https://www.trumpf.cn/zh_CN/truplasma-bipolar-serie-4000-g21/.

    • [75] SAMAEI A,CHAUDHURI S.Multiphysics modeling of metal surface cleaning using atmospheric pressure plasma[J].Journal of Applied Physics,2020,128(5):054903.

    • [76] SANNER R M,ESLOTINE J J.Gaussian networks for direct adaptive control[J].IEEE Trans on Neural Networks,1992,3(6):837-863.

  • 手机扫一扫看