en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

苗晓军,男,1986年出生,本科,工程师。主要研究方向为金属材料成形。E-mail:miaoxj519@126.com;

钱旦(通信作者),男,1988年出生,博士,副研究员,硕士生导师。主要研究方向为表面科学与工程。E-mail:qiandan2018@xjtu.edu.cn

中图分类号:TB79;TM89

DOI:10.11933/j.issn.1007−9289.20211226001

参考文献 1
HOLM R,HOLM E.Electric contacts:Theory and application[M/OL].Berlin,New York:Springer-Verlag,1967[2021-09-20].http://books.google.com/books?id= RBwIAQAAIAAJ.
参考文献 2
DYKE W P,TROLAN J K,MARTIN E E,et al.The field emission initiated vacuum arc.I.experiments on arc initiation[J].Physical Review,1953,91(5):1043-1054.
参考文献 3
ANDERS A,YUSHKOV G Y.Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J].Journal of Applied Physics,2002,91(8):4824-4832.
参考文献 4
RAKHOVSKII V I.Experimental study of the dynamics of cathode spots development[J].IEEE Transactions on Plasma Science,1976,4(2):81-102.
参考文献 5
HERMOCH V.On the retrograde motion of arcs in magnetic fields[J].IEEE Transactions on Plasma Science,1973,1(3):62-64.
参考文献 6
SMITH C G.Arc motion reversal in transverse magnetic field by heating cathode[J].Physical Review,1948,73(5):542-543.
参考文献 7
LI L,ZHU Y,HE F,et al.Control of cathodic arc spot motion under external magnetic field[J].Vacuum,2013,91:20-23.
参考文献 8
CHALY A M,LOGATCHEV A A,SHKOL’NIK S M.Cathode processes in free burning and stabilized by axial magnetic field vacuum arcs[J].IEEE Transactions on Plasma Science,1999,27(4):827-835.
参考文献 9
KIMBLIN C W,VOSHALL R E.Interruption ability ofvacuum interrupters subjected to axial magnetic fields[J].Proceedings of the Institution of Electrical Engineers,1972,119(12):1754.
参考文献 10
CHALY A M.Magnetic control of high current vacuum arcs with the aid of an axial magnetic field:A review[J].IEEE Transactions on Plasma Science,2005,33(5):1497-1503.
参考文献 11
王立军,胡丽兰,周鑫,等.大尺寸电极条件下大电流真空电弧特性的仿真[J].电工技术学报,2013,28(2):163-170.WANG Lijun,HU Lilan,ZHOU Xin,et al.Simulation of high current vacuum arc characteristics under large size electrodes[J].Transactions of China Electrotechnical Society,2013,28(2):163-170.(in Chinese).
参考文献 12
毕迎华,李旭旭,李元钊,等.一种应用于 126 kV 高电压等级真空灭弧室的新型触头结构及其燃弧特性[J].高压电器,2021,57(6):56-63.BI Yinghua,LI Xuxu,LI Yuanzhao,et al.The invention relates to a new contact structure and its arc burning characteristics for 126 kV high voltage grade vacuum arc extinguishing chamber[J].High Voltage Apparatus,2021,57(6):56-63.(in Chinese)
参考文献 13
DAALDER J E.Components of cathode erosion in vacuum arcs[J].Journal of Physics D:Applied Physics,1976,9(16):2379-2395.
参考文献 14
PRAVOVEROV N L,STRUCHKOV A I.Erosion of pure metals in an electric arc contact materials[J].Soviet Electrical Engineering,1976,47(1):80-82.
参考文献 15
ESSIPTCHOUK A M,MAROTTA A,SHARAKHOVSKY L I.The influence of the arc current on the cold electrode erosion[J].Physics of Plasmas,2003,10(9):3770-3773.
参考文献 16
KIMBLIN C W.Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs[J].Journal of Applied Physics,1974,45(12):5235-5244.
参考文献 17
ZHANG Z,MA H,ZHANG Y,et al.Anode spot threshold current of four pure metals subjected to uniform axial magnetic field in high current vacuum arcs[J].IEEE Transactions on Plasma Science,2017,45(8):2135-2143.
参考文献 18
LIN R,WANG L,MA J,et al.Experiment investigation on vacuum arc of AMF contacts under different materials[J].AIP Advances,2018,8(9):095110.
参考文献 19
张静,张士兵.纳米晶 Cu-Ag 双峰合金材料热导率的分子动力学模拟研究[J].功能材料,2017,48(10):10017-10023.ZHANG Jing,ZHANG Shibin.Molecular dynamics simulation of thermal conductivity of nanocrystalline Cu-Ag bimodal alloy[J].Journal of Functional Materials,2017,48(10):10017-10023.(in Chinese)
参考文献 20
WEI K X,CHU Z Q,WEI W,et al.Effect of deep cryogenic treatment on microstructure and properties of pure copper processed by equal channel angular pressing[J].Advanced Engineering Materials,2019,21(7):1801372.
参考文献 21
YANG Z,ZHANG Q,WANG Q,et al.Vacuum arc characteristics on nanocrystalline CuCr alloys[J].Vacuum,2006,81(4):545-549.
参考文献 22
SCHNEIDER A,POPOV S,DURAKOV V G,et al.On breaking capacity of the CuCr25 composite material produced with electron-beam cladding[J].25th International Symposium on Discharges and Electrical Insulation in Vacuum(ISDEIV 2012),2012:269-271.
参考文献 23
KAI L,XIAOJUN M,DAN Q,et al.Arc erosion resistance of CuCrMo films deposited via magnetron sputtering[J].Materials Research Express,2021,8(6):066402.
参考文献 24
王伟.磁场的闭合状态对磁控溅射Cr镀层沉积过程影响的研究[D].西安:西安理工大学,2008.WANG Wei.Research on the effect of magnetic field closure on the deposition process of Cr Coating by magnetron sputtering[D].Xi’ an:Xi’ an University of Technology,2008.(in Chinese)
参考文献 25
JIA S,YANG D,WANG L,et al.Investigation of the swirl flow on anode surface in high-current vacuum arcs[J].Journal of Applied Physics,2012,111(4):043301.
参考文献 26
YANG D,JIA S,WANG L,et al.Influence of axial magnetic field on the anode liquid swirl flow in high-current vacuum arcs[J].IEEE Transactions on Plasma Science,2011,39(11):2868-2869.
目录contents

    摘要

    提升真空断路器 CuCr 触头的抗电弧烧蚀能力是决定其能否应用于高压真空灭弧室的核心关键,尚未见有效触头材料或表面涂层改性技术使 CuCr 触头应用于 126 kV 以上真空灭弧室的报道。基于 CuCrMo 薄膜的优异电气性能,对沉积 CuCrMo 薄膜的真空灭弧室触头进行 126 kV 下的抗电弧烧蚀研究,并进行开断寿命的工程验证。采用磁控溅射技术在 CuCr50 真空触头片表面沉积 5 μm 厚的 CuCrMo 薄膜,对其进行 126 kV 20 kA 电流下 23 次的电寿命试验。利用 XRD、SEM 和 3D 共聚焦显微镜研究电弧烧蚀后表面形貌。研究结果表明:沉积 CuCrMo 薄膜的触头片,在纵向磁场和 126 kV 20 kA 条件下可有效分散电弧,较未镀膜触头片有更小电弧电流密度;经过 23 次电寿命试验后,表面烧蚀程度比未镀膜的触头片轻,表面粗糙度降低,提高了触头的开断寿命。为表面改性真空断路器 CuCr 触头在高电压大电流真空灭弧室的应用提供了有效工程依据。

    Abstract

    Improving the arc ablation resistance of CuCr contact of vacuum circuit breaker is the core key to determine whether it can be applied to high-voltage vacuum interrupters. There are few effective contact materials or coating technology making CuCr contact being applied to vacuum interrupters above 126 kV. Based on the excellent electrical properties of CuCrMo film, the arc erosion resistance and breaking life of the vacuum interrupter contact deposited with CuCrMo film is studied at 126 kV and its engineering verification of breaking life is carried out. 5 μm CuCrMo film is deposited by magnetron sputtering on the surface of the CuCr50 contactors, and the electrical life experiment is conducted 23 times at 126 kV 20 kA current. The surface microstructure and topography after arc ablation is studied by X-ray diffraction (XRD), second electron microscopy (SEM) and 3D confocal laser scanning microscope. The results show that the CuCrMo coated contactor can effectively disperse the arc and reduce the arc current density under the condition of axial magnetic field and the 126kV 20kA current. After 23 times electric life experiment, the surface erosion is less than the contactor without coating, the surface roughness is reduced, and the life of the contactor is extended. This paper provides an effective engineering basis for the application of modified CuCr contact in high voltage and high current vacuum interrupter.

  • 0 前言

  • 六氟化硫(SF6)气体是京都协定规定的6种温室气体之一,随着环境保护的要求增加,采用特高压真空断路器替换SF6 气体绝缘断路器,是推动电气设备绿色环保化的技术方案之一。2021年6月2号,国内首台环保型126kV真空断路器在国家电网龙泉变电站成功投运,表明了环保真空断路器将逐步替代传统SF6 气体绝缘断路器成为可能。

  • 真空电弧和真空断路器的研究集中20世纪40至80年代中期,对中低压的真空电弧烧蚀理论的研究表明了真空电弧的电压降和阴极弧斑的产生、运动与阴极材料和磁场有关。对真空断路器的接触击穿和一般的电击穿现象的试验研究[1],表明了电极材料表面电子发射是真空击穿的影响因素之一[2]。对真空电弧电势的研究则表明,不同的阴极材料具有不同的阴极电压降,比如Cr与Cu的阴极电压降接近,而Mo的阴极压降比Cu高[3]。对阴极弧斑的运动的研究表明,在外加磁场作用下,阴极斑点运动方向与安培力方向相反,呈现为“反向运动”,多个阴极斑点共存时,表现为相互分离而不是聚集[4],且阴极斑点反向运动速度在不同电极材料表面不同,在W和Mo阴极的运动速度比Cu阴极表面快[5]

  • 利用磁场提高大电流真空断路器的开断能力是特高压真空断路器研究的方向之一。已有研究表明,在横向磁场作用下,阴极弧斑运动速度随磁场的增加而加快[6-7],在纵向磁场作用下可以稳定真空电弧使其保持扩散态[8],减少电弧能量的耗散,降低电极和鞘层温度[9-10],比如试验和模拟证明了25kA的电流在纵向磁场作用下,阴极侧的电流集聚可以得到有效抑制[11]。利用纵向磁场约束真空电弧的扩展被利用在126kV高电压等级的真空灭弧室中,有效抑制了电弧的扩展,使得电弧在内触头表面烧蚀,减少对外触头烧蚀,增加触头寿命[12]

  • 阴极的电弧烧蚀导致的损伤,一方面降低接触过程的通流能力,导致器件的提前损坏,另一方面表面粗糙度的改变,动静触头接触时受力的不均匀,导致动触头的真空动密封提前破坏。因而减少阴极电弧的烧蚀可有效提高真空断路器的使用寿命。DAALDER[13]于1976年指出阴极表面质量流主要由离子和熔融粒子组成,而粒子烧蚀速率对阴极烧蚀为主要贡献,阴极以蒸汽形式的损失非常小。但是,这个结论是基于中低电流下的研究结果。

  • 对不同的阴极材料的烧蚀速率研究表明,不同电流和阴极材料,烧蚀速率不同。在9.5A时,Cu电极的烧蚀速率为18 μg/s,Cr的烧蚀速率为84 μg/s,比Cu电极的烧蚀速率快[14]。随着电流增加至500A,Cu阴极烧蚀速率增加[15],当达到kA时,烧蚀速率从0.1mg/C增加至10mg/C[16]。采用复合材料可以有效提高抗电弧烧蚀能力,比如采用含有30%的Fe-Cu合金,在25kA电流下烧蚀速率比纯铜降低了5~7倍。在有170mT外磁场作用时,Cu的烧蚀速率比无外磁场时增加了10%,而Mo则增加了26%。

  • 外加磁场作用下,不同阴极材料达到同样临界电流所需的外加磁场大小不同。对大电流(2~50kA)下,不同阴阳电极材料的在纵向磁场下真空电弧的研究表明,达到15kA临界电流时,即阳极弧斑形成前,为真空开关的开断能力极限,纯Mo和W作为阴极仅需要37mT外加磁场,纯Fe需要110mT外加磁场,纯Cu需要74mT[17]。对15kA电弧电流和纵向磁场作用下,不同Cu和Cr含量比值的CuCr触头材料烧蚀研究表明,CuCr30具有最小的烧蚀深度和面积[18]

  • 阴极材料因具备不同的电和热的物理性能,导致了其电弧烧蚀性能具有复杂的规律,不同的阴极材料,其阴极弧斑运动速度不同,不同磁场下的临界电流不同。阴极材料的组织结构对其电和热性能也有着一定的影响。晶粒细化可导致的热导率降低和电导率增加,同时晶界密度增加。纳米Cu-Ag双峰材料热导率明显低于单晶Cu/Ag块体,存在明显的尺寸效应[19]。纯Cu细化晶粒后,电导率下降[20]。对纳米晶W的功函数研究表明,因晶粒和晶界具有不同费米能级,晶粒尺寸减小为100nm时,功函数减少0.8eV,场发射的电子能量范围变宽。组织结构导致的物理性能的变化必然对阴极烧蚀有着重要的影响。比较纳米晶和粗晶CuCr5在15kV下真空放电试验,纳米晶的电弧弧斑移动速度快,随机运动更加平滑,电弧电流突跳少更平稳[21]。当CuCr25触头材料中,不均匀分布着50~150 μm的Cr颗粒和均匀分布1 μm的Cr颗粒的两种组织结构,在6kA的电压下真空放电试验比较,表明组织均匀细小的CuCr25开断能力更好,阴极弧斑更加温度[22]。利用磁控溅射方法制备的CuCrMo薄膜经过退火后可以获得均匀的双相结构,经40kA电流9ms的电弧烧蚀试验表明薄膜具有很好的电弧烧蚀抗力[23]

  • 对于126kV 20kA这样高电压大电流等级的试验,试验装置和电寿命试验花费大,试验难度高,多数研究结论是基于中低电压下大电流的研究结果,而对特高电压下大电流真空电弧烧蚀现象和机理缺乏相关研究,虽然真空电弧理论已有丰富的研究,且可以从中压向高压进行理论外推,但是阴极材料烧蚀性能在中低压大电流烧蚀方面的研究尚缺乏规律性,在特高压大电流下的烧蚀更是缺乏试验检验,因此经验上借鉴了SF6 气体断路器的烧蚀性能,大多数工程技术专业人员认为磁控溅射几个微米的薄膜无法承受高压大电流的烧蚀,不可能对真空触头有任何性能的改善。但是前期中压大电流烧蚀试验结果看,磁控溅射CuCrMo薄膜,在电气性能方面的改善,有可能在改善触头表面粗糙度,使得触头表面更加均匀烧蚀,减少触头因表面粗糙度增大,而破坏原有电场和动触头的动密封,导致触头开断能力下降,从而提高触头寿命,故本研究在CuCr50触头表面,利用磁控溅射沉积的5 μm厚的CuCrMo薄膜,研究其在126kV 20kA电流的真空烧蚀性能。

  • 1 试验准备

  • 1.1 样品制备

  • 试验使用JPG-450A型磁控溅射镀膜设备,溅射室布置4个靶位。试验使用靶材分别为:金属Cr靶(纯度99.99%)、金属Cu靶和金属Mo靶,靶材尺寸均为 φ 75mm×5mm。选用Ar(纯度99.99%)作为工作气体,使用的基体材料为平高集团126kV真空断路器CuCr50触头片,尺寸为φ 125mm× 5mm。

  • 触头片表面经过600目细砂纸打磨,去除表面氧化层,并经过酒精超声清洗20min试样片装入磁控溅射室,样品水平放置,镀膜时试样架转速为20r/min。沉积室抽至本底真空为0.5mPa。随后通入氩气,工作气压为0.5Pa。工作使用的Cu、 Cr和Mo靶纯度为99.99%,采用磁控共溅射的方法,通过控制Cu、Cr和Mo靶的功率,在真空断路器CuCr50触头片表面沉积CuCrMo薄膜。具体沉积参数见表1,经过镀膜的CuCr50触头片外观如图1所示,表面暗灰色,且磁控溅射沉积5 μm厚的膜,表面能观察到车刀加工痕迹,根据文献,磁控溅射沉积薄膜,表面粗糙度在纳米级别[24],对车削加工后约几百纳米级别的基体表面粗糙度的影响很小,因而镀膜后的表面粗糙度不会对烧蚀后的表面粗糙度有影响。

  • 表1 磁控溅射CuCrMo薄膜的沉积参数和成份

  • Table1 Deposition parameters and percent of the CuCrMo film

  • 图1 沉积CuCrMo薄膜的CuCr50触头片

  • Fig.1 Topography of CuCr50contactor deposited of CuCrMo film

  • 1.2 结构表征及力学性能测试

  • 经过镀膜和未镀膜的CuCr50触头片在平高集团研发的E2级126kV断路器电寿命试验装置上进行电寿命试验。试验装置如图2所示,因126kV断路器电寿命试验过程会对国家电网造成严重干扰,故平高集团专门研发了E2级126kV断路器电寿命试验装置,与国家电网进行了隔离,保证试验顺利进行,并根据GB1984—2014要求,该等级条件下电寿命试验测试次数需达到20次以上。经过电寿命试验后,采用激光3D共聚焦显微镜分析23次电寿命试验后触头表面变化。因电寿命试验后,阴极表面烧蚀最为严重,故本文仅取阴极触头片进行分析。

  • 图2 126kV断路器电寿命试验装置

  • Fig.2 Electrical life of a126kV circuit breaker test equipment

  • 利用帕纳科X’Pert Pro多晶X射线衍射仪(Cu Kα 靶,加速电压40kV,电流40mA,步长0.02°,每秒0.02°)对经过23次电寿命试验后触头片表层进行物相分析。利用FEI的Q25型电子显微镜和FEI的Verios460型场发射扫描电镜(SEM)对触头片基体金相组织和23次电寿命试验后的CuCr50触头片表面形貌和截面进行观察。

  • 2 结果与讨论

  • 图3 为CuCr50触头片基体的金相组织扫描电镜背散射电子形貌像,其中深灰色圆形颗粒为原子序数小的Cr相,浅灰色为Cu相,分布在圆形颗粒的Cr相之间,黑色为气孔,源于熔渗残留的气体。 Cr颗粒尺寸主要分布在4~150 μm,尺寸大小非常不均匀。气孔尺寸分布集中在500nm~4 μm。

  • 图3 真空触头片CuCr50基体金相组织SEM背散射像

  • Fig.3 SEM back scattered electron image of vacuum contactor CuCr50substrate microstructure

  • 图4 为经过相同的23次电寿命试验后,未镀膜和镀有CuCrMo薄膜的CuCr50触头片烧蚀的光学图像,烧蚀后的表面区域划分为中心区域A和边缘区域B,分别对区域A和B做进一步的物相和表面微观形貌分析。从光学照片看,沉积有CuCrMo薄膜的触头片表面较平整,烧蚀发黑区域较均匀分布;而未沉积薄膜的触头片表面发黑的区域主要在边缘,中心烧蚀坑较大,以标准烧蚀等级评判,该触头片已明显失效。

  • 图4 经过23次电寿命试验后的触头光学图像

  • Fig.4 Optical image of the contactor after 23times electrical life test

  • 图5 是23次电寿命试验后,未镀膜的CuCr50触头片与镀有CuCrMo薄膜的触头片在区域A和B的X射线衍射谱线,如图5a所示,CuCr触头片未烧蚀的基体区域(CuCr Base),经过烧蚀的未镀膜和镀膜的触头片的A和B区,均出现Cu相和Cr相的衍射峰。根据各衍射峰的衍射强度,计算得到的织构系数如图5b所示,可以看出CuCr触头片基体,Cu相的(220) 和(311)织构择优。经过23次电寿命试验后,中心A区域的表面Cu相为(311)择优,而边缘B区域Cu相各织构系数均接近1,可以认为没有明显择优。沉积CuCrMo薄膜烧蚀后的表面中心A区Cu相为 (200)和(311)择优,边缘B区Cu相为(200)和 (311)织构系数均比A区大,其中Cu相(200)织构系数最大。CuCr触头片基体中,Cr相为(211)晶面择优,经过23次电寿命试验后,中心A区和边缘B区变为Cr相(110)晶面择优。沉积有CuCrMo薄膜烧蚀后,表面A区为Cr相(110)和(211)晶面择优,而B区的Cr相各晶面织构系数都接近1,无明显择优。因此沉积有CuCrMo薄膜的触头片,经过23次电寿命后,织构系数的变化与CuCr触头片不同,说明了沉积CuCrMo薄膜后,电弧烧蚀后的微观组织结构与未沉积薄膜的有明显不同。

  • 图6 是23次电寿命试验后,CuCr50触头片经过电弧烧蚀后的表面形貌。从图6a中可以看出中间A区域部分,表面明显相对平整,没有明显的起伏,放大之后,如图6b所示,表面层片状的结构为烧蚀电弧导致的局部区域快速熔化并凝固的形貌,层片状结构相互层叠排列,表明了电弧在表面均匀的烧蚀。在B区,如图6c所示,可以看到明显的脊状突起,在局部放大图像图6d中,脊状突起两侧有明显高低差异,根据已有对纵向磁场电弧的研究[25-26],可知在纵向磁场作用下,对熔池产生周向电磁力,导致熔化的液体沿着周向流动,冷却凝固形成脊状突起。

  • 图5 CuCr50触头片、烧蚀后镀膜及未镀膜触头片的X射线衍射谱及织构系数

  • Fig.5 XRD profile and the texture coefficient of the CuCr50contactor with and without CuCrMo film after arc erosion.

  • 图6 电寿命试验后CuCr50触头表面形貌

  • Fig.6 Surface morphologies of CuCr50contactor after electrical life

  • 图7 是23次电寿命试验后,镀有CuCrMo的CuCr50烧蚀后的形貌。图7a表明镀膜的触头片表面仍存在以同心圆排布的细密的车削痕,如图中箭头处,表明沉积的薄膜可能还存在,部分区域有圆孔状的烧蚀坑,局部放大后,如图7b所示,坑中为熔化凝固后的液体,坑外无数液滴状颗粒散布周围,在图7e背散射电子像中,可以看出熔化凝固的液体中,分为白色和浅灰色,坑外散布的液滴为白色,分布在浅灰色背景中,根据背散射电子像衬度与原子序数成的关系,白色为重原子,浅灰色为轻原子,表面薄膜为CuCrMo合金且Mo含量仅9at.%,在背散射电子像中,Mo原子含量少,因此原子序数衬度可以忽略,Cr原子含量为23at.%,且原子序数衬度比Cu低,且Cu的熔点最低,可以判断白色区域为Cu,浅灰色为CuCrMo合金。所以,在坑中是熔化的铜和残留的薄膜,表明薄膜在此处破裂,阴极弧斑烧蚀致使破裂缺口下面的Cu相熔化,而图7b中的Cu液滴形貌为熔化的圆形小凸起,说明此处由弥散分布的阴极细小电弧组成。中心A区除了部分区域薄膜破裂暴露出被烧蚀的基体外,大部分区域薄膜完整,表明此处烧蚀非常轻。在中心A区和边缘B区交界处如图7c所示,一侧为烧蚀较轻且散布有烧蚀弧坑的A区,另一侧为B区,比A区明显烧蚀严重,在局部放大图7d中,白色区域分布着大小不同浅灰色的孤岛,在图7f的背散射电子像中,可以看出孤岛为深灰和浅灰色相间,在Cu、 Cr和Mo三种元素中,Cr原子序数最小,为深灰色,与图3比较Cr颗粒的分布,这里孤岛内Cr元素集中,表明是Cu烧蚀后,留下了富Cr区,周围分布有河流状的白色区域,因此可以认为烧蚀严重,部分区域已经没有薄膜。可以推测,电弧烧蚀过程中熔化的Cu在该区域流动,凝固后形成河流状。图7g和7h为B区域外边缘处的烧蚀形貌,整体均匀,表面为层状结构相互叠加。在图7c和7g中未观察到如图6c中脊状的形貌,表明了沉积CuCrMo薄膜后,在纵向磁场作用下,对熔池产生周向电磁力弱,无法使熔化液体沿着周向流动形成脊状突起。

  • 图7 电寿命试验后镀有CuCrMo薄膜的CuCr50触头表面形貌

  • Fig.7 Surface morphologies of CuCr50contactor with CuCrMo film after electrical life

  • 图8 是随机选择镀膜触头片A区截面的背散射电子像,可见在深色Cr颗粒外存在白色的一层厚度不均匀的CuCrMo薄膜。在薄膜下方,比如a区域,是封闭的气孔,b区域是多个气孔及局部破坏的膜,c区域是贯通到表层的气孔,结合图7中A区域形貌,表明电弧烧蚀过程可能因局部气孔的存在导致薄膜破裂,暴露基体。对B区域截面做能谱分析,如图9所示,可以看到虽然在二次电子像中没有观察到薄膜存在,但是能谱分析结果表明,表面存在一层纳米级厚度的Cu、Cr和Mo元素层,说明经过烧蚀后,高熔点Cr和Mo元素依然在表层部分保留。

  • 进一步对未镀膜和有镀膜的真空触头片23次电寿命试验后的表面进行3D共聚焦显微镜观测,进行表面粗糙度统计,随机选择6个区域进行观察,由计算得到的表面粗糙度值绘制成图10,未沉积薄膜的真空触头片,烧蚀后,表面各个区域表面粗糙度分散度很大,且平均表面粗糙度为17.5 μm,沉积薄膜的真空触头片平均表面粗糙度约为0.013 0mm,表面镀膜后平均表面粗糙度减小,且四分位间距减小,说明了表面粗糙度的分散度的减小。因此沉积薄膜的真空触头片在126kV,20kA电寿命20次试验之后,具有更高的表面平整度,且表面依然分布有Cr和Mo元素层,烧蚀程度有所减轻。

  • 图8 电寿命试验后镀有CuCrMo薄膜的电触头片A区域处截面背散射电子像

  • Fig.8 Backscatter electron image of A region on CuCr50contactor with CuCrMo film after electrical life

  • 图9 电寿命试验后镀有CuCrMo薄膜的电触头片B区截面能谱

  • Fig.9 Cross section of B region of CuCr50contactor with CuCrMo film after electrical life

  • 图10 镀膜前后CuCr50触头片电寿命试验后表面粗糙度

  • Fig.10 Surface roughness of CuCr50contactor without and with CuCrMo film after electrical life

  • 对纵向磁场作用下阴极上电弧径向收缩力的模拟研究表明[19],在B区域附近电弧受到最高的径向收缩力,因而该区域的电弧烧蚀理论上应为严重区域,比较图6c、6d和图7g、7h,无论触头是否沉积有CuCrMo薄膜,B区域烧蚀均最为严重,与理论模拟研究结果一致。对纵向磁场作用下,不同的电极材料时电弧形态是分散电弧或集中电弧的研究表明,在15kA的大电流下,CuCr10、CuCr30和CuCr50均为明显的集中电弧,而CuCr20则为分散电弧。另外材料的微观组织结构改变可以使集中电弧转变为分散电弧,比如纳米晶的CuCr和CuCrMo薄膜可使得电弧集中烧蚀转变为分散电弧烧蚀。因此在本试验中,未沉积CuCrMo薄膜的触头片电弧电流密度Jz高,因径向磁致收缩力 F r=J z×Bθ,所以电弧径向集中,在B区域电弧径向收缩力大,烧蚀严重,同时因电弧电流密度高,甚至导致非常高的周向电磁力 J ×B[25],推动熔池液体沿周向运动,产生脊状突起,表面粗糙度增加。而沉积有CuCrMo薄膜的,可能为分散电弧,电流密度低,在B区域电弧径向收缩力小,因而电弧烧蚀轻,且因为电弧电流密度低,周向电磁力小,不足以推动熔池液体沿周向大幅移动,因为无脊状突起被观察到,表面粗糙度及其分散度均比为镀膜的CuCr触头低。结合图7a、7b和图8,沉积CuCrMo薄膜的CuCr50触头片电寿命试验后,薄膜虽然大部分区域完整,但是表面分布有微米级圆孔状烧蚀坑,对光的反射减弱,而未沉积CuCrMo薄膜的CuCr50触头片,表面是熔融的烧蚀形貌,对光的反射比圆孔状烧蚀坑要大,因此沉积薄膜后的CuCr50触头片在图4的光学形貌中,呈现了黑白分布的衬度。

  • 3 结论

  • (1)利用磁控溅射技术制备镀有CuCrMo薄膜的触头片,较未镀膜触头有明显的耐电弧烧蚀性能提升,经23次126kV 20kA条件下电寿命试验后,触头片开断良好,表面烧蚀程度更轻,表面粗糙度更低,综合开断寿命提升。

  • (2)纵向磁场的作用进一步提升阴极上电弧径向收缩力,使沉积CuCrMo薄膜的触头片在126kV 20kA条件下提升了分散电弧能力,减小了电弧电流密度。

  • (3)CuCrMo/CuCr触头片通过E2级以上126kV高压真空断路器电寿命试验平台的工程应用级验证,为磁控溅射改性真空断路器CuCr触头在高电压大电流真空灭弧室的应用提供了有效工程依据。

  • 参考文献

    • [1] HOLM R,HOLM E.Electric contacts:Theory and application[M/OL].Berlin,New York:Springer-Verlag,1967[2021-09-20].http://books.google.com/books?id= RBwIAQAAIAAJ.

    • [2] DYKE W P,TROLAN J K,MARTIN E E,et al.The field emission initiated vacuum arc.I.experiments on arc initiation[J].Physical Review,1953,91(5):1043-1054.

    • [3] ANDERS A,YUSHKOV G Y.Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J].Journal of Applied Physics,2002,91(8):4824-4832.

    • [4] RAKHOVSKII V I.Experimental study of the dynamics of cathode spots development[J].IEEE Transactions on Plasma Science,1976,4(2):81-102.

    • [5] HERMOCH V.On the retrograde motion of arcs in magnetic fields[J].IEEE Transactions on Plasma Science,1973,1(3):62-64.

    • [6] SMITH C G.Arc motion reversal in transverse magnetic field by heating cathode[J].Physical Review,1948,73(5):542-543.

    • [7] LI L,ZHU Y,HE F,et al.Control of cathodic arc spot motion under external magnetic field[J].Vacuum,2013,91:20-23.

    • [8] CHALY A M,LOGATCHEV A A,SHKOL’NIK S M.Cathode processes in free burning and stabilized by axial magnetic field vacuum arcs[J].IEEE Transactions on Plasma Science,1999,27(4):827-835.

    • [9] KIMBLIN C W,VOSHALL R E.Interruption ability ofvacuum interrupters subjected to axial magnetic fields[J].Proceedings of the Institution of Electrical Engineers,1972,119(12):1754.

    • [10] CHALY A M.Magnetic control of high current vacuum arcs with the aid of an axial magnetic field:A review[J].IEEE Transactions on Plasma Science,2005,33(5):1497-1503.

    • [11] 王立军,胡丽兰,周鑫,等.大尺寸电极条件下大电流真空电弧特性的仿真[J].电工技术学报,2013,28(2):163-170.WANG Lijun,HU Lilan,ZHOU Xin,et al.Simulation of high current vacuum arc characteristics under large size electrodes[J].Transactions of China Electrotechnical Society,2013,28(2):163-170.(in Chinese).

    • [12] 毕迎华,李旭旭,李元钊,等.一种应用于 126 kV 高电压等级真空灭弧室的新型触头结构及其燃弧特性[J].高压电器,2021,57(6):56-63.BI Yinghua,LI Xuxu,LI Yuanzhao,et al.The invention relates to a new contact structure and its arc burning characteristics for 126 kV high voltage grade vacuum arc extinguishing chamber[J].High Voltage Apparatus,2021,57(6):56-63.(in Chinese)

    • [13] DAALDER J E.Components of cathode erosion in vacuum arcs[J].Journal of Physics D:Applied Physics,1976,9(16):2379-2395.

    • [14] PRAVOVEROV N L,STRUCHKOV A I.Erosion of pure metals in an electric arc contact materials[J].Soviet Electrical Engineering,1976,47(1):80-82.

    • [15] ESSIPTCHOUK A M,MAROTTA A,SHARAKHOVSKY L I.The influence of the arc current on the cold electrode erosion[J].Physics of Plasmas,2003,10(9):3770-3773.

    • [16] KIMBLIN C W.Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs[J].Journal of Applied Physics,1974,45(12):5235-5244.

    • [17] ZHANG Z,MA H,ZHANG Y,et al.Anode spot threshold current of four pure metals subjected to uniform axial magnetic field in high current vacuum arcs[J].IEEE Transactions on Plasma Science,2017,45(8):2135-2143.

    • [18] LIN R,WANG L,MA J,et al.Experiment investigation on vacuum arc of AMF contacts under different materials[J].AIP Advances,2018,8(9):095110.

    • [19] 张静,张士兵.纳米晶 Cu-Ag 双峰合金材料热导率的分子动力学模拟研究[J].功能材料,2017,48(10):10017-10023.ZHANG Jing,ZHANG Shibin.Molecular dynamics simulation of thermal conductivity of nanocrystalline Cu-Ag bimodal alloy[J].Journal of Functional Materials,2017,48(10):10017-10023.(in Chinese)

    • [20] WEI K X,CHU Z Q,WEI W,et al.Effect of deep cryogenic treatment on microstructure and properties of pure copper processed by equal channel angular pressing[J].Advanced Engineering Materials,2019,21(7):1801372.

    • [21] YANG Z,ZHANG Q,WANG Q,et al.Vacuum arc characteristics on nanocrystalline CuCr alloys[J].Vacuum,2006,81(4):545-549.

    • [22] SCHNEIDER A,POPOV S,DURAKOV V G,et al.On breaking capacity of the CuCr25 composite material produced with electron-beam cladding[J].25th International Symposium on Discharges and Electrical Insulation in Vacuum(ISDEIV 2012),2012:269-271.

    • [23] KAI L,XIAOJUN M,DAN Q,et al.Arc erosion resistance of CuCrMo films deposited via magnetron sputtering[J].Materials Research Express,2021,8(6):066402.

    • [24] 王伟.磁场的闭合状态对磁控溅射Cr镀层沉积过程影响的研究[D].西安:西安理工大学,2008.WANG Wei.Research on the effect of magnetic field closure on the deposition process of Cr Coating by magnetron sputtering[D].Xi’ an:Xi’ an University of Technology,2008.(in Chinese)

    • [25] JIA S,YANG D,WANG L,et al.Investigation of the swirl flow on anode surface in high-current vacuum arcs[J].Journal of Applied Physics,2012,111(4):043301.

    • [26] YANG D,JIA S,WANG L,et al.Influence of axial magnetic field on the anode liquid swirl flow in high-current vacuum arcs[J].IEEE Transactions on Plasma Science,2011,39(11):2868-2869.

  • 参考文献

    • [1] HOLM R,HOLM E.Electric contacts:Theory and application[M/OL].Berlin,New York:Springer-Verlag,1967[2021-09-20].http://books.google.com/books?id= RBwIAQAAIAAJ.

    • [2] DYKE W P,TROLAN J K,MARTIN E E,et al.The field emission initiated vacuum arc.I.experiments on arc initiation[J].Physical Review,1953,91(5):1043-1054.

    • [3] ANDERS A,YUSHKOV G Y.Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J].Journal of Applied Physics,2002,91(8):4824-4832.

    • [4] RAKHOVSKII V I.Experimental study of the dynamics of cathode spots development[J].IEEE Transactions on Plasma Science,1976,4(2):81-102.

    • [5] HERMOCH V.On the retrograde motion of arcs in magnetic fields[J].IEEE Transactions on Plasma Science,1973,1(3):62-64.

    • [6] SMITH C G.Arc motion reversal in transverse magnetic field by heating cathode[J].Physical Review,1948,73(5):542-543.

    • [7] LI L,ZHU Y,HE F,et al.Control of cathodic arc spot motion under external magnetic field[J].Vacuum,2013,91:20-23.

    • [8] CHALY A M,LOGATCHEV A A,SHKOL’NIK S M.Cathode processes in free burning and stabilized by axial magnetic field vacuum arcs[J].IEEE Transactions on Plasma Science,1999,27(4):827-835.

    • [9] KIMBLIN C W,VOSHALL R E.Interruption ability ofvacuum interrupters subjected to axial magnetic fields[J].Proceedings of the Institution of Electrical Engineers,1972,119(12):1754.

    • [10] CHALY A M.Magnetic control of high current vacuum arcs with the aid of an axial magnetic field:A review[J].IEEE Transactions on Plasma Science,2005,33(5):1497-1503.

    • [11] 王立军,胡丽兰,周鑫,等.大尺寸电极条件下大电流真空电弧特性的仿真[J].电工技术学报,2013,28(2):163-170.WANG Lijun,HU Lilan,ZHOU Xin,et al.Simulation of high current vacuum arc characteristics under large size electrodes[J].Transactions of China Electrotechnical Society,2013,28(2):163-170.(in Chinese).

    • [12] 毕迎华,李旭旭,李元钊,等.一种应用于 126 kV 高电压等级真空灭弧室的新型触头结构及其燃弧特性[J].高压电器,2021,57(6):56-63.BI Yinghua,LI Xuxu,LI Yuanzhao,et al.The invention relates to a new contact structure and its arc burning characteristics for 126 kV high voltage grade vacuum arc extinguishing chamber[J].High Voltage Apparatus,2021,57(6):56-63.(in Chinese)

    • [13] DAALDER J E.Components of cathode erosion in vacuum arcs[J].Journal of Physics D:Applied Physics,1976,9(16):2379-2395.

    • [14] PRAVOVEROV N L,STRUCHKOV A I.Erosion of pure metals in an electric arc contact materials[J].Soviet Electrical Engineering,1976,47(1):80-82.

    • [15] ESSIPTCHOUK A M,MAROTTA A,SHARAKHOVSKY L I.The influence of the arc current on the cold electrode erosion[J].Physics of Plasmas,2003,10(9):3770-3773.

    • [16] KIMBLIN C W.Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs[J].Journal of Applied Physics,1974,45(12):5235-5244.

    • [17] ZHANG Z,MA H,ZHANG Y,et al.Anode spot threshold current of four pure metals subjected to uniform axial magnetic field in high current vacuum arcs[J].IEEE Transactions on Plasma Science,2017,45(8):2135-2143.

    • [18] LIN R,WANG L,MA J,et al.Experiment investigation on vacuum arc of AMF contacts under different materials[J].AIP Advances,2018,8(9):095110.

    • [19] 张静,张士兵.纳米晶 Cu-Ag 双峰合金材料热导率的分子动力学模拟研究[J].功能材料,2017,48(10):10017-10023.ZHANG Jing,ZHANG Shibin.Molecular dynamics simulation of thermal conductivity of nanocrystalline Cu-Ag bimodal alloy[J].Journal of Functional Materials,2017,48(10):10017-10023.(in Chinese)

    • [20] WEI K X,CHU Z Q,WEI W,et al.Effect of deep cryogenic treatment on microstructure and properties of pure copper processed by equal channel angular pressing[J].Advanced Engineering Materials,2019,21(7):1801372.

    • [21] YANG Z,ZHANG Q,WANG Q,et al.Vacuum arc characteristics on nanocrystalline CuCr alloys[J].Vacuum,2006,81(4):545-549.

    • [22] SCHNEIDER A,POPOV S,DURAKOV V G,et al.On breaking capacity of the CuCr25 composite material produced with electron-beam cladding[J].25th International Symposium on Discharges and Electrical Insulation in Vacuum(ISDEIV 2012),2012:269-271.

    • [23] KAI L,XIAOJUN M,DAN Q,et al.Arc erosion resistance of CuCrMo films deposited via magnetron sputtering[J].Materials Research Express,2021,8(6):066402.

    • [24] 王伟.磁场的闭合状态对磁控溅射Cr镀层沉积过程影响的研究[D].西安:西安理工大学,2008.WANG Wei.Research on the effect of magnetic field closure on the deposition process of Cr Coating by magnetron sputtering[D].Xi’ an:Xi’ an University of Technology,2008.(in Chinese)

    • [25] JIA S,YANG D,WANG L,et al.Investigation of the swirl flow on anode surface in high-current vacuum arcs[J].Journal of Applied Physics,2012,111(4):043301.

    • [26] YANG D,JIA S,WANG L,et al.Influence of axial magnetic field on the anode liquid swirl flow in high-current vacuum arcs[J].IEEE Transactions on Plasma Science,2011,39(11):2868-2869.

  • 手机扫一扫看