en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖燕,女,1988年出生,博士研究生,高级工程师。主要研究方向为激光技术、纳米材料制备和光学薄膜制备等。E-mail:xiaoyanjiaxin@163.com;

孙桂芳(通信作者),女,1982年出生,博士,教授,博士研究生导师。主要研究方向为激光加工技术。E-mail:gfsun@seu.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211202002

参考文献 1
MAO Z F,ZHANG D Z,JIANG J J,et al.Processing optimization mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze[J].Materials Science and Engineering A,2018,721:125-134.
参考文献 2
YAN M,WU Y C,CHEN J C,et al.Microstructure evolution in preparation of Cu-Sn contact wire for high-speed railway[J].Advanced Materials Research,2011,415-417:446-451.
参考文献 3
SAMEI J,AMIRMALEKI M,VENTURA A P,et al.In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting[J].Additive Manufacturing,2020,34:101196.
参考文献 4
MAZUMDER J,SCHIFFERER A,CHOI J.Direct materials deposition:designed macro and microstructure[J].Materials Research Innovations,1999,3:118-131.
参考文献 5
SUN G F,ZHOU R,LU J Z,et al.Evaluation of defect density,microstructure,residual stress,elastic modulus,hardness and strength of laser-deposited AISI 4340 steel[J].Acta Materialia,2015,84:172-189.
参考文献 6
张晓雅,李现兵,谈震,等.激光选区熔化水雾化 Cu-10Sn 合金粉末成形件的微观组织结构及力学性能研究[J].中国激光,2018,45:1002009.ZHANG Xiaoya,LI Xianbing,TAN Zhen,et al.Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J].Chinese Journal of Lasers,2018,45:1002009.(in Chinese)
参考文献 7
TRAN T Q,CHINNAPPAN A,LEE J K Y,et al,3D Printing of highly pure copper[J].Metals,2019,9:756.
参考文献 8
李小璇,王曾洁,贺定勇,等.铜锡合金激光选区熔化非平衡凝固组织与性能[J].工程科学学报,2021,43:1100-1106.LI Xiaoxuan,WANG Zengjie,HE Dingyong,et al.Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu-Sn alloy[J].Chinese Journal of Engineering,2021,43:1100-1106.(in Chinese)
参考文献 9
KARTHIK G M,SATHIYAMOORTHI P,ZARGARAN A,et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J].Materialia,2020,13:100861.
参考文献 10
BOLEY C D,KHAIRALLAH S A,RUBENCHIK A M.Calculation of laser absorption by metal powders in additive manufacturing[J].Applied Optics,2015,54:2477-2482.
参考文献 11
XIA L Q,CHEN G,ZHENG L Y,et al.Explore the feasibility of fabricating pure copper parts with low-laser energy by selective laser melting[J].Materials Research Express,2020,7:106509.
参考文献 12
LYKOV P A,SAFONOV E V,AKHMEDIANOV A M.Selective laser melting of copper[J].Materials Science Forum,2016,843:284-288.
参考文献 13
GRUBER S,STEPIEN L,LOPEZ E,et al.Physical and geometrical properties of additively manufactured pure copper samples using a green laser source[J].Materials,2021,14:3642.
参考文献 14
WU X L,ZHU Y T.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5:527-532.
参考文献 15
SATHIYAMOORTHI P,AAGHARO-RAD P,PARK J M,et al.Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and nano-scale precipitates[J].Materials Science and Engineering A,2019,766:138372.
参考文献 16
YANG M X,PAN Y,YUAN F P,et al.Back stress strengthening and strain hardening in gradient structure[J].Materials Research Letters,2016,4:145-151.
参考文献 17
KIM J G,JANG M J,PARK H K,et al.Back-stress effect on the mechanical strength of TWIP-IF steels layered sheet[J].Metals and Materials International,2019,25:912-917.
参考文献 18
ALVES S M,MELLO V S,FARIA E A,et al.Nanolubricants developed from tiny CuO nanoparticles[J].Tribology International,2016,100:263-271.
参考文献 19
沈志超,谢发勤,吴向清,等.TC4 钛合金铜镀层的性能[J].中国表面工程,2012,25(5):45-49.SHEN Zhichao,XIE Faqin,WU Xiangqing,et al.Properties of coating on TC4 Titanium alloy by copper electroplating[J].Chinese Surface Engineering,2012,25(5):45-49.(in Chinese)
参考文献 20
ZHANG M,WANG X,LIU W,et al.Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives[J].Industrial Lubrication and Tribology,2009,61:311-318.
参考文献 21
SINGH A,CHAUHAN P,TG M.A review on tribological performance of lubricants with nanoparticles additives[J].Materials Today:Proceedings.2020,25:586-591.
目录contents

    摘要

    航空光电雷达电机换向器部位使用的纯铜材料在服役中容易发生表面损伤,传统红外激光沉积纯铜材料过程中激光吸收率较低。采用蓝光激光器对纯铜电机换向器失效部位进行送粉式激光沉积修复(所用粉末为 Cu-15Sn),研究蓝色激光工艺参数对修复形貌及修复区组织性能的影响。采用光学显微镜、扫描电镜及附带能谱仪、显微硬度计、微型摩擦磨损试验仪表征和测试修复区的微观组织、显微硬度及耐磨性能。结果表明:蓝光激光可以在较宽的工艺参数窗口范围获得良好的修复层。 修复层为典型的枝晶结构,由铜固溶体枝晶和铜锡金属间化合物共晶组成;平均显微硬度为铜基体硬度的 2.24 倍,修复区相对耐磨性为基体的 2.37 倍。修复区相对于基体硬度和耐磨性提升的原因在于快速凝固条件下形成的细小非均匀枝晶结构(固溶体和金属间化合物的混合结构)和固溶强化效应。铜基体和修复区磨损机制均为磨粒磨损、氧化磨损及黏着磨损。其中修复区主要为粘着磨损和氧化磨损,铜基体为粘着磨损和轻微氧化磨损。研究结果能够为电机换向器部位纯铜材料的高效修复提供数据支撑和理论基础,推进蓝色激光沉积再制造技术在有色金属加工领域的应用。

    Abstract

    The pure copper material used in the commutator of photoelectric radar motor is prone to surface damage in service. The laser absorption rate of pure copper material deposited by traditional infrared laser is low. Blue laser is used to remanufacture the failed part of motor commutator made of pure copper (the powder used was Cu-15Sn). The effects of laser processing parameters on the repair morphology and microstructure-properties of the repaired zone are studied. The microstructure, microhardness and wear resistance of the repaired area are characterized and tested by optical microscope, scanning electron microscope, energy dispersive spectrometer, microhardness tester and micro friction and wear test instrument. The results show that blue laser can obtain good repair layer in a wide range of processing parameter window. The repair layer is a typical dendrite structure, which is composed of copper solid solution dendrite and copper-tin intermetallic compound eutectic. The average microhardness of the repaired layer is 2.24 times that of the copper substrate, and the relative wear resistance of the repaired area is 2.37 times that of the substrate. The reason for the improvement of hardness and wear resistance of the repaired area relative to the matrix is the fine non-uniform dendrite structure (mixed structure of solid solution and intermetallic compound) and solid solution strengthening effect formed under the condition of rapid solidification. The wear mechanism of copper substrate and repaired zone is abrasive wear, oxidation wear and adhesive wear. The repair area is mainly adhesive wear and oxidation wear, and the copper substrate is adhesive wear and slight oxidation wear. The research results can provide data support and theoretical basis for the efficient repair of pure copper material in the motor commutator, and promote the application of blue laser deposition remanufacturing technology in the field of non-ferrous metal processing.

  • 0 前言

  • 铜合金一直具有广泛的工程应用,近年来又作为一类重要的新兴增材制造原材料而备受国内外关注[1]。Cu-Sn合金具有优异的力学性能、导电性、导热性、焊接性、耐蚀性等,能够满足航天航空、新一代通信网络、高速轨道交通等对复杂形状关键部件的工程需求[2-3]

  • 作为航空光电雷达电机换向器部位使用的纯铜材料,经过长时间的运转,将不可避免地产生磨损。比较典型的损伤为电刷在换向器表面摩擦产生的沟槽,如图1所示为江苏金陵机械制造总厂的光电雷达所用电机。该型号电机换向器磨损沟槽的宽度和深度分比为0.5mm和0.15~0.25mm。光电雷达电机为精密部件,其换向器片的面积和厚度远小于普通电机,并且线圈密封在树脂基底内部与换向器片相连。换向器片一旦烧穿则会使电机产生功能性的损伤。因此在对其表面磨痕进行修复时,必须严格控制热输入,防止烧穿铜片和树脂造成整个电机报废。由于换向器结构的特殊性,其修复具有以下难点:首先,其表面为镀银、铜、树脂组成的三层结构,在修复沟槽时要避免工件过热导致树脂融化和烧穿;避免局部镀银区域温度过高导致的镀银熔化析出,破坏电机结构。此外,沟槽尺寸较小且宽度、深浅各异。电弧补焊法的热输入量大且精度低,容易破坏电机结构,因此不适用于电机换向器这类精密器件的修复。热喷涂法的修复精度也难以控制,修复层内易于产生气孔并且难以与基底形成冶金结合,因此同样不适用于换向器的修复。电刷镀技术的修复速率较低,也不适用于修复换向器上较深的凹槽。

  • 图1 某型失效光电雷达电机换向器

  • Fig.1 Failed photoelectric radar motor commutator

  • 激光沉积技术(Laser deposition technology),作为送粉式激光增材制造技术的一种,具有热影响区小、冷却速度快、修复精度高,且能够精确调控修复区域的能量输入和材料成分的特点[4-5],其柔性、高效的特点尤其适合电机换向器的修复。但是,铜合金具有较低的激光吸收率和较高的热导率,故Cu-Sn合金激光成型时往往会出现热量大量散失及粉末不充分熔化的现象,从而导致样品缺陷增多、相对密度较低、力学性能较差[6-7]。目前有部分激光选区熔化Cu-Sn合金的研究报道[3, 6, 8-9],所采用激光器为镱光纤激光器。鉴于铜电机换向器磨痕实际修复的需要,激光选区熔化技术不适合实际电机的修复。由于纯铜的高导热性和对波长为1~1.1 μm激光的25%左右的低吸收率[10],很难获得成形性优良的激光沉积试样[7, 11]。对于纯铜而言,红外激光在200W功率下制备试样的相对密度仅有83%~88%[12]。电解铜粉末对515nm的绿光和1064nm的红光的吸收率分别为76.93%和31.99%[13]。可见,铜及铜合金对短波长如蓝光(532nm)、绿光(515nm)激光的吸收率大大提高。采用短波长激光器将会大大提升电机换向器的修复效果,对于该方面的研究未见公开报道。

  • 基于此,本文将开展实际失效铜电机换向器的激光沉积修复研究,研究蓝光激光修复电机的形貌、修复区与基体的结合情况、修复试样的微观组织及力学性能,为航空光电雷达电机换向器的实际激光沉积修复奠定理论及工艺基础。

  • 1 试验准备

  • 1.1 蓝光激光沉积修复试验

  • 原电机换向器材料为纯铜,具有较好的导电性,但是耐磨性较差。试验选用粒径为45~105 μm的Cu-15Sn合金粉末作为修复材料,该粉末由南京明昌新材料科技有限公司提供。选用该粉末的理由在于:首先,纯铜粉末对激光的吸收率很低,需要高功率密度的激光才能使粉末熔化形成沉积层,而采用高功率密度的激光容易烧穿铜片和树脂,修复过程温度难以调控;其次,前期探索试验表明,纯铜粉末的流动性较差,容易黏附在送粉管和喷嘴内部,造成送粉间断,进而造成沉积高度不均;最后,该电机换向器激光修复后要进行表层机加工、镀银后才能投入使用。由于修复磨痕尺寸相对于整个换向器区域较小,因此局部区域的电阻变化对修复后换向器整体的导电性能影响不大,并且该型电机导电性能评价指标有30%的余量,经电性能测试该修复电机可以满足工作要求。

  • 所使用的蓝光激光器由南京辉锐光电科技有限公司提供。其品牌为Laserline,型号为LMD Blue1500-60,输出激光波长为532nm,约为半导体激光器输出波长的一半。为了获得不同的沉积修复效率,选择两个电机进行不同工艺参数的激光修复。采用的激光功率为1.5kW,焦点处光斑直径为1mm,工件位于焦平面上。粉末为Cu-15Sn粉末,送粉速率为6g/min。熔覆头为Laserline熔覆头,喷嘴为同轴三点式喷嘴。送粉器为LAMPF-TD双筒送粉器。加工方式:激光头保持静止,电机沿轴线旋转,激光沿周向扫描凹槽。针对图2的两个电机修复过程中的电机转速、激光器出光时间和每道沟槽的沉积层数有差别。其具体工艺参数见表1。

  • 表1 激光沉积工艺参数

  • Table1 Process parameters of laser deposition

  • 1.2 蓝光激光沉积修复试样的微观组织观察

  • 首先,从修复电机上切取金相试样。金相试样首先经镶嵌机(XQ-1,上海金相机械设备有限公司)进行镶嵌。然后分别用240#、600#、1000#、2000#和3000# 的砂纸逐步打磨,接着用0.15 μm金刚石抛光剂在抛光机上进行抛光。随后用三氯化铁溶液(20g FeCl3 + 50mL HCl+ 100mL H2O)腐蚀金相试样。随后用清水与酒精进行清洗,然后烘干,进行金相观察。

  • 用光学显微镜(Optical micrograph,OM,Zeiss) 和Nova场发射扫描电子显微镜(Scanning electron microscope,SEM,FEI)对金相试样的组织进行观察,扫描电镜采用的电压为20kV,电流为16nA,并用扫描电镜附带的能谱仪对微观组织进行成分分析。

  • 1.3 修复试样硬度测试及摩擦磨损试验

  • 采用上海泰明光学仪器有限公司生产的HXD-1000TMSC/LCD数字式显微硬度计测量硬度,载荷为0.5N,持续时间为10s。沿修复区熔池中心线测量,采用3处测量的平均值作为硬度值。

  • 磨损试验机为WTM-2E微型摩擦磨损试验仪,由兰州中科凯华科技开发有限公司提供。磨损方式为球盘式室温空气中干滑移磨损。磨损盘为修复电机换向器。磨损试样表面经过2000#砂纸打磨并抛光。载荷为2N,旋转速度为150r/min,旋转半径为8mm。摩擦副为钢球(其硬度为1 570~1 800HV),直径为5mm。在光学显微镜下测量修复区和基体的磨痕宽度。每个磨损轨道选取5处测量,然后取平均值。通过公式计算磨损体积损失,修复区与基体分别选区5处测量取平均值。然后通过SEM观察磨损面并分析磨损机制。

  • 2 结果与讨论

  • 2.1 蓝光激光沉积修复铜电机的宏观形貌

  • 两种不同工艺参数下,蓝光激光器修复的电机实物图如图2所示。两者均在激光功率为1.5kW下进行修复的。其中电机S1内槽所用转速为60~90r/min,激光器出光时间为1~1.2s,扫描4层。 S1外槽修复其他参数与内槽相似,但仅扫描三层。电机S2所用转速为30~90r/min,激光器出光时间为2s,每道沟槽扫描1层。可见,两种工艺参数下修复区均实现了连续完整的修复,不存在个别小区域未完全填满等现象。值得一提的是,电机转子部位出现了部分银颗粒的析出(图2a)。图2c和图2d为经过磨削后的电机换向器图,可见修复区组织连续,且与基材结合牢固。故采用蓝光激光器修复表面磨损失效的电机换向器具有良好的成形性,且修复层与基体结合性良好。

  • 图2 两种工艺参数下蓝光激光器修复电机实物图

  • Fig.2 Actual structures of the radar motor commutators remanufactured by blue laser under two process parameters

  • 2.2 蓝光激光沉积修复铜电机的微观组织

  • 图2a中S1电机换向器的修复区横截面金相图如图3所示。可见,在该工艺参数条件下,修复材料均实现了磨损内槽和外槽的全部填满,并且实现了和铜基体的冶金结合。该冶金结合保证了修复换向器在后续工作过程中修复区与基体的牢固结合。其中,内槽进行了4层沉积修复,4层总厚度为231.3 μm,单层平均厚度为57.8 μm。外槽进行了3层沉积修复,3层总厚度为195.1 μm,单层平均厚度为65.0 μm。内外槽的工艺参数差别在于电机转速,外槽为66r/min,内槽为90r/min。可见,较低的电机转速可以实现较高的单层沉积厚度。

  • 图3 电机S1修复区横截面金相图

  • Fig.3 OM images showing the repaired zone of the radar motor commutator S1

  • 蓝光激光沉积修复的图2a中S1电机换向器内侧沟槽的修复区横截面SEM如图4所示。可见,由于激光的快速加热和快速冷却作用,修复区域组织为典型的枝晶组织。一些区域存在不同枝晶取向产生的晶界,如果4b中所示。对图4c中枝晶1和枝晶间共晶2组织分别进行EDS成分检测,其元素分布列于表2。可见,修复区即使在保护气体保护氛围中成形,依然也产生了部分氧化。枝晶上主要为铜元素,枝晶间的共晶含有19wt.%左右的Sn元素。由于修复区沟槽尺寸限制,不能有效制取物相检测及透射试样。结合Cu-Sn二元相图及前期研究[6, 8-9]可以推测,修复区枝晶为铜固溶体,枝晶间共晶为铜锡金属间化合物。图4d所示为纯铜基体。对比修复区与纯铜基体组织可见,修复区组织为激光快速冷却凝固后形成的细化组织,晶粒尺寸远远小于基体组织。

  • 需要说明的是,图3e修复区中下部和图4b中可见部分气孔。图4b中所观察到的气孔尺寸极小,小于1 μm。气孔缺陷主要影响修复区的整体力学性能,如拉伸、弯曲、冲击性能等。由于电机换向器主要检测表层的耐磨性和导电性能,故位于中下部的气孔对其使用性能影响不明显。

  • 图4 电机修复区横截面SEM组织

  • Fig.4 SEM images showing the cross-sectional microstructure of the repaired radar motor commutator

  • 表2 图4c测试点的化学成分(质量分数/wt.%)

  • Table2 Chemical compositions of the spots in Fig.4c (wt.%)

  • 2.3 蓝光激光沉积修复铜电机的显微硬度分布

  • 电机S1换向器修复区内槽横截面沿着熔池中心线的显微硬度分布如图5所示。可见,修复区显微硬度存在部分波动,这与修复区微观组织分布有关。每层修复层中间与层边界微观组织由于热历程不同而产生组织及尺寸差异,从而影响硬度值。另外,每层中间也由于树枝晶及枝晶间不同的微观组织而产生微区硬度差异。修复区平均显微硬度为153.11HV基体的平均显微硬度为68.48HV,修复区显微硬度数值为基体的2.24倍。在电机换向器服役的摩擦磨损环境中,显微硬度的提升对提升其耐磨性具有重要影响。

  • 修复区显微硬度提升原因包括:首先,激光沉积成形过程中,由于快速加热和快速冷却作用,细晶效果显著(图4b和图4d的对比),晶粒大小均为微米尺度;晶界相应增多,位错运动将受到更多阻碍。其次,快速冷却凝固过程使成形样品中存在较大残余应力,诱发位错形成并在运动中得到增殖,进而导致晶粒内部形成高密度位错[6]。再次,修复区采用粉末为Cu-Sn合金粉末,相较于纯铜基体而言,产生的组织为铜固溶体和铜锡金属间化合物,这二者硬度都较纯铜基体硬度高很多。此外,本文中使用较高的Sn含量可以提高Sn固溶量,从而使晶格畸变应力场增大,位错运动受阻,固溶强化作用得到进一步增强[8]。固溶体和金属间化合物的非均匀组织可以在不影响塑性的前提下实现高强度材料强化[14-15]。背应力(长程应力)的演变是在软组织和硬组织界面产生几何必要位错的原因,这是非均匀结构材料的主要强化机制[16-17]。故快速凝固条件下形成的细小非均匀枝晶结构及内部残余应力和固溶强化效应,是实现修复区显微硬度提升的主要原因。

  • 图5 电机S1修复区横截面显微硬度分布

  • Fig.5 Microhardness distribution along the cross-section of repaired radar motor commutator S1

  • 2.4 蓝光激光沉积修复铜电机的摩擦磨损性能

  • 不同加载力下修复电机的摩擦因数随时间变化曲线如图6所示。由于单个换向器单元尺寸太小,磨损表面由电机换向器中修复区和基体共同组成,故摩擦因数体现了修复区与基体轮流出现的摩擦行为。为了测试不同载荷下摩擦因数变化,分别选择0.5N和2N进行摩擦磨损试验。可见,0.5N载荷下摩擦磨损经过大约3min时间进入稳定阶段,摩擦因数基本维持在0.15~0.2。在2N载荷下,不同试样表现出不同的磨损咬合阶段行为。但是摩擦因数均高于载荷为0.5N的情况。进行10min摩擦磨损试验的试样摩擦因数在咬合阶段的上升更为迅速,两者均在5~8min进入稳定摩擦磨损阶段。稳定阶段的摩擦因数在0.4左右波动。由于摩擦磨损在铜基体和铜锡修复层间反复交替进行,故整体摩擦因数出现一定程度的波动,但并未呈现出不同基材之间的规律波动。

  • 经测量计算,修复的电机换向器摩擦磨损后,基体平均体积损失为48 674.5 μm 3,修复区平均体积损失为20 540.8 μm 3,修复区相对耐磨性为基体的2.37倍。

  • 图6 不同加载力下修复电机的摩擦因数随时间变化曲线

  • Fig.6 Variation curves of friction factors of repaired motor with time under different loading forces

  • 电机换向器修复区和基体的磨痕形貌微观组织如图7所示。可见修复区磨痕宽度明显小于基体磨痕宽度,说明了修复区相对于基体耐磨性的提升。两者磨痕均较平整,均可观察到由于微小磨粒相对磨损留下的微小犁沟,说明两者均存在磨粒磨损。分别对修复区和基体磨痕进行微观元素分布面扫描。其中修复区图7b和基体图7d中黄色方形区域中的元素面扫描图分别见图8和图9。

  • 图7 磨痕形貌SEM图

  • Fig.7 SEM images showing the morphology of the wear grooves

  • 由图8可见,修复区磨痕中存在Cu、Sn、O、Fe和Ag元素,其中主要为Cu元素。部分Fe元素来自于摩擦副中钢球,可见存在部分黏着磨损。O元素 (13.35wt·%)的存在说明发生了氧化磨损。Ag元素来自于激光修复过程中部分析出的Ag颗粒。由图9可见,基体磨痕仅由Cu和O(5.27wt·%)组成,说明存在部分氧化磨损,未发现来自于摩擦副的材料转移。综上,铜基体和修复区的磨损机制均为黏着磨损、磨粒磨损及氧化磨损。其中修复区主要磨损机制为黏着磨损和氧化磨损,铜基体主要磨损机制为黏着磨损和轻微的氧化磨损。摩擦副之间良好的氧化膜层的形成对其耐磨性具有重要影响。

  • 图8 图7b中修复区长方形磨痕中元素分布

  • Fig.8 Elements distribution in the rectangular wear groove of the repaired zone in Fig.7b

  • 图9 图7d中基体中长方形磨痕中元素分布

  • Fig.9 Elements distribution in the rectangular wear groove of the substrate in Fig.7d

  • 对于室温无润滑干滑动摩擦磨损来讲,其耐磨性取决于摩擦件的硬度。修复区产生了铜固溶体及铜锡金属间化合物,并且伴随固溶强化及细晶强化效应,显微硬度较铜基体大幅提高,其耐磨性也相对提高。另外,对于铜合金来讲,Cu是目前世界上除了铝以外应用范围最广的有色自润滑金属材料。对换向器来讲,原位形成的氧化层是固体膜润滑剂中最重要的类型之一。磨损试样表面黑色物质(氧化铜)及SEM能谱测试中O元素的存在也说明了氧化膜的形成。润滑剂中添加纳米氧化铜可以有效降低摩擦因数,提升磨损性能[18-19]。氧化铜膜在磨损过程中通过修补效应不断使磨损表面变得平整,从而提升耐磨性能[20-21]。整个磨损过程中由于材料转移,部分区域也会发生氧化层的部分去除。氧化的有效期是摩擦副在滑动轨迹上两次通过之间的时间。如果两次通过期间形成的氧化层厚度大于某一临界值,那滑动过程中材料的去除始终发生在氧化层之间,而不是氧化层底下的金属底材之中。这种形式下的黏着磨损即为氧化磨损。如果摩擦副一次通过时去除材料的厚度大于同一时间内产生的氧化物的厚度,真实接触区内的前端接点是氧化物接触,其余点是金属基底接触。

  • 3 结论

  • 研究了蓝光激光沉积再制造某型航空光电雷达电机换向器的工艺、形貌、组织及摩擦磨损性能,得到的主要结论如下:

  • (1)对铜及铜合金进行激光沉积再制造时,激光的吸收率是影响其再制造性能的关键因素。短波长蓝光激光沉积再制造纯铜换向器具有较广的工艺参数窗口。

  • (2)纯铜换向器修复区为枝晶组织,是铜固溶体和铜锡金属间化合物的混合组织。修复区显微硬度是基材的2.24倍,快速凝固条件下形成的细小非均匀枝晶结构和固溶强化效应提升了修复区的显微硬度。

  • (3)修复区室温干摩擦磨损条件下的耐磨性是基材的2.37倍,修复区和基体磨损机制均为磨粒磨损、氧化磨损、黏着磨损,其中修复区主要为黏着磨损和氧化磨损,而铜基体为黏着磨损和轻微氧化磨损。

  • (4)纯铜换向器基底的树脂材料在激光沉积再制造时容易烧穿,激光沉积再制造过程中的热输入需要进一步优化,通过结合数值仿真和试验手段可以进一步控制沉积温度场,实现纯铜换向器的高质量修复。

  • 参考文献

    • [1] MAO Z F,ZHANG D Z,JIANG J J,et al.Processing optimization mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze[J].Materials Science and Engineering A,2018,721:125-134.

    • [2] YAN M,WU Y C,CHEN J C,et al.Microstructure evolution in preparation of Cu-Sn contact wire for high-speed railway[J].Advanced Materials Research,2011,415-417:446-451.

    • [3] SAMEI J,AMIRMALEKI M,VENTURA A P,et al.In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting[J].Additive Manufacturing,2020,34:101196.

    • [4] MAZUMDER J,SCHIFFERER A,CHOI J.Direct materials deposition:designed macro and microstructure[J].Materials Research Innovations,1999,3:118-131.

    • [5] SUN G F,ZHOU R,LU J Z,et al.Evaluation of defect density,microstructure,residual stress,elastic modulus,hardness and strength of laser-deposited AISI 4340 steel[J].Acta Materialia,2015,84:172-189.

    • [6] 张晓雅,李现兵,谈震,等.激光选区熔化水雾化 Cu-10Sn 合金粉末成形件的微观组织结构及力学性能研究[J].中国激光,2018,45:1002009.ZHANG Xiaoya,LI Xianbing,TAN Zhen,et al.Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J].Chinese Journal of Lasers,2018,45:1002009.(in Chinese)

    • [7] TRAN T Q,CHINNAPPAN A,LEE J K Y,et al,3D Printing of highly pure copper[J].Metals,2019,9:756.

    • [8] 李小璇,王曾洁,贺定勇,等.铜锡合金激光选区熔化非平衡凝固组织与性能[J].工程科学学报,2021,43:1100-1106.LI Xiaoxuan,WANG Zengjie,HE Dingyong,et al.Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu-Sn alloy[J].Chinese Journal of Engineering,2021,43:1100-1106.(in Chinese)

    • [9] KARTHIK G M,SATHIYAMOORTHI P,ZARGARAN A,et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J].Materialia,2020,13:100861.

    • [10] BOLEY C D,KHAIRALLAH S A,RUBENCHIK A M.Calculation of laser absorption by metal powders in additive manufacturing[J].Applied Optics,2015,54:2477-2482.

    • [11] XIA L Q,CHEN G,ZHENG L Y,et al.Explore the feasibility of fabricating pure copper parts with low-laser energy by selective laser melting[J].Materials Research Express,2020,7:106509.

    • [12] LYKOV P A,SAFONOV E V,AKHMEDIANOV A M.Selective laser melting of copper[J].Materials Science Forum,2016,843:284-288.

    • [13] GRUBER S,STEPIEN L,LOPEZ E,et al.Physical and geometrical properties of additively manufactured pure copper samples using a green laser source[J].Materials,2021,14:3642.

    • [14] WU X L,ZHU Y T.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5:527-532.

    • [15] SATHIYAMOORTHI P,AAGHARO-RAD P,PARK J M,et al.Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and nano-scale precipitates[J].Materials Science and Engineering A,2019,766:138372.

    • [16] YANG M X,PAN Y,YUAN F P,et al.Back stress strengthening and strain hardening in gradient structure[J].Materials Research Letters,2016,4:145-151.

    • [17] KIM J G,JANG M J,PARK H K,et al.Back-stress effect on the mechanical strength of TWIP-IF steels layered sheet[J].Metals and Materials International,2019,25:912-917.

    • [18] ALVES S M,MELLO V S,FARIA E A,et al.Nanolubricants developed from tiny CuO nanoparticles[J].Tribology International,2016,100:263-271.

    • [19] 沈志超,谢发勤,吴向清,等.TC4 钛合金铜镀层的性能[J].中国表面工程,2012,25(5):45-49.SHEN Zhichao,XIE Faqin,WU Xiangqing,et al.Properties of coating on TC4 Titanium alloy by copper electroplating[J].Chinese Surface Engineering,2012,25(5):45-49.(in Chinese)

    • [20] ZHANG M,WANG X,LIU W,et al.Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives[J].Industrial Lubrication and Tribology,2009,61:311-318.

    • [21] SINGH A,CHAUHAN P,TG M.A review on tribological performance of lubricants with nanoparticles additives[J].Materials Today:Proceedings.2020,25:586-591.

  • 参考文献

    • [1] MAO Z F,ZHANG D Z,JIANG J J,et al.Processing optimization mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze[J].Materials Science and Engineering A,2018,721:125-134.

    • [2] YAN M,WU Y C,CHEN J C,et al.Microstructure evolution in preparation of Cu-Sn contact wire for high-speed railway[J].Advanced Materials Research,2011,415-417:446-451.

    • [3] SAMEI J,AMIRMALEKI M,VENTURA A P,et al.In-situ X-ray tomography analysis of the evolution of pores during deformation of a Cu-Sn alloy fabricated by selective laser melting[J].Additive Manufacturing,2020,34:101196.

    • [4] MAZUMDER J,SCHIFFERER A,CHOI J.Direct materials deposition:designed macro and microstructure[J].Materials Research Innovations,1999,3:118-131.

    • [5] SUN G F,ZHOU R,LU J Z,et al.Evaluation of defect density,microstructure,residual stress,elastic modulus,hardness and strength of laser-deposited AISI 4340 steel[J].Acta Materialia,2015,84:172-189.

    • [6] 张晓雅,李现兵,谈震,等.激光选区熔化水雾化 Cu-10Sn 合金粉末成形件的微观组织结构及力学性能研究[J].中国激光,2018,45:1002009.ZHANG Xiaoya,LI Xianbing,TAN Zhen,et al.Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J].Chinese Journal of Lasers,2018,45:1002009.(in Chinese)

    • [7] TRAN T Q,CHINNAPPAN A,LEE J K Y,et al,3D Printing of highly pure copper[J].Metals,2019,9:756.

    • [8] 李小璇,王曾洁,贺定勇,等.铜锡合金激光选区熔化非平衡凝固组织与性能[J].工程科学学报,2021,43:1100-1106.LI Xiaoxuan,WANG Zengjie,HE Dingyong,et al.Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu-Sn alloy[J].Chinese Journal of Engineering,2021,43:1100-1106.(in Chinese)

    • [9] KARTHIK G M,SATHIYAMOORTHI P,ZARGARAN A,et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J].Materialia,2020,13:100861.

    • [10] BOLEY C D,KHAIRALLAH S A,RUBENCHIK A M.Calculation of laser absorption by metal powders in additive manufacturing[J].Applied Optics,2015,54:2477-2482.

    • [11] XIA L Q,CHEN G,ZHENG L Y,et al.Explore the feasibility of fabricating pure copper parts with low-laser energy by selective laser melting[J].Materials Research Express,2020,7:106509.

    • [12] LYKOV P A,SAFONOV E V,AKHMEDIANOV A M.Selective laser melting of copper[J].Materials Science Forum,2016,843:284-288.

    • [13] GRUBER S,STEPIEN L,LOPEZ E,et al.Physical and geometrical properties of additively manufactured pure copper samples using a green laser source[J].Materials,2021,14:3642.

    • [14] WU X L,ZHU Y T.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5:527-532.

    • [15] SATHIYAMOORTHI P,AAGHARO-RAD P,PARK J M,et al.Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and nano-scale precipitates[J].Materials Science and Engineering A,2019,766:138372.

    • [16] YANG M X,PAN Y,YUAN F P,et al.Back stress strengthening and strain hardening in gradient structure[J].Materials Research Letters,2016,4:145-151.

    • [17] KIM J G,JANG M J,PARK H K,et al.Back-stress effect on the mechanical strength of TWIP-IF steels layered sheet[J].Metals and Materials International,2019,25:912-917.

    • [18] ALVES S M,MELLO V S,FARIA E A,et al.Nanolubricants developed from tiny CuO nanoparticles[J].Tribology International,2016,100:263-271.

    • [19] 沈志超,谢发勤,吴向清,等.TC4 钛合金铜镀层的性能[J].中国表面工程,2012,25(5):45-49.SHEN Zhichao,XIE Faqin,WU Xiangqing,et al.Properties of coating on TC4 Titanium alloy by copper electroplating[J].Chinese Surface Engineering,2012,25(5):45-49.(in Chinese)

    • [20] ZHANG M,WANG X,LIU W,et al.Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives[J].Industrial Lubrication and Tribology,2009,61:311-318.

    • [21] SINGH A,CHAUHAN P,TG M.A review on tribological performance of lubricants with nanoparticles additives[J].Materials Today:Proceedings.2020,25:586-591.

  • 手机扫一扫看