en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘东静,女,1993年出生,硕士研究生。主要研究方向为金属材料表面改性。E-mail:1432946690@qq.com

中图分类号:TG156

DOI:10.11933/j.issn.1007−9289.20210425003

参考文献 1
毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)
参考文献 2
QIN X J,GUO X L,LU J Q,et al.Erosion-wear and intergranular corrosion resistance properties of AISI 304 L austenitic stainless steel after low-temperature plasma nitriding[J].Journal of Alloys and Compounds,2017,698:1094-1101.
参考文献 3
NAEEM M,IQBAL J,ZAKAULLAH M,et al.Enhanced wear and corrosion resistance of AISI-304 steel by duplex cathodic cage plasma treatment[J].Surface and Coatings Technology,2019,375:34-45.
参考文献 4
VEIGA A,LUNO-BILBAO C,SAINZ S,et al.Effect of low-pressure carburizing and plasma nitriding on mechanical properties and fatigue endurance limits of low alloy sintered steels[J].Powder Metallurgy,2020,63(2):75-79.
参考文献 5
KENAN G,MEHMET D,MEHMET C.Effect of ion nitriding on fatigue behaviour of AISI 4140 steel[J].Materials Science & Engineering A,2000,279(1):207-216.
参考文献 6
SHOGO T,SHOICHI K,HIROYUKI A,et al.Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy[J].Surface & Coatings Technology,2019,359:476-484.
参考文献 7
SIRIN S Y,SIRIN K,KALUC E.Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel[J].Materials Characterization,2008,59(4):351-358.
参考文献 8
VITRY V,KANTA A F,DELAUNOIS F.Application of nitriding to electroless nickel–boron coatings:chemical and structural effects;mechanical characterization;corrosion resistance[J].Materials & Design,2012,39(Aug.):269-278.
参考文献 9
BASU A,MAJUMDAR J D,ALPHONSA J,et al.Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding[J].Materials Letters,2008,62(17-18):3117-3120.
参考文献 10
WANG L,NAM K S,KWON S C.Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel[J].Surface & Coatings Technology,2007,202(2):203-207.
参考文献 11
钟华仁.38X2MЮA 钢渗氮时氮化物层中相成份和含氮量的调节[J].热处理技术与装备,1997,18(1):22-26.ZHONG Huaren.Adjustment of phase composition and nitrogen content of nitride layer during nitriding of 38X2MЮA steel[J].Heat Treatment Technology and Equipment,1997,18(1):22-26.(in Chinese)
参考文献 12
陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Rao,JI Qingxin,WEI Kuixia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)
参考文献 13
黄辉.离子渗氮气氛对TC4钛合金组织与性能的影响[J].光学精密工程,1997,5(1):43-48.HUANG Hui.Effect of ion nitriding atmosphere on microstructure and properties of TC4 titanium alloy[J].Optical and Precision Engineering,1997,5(1):43-48.(in Chinese)
参考文献 14
朱振中,刘章鹏,苏东艺,等.不同气氛对低温离子氮化渗氮组织的影响[C]//TFC15 全国薄膜技术学术研讨会论文摘要集,武汉,2015:103.ZHU Zhenzhong,LIU Zhangpeng,SU Dongyi,et al.Effect of different atmosphere on the structure of ion nitriding at low temperature[C]//TFC15National Thin Film Technology Conference Abstracts.Wuhan,2015:103.(in Chinese)
参考文献 15
TONG W P,HAN Z,WANG L M,et al.Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surf.Coat.Technol,2008,202(20):4957-4963.
参考文献 16
CHEN Y.Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J].J.Mech.Eng.,2017,53(22):81.
参考文献 17
钟厉,门昕皓,周富佳,等.38CrMoAl 钢喷丸预处理与稀土催渗等离子多元共渗复合工艺研究[J].表面技术,2020,49(3):162-170.ZHONG Li,MEN Xinhao,ZHOU Fujia,et al.Research on composite process by shot-peening pre-treatment of plasma multielement penetrating with rare-earth catalytic about 38CrMoAl steel[J].Surface Technology,2020,49(3):162-170.(in Chinese)
参考文献 18
SHEN H,WANG L.Mechanism and properties of plasma nitriding AISI 420 stainless steel at low temperature and anodic(ground)potential[J].Surface and Coatings Technology,2020,403:126390.
目录contents

    摘要

    为探索不同气氛对渗氮层组织和性能的影响,采用温度为 520 ℃,时间为 4 h、8 h 和 12 h,气氛分别为氨气或氨气+ 氮气混合气氛条件对 38CrMoAl 钢进行等离子体渗氮。利用金相显微镜、显微硬度计、X 射线衍射仪、扫描电镜和电化学工作站,对改性层的截面显微组织、显微硬度、渗层脆性、相组成、形貌成分以及耐蚀性等进行表征。氨气渗氮后,渗层厚度平均为 249.4 μm,平均增质量 2.30 mg / cm2 ,4 h 后硬度达到最大 990.5 HV0.05 氨氮混合气氛渗氮后,渗层厚度平均为 294.8 μm, 平均增质量 2.39 mg / cm2 ,4 h 后硬度达到最大 1000.2 HV0.05。氨气渗氮层主要相为 γ'-Fe4N,次要相为 ε-Fe2-3N;氨氮混合气氛渗氮层中主要相变为 ε-Fe2-3N,次要相为 γ'-Fe4N。氨氮混合气氛渗氮 4 h 后,改性层腐蚀速率最小(108.05 μm / a),电流密度下降到最低(9.19 μA / cm2 )。

    Abstract

    In order to explore the influence of different atmospheres on the microstructures and properties of plasma nitrided layers, the nitrided treatments are carried out on 38CrMoAl steel at 520 ℃ for 4 h, 8 h and 12 h in different atmosphere (NH3 or NH3 + N2). The modified layers are characterized by optical microscope (OM), microhardness tester, X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical workstation. After nitrided in NH3, the average thickness of the modified layer is 249.4 μm, the average mass gain is 2.30 mg / cm2 , the hardness reaches the maximum (990.5 HV0.05) after 4 h, the main phase is γ'-Fe4N, the minor phase is ε-Fe2-3N. After nitriding in NH3 + N2, the average thickness of the nitriding layer is 294.8 μm, the average mass gain is 2.39 mg / cm2 , the hardness reaches the maximum (1000.2 HV0.05) after 4h, the main phase is ε-Fe2-3N, and the minor phase is γ'-Fe4N. After nitriding in NH3 + N2 for 4, the corrosion rate of the nitrided layer is the smallest (108.05 μm / a), and the current density decreases to the lowest (0.919 × 105 A / cm2 ) 9.19 μA / cm2 .

  • 0 前言

  • 离子渗氮是一种广泛应用的化学热处理技术,该技术是在阴极溅射过程中产生活性氮原子,活性氮原子在工件表面聚集,不断向基体内部扩散,最终形成优良性能的渗氮改性层[1]。相较于其他表面改性方法,离子渗氮具有增强表面耐磨性[2-4]、疲劳强度[5]、表面硬度[6-7]及耐腐蚀性[8-10]等特点,但是仅通入单一气体,离子渗氮渗氮层较薄,其应用领域有一定的局限性。

  • 通过查阅文献[11-12]可知,要想得到有效渗氮改性层厚度,就需在试样表层形成一层高氮相 ε(ε+γ'),在相同温度下,等离子体渗氮中的N浓度以及改性层中的相组成由渗氮气体中的氮势决定,而氮势取决于NH3 与N2 的分压之比,因此将氮势稳定在某相的溶氮能力中,获得的渗层只由 α 固溶体、FexN及合金元素组成,在试样表面形成高氮相,获得含高氮量主相 ε 相。黄辉[13]探索了离子渗氮在不同气氛下对TC4钛合金渗氮层的组织与性能的影响,结果表明,渗氮气氛对渗氮层质量有较大的影响。朱振中等[14]采用空心阴极辅助离子渗氮,采用H13钢进行不同气氛的低温等离子渗氮,气氛分别为纯N2,流量比分别为2∶1以及4∶1的氮氢混合气氛,N2 + 5%CH4 混合气氛。结果表明,纯N2 渗氮时,会在表面形成一层纳米氧化膜,该层阻碍N原子的渗入;通入N2 + 5%CH4 混合气氛时,甲烷的作用与通入氢气相似。氢气在渗氮过程中主要起还原作用,使表层氧化物被还原,增加了表面的化学反应。

  • 38CrMoAl钢由于具有良好的耐磨性、强度和疲劳强度等特点[15-16],广泛应用于多个行业。因此,本文以38CrMoAl钢为原料,采用氨气和氨氮混合气体对改性层的厚度、表面硬度、脆性、相组成及耐蚀性进行研究,并且通过氨氮混合气氛渗氮来进一步提高改性层厚度、硬度、韧性及耐蚀性等,以此弥补传统渗氮通入单一气氛的不足。

  • 1 材料与方法

  • 试验材料为厚度5mm、直径 ϕ20mm的38CrMoAl钢,其化学成分(质量分数)如表1所示。38CrMoAl钢在SXL-1400C箱式电炉中进行固溶处理,固溶温度为940℃,时间为1h,结束后进行淬油处理。

  • 表1 38CrMoAl钢的化学成分(质量分数)

  • Table1 Chemical composition of 38CrMoAl steel

  • 用QG-1金相切割机将固溶处理后的试样切成5mm的薄片,表面用120 #号水砂纸打磨,使用无水乙醇进行超声波清洗10~15min,用吹风机吹干。

  • 使用CPA-225D电子天平对试样进行称量,然后将LDMC-30AFZ离子渗氮炉抽至真空10Pa以下,进行等离子体渗氮,渗氮温度520℃,渗氮时间4h、8h、12h;NH3与NH3 + N2混合渗氮时,流量均为100mL/min(NH3∶H2=1∶1)。渗氮结束后,使用电子天平称重,用HV-1000IS显微硬度仪对渗氮后的改性层进行硬度与脆性测试;渗氮处理后试样表面的相组成由D 8Advance型X射线衍射仪表征,衍射条件是靶辐射为Cu,扫描速率为5 (°)/min,波长 λ=0.154 18nm,电压为45kV,电流为200mA;ThermoScientificApreo C型号场发射扫描电子显微镜观察表面形貌;配制3.5%NaCl电解液,在电化学工作站CHI604E B16276中进行耐蚀性测试,参比电极为Ag/AgCl,铂柱为辅助电极,起始电压设置−1.5V,终止电压−2.0V,扫描速率为0.01V/s,扫描时间为5min,扫电流密度到10−2 A/cm2 时结束扫描。

  • 2 结果与讨论

  • 2.1 改性层增质量及显微硬度

  • 图1 为NH3 渗氮条件下改性层增质量柱状图(4h、8h和12h)。氨气渗氮后,增质量分别为1.81mg/cm2、2.36mg/cm2、2.72mg/cm2。图2为NH3 + N2混合气氛条件下渗氮改性层增质量柱状图,增质量分别为1.83mg/cm2、2.45mg/cm2、2.88mg/cm2

  • 图1 NH3渗氮条件下改性层增质量柱状图

  • Fig.1 Bar graph of mass gain of modified layer under NH3 nitriding condition

  • 图2 NH3 + N2混合气氛条件下渗氮改性层增质量柱状图

  • Fig.2 Bar graph of mass gain of modified layer under NH3 + N2 nitriding condition

  • 图3 为NH3 渗氮条件下改性层横截面显微硬度,渗氮4h后,表面硬度为990.5HV0.05。渗氮8h后,表面硬度为882.6HV0.05。渗氮12h后改性层表面硬度为802.3HV0.05,从图中可看出,从改性层表面到工件基体,硬度呈下降趋势。图4为NH3 + N2 混合气氛条件下渗氮改性层横截面硬度。渗氮4、8和12h后表面硬度分别为1 000.2、859.2和878.2HV0.05, 4h时表面硬度达到最大。

  • 图3 NH3渗氮条件下改性层横截面显微硬度

  • Fig.3 Microhardness of modified layer cross section under NH3 nitriding condition

  • 图4 NH3 + N2混合气氛条件下渗氮改性层横截面硬度

  • Fig.4 Microhardness of modified layer cross section under NH3 + N2 nitriding condition

  • 2.2 渗层显微组织与相组成

  • 图5 为38CrMoAl钢氨气与氨氮混合气氛渗氮条件下改性层显微组织,由图可看出,扩散层与基体存在清晰明显的分界线,渗层组织均匀、脉状明显。随着氨气渗氮时间的延长,渗层厚度分别为175.9、254.5和317.9 μm,改性层厚度逐渐增加,但是在相同温度520℃下,氨氮混合气氛渗氮层厚度分别为197.0、324.6和362.8 μm,改性层增厚更加明显,说明当温度一定时,炉内通入的氨氮混合气氛增加了氮含量,提供了改性层中N元素的含量, N元素渗入试样内部后形成含氮化合物,形成优良的扩散层,增加了渗层厚度。

  • 在图5a、5b及5c对应的图6a氨气渗氮条件下的XRD图谱中,氨气渗氮改性层主相为 γ'-Fe4N,次相为 ε-Fe2-3N,此时,炉内渗氮气氛NH3∶H2=1∶3,而在图5d、5e以及5f对应的图6b氨氮混合气氛渗氮XRD图谱中,由于氨氮混合气氛渗氮,氮势上升,主相变成了 ε-Fe2-3N,次相为 γ'-Fe4N。这说明渗氮层的相组成调节可以通过调节炉内氮势完成,当炉内通入氨气氮气混合气氛时,NH3∶H2=1∶1。

  • 图5 NH3与NH3 + N2 混合气氛渗氮条件下改性层显微组织

  • Fig.5 Microstructure of modified layer under nitriding conditions of NH3 and NH3 + N2

  • 图6 NH3 与NH3 + N2混合气氛渗氮改性层XRD图谱

  • Fig.6 XRD pattern of nitriding modified layer in mixed atmosphere of NH3 and NH3 + N2

  • 2.3 改性层N浓度分布与EDS能谱分析

  • NH3 + N2 混合气氛渗层截面元素浓度分布如图7所示,获得的渗层厚度与金相显微镜下测得的厚度一致,渗层组织脉络清晰均匀。

  • 利用EDS能谱分析仪,选取试样表层与扩散层中间打点。在图7中 m 点与 s 点处进行打点扫描,表2为38CrMoAl钢氨氮混合气体渗氮8h之后的改性层EDS能谱检测结果,从能谱检测结果可以说明,N元素含量从 m 区域到 s 区域减少,这表明从改性层表面距离逐步过渡到基体,N元素含量呈递减趋势。

  • 表2 渗层EDS线扫描结果可以表明,Fe的含量最多,其次是C,这是因为38CrMoAl钢中C元素含量也较高,且易与Fe元素反应生成Fe3C等其他铁碳化合物,这与金相显微镜中观察到的渗层黑色脉状组织吻合[17];之后是N含量,氨氮混合气体提供了改性层中N元素的含量,N元素渗入试样内部后形成含氮化合物,形成优良的扩散层,增加了渗层厚度。

  • 图7 NH3 + N2混合气氛渗层截面元素浓度分布(8h)

  • Fig.7 Elements concentration profile of nitrided layer in NH3 + N2 for 8h

  • 表2 NH3 + N2渗氮8h后改性层中元素的浓度(质量分数wt.%)

  • Table2 Elements concentration (wt.%) of nitrided layer in NH3 + N2 for 8h

  • 2.4 氮化物等级与氮化层脆性分析

  • 按渗氮改性层中氮化物的形态、数量、分布,对38CrMoAl钢中氮化物的检验进行评定级别,在金相显微镜下将试样放大500倍,取其组织最差的部位进行检验,参照国家金相组织检验标准,一般零件要求1~3级为合格,重要零件要求1、2级为合格。比较参照标准中的渗氮层氮化物级别图与图8NH3与NH3 + N2 混合气氛渗氮条件下改性层显微组织图,图8a和8b的氮化物呈脉状分布极少,评定为1级。图8c中有轻微网状氮化物分布,评定为3级;图8d中的氮化物呈脉状分布极少,评定为1级,图8e中有少量的氮化物呈脉状分布,评定为2级,图8f中呈脉状分布的氮化物较少,但有少量氮化物呈网状分布,评定为3级。

  • 由图8结果可知,氮化时间越长,脉状分布越明显,渗氮时间12h后改性层中出现少量网状组织分布,其中改性层中的组织为含氮的索氏体。改性层中的氮化物,图8a和8b的氮化物呈脉状分布极少,评定为1级。图8c中有轻微网状氮化物分布,评定为3级;图8d中的氮化物呈脉状分布极少,评定为1级,图8e中有少量的氮化物呈脉状分布,评定为2级,图8f中呈脉状分布的氮化物较少,但有少量氮化物呈网状分布,评定为3级。渗氮时间12h后改性层中出现少量网状组织分布,其中改性层中的组织为含氮的索氏体。

  • 图8 NH3与NH3 + N2 混合气氛渗氮条件下改性层显微组织

  • Fig.8 Microstructure of modified layer under nitriding conditions of NH3 and NH3 + N2

  • 图9 为NH3与NH3 + N2 混合气氛渗氮条件下改性层压痕显微组织,试样表面载荷为1kg。从图9a中可以看出,氨气渗氮试样表面出现了两处开裂,图9b中出现一次开裂,图9c中则出现三处开裂,开裂较为严重;在氨氮混合气氛渗氮,相同载荷条件下,图9e与9f出现一处轻微开裂,而在图9d中可以看出,渗氮试样表面周围压痕无明显裂纹存在,这说明经氨氮混合气氛渗氮处理4h后的试样不仅表面硬度提高,韧性也得到了提升。

  • 图9 NH3与NH3 + N2 混合气氛渗氮条件下改性层压痕显微组织

  • Fig.9 Microstructure of modified Indentation under nitriding of NH3 and NH3 + N2

  • 2.5 极化曲线及拟合数据

  • 利用图10a极化曲线数据进行拟合,结果见表3。38CrMoAl钢氨气等离子体渗氮随着时间的延长,改性层的腐蚀速率分别为174.79 μm/a、212.44 μm/a和224.89 μm/a,在渗氮12h后腐蚀速率达到最大,电流腐蚀密度与未渗氮试样相比也增加至19.12 μA/cm2。这是因为,单一气氛条件氨气渗氮后,改性层中 γ'相含量增多,ε 相含量减少,致使腐蚀速率与电流腐蚀密度均呈逐渐增加的趋势,耐蚀性能与未渗氮试样相比略差[18]

  • 图10 NH3 与NH3 + N2 混合气氛渗氮改性层耐蚀性曲线

  • Fig.10 Corrosion resistance curve of modified layer under nitriding conditions of NH3 and NH3 + N2

  • 表3 NH3 等离子体渗氮条件下改性层极化曲线拟合数据

  • Table3 Fitting data of polarization curve of modified layer under NH3 plasma nitriding conditions

  • 对图10b极化曲线数据拟合处理后,结果见表4,氨氮混合气氛渗氮4h、8h和12h后,渗氮层腐蚀速率分别为108.05 μm/a、170.06 μm/a和165.82 μm/a,均小于未渗氮试样,腐蚀速率呈减小增大后减小的过程,在渗氮4h,腐蚀速率达到最小,且与未渗氮试样相比电流密度也下降到9.19 μA/cm2。氨氮混合气氛的加入使改性层中含N量增多,渗层增厚,优良的扩散层中弥散分布的合金氮化物对工件表面的腐蚀形成保护作用,不易被腐蚀产物侵蚀,降低了腐蚀速率。

  • 表4 NH3 + N2混合气氛等离子体渗氮条件下改性层极化曲线拟合数据

  • Table4 Fitting data of polarization curve of modified layer under NH3 + N2 plasma nitriding conditions

  • 3 结论

  • (1)38CrMoAl钢经NH3 + N2 混合气氛离子渗氮,4h、8h和12h后改性层厚度分别为107.0 μm、 324.6 μm、362.8 μm,增质量分别为1.83mg/cm2、 2.45mg/cm2、2.88mg/cm2,均优于氨气渗氮,并且在4h时的硬度值达到最大1 000.2HV0.05,显微硬度得到提高,同时在1kg载荷下,表面压痕无裂纹出现,韧性得到提升。

  • (2)通过调节渗氮炉内气氛,可改变渗氮层相组成。当炉内NH3∶H2=1∶3时,渗氮层主相为 γ'-Fe4N,次相为 ε-Fe2-3N,当炉内NH3∶H2=1∶1时,渗氮层中主相为 ε-Fe2-3N,次相为 γ'-Fe4N。

  • (3)NH3 渗氮改性层,腐蚀速率随渗氮时间的延长逐渐增加;NH3 + N2 混合气氛渗氮层,腐蚀速率随时间呈减小增大后减小的趋势,渗氮4h后腐蚀速率最小108.05 μm/a,且电流密度也下降到最低9.19 μA/cm2,耐蚀性提高。

  • 参考文献

    • [1] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [2] QIN X J,GUO X L,LU J Q,et al.Erosion-wear and intergranular corrosion resistance properties of AISI 304 L austenitic stainless steel after low-temperature plasma nitriding[J].Journal of Alloys and Compounds,2017,698:1094-1101.

    • [3] NAEEM M,IQBAL J,ZAKAULLAH M,et al.Enhanced wear and corrosion resistance of AISI-304 steel by duplex cathodic cage plasma treatment[J].Surface and Coatings Technology,2019,375:34-45.

    • [4] VEIGA A,LUNO-BILBAO C,SAINZ S,et al.Effect of low-pressure carburizing and plasma nitriding on mechanical properties and fatigue endurance limits of low alloy sintered steels[J].Powder Metallurgy,2020,63(2):75-79.

    • [5] KENAN G,MEHMET D,MEHMET C.Effect of ion nitriding on fatigue behaviour of AISI 4140 steel[J].Materials Science & Engineering A,2000,279(1):207-216.

    • [6] SHOGO T,SHOICHI K,HIROYUKI A,et al.Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy[J].Surface & Coatings Technology,2019,359:476-484.

    • [7] SIRIN S Y,SIRIN K,KALUC E.Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel[J].Materials Characterization,2008,59(4):351-358.

    • [8] VITRY V,KANTA A F,DELAUNOIS F.Application of nitriding to electroless nickel–boron coatings:chemical and structural effects;mechanical characterization;corrosion resistance[J].Materials & Design,2012,39(Aug.):269-278.

    • [9] BASU A,MAJUMDAR J D,ALPHONSA J,et al.Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding[J].Materials Letters,2008,62(17-18):3117-3120.

    • [10] WANG L,NAM K S,KWON S C.Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel[J].Surface & Coatings Technology,2007,202(2):203-207.

    • [11] 钟华仁.38X2MЮA 钢渗氮时氮化物层中相成份和含氮量的调节[J].热处理技术与装备,1997,18(1):22-26.ZHONG Huaren.Adjustment of phase composition and nitrogen content of nitride layer during nitriding of 38X2MЮA steel[J].Heat Treatment Technology and Equipment,1997,18(1):22-26.(in Chinese)

    • [12] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Rao,JI Qingxin,WEI Kuixia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)

    • [13] 黄辉.离子渗氮气氛对TC4钛合金组织与性能的影响[J].光学精密工程,1997,5(1):43-48.HUANG Hui.Effect of ion nitriding atmosphere on microstructure and properties of TC4 titanium alloy[J].Optical and Precision Engineering,1997,5(1):43-48.(in Chinese)

    • [14] 朱振中,刘章鹏,苏东艺,等.不同气氛对低温离子氮化渗氮组织的影响[C]//TFC15 全国薄膜技术学术研讨会论文摘要集,武汉,2015:103.ZHU Zhenzhong,LIU Zhangpeng,SU Dongyi,et al.Effect of different atmosphere on the structure of ion nitriding at low temperature[C]//TFC15National Thin Film Technology Conference Abstracts.Wuhan,2015:103.(in Chinese)

    • [15] TONG W P,HAN Z,WANG L M,et al.Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surf.Coat.Technol,2008,202(20):4957-4963.

    • [16] CHEN Y.Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J].J.Mech.Eng.,2017,53(22):81.

    • [17] 钟厉,门昕皓,周富佳,等.38CrMoAl 钢喷丸预处理与稀土催渗等离子多元共渗复合工艺研究[J].表面技术,2020,49(3):162-170.ZHONG Li,MEN Xinhao,ZHOU Fujia,et al.Research on composite process by shot-peening pre-treatment of plasma multielement penetrating with rare-earth catalytic about 38CrMoAl steel[J].Surface Technology,2020,49(3):162-170.(in Chinese)

    • [18] SHEN H,WANG L.Mechanism and properties of plasma nitriding AISI 420 stainless steel at low temperature and anodic(ground)potential[J].Surface and Coatings Technology,2020,403:126390.

  • 参考文献

    • [1] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [2] QIN X J,GUO X L,LU J Q,et al.Erosion-wear and intergranular corrosion resistance properties of AISI 304 L austenitic stainless steel after low-temperature plasma nitriding[J].Journal of Alloys and Compounds,2017,698:1094-1101.

    • [3] NAEEM M,IQBAL J,ZAKAULLAH M,et al.Enhanced wear and corrosion resistance of AISI-304 steel by duplex cathodic cage plasma treatment[J].Surface and Coatings Technology,2019,375:34-45.

    • [4] VEIGA A,LUNO-BILBAO C,SAINZ S,et al.Effect of low-pressure carburizing and plasma nitriding on mechanical properties and fatigue endurance limits of low alloy sintered steels[J].Powder Metallurgy,2020,63(2):75-79.

    • [5] KENAN G,MEHMET D,MEHMET C.Effect of ion nitriding on fatigue behaviour of AISI 4140 steel[J].Materials Science & Engineering A,2000,279(1):207-216.

    • [6] SHOGO T,SHOICHI K,HIROYUKI A,et al.Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy[J].Surface & Coatings Technology,2019,359:476-484.

    • [7] SIRIN S Y,SIRIN K,KALUC E.Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel[J].Materials Characterization,2008,59(4):351-358.

    • [8] VITRY V,KANTA A F,DELAUNOIS F.Application of nitriding to electroless nickel–boron coatings:chemical and structural effects;mechanical characterization;corrosion resistance[J].Materials & Design,2012,39(Aug.):269-278.

    • [9] BASU A,MAJUMDAR J D,ALPHONSA J,et al.Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding[J].Materials Letters,2008,62(17-18):3117-3120.

    • [10] WANG L,NAM K S,KWON S C.Effect of plasma nitriding of electroplated chromium coatings on the corrosion protection C45 mild steel[J].Surface & Coatings Technology,2007,202(2):203-207.

    • [11] 钟华仁.38X2MЮA 钢渗氮时氮化物层中相成份和含氮量的调节[J].热处理技术与装备,1997,18(1):22-26.ZHONG Huaren.Adjustment of phase composition and nitrogen content of nitride layer during nitriding of 38X2MЮA steel[J].Heat Treatment Technology and Equipment,1997,18(1):22-26.(in Chinese)

    • [12] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Rao,JI Qingxin,WEI Kuixia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)

    • [13] 黄辉.离子渗氮气氛对TC4钛合金组织与性能的影响[J].光学精密工程,1997,5(1):43-48.HUANG Hui.Effect of ion nitriding atmosphere on microstructure and properties of TC4 titanium alloy[J].Optical and Precision Engineering,1997,5(1):43-48.(in Chinese)

    • [14] 朱振中,刘章鹏,苏东艺,等.不同气氛对低温离子氮化渗氮组织的影响[C]//TFC15 全国薄膜技术学术研讨会论文摘要集,武汉,2015:103.ZHU Zhenzhong,LIU Zhangpeng,SU Dongyi,et al.Effect of different atmosphere on the structure of ion nitriding at low temperature[C]//TFC15National Thin Film Technology Conference Abstracts.Wuhan,2015:103.(in Chinese)

    • [15] TONG W P,HAN Z,WANG L M,et al.Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surf.Coat.Technol,2008,202(20):4957-4963.

    • [16] CHEN Y.Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J].J.Mech.Eng.,2017,53(22):81.

    • [17] 钟厉,门昕皓,周富佳,等.38CrMoAl 钢喷丸预处理与稀土催渗等离子多元共渗复合工艺研究[J].表面技术,2020,49(3):162-170.ZHONG Li,MEN Xinhao,ZHOU Fujia,et al.Research on composite process by shot-peening pre-treatment of plasma multielement penetrating with rare-earth catalytic about 38CrMoAl steel[J].Surface Technology,2020,49(3):162-170.(in Chinese)

    • [18] SHEN H,WANG L.Mechanism and properties of plasma nitriding AISI 420 stainless steel at low temperature and anodic(ground)potential[J].Surface and Coatings Technology,2020,403:126390.

  • 手机扫一扫看