en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高国强,男,1978年出生,博士研究生,研究员级高工。主要研究方向为喷丸强化及成形。E-mail:1592349590@qq.com

中图分类号:TG178;TB111

DOI:10.11933/j.issn.1007−9289.20210422003

参考文献 1
陈高红,李国爱,陈军洲,等.轧制组织特征对 7B50-T7751 铝合金厚板断裂韧性的影响[J].轻合金加工技术,2018,46(6):29-38.CHEN Gaohong,LI Guoai,CHEN Junzhou,et al.Effect of rolling microstructure characteristics on fracture toughness of 7B50-T7751 aluminum alloy thick plate[J].Light Alloy Fabrication Technology,2018,46(6):29-38.(in Chinese)
参考文献 2
LV Y B,ZHANG W D,WEIY L.The compression properties of the wing integral panel made up of material 7B50-T7751 and 7150-T7751[J].International Journal of Lightweight Materials and Manufacture,2020,3:189-192.
参考文献 3
刘姣姣,武岳,赖永秋,等.固溶温度对7B50铝合金组织和性能的影响[J].中国有色金属学报,2013,23(11):3100-3106.LIU Jiaojiao,WU Yue,LAI Yongqiu,et al.Effects of solution temperature on microstructures and properties of 7B50 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2013,23(11):3100-3106.(in Chinese)
参考文献 4
龚澎,郑林斌,张坤,等.7B50-T7451 铝合金板材孔挤压工艺性能研究[J].航空材料学报,2011,31(4):45-50.GONG Peng,ZHENG Linbin,ZHANG Kun,et al.Effects of hole cold-expansion on microstructure and fatigue property of 7B50-T7451 aluminum alloy plate[J].Journal of Aeronautical Materials,2011,31(4):45-50.(in Chinese)
参考文献 5
XU X C,LIU D X,ZHANG X H,et al.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.
参考文献 6
刘平.7B50 铝合金板材疲劳强度及 S-N 曲线的测定[J].铝加工,2017,3:26-30.LIU Ping.Determination of fatigue ultimate strength and S-N curve for 7B50 aluminum alloy plate[J].Aluminum Fabrication,2017,3:26-30.(in Chinese)
参考文献 7
XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40:88-98.
参考文献 8
CHEN Y X,WANG J C,GAO Y K,et al.Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J].International Journal of Fatigue,2019,127:53-57.
参考文献 9
杨祥伟,揭晓华,曾旭钊,等.7050 铝合金表面亚微米晶层摩擦磨损性能[J].中国表面工程,2011,24(3):38-42.YANG Xiangwei,JIE Xiaohua,ZENG Xuzhao,et al.Wear performance of the micro-crystallization layer on the surface of 7050 al alloy[J].China Surface Engineering,2011,24(3):38-42.(in Chinese)
参考文献 10
DAVIM J P.Surface integrity in machining[M].London:Springer-Verlag,2010:17-20.
参考文献 11
王欣,蔡建明,王强,等.喷丸表面覆盖率对Ti60高温钛合金疲劳性能的影响[J].中国表面工程,2011,24(5):58-63.WANG Xin,CAI Jianming,WANG Qiang,et al.Effect of shot peening surface coverage on the fatigue property in Ti60 high-temperature titanium alloy[J].China Surface Engineering,2011,24(5):58-63.(in Chinese)
参考文献 12
BAG A,DELBERGUE D,BOCHER P,et al.Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel[J].International Journal of Fatigue,2019,118:126-138.
参考文献 13
WANG X L,WANG Z,WU G,et al.Combining the finite element method and response surface methodology for optimization of shot peening parameters[J].International Journal of Fatigue,2019,129:105231.
参考文献 14
XIONG Y F,WANG W H,SHI Y Y,et al.Investigation on surface roughness,residual stress and fatigue property of milling in-situ TiB2/7050Al metal matrix composites[J].Chinese Journal of Aeronautics,2021,34(4):451-464.
参考文献 15
袁伟,孙秦.DFR 法结构细节疲劳强度分析[J].陕西理工学院学报,2007,23(1):9-11.YUAN Wei,SUN Qin.Fatigue intensity analysis of structure detail based on detail fatigue rating[J].Journal of Shanxi University of Technology,2007,23(1):9-11.(in Chinese)
参考文献 16
HUANG W,WANG T J,GARBATOV Y,et al.DFR based fatigue reliability assessment of riveted lap joint accounting for correlations[J].International Journal of Fatigue,2013,47:106-114.
参考文献 17
CICCOF D,FANELLI P,VIVIO F.Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J].International Journal of Fatigue,2017,101:430-438.
参考文献 18
MASUO H,TANAKA Y,MOROKOSHI S,et al.Influence of defects,surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J].International Journal of Fatigue,2018,117:163-179.
参考文献 19
KARIMBAEV R,PYUN Y S,MALEKI E,et al.An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification[J].Materials Science & Engineering A,2020,791:139752.
参考文献 20
FERREIRA N,JESUS J S,FERREIRA J A M,et al.Effect of bead characteristics on the fatigue life of shot peened Al 7475-T7351 specimens[J].International Journal of Fatigue,2020,134:105521.
参考文献 21
DHARMESH K,SRIDHAR I,WANG W.Microstructural response and strain hardening in deep cold rolled nickel-based superalloy for aerospace application[C]//Procedia CIRP,2018,71:374-379.
参考文献 22
KLOTZA T,DELBERGUEA D,BOCHER P,et al.Surface characteristics and fatigue behavior of shot peened Inconel 718[J].International Journal of Fatigue,2018,110:10-21.
目录contents

    摘要

    采用陶瓷弹丸对 7B50-T7751 铝合金进行不同覆盖率(100%、300%、600%、1000%)的表面喷丸强化处理,探究了 7B50-T7751 铝合金表面粗糙度、表面微观组织以及残余应力场等表面形态因素在不同喷丸覆盖率作用下的衍化规律。通过应力比 R =0.06 的轴向加载疲劳试验,分析表面形态改变对疲劳强度的影响。结果表明,不同覆盖率的喷丸强化处理均能改善该材料的疲劳性能,其中在 100%~300%喷丸覆盖率下,疲劳强化增益效果最为明显,其机理是试件在喷丸处理后表面形态得以改善,同时表层形成较高水平的残余压应力,这两种效应的共同作用使疲劳裂纹源从材料表面缺陷处向内迁移到材料内部容易产生应力集中的夹杂处。

    Abstract

    Shot peening processing of aluminum alloy 7B50-T7751 is carried out by ceramic pellets with different coverage (100%, 300%, 600%, 1000%). The surface morphology evolution of the shot peened alloy, which includes surface roughness, microstructure and residual stress distribution, are investigated. The fatigue strength under different shot peening conditions are then evaluated by axial fatigue test with the stress ratio of 0.06. Results show that shot peening processing can improve the alloy’ s fatigue strength for all concerned shot peening coverages, while the improvement rate is the most significant when the shot peening coverage is from 100% to 300%. Fracture morphology analysis indicates that the mechanism of fatigue failure behaves in transition of the crack initiation position, from the surface defects to the internal inclusion where the concentrated stress field is generated, due to the improvement of the surface quality and the combined influence of the compressive residual stress field.

  • 0 前言

  • 7B50铝合金是在7050铝合金的基础上,通过降低合金中Cu元素含量、提高Zn和Mg元素含量、控制Zn/Mg比值、减少Fe、Si杂质等方法研制出来的第四代高性能铝合金。该合金经过T7751的三级时效热处理工艺,可以获得良好的断裂韧性、抗应力腐蚀性及淬透性[1-5]。7B50-T7751合金以其密度低、比强度高、加工性能好等特点,被广泛用于大型机翼壁板、梁、框等整体主承力构件[4-7]。为了改善7B50-T7751合金零件的疲劳性能,抑制零件表面或缺口处疲劳裂纹的萌生与扩展,常通过表面喷丸处理在材料表面引入残余压应力和诱导晶粒细化来提高其疲劳强度[8-11]。然而,不合理的表面喷丸强化处理工艺会引起表面畸变和粗糙度增加,甚至产生表面损伤[11-13]。为了减少喷丸表面损伤,改善喷丸表面强化效果,本文对7B50-T7751铝合金表面粗糙度、表面微观组织以及残余应力场在不同喷丸覆盖率作用下的衍化规律及其对该合金疲劳性能的影响进行研究,从而为7B50-T7751铝合金材料的表面喷丸强化条件优化设计及工业化应用提供参考。

  • 1 材料和方法

  • 1.1 试验材料与试样制备

  • 本文所研究的7B50-T7751合金的化学成分(质量分数)见表1,经拉伸试验得到室温下的拉伸性能参数分别为抗拉强度(R m)587MPa,屈服强度 (R P0.2)555MPa,延伸率(A)8.9%。图1为7B50-T7751合金的扫描电镜图像,微观组织呈现出沿变形方向被拉长的板条状和扁平状晶粒组织,基体中仍存在数量较多的白亮色未溶相。能谱分析结果显示(图2),该合金微观组织中存在细小的黑色二次相,主要成分为Zn、Mg、Si、O元素,而白亮色的不溶相为Al2CuFe相[5, 7]

  • 表1 7B50-T7751铝合金化学成分(质量分数)

  • Table1 Chemical composition of 7B50-T7751 (wt.%)

  • 图1 7B50-T7751铝合金SEM微观组织中板条状和扁平状的晶粒和白亮色的不溶相

  • Fig.1 Bright white insoluble phases distributed in the form of lamellar and flat grains in the SEM microstructure of 7B50-T7751aluminum alloy

  • 图2 7B50-T7751铝合金微观组织中细小的黑色二次相和白亮色的不溶相的能谱分析

  • Fig.2 Energy spectrum analysis of small black secondary and insoluble phases in the microstructure of 7B50-T7751alloy

  • 疲劳试样沿坯料厚度为76.2mm的板材轧制方向取料加工,疲劳试样几何尺寸如图3所示,其厚度为4mm。为了研究喷丸强化对该合金表面形态及其疲劳性能的影响,本文采用AZB425陶瓷丸(直径0.425mm)对试样进行表面喷丸强化,所采用的喷丸参数为弹丸流量7kg/min、喷嘴移动速度1 447mm/min、喷丸气压0.08MPa。经测量,该喷丸强化的喷丸强度为0.131mmA。按该喷丸参数对同一试件表面喷丸一次可获得100%喷丸覆盖率,喷两次则可获得200%喷丸覆盖率。依次类推,获得其他三种喷丸覆盖率为300%、600%、1 000%。最后对不同覆盖率下试样的表面形态及其疲劳性能进行测试。

  • 图3 疲劳试样几何尺寸(mm)

  • Fig.3 Geometric dimensions of the fatigue specimen in mm

  • 1.2 残余应力测试

  • 为了测量喷丸处理后沿厚度方向残余应力的分布,采用化学腐蚀剥层的方法对材料进行剥层处理。化学腐蚀剥层用腐蚀液配置方法为:将氢氧化钠 (NaOH)、硫化钠(Na2S)、三乙醇胺(C6H15NO3)按200g、20g和35ml的比例加入1L蒸馏水中,待溶液充分混合后将烧杯放到70℃恒温水浴锅中恒温保持。剥层腐蚀温度为70℃,每次沿着材料厚度方向减薄约20 μm,通过LXRDMG2000残余应力测试分析系统测量沿材料表面不同深度的残余应力值[14]

  • 1.3 疲劳试验

  • 采用MTS8801疲劳试验机对试样的疲劳强度进行测试,试验所用加载频率为15Hz,正弦载荷应力比为0.06,所有疲劳试验均在室温下完成。疲劳试验按照细节疲劳强度截止值(DFR_cutoff)试验要求[15-17],通过加载水平的测试调整,给出确定的加载应力水平,把疲劳寿命控制在1×105~4.5×105,然后根据试验结果计算不同覆盖率下7B50-T7751合金的疲劳截止值。本文开展了四种喷丸覆盖率及未喷丸处理试样的疲劳试验,疲劳试验完成后,使用扫描电镜(TM4000PLUS)对未喷丸和不同覆盖率下的疲劳试样断口和损伤机理进行分析研究。

  • 2 结果与讨论

  • 2.1 喷丸强化变形层组织结构

  • 图4 所示为不同喷丸覆盖率下7B50-T7751合金近表层的显微组织结构。图4a为未喷丸处理的显微结构,在近表面处可以观察到清晰的晶界。然而,喷丸处理后表层晶体晶界变得模糊,表层出现约5 μm的塑性变形层(图4b),变形层与未变形基体材料没有清楚的界线。图4c和图4d分别为600%和1 000%喷丸覆盖率下沿材料深度方向的显微结构,可以看出继续增大喷丸覆盖率(600%和1 000%),表层塑性变形层的厚度有所增加,但变形层与未变形基体的界线不清晰,变形层厚度仍保持在5~10 μm。因此,在0.131mmA的喷丸强度下,喷丸覆盖率的变化对7B50-T7751合金表面塑性层及表层显微结构影响不大。

  • 图4 不同喷丸覆盖率下7B50-T7751合金喷丸变形层组织结构

  • Fig.4 Microstructure of deformed layer for the7B50-T7751alloy

  • 2.2 表面形貌

  • 机械加工及100%、300%、1 000%喷丸覆盖率下7B50-T7751合金表面形貌如图5所示。图5a为喷丸强化前机械加工表面形貌,在试样表面可以看到清晰的加工刀痕。机械加工刀痕是明显的表面缺陷,会加速疲劳裂纹萌生。经过100%覆盖率下喷丸处理后,在试样表面可以观察到清晰的喷丸凹坑,每个凹坑的边缘凸起明显,局部还保留了机械加工刀痕(图5b)。 300%喷丸覆盖率下,机械加工刀痕完全消失,表面凹坑仍然非常清晰,但相比100%覆盖率下的表面形貌,凹坑相互连接,表面更趋平滑(图5c)。600%喷丸覆盖率下,表面形成连续的凹坑和凸起,凹坑边缘凸起不明显,但表面经多次打击后凹坑边缘出现了褶皱,甚至出现微裂纹。1 000%喷丸处理后,弹丸凹坑的边缘更加不清晰,但表面经过多次击打后,凹坑边缘材料脱落,在材料表面多处出现弹丸碎屑和凸起的小褶皱(图5d)。这些表面缺陷会引起表面应力集中,有可能导致疲劳裂纹萌生。因此,从表面形貌的角度看,7B50-T7751铝合金喷丸处理后的试件表面形貌的质量随着喷丸覆盖率的增大先逐渐改善,在300%左右达到最优,在此之后则因大量弹丸撞击的凹坑重叠作用形成的褶皱甚至微裂纹逐渐增多,使表面形貌的质量呈现下降的趋势,即对于7B50-T7751铝合金,利用AZB425陶瓷弹丸喷丸强化时,其表面形貌在300%左右的覆盖率时达到最佳形态。

  • 图5 喷丸处理前后7B50-T7751合金表面形貌的变化

  • Fig.5 Change of surface morphology of 7B50-T7751alloy processed by shot peening

  • 2.3 表面粗糙度

  • 表面喷丸处理一方面可以消除表面加工刀痕,同时弹丸击打材料表面形成凹坑,均会影响材料的表面粗糙度[18]。图6显示喷丸处理会减小该材料表面的平均粗糙度 Ra。喷丸处理后,Ra 的减小是由于喷丸处理消除了材料表面的机械加工刀痕。在300%喷丸覆盖率下,Ra 最低,但随着喷丸覆盖率的提高(600%和1 000%),长时间的喷丸处理使得凹坑加深,并且表面材料受损,因而使得 Ra 略有升高。但总体来讲,喷丸覆盖率对该铝合金 Ra 的影响可以忽略。

  • 喷丸处理后表面微观不平度的十点平均高度 Rz 有所提高[19]。随着喷丸覆盖率的提高,Rz 也相应有所增加,当喷丸覆盖率达到600%时,Rz 不再增加。此外,喷丸时细小的弹丸击打材料表面可以显著降低表面粗糙度局部峰的平均间距 Rs [20-21],但喷丸覆盖率对 Rs 值影响很小。因此,7B50-T7751合金在经不同喷丸覆盖率表面喷丸处理对其表面粗糙度影响不显著。

  • 图6 不同喷丸覆盖率下的表面粗糙度

  • Fig.6 Surface roughness of samples processed with different shot peening coverage

  • 2.4 残余应力

  • 图7 所示为采用LXRD MG2000测得的7B50-T7751铝合金经不同覆盖率的喷丸处理后表层材料沿厚度方向的残余应力分布[13-14]。结果表明, 100%覆盖率喷丸处理后,表面形成约为−250MPa的残余压应力,最大压应力在距试样表面30 μm处,最大值约为300MPa。当喷丸覆盖率增大到300%时,表面残余压应力值略有增加,达到−270MPa; 其沿厚度方向最大残余压应力达到−345MPa,最大残余压应力的深度约为50 μm。当喷丸覆盖率增加到600%时,其最大残余压应力为−386MPa,最大残余压应力的深度约为55 μm。继续增大喷丸覆盖率到1 000%,材料表层最大残余压应力增加达到 −390MPa,最大残余应力量值及其深度没有明显增加。因此,当喷丸覆盖率达到600%时,增加喷丸覆盖率对该材料最大残余应力及其深度影响不大;喷丸覆盖率300%以下,喷丸覆盖率的增加对表层残余压应力的大小及分布有较大影响。

  • 图7 不同覆盖率喷丸处理后7B50-T7751的残余应力分布

  • Fig.7 Distribution of residual stress of 7B50-T7751samples processed by different shot peening coverage

  • 2.5 疲劳性能

  • 对未喷丸处理试样以及100%、300%、600%、 1 000%喷丸覆盖率下的5组试样进行了1×105~4.5×105 循环周次的疲劳试验,计算各组试样的细节疲劳强度截止值(DFR_cutoff),如图8所示。由图中数据可知,当覆盖率为100%、300%时,喷丸后疲劳强度增益效果最为理想(对应的DFR_cutoff分别为224MPa和219MPa),比未喷丸材料的疲劳强度(DFR_ cutoff为186MPa)分别提高20.4%和17.7%。然而随着喷丸覆盖率的增加,疲劳强度的截止值呈下降的趋势,在600%、1 000%喷丸覆盖率下,7B50-T7751铝合金的DFR_cutoff分别为196MPa和198MPa,对材料疲劳强度的增益(分别为5.3%和6.5%)效果不明显。

  • 图8 表面喷丸处理对7B50-T7751合金疲劳强度的影响

  • Fig.8 Effect of shot peening process on fatigue strength of 7B50-T7751alloy

  • 2.6 疲劳断口分析

  • 图9 所示为典型的未喷丸处理7B50-T7751铝合金试样的疲劳断口形貌。由图9b可以观察到清晰的裂纹扩展方向和稳定的裂纹扩展区,断口呈现出疲劳裂纹源、稳定裂纹扩展区和快速断裂的疲劳特征。图9a为疲劳源区的放大图,图中箭头所指为裂纹萌生位置,由此可以看出未经表面喷丸处理,疲劳裂纹萌生于试样表面多个点,因此,机械加工刀痕是7B50-T7751铝合金疲劳裂纹萌生的主要原因。在稳定的裂纹扩展区,可以观察到解离台阶和二次裂纹(图9c),未观察到疲劳条带等塑性特征。

  • 100%覆盖率喷丸处理后的疲劳断口形貌如图10a所示。疲劳裂纹同样萌生于试样表面,断口形貌与未喷丸7B50-T7751铝合金相似。但观察疲劳源区放大图(图10b)发现,在裂纹源区出现了大块的解离面,这与喷丸强化后材料表面出现加工硬化层有关[22]。此外,100%覆盖率喷丸处理使得表面加工刀痕减弱或消失,疲劳裂纹更容易从表面喷丸凹坑边缘处萌生。因此,100%覆盖率喷丸处理,延缓了裂纹萌生,提高了疲劳寿命。

  • 图9 未喷丸处理7B50-T7751铝合金试样的疲劳断口形貌

  • Fig.9 Fatigue fractography of 7B50-T7751sample without shot peening.

  • 图10 100%覆盖率喷丸处理7B50-T7751铝合金的疲劳断口形貌

  • Fig.10 Fatigue fractography of 7B50-T7751sample processed with 100%shot peening coverage

  • 当喷丸覆盖率增大到300%时,疲劳裂纹也会从表面一点处萌生,甚至会出现疲劳裂纹萌生于试样内部夹杂的现象,如图11a所示。当疲劳裂纹萌生于材料内部时,疲劳寿命达到最大值。图11显示了疲劳裂纹萌生于材料内部的疲劳样件断口,其最大加载应力为220MPa,疲劳寿命4.38×105 周。从裂纹萌生区局部放大图可以看到,在疲劳裂纹源处可以清晰地看到长条状的夹杂,夹杂周围呈现大的解离面(图11b)。这是由于喷丸强化后,表面形成残余压应力和加工硬化层,而且300%覆盖率下喷丸强化使得7B50-T7751铝合金试样表面加工刀痕消失,表面粗糙度降低,因而抑制了表面裂纹源的萌生,而此时材料内部夹杂周围的应力集中,促使裂纹源从材料次表面夹杂处萌生,并在裂纹源周围形成较大的解离面,因而显著提高了疲劳寿命。观察稳定裂纹扩展区,可以看到台阶式的解离面,在稳定裂纹扩展区距疲劳源1mm处的区域内,没有发现清晰的疲劳条带。在300%喷丸覆盖率下,弹丸打击形成的凹陷处表面质量良好,而且有较高水平的挤压应力,因此,在这种情况下,试件仍表现出较好的疲劳强度增益效果。

  • 图11 300%覆盖率喷丸处理7B50-T7751铝合金的疲劳断口形貌

  • Fig.11 Fatigue fractography of 7B50-T7751sample processed with 300%shot peening coverage

  • 随着喷丸覆盖率的继续提高(600%和1 000%),工件边缘处会出现褶皱和卷边等缺陷(图12、13)。图12b为600%喷丸覆盖率下工件边缘缺陷的放大图,可以清晰地看到喷丸引起的边缘卷边,并在卷边处有微裂纹出现。这些缺陷的产生,将会在工件边缘处形成明显的应力集中,从而加剧疲劳裂纹的萌生,降低疲劳强度。在1 000%喷丸覆盖率下,工件边缘卷边现象更为严重,但此时卷边处裂纹并不明显。因此,当喷丸覆盖率大于300%时,尽管表面残余压应力和加工硬化层增加,而表面粗糙度变化不大,从而有增大疲劳强度的趋势,但过高的喷丸覆盖率会使表面局部受损,尤其对工件边缘区域造成损伤严重,反而降低疲劳强度。这也是喷丸覆盖率过高(600%和1 000%)时,随着喷丸覆盖率的增加,7B50-T7751铝合金的DFR_cutoff呈下降趋势的原因。由此也可以得出,对于7B50-T7751铝合金,100%~300%覆盖率是其喷丸强化的最佳值。

  • 图12 600%覆盖率喷丸处理7B50-T7751铝合金的疲劳断口形貌

  • Fig.12 Fatigue fractography of 7B50-T7751sample processed with 600%shot peening coverage

  • 图13 1 000%覆盖率喷丸处理7B50-T7751铝合金的疲劳断口形貌

  • Fig.13 Fatigue fractography of 7B50-T7751sample processed with 1000%shot peening coverage

  • 3 结论

  • (1)采用AZB425陶瓷丸,在确定的喷丸条件下(弹丸流量7kg/min,气压0.08MPa),随着喷丸覆盖率的增加,7B50-T7751铝合金表面加工刀痕逐渐消除,表面质量会明显提高,但当喷丸覆盖率大于300%时,弹坑边缘出现褶皱凸起、陶瓷弹丸碎屑在表面堆积,反而会引起表面质量下降。

  • (2)喷丸前后对7B50-T7751铝合金的表面粗糙度影响不大。随着喷丸覆盖率的增加,材料表层形成的最大残余挤压应力则呈现逐渐增大的趋势,当覆盖率达到600%时,最大残余压应力趋于稳定,且残余挤压应力的深度基本保持不变。

  • (3)7B50-T7751铝合金的细节疲劳强度截止值 (DFR_cutoff)随喷丸覆盖率的增加呈现显著增强趋势,其主要原因在于喷丸处理不仅消除表面刀痕,改善表面质量,同时喷丸处理形成的残余压应力场、加工硬化层提高了疲劳强度。

  • (4)当喷丸覆盖率达到600%时,过高的喷丸会使表面弹丸凹坑边缘形成褶皱凸起,甚至会出现表面裂纹,会抑制疲劳强度的提升,尤其对于结构件边缘等关键部位,过高的喷丸覆盖率会严重影响边缘的强度,从而会引起疲劳强度的显著下降。因此,采用较高喷丸覆盖率强化工件表面,要做好主要关键部位的防护。

  • (5)7B50-T7751铝合金的表面喷丸强化存在一个最佳覆盖率范围。采用AZB425陶瓷丸(弹丸流量7kg/min,气压0.08MPa),当喷丸覆盖率为100%~300%时,7B50-T7751铝合金可以达到最佳的表面形态,对应地可以获得最佳的抗疲劳强度增益。

  • 参考文献

    • [1] 陈高红,李国爱,陈军洲,等.轧制组织特征对 7B50-T7751 铝合金厚板断裂韧性的影响[J].轻合金加工技术,2018,46(6):29-38.CHEN Gaohong,LI Guoai,CHEN Junzhou,et al.Effect of rolling microstructure characteristics on fracture toughness of 7B50-T7751 aluminum alloy thick plate[J].Light Alloy Fabrication Technology,2018,46(6):29-38.(in Chinese)

    • [2] LV Y B,ZHANG W D,WEIY L.The compression properties of the wing integral panel made up of material 7B50-T7751 and 7150-T7751[J].International Journal of Lightweight Materials and Manufacture,2020,3:189-192.

    • [3] 刘姣姣,武岳,赖永秋,等.固溶温度对7B50铝合金组织和性能的影响[J].中国有色金属学报,2013,23(11):3100-3106.LIU Jiaojiao,WU Yue,LAI Yongqiu,et al.Effects of solution temperature on microstructures and properties of 7B50 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2013,23(11):3100-3106.(in Chinese)

    • [4] 龚澎,郑林斌,张坤,等.7B50-T7451 铝合金板材孔挤压工艺性能研究[J].航空材料学报,2011,31(4):45-50.GONG Peng,ZHENG Linbin,ZHANG Kun,et al.Effects of hole cold-expansion on microstructure and fatigue property of 7B50-T7451 aluminum alloy plate[J].Journal of Aeronautical Materials,2011,31(4):45-50.(in Chinese)

    • [5] XU X C,LIU D X,ZHANG X H,et al.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.

    • [6] 刘平.7B50 铝合金板材疲劳强度及 S-N 曲线的测定[J].铝加工,2017,3:26-30.LIU Ping.Determination of fatigue ultimate strength and S-N curve for 7B50 aluminum alloy plate[J].Aluminum Fabrication,2017,3:26-30.(in Chinese)

    • [7] XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40:88-98.

    • [8] CHEN Y X,WANG J C,GAO Y K,et al.Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J].International Journal of Fatigue,2019,127:53-57.

    • [9] 杨祥伟,揭晓华,曾旭钊,等.7050 铝合金表面亚微米晶层摩擦磨损性能[J].中国表面工程,2011,24(3):38-42.YANG Xiangwei,JIE Xiaohua,ZENG Xuzhao,et al.Wear performance of the micro-crystallization layer on the surface of 7050 al alloy[J].China Surface Engineering,2011,24(3):38-42.(in Chinese)

    • [10] DAVIM J P.Surface integrity in machining[M].London:Springer-Verlag,2010:17-20.

    • [11] 王欣,蔡建明,王强,等.喷丸表面覆盖率对Ti60高温钛合金疲劳性能的影响[J].中国表面工程,2011,24(5):58-63.WANG Xin,CAI Jianming,WANG Qiang,et al.Effect of shot peening surface coverage on the fatigue property in Ti60 high-temperature titanium alloy[J].China Surface Engineering,2011,24(5):58-63.(in Chinese)

    • [12] BAG A,DELBERGUE D,BOCHER P,et al.Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel[J].International Journal of Fatigue,2019,118:126-138.

    • [13] WANG X L,WANG Z,WU G,et al.Combining the finite element method and response surface methodology for optimization of shot peening parameters[J].International Journal of Fatigue,2019,129:105231.

    • [14] XIONG Y F,WANG W H,SHI Y Y,et al.Investigation on surface roughness,residual stress and fatigue property of milling in-situ TiB2/7050Al metal matrix composites[J].Chinese Journal of Aeronautics,2021,34(4):451-464.

    • [15] 袁伟,孙秦.DFR 法结构细节疲劳强度分析[J].陕西理工学院学报,2007,23(1):9-11.YUAN Wei,SUN Qin.Fatigue intensity analysis of structure detail based on detail fatigue rating[J].Journal of Shanxi University of Technology,2007,23(1):9-11.(in Chinese)

    • [16] HUANG W,WANG T J,GARBATOV Y,et al.DFR based fatigue reliability assessment of riveted lap joint accounting for correlations[J].International Journal of Fatigue,2013,47:106-114.

    • [17] CICCOF D,FANELLI P,VIVIO F.Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J].International Journal of Fatigue,2017,101:430-438.

    • [18] MASUO H,TANAKA Y,MOROKOSHI S,et al.Influence of defects,surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J].International Journal of Fatigue,2018,117:163-179.

    • [19] KARIMBAEV R,PYUN Y S,MALEKI E,et al.An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification[J].Materials Science & Engineering A,2020,791:139752.

    • [20] FERREIRA N,JESUS J S,FERREIRA J A M,et al.Effect of bead characteristics on the fatigue life of shot peened Al 7475-T7351 specimens[J].International Journal of Fatigue,2020,134:105521.

    • [21] DHARMESH K,SRIDHAR I,WANG W.Microstructural response and strain hardening in deep cold rolled nickel-based superalloy for aerospace application[C]//Procedia CIRP,2018,71:374-379.

    • [22] KLOTZA T,DELBERGUEA D,BOCHER P,et al.Surface characteristics and fatigue behavior of shot peened Inconel 718[J].International Journal of Fatigue,2018,110:10-21.

  • 参考文献

    • [1] 陈高红,李国爱,陈军洲,等.轧制组织特征对 7B50-T7751 铝合金厚板断裂韧性的影响[J].轻合金加工技术,2018,46(6):29-38.CHEN Gaohong,LI Guoai,CHEN Junzhou,et al.Effect of rolling microstructure characteristics on fracture toughness of 7B50-T7751 aluminum alloy thick plate[J].Light Alloy Fabrication Technology,2018,46(6):29-38.(in Chinese)

    • [2] LV Y B,ZHANG W D,WEIY L.The compression properties of the wing integral panel made up of material 7B50-T7751 and 7150-T7751[J].International Journal of Lightweight Materials and Manufacture,2020,3:189-192.

    • [3] 刘姣姣,武岳,赖永秋,等.固溶温度对7B50铝合金组织和性能的影响[J].中国有色金属学报,2013,23(11):3100-3106.LIU Jiaojiao,WU Yue,LAI Yongqiu,et al.Effects of solution temperature on microstructures and properties of 7B50 aluminum alloy[J].The Chinese Journal of Nonferrous Metals,2013,23(11):3100-3106.(in Chinese)

    • [4] 龚澎,郑林斌,张坤,等.7B50-T7451 铝合金板材孔挤压工艺性能研究[J].航空材料学报,2011,31(4):45-50.GONG Peng,ZHENG Linbin,ZHANG Kun,et al.Effects of hole cold-expansion on microstructure and fatigue property of 7B50-T7451 aluminum alloy plate[J].Journal of Aeronautical Materials,2011,31(4):45-50.(in Chinese)

    • [5] XU X C,LIU D X,ZHANG X H,et al.Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J].International Journal of Fatigue,2019,125:237-248.

    • [6] 刘平.7B50 铝合金板材疲劳强度及 S-N 曲线的测定[J].铝加工,2017,3:26-30.LIU Ping.Determination of fatigue ultimate strength and S-N curve for 7B50 aluminum alloy plate[J].Aluminum Fabrication,2017,3:26-30.(in Chinese)

    • [7] XU X C,LIU D X,ZHANG X H,et al.Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J].Journal of Materials Science & Technology,2020,40:88-98.

    • [8] CHEN Y X,WANG J C,GAO Y K,et al.Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J].International Journal of Fatigue,2019,127:53-57.

    • [9] 杨祥伟,揭晓华,曾旭钊,等.7050 铝合金表面亚微米晶层摩擦磨损性能[J].中国表面工程,2011,24(3):38-42.YANG Xiangwei,JIE Xiaohua,ZENG Xuzhao,et al.Wear performance of the micro-crystallization layer on the surface of 7050 al alloy[J].China Surface Engineering,2011,24(3):38-42.(in Chinese)

    • [10] DAVIM J P.Surface integrity in machining[M].London:Springer-Verlag,2010:17-20.

    • [11] 王欣,蔡建明,王强,等.喷丸表面覆盖率对Ti60高温钛合金疲劳性能的影响[J].中国表面工程,2011,24(5):58-63.WANG Xin,CAI Jianming,WANG Qiang,et al.Effect of shot peening surface coverage on the fatigue property in Ti60 high-temperature titanium alloy[J].China Surface Engineering,2011,24(5):58-63.(in Chinese)

    • [12] BAG A,DELBERGUE D,BOCHER P,et al.Statistical analysis of high cycle fatigue life and inclusion size distribution in shot peened 300M steel[J].International Journal of Fatigue,2019,118:126-138.

    • [13] WANG X L,WANG Z,WU G,et al.Combining the finite element method and response surface methodology for optimization of shot peening parameters[J].International Journal of Fatigue,2019,129:105231.

    • [14] XIONG Y F,WANG W H,SHI Y Y,et al.Investigation on surface roughness,residual stress and fatigue property of milling in-situ TiB2/7050Al metal matrix composites[J].Chinese Journal of Aeronautics,2021,34(4):451-464.

    • [15] 袁伟,孙秦.DFR 法结构细节疲劳强度分析[J].陕西理工学院学报,2007,23(1):9-11.YUAN Wei,SUN Qin.Fatigue intensity analysis of structure detail based on detail fatigue rating[J].Journal of Shanxi University of Technology,2007,23(1):9-11.(in Chinese)

    • [16] HUANG W,WANG T J,GARBATOV Y,et al.DFR based fatigue reliability assessment of riveted lap joint accounting for correlations[J].International Journal of Fatigue,2013,47:106-114.

    • [17] CICCOF D,FANELLI P,VIVIO F.Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J].International Journal of Fatigue,2017,101:430-438.

    • [18] MASUO H,TANAKA Y,MOROKOSHI S,et al.Influence of defects,surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J].International Journal of Fatigue,2018,117:163-179.

    • [19] KARIMBAEV R,PYUN Y S,MALEKI E,et al.An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification[J].Materials Science & Engineering A,2020,791:139752.

    • [20] FERREIRA N,JESUS J S,FERREIRA J A M,et al.Effect of bead characteristics on the fatigue life of shot peened Al 7475-T7351 specimens[J].International Journal of Fatigue,2020,134:105521.

    • [21] DHARMESH K,SRIDHAR I,WANG W.Microstructural response and strain hardening in deep cold rolled nickel-based superalloy for aerospace application[C]//Procedia CIRP,2018,71:374-379.

    • [22] KLOTZA T,DELBERGUEA D,BOCHER P,et al.Surface characteristics and fatigue behavior of shot peened Inconel 718[J].International Journal of Fatigue,2018,110:10-21.

  • 手机扫一扫看