en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李明君,女,1997年出生,硕士研究生。主要研究方向为金刚石散热器件。E-mail:lmj311606000810@163.com;

高洁(通信作者),女,1989年出生,博士后,副教授,硕士研究生导师。主要研究方向为等离子体表面改性、金刚石刀具及散热器件。E-mail:gaojie01@tyut.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211113001

参考文献 1
ZWEBEN C.Advanced composites and other advanced materials for electronic packaging thermal management [C]//International Symposium on Advanced Packaging Materials:Processes,Properties & Interfaces.Georgia,IEEE,2002,42(9):51-40.
参考文献 2
张荻,苑孟颖,谭占秋,等.金刚石/Cu 复合界面导热改性及其纳米化研究进展[J].金属学报,2018,54(11):11.ZHANG Di,YUAN Mengyin,TAN Zhanqiu,et al.Progress in interface modification and nanoscale study of diamond/Cu composites[J].Acta Metallurgica Sinica,2018,54(11):11.(in Chinese)
参考文献 3
KERNS J A,COLELLA N A,MAKOWIECKI D,et a1.Dymalloy:A composite substrate for high power density electronic components[C]//Proceedings of 1995 International Symposium on Microelectronics Losangeles,1995:66.
参考文献 4
YASUYUKII A,INOUE K,MIZUUEHI K.Thermal conductivity of copper composites dispersed with diamond particles prepared by spark plasmasintering [C]//The 27th Japan Symposium on Thermophysical Properties.Kyoto,2006-09-16.2006:328-330.
参考文献 5
SCHUBERT T,CIUPINSKI L,ZIELINSKI W,et a1.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J].Scripta Materialia,2008,58:263.
参考文献 6
EKIMOV E A,SUETIN N V,POPOVICH A F,et al.Thermal conductivity of diamond composites sintered under high pressures[J].Diamond and Related Materials,2008,17(4-5):838-843.
参考文献 7
XIA Y,SONG Y Q,LIN C G,et al.Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J].Transactions of Nonferrous Metals Society of China,2009,19(5):1161-1166.
参考文献 8
ZHANG C,WANG R,CAI Z,et al.Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles[J].Journal of Materials Science Materials in Electronics,2015,26(1):185-190.
参考文献 9
MA S,ZHAO N,SHI C,et al.Mo2C coating on diamond:Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J].Applied Surface Science,2017,402:372-383.
参考文献 10
王鲁华.铜/金刚石复合材料的界面结构与导热性能[D].北京:北京科技大学,2019.WANG Luhua.Interfacial structure and thermal conductivity of Cu/diamond composites [D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)
参考文献 11
O’ BRIEN P G,SHENOGIN S,LIU J.et al.Bondinginduced thermal conductance enhancement at inorganic heterointerfaces using nanolecular monolayers[J].Nano Materials,2013,12(2):118-122.
参考文献 12
KANG Q P,HE X B,REN S B,et al.Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J].Applied Thermal Engineering,2013,60(1-2):423-429.
参考文献 13
GUNDRUM B C,CAHILL D G,AVERBACK R S,Thermal conductance of metal-metal interfaces[J].Physical Review B,2005,72(24):35011.
参考文献 14
ZHENG H,JAGANNADHAM K.Interface thermal conductance between metal films and copper[J].Metallurgical & Materials Transactions A,2014,45(5):2480-2486.
参考文献 15
TAN Z Q,LI Z Q,FAN G L,et al.Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design,2013,47(May):160-166.
参考文献 16
BAI Guangzhu,WANG Luhua,ZHANG Yongjian,et al.Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix[J].Materials Characterization,2019,152:265-275.
参考文献 17
LORENZEN D,JENOPTIK P H,GMBH L,et al.Highly thermally conductive substrates with adjustable CTE for diode laser bar packaging[J].International Society for Optics and Photonics,2003,4945:174-185.
参考文献 18
YUAN M,TAN Z,FAN G,et al.Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J].Diamond and Related Materials,2018,81:38-44.
参考文献 19
颜学俊.层状材料热传导性质的理论和试验研究[D].南京:南京大学,2017.YAN Xuejun.Theoretical and experimental studies on the thermal conduction properties of layered materials [D].Nanjing:Nanjing University,2017.(in Chinese)
参考文献 20
常国.基于飞秒激光抽运探测技术研究铜/金刚石界面热导及其结构设计[D].北京:北京科技大学,2019.CHANG Guo.Thermal conductance and structure design of copper/diamond interface investigated by femto-second laser pump-probe technique[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)
参考文献 21
PAN Y P,HE X B,REN S B,et al.Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique ScienceDirect[J].Vacuum,2018,153:74-81.
参考文献 22
SHEN X Y,HE X B,REN S B,et al.Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J].Journal of Alloys & Compounds,2012,529:134-139.
参考文献 23
CHUNG C Y,LEE M T,TSAI M Y,et al.High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique[J].Applied Thermal Engineering,2014,69(1-2):208-213.
参考文献 24
WU X,WAN D,ZHANG W,et al.Constructing efficient heat transfer channels at the interface of Diamond/Cu composites[J].Composite Interfaces,2020(6):1-11.
参考文献 25
LI J,ZHANG H,ZHANG Y,et al.Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J].Journal of Alloys & Compounds,2015,647:941-946.
参考文献 26
CHEN H,JIA C C,LI S.Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques[J].Journal of Materials Science,2012,47(7):3367-3375.
参考文献 27
CHEN H,JIA C C,LI S.et al.Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J].Int.J.Miner.,Metall.Mater,2012,19(4):364.
参考文献 28
YOUNG T F.Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device[J].Surface & Coatings Technology,2007,202(4-7):1208-1213.
参考文献 29
邓安强,樊静波,谭占秋,等.金刚石/铜复合材料在电子封装材料领域的研究进展[J].金刚石与磨料磨具工程,2010,30(5):56.DENG Anqiang,FAN Jingbo,TAN Zhanqiu,et al.Research progress of diamond/Cu composite material for electronic packaging[J].Diamond & Abrasives Engineering,2010,30(5):56.(in Chinese)
参考文献 30
张毓隽,童震松,沈卓身.SPS 方法制备铜/金刚石复合材料[J].北京科技大学学报,2009,31(8):1019.ZHANG Yujun,TONG Zhensong,SHEN Zhuoshen.Preparation of Cu/diamond composites by spark plasma sintering[J].J Univ Sci Technol B,2009,31(8):1019.(in Chinese)
参考文献 31
PAN Y,HE X,REN S,et al.High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles[J].Journal of Materials Science,2018,53:8978-8988.
参考文献 32
XIE Z,GUO H,ZHANG Z,et al.Thermal expansion behaviour and dimensional stability of diamond/Cu composites with different diamond content[J].Journal of Alloys and Compounds,2019,797:122-130.
参考文献 33
XIE Z,GUO H,ZHANG X,et al.Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J].Diamond and Related Materials,2019,100:107564.
参考文献 34
邓丽芳.金刚石/铜复合材料制备的研究[D].昆明:昆明理工大学,2009.DENG Lifang.Research on preparation of diamond/copper composites [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese)
参考文献 35
田惟维.新型电子封装用金刚石/铜复合材料的研制[D].昆明:昆明理工大学,2010.TIAN Weiwei.Development of a new type of diamond/copper composites for electronic packaging[D].Kunming:Kunming University of Science and Technology,2010.(in Chinese)
参考文献 36
WANG C.Microstructure and thermo-physical properties of Cu-Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering[J].Diamond and Related Materials,2020,109:108041.
参考文献 37
ZHANG Hongdi,LIU Yue,ZHANG Fan,et al.Hot deformation behavior and processing maps of diamond/Cu composites[J].Metallurgical & Materials Transactions A,2018,49(6):1-11.
参考文献 38
LIU R,LUO G,LI Y,et al.Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating[J].Surface and Coatings Technology,2019,360:376-381.
参考文献 39
SUN Y,HE L,ZHANG C,et al.Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating[J].Scientific Reports,2017,7(1):10727.
参考文献 40
HU H,JIAN K.Improved thermal performance of diamond-copper composites with boron carbide coating[J].Journal of Materials Engineering & Performance,2014,23(2):651-657.
参考文献 41
JIA J,BAI S,XIONG D,et al.Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration[J].Ceramics International,2019,10:810-818.
参考文献 42
ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.
参考文献 43
REN S,SHEN X,GUO C,et al.Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy[J].Composites Science & Technology,2011,71(13):1550-1555.
参考文献 44
WANG Y,DUAN K,WANG K,et al.Structure and thermal properties of layered Ti-clad diamond/Cu composites prepared by SPS and HP[J].Rare Metal Materials and Engineering,2018,47(7):2011-2016.
参考文献 45
ZHANG H,ZHANG J,LIU Y,et al.Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J].Scripta Materialia,2018,152:84-88.
参考文献 46
WANG Y L,WANG K K,WANG Y W,et al.Experiment and simulation for rolling of diamond-Cu composites[J].Acta Metallurgica Sinica(English Letters),2017,8:791-800.
参考文献 47
XIE Z,GUO H,ZHAANG X,et al.Corrosion behavior of pressure infiltration diamond/Cu composites in neutral salt sprayC[J].Materials,2020,13(8):1847.
参考文献 48
LI Y,ZHOU H,WU C,et al.The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications[J].Metals-Basel.Open Access Metallurgy Journal,2021,11(2):196.
参考文献 49
ZHANG X,GUO H,YIN F,et al.Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications[J].Rare Metals,2011,30(1):94-98.
参考文献 50
ZHANG C,CAI Z,TANG Y,et al.Microstructure and thermal behavior of diamond/Cu composites:Effects of surface modification[J].Diamond & Related Materials,2018,86:98-108.
参考文献 51
GALASHOV E N,YUSUF A A,MANDRIK E M,et al.Preparation and thermo-physical parameters of diamond/W,Cu heat-conducting composite substrates[J].Int.J Adv.Manuf.Tech,2016,86(1-4):475.
参考文献 52
尚青亮.电子封装用金刚石/铜复合材料的研究[D].昆明:昆明理工大学,2009.SHANG Qingliang.Research on diamond/copper composites for electronic packaging [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese).
参考文献 53
CHU Ke,JIA Chengchang,GUO Hong,et al.On the thermal conductivity of Cu–Zr/diamond composites[J].Materials and Design,2013,45:36-42.
参考文献 54
JIANG G,DIAO L,KUANG K.Introduction to thermal management in microelectronics packaging[M].New York:ASME Press Book Serieson Electronic Packaging 2013.
参考文献 55
梁远龙,姜国圣.表面镀钨金刚石/铜复合材料的有限元模拟[J].粉末冶金技术,2019,37(4):283-287.LIANG Yuanlong,JIANG Guoshen.Finite element simulation of tungsten-coated diamond/copper composites[J].Powder Metallurgy Technlogy,2019,37(4):283-287.(in Chinese)
参考文献 56
DENU G A,MIRANI J H,FU J,et al.FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders[J].AIP Advances,2017,7(3):035102.
目录contents

    摘要

    金刚石 / 铜复合材料兼具低密度、高导热率数和可调热膨胀系数等优点,近年来成为新一代热管理材料的研究重点。 通过理论、试验及模拟三个方向对金刚石 / 铜复合材料进行综述。回顾金刚石 / 铜复合材料的发展历程,总结金刚石 / 铜复合材料重要的颗粒混合理论模型及“三明治”复合结构经验公式,研究影响热导率和热膨胀系数等两大热学性能指标的重要因素,简述有限元模拟在金刚石 / 铜复合材料中的相关应用。其中,重点分析界面改性(活性改性元素种类和改性层厚度)对金刚石 / 铜复合材料导热性的影响。结果表明,通过界面改性、增加接触面积以及在较高温度和压力机制驱动下制备的金刚石 / 铜复合材料具有优异的热物理性能。最后由所得结论提出双峰金刚石、渗碳、大尺寸金刚石自支撑膜表面织构化等方法, 可用来提升金刚石 / 铜复合材料界面结合强度和散热性能。

    Abstract

    Diamond / copper composites has become the research focus of a new generation of thermal management materials due to its low density, high thermal conductivity and adjustable coefficient of thermal expansion. The diamond / copper composites are reviewed in three directions: theory, experiment and simulation, which is expected to provide reference and ideas for research and industry development in the field of thermal management. This paper reviews the development history of diamond / copper composites, summarizes the important particle mixing theoretical models and “sandwich” composite structure empirical formulas of diamond / copper composites, studies the important factors affecting two thermal performance indicators such as thermal conductivity and thermal expansion coefficient, and briefly describes application of the finite element simulation in diamond / copper composites. Among them, the influence of interface modification (type of active modified elements and thickness of modified layers) on the thermal conductivity of diamond / copper composites is mainly analyzed. The results show that the diamond / copper composites prepared by interfacial modification, increased contact area, and driven by higher temperature and pressure mechanisms have excellent thermophysical properties. Finally, methods such as bimodal diamond, carburizing, and surface texture of large-size diamond self-supporting films are proposed based on the obtained conclusions, which can be used to improve the interface bonding strength and heat dissipation performance of diamond / copper composites.

  • 0 前言

  • 随着微电子产业兴起,芯片制程向纳米化发展,电子元件在工作过程中使用功率大、产热高,严重影响器件的使用寿命。因此,寻找与芯片相匹配的高导热热管理材料势在必行。ZWEBEN [1]研究了常见材料的热导率与热膨胀系数,指出了热管理材料几个重要的发展方向,其中金属基复合材料(MMC) 因其导热高、低成本、易加工等优点成为目前大多数研究者的首选。金刚石/铜复合材料将自然界中热导率(λ, Thermal conductivity,TC)最高的、热膨胀系数(α, Coefficient of thermal expansion,CTE) 最低的金刚石(λ=2kW/(m·K), α=2.3×10−6 K−1) 和导热性好的金属Cu ( λ=400W/(m · K), α=17×10−6 K−1)复合起来,是目前最具前景的MCC热管理材料[2]

  • 1995年美国Sun Microsystems公司与Lawrence Livemore国家实验室联合采用真空熔渗法制备出热导率为420W/(m·K)、热膨胀系数为5.5×10−6 K−1 的金刚石/铜复合材料[3]。此后几十年,国内外学者对其进行大量研究。国外主要集中在美国、日本、德国、俄罗斯等。日本YASUYUKII等[4]使用放电等离子烧结法(Spark plasma sintering,SPS)制备金刚石体积分数为60vol.%的金刚石/铜复合材料,热导率高达600W/(m·K)。德国SCHUBEAL等[5]用脉冲等离子烧结法(Pulse plasma sintering) 制备了50vol.%金刚石/铜复合材料,运用0.8wt.%Cr对金刚石进行界面改性,试验发现100nm厚的Cr3C2 改性层能提供电子/声子传导通道,最终获得热导率为640W/(m·K)和热膨胀系数为9×10−6 K−1 的复合材料。其中俄罗斯EKIMOV等[6]在高温高压条件下(2 100K, 8GPa)制备出的金刚石/铜复合材料热导率最高可达900W/(m·K),为国外报道的最高值。

  • 国内则集中在北京有色金属研究总院、北京科技大学、中南大学、天津大学等。北京有色金属研究总院XIA等[7]将金刚石颗粒表面预涂覆含少量改性元素(Cr、Ti、B、Si)的铜合金,结果发现,以Cu-0.5B包覆金刚石颗粒制备的复合材料热导率接近300W/(m·K)。中南大学ZHANG等[8]采用冷压烧结将W-Cu双涂层改性的金刚石颗粒与铜粉混合制备复合材料,结果表明,通过双涂层表面改性可提升复合材料热导率至695W/(m·K)。天津大学MA等[9]采用真空压渗法将Mo改性的金刚石颗粒与铜粉混合制备金刚石/铜复合材料,当金刚石体积分数为60vol.%时,复合材料热导率约657W/(m·K)。其中北京科技大学王鲁华[10]将金刚石颗粒与Zr合金化后的铜基体进行复合,Zr含量为0.5wt.%时,得到的复合材料热导率最高,可达930W/(m·K),为国内报道的最高值,此时在接近室温323K下复合材料的热膨胀系数为5.16×10−6 K−1,能和大多数半导体材料的热膨胀系数相匹配。

  • 为了更加全面地研究金刚石/铜复合材料的热学性能,本文将从导热理论预测模型、影响两个性能指标的重要因素、界面改性以及有限元模拟在金刚石/铜复合材料中的应用等方面进行综述,旨在发现现行研究中存在的问题,为制备高质量的金刚石/铜复合材料提供新的研究思路。

  • 1 相关的导热理论预测模型

  • 由于较大的物化差异,金刚石与铜不润湿,复合材料界面结合较弱,而且金刚石主要以声子为热载流子,铜以电子为热载流子,二者界面处传热方式不同,界面热阻的存在制约了金刚石/铜复合材料热物理性能热学性能的进一步提升[11]。对此,研究者设计以颗粒形式复合的AMM模型[12]、DMM模型[13-14]、DEM模型[15]、H-J模型[16]及有序复合的层状“三明治”结构[17]来评估金刚石/铜复合材料的热学性能。

  • 1.1 声失配理论模型(AMM)与扩散失配模型(DMM)

  • 针对金刚石与铜的导热机制不同,金刚石与铜复合的界面处热载流子分别以声子-声子、声子-电子、电子-电子耦合形式传递。同时又由于Cu的德拜温度和声速(325K, 2.80km/s)远低于金刚石的德拜温度与声速(2200K, 13.43km/s),使得金刚石与铜复合时存在较大的声学失配。为此,研究者建立了相应的计算模型对其进行定量描述。当热载流子为声子传导时,可用AMM模型[12]来估计复合材料的界面热导,计算公式如式(1)所示;当热载流子为电子传导时,则薄膜金属的导热计算需要基于延伸的DMM模型[13-14],计算公式如式(2)所示。

  • R=4ρmCmvmη
    (1)
  • Hee=ZfZm4Zf+Zm
    (2)
  • 式中,R 为界面热阻,H ee为电子传导时界面热导, ρ mC mv m分别为基体的密度、比热容和声子速度,η为界面声子透过率,η=p·qp 为入射角在θc 内的声子透过率,计算公式如式(3)所示,Z 为声阻抗,Z=ρ ·v,下标m代表金属基体,r代表增强体, f 代表金属薄膜;q 为入射角在θc 内的声子所占比例,计算公式如式(4)所示)。

  • p=4ZmZrZm+Zr2
    (3)
  • q=12sinθc2=12vmvr2
    (4)
  • 由式(1)~(4)可知,界面热阻(R)由基体的密度、比热容、声子速度以及界面声子透过率所决定,界面声子透过率又受基体与增强体密度及声子速度比值的影响。若要降低界面热阻,必须考虑基体与增强体密度以及声子速度差异。金刚石与铜的密度 ( ρdia=3.53g/cm 3, ρ Cu=8.96g/cm 3)与声子速度 (V dia=13.43km/s, V Cu=2.80km/s)差距较大,两者复合界面热阻较大,严重影响界面热量传递效率。因此AMM模型与DMM模型为提高两者热导率提供了新的思路,即界面改性。YUAN等[18]在对金刚石/铜复合材料界面进行设计时,用DMM模型来计算复合材料的界面热阻 R,此时 R 有3个子界面,所以总的界面热阻 R 是其三个子界面热阻的加和。在理论计算与验证中,该模型更加细致地考虑了复合材料界面传导。选择一种密度与声子速度在两者之间的改性元素作为过渡改性层,可降低缺陷对电子与声子散射影响。本文将在后面详细讨论界面改性对金刚石/铜复合材料热学性能的影响。值得一提的是,在对界面热阻进行理论计算预测的同时,目前有部分研究者使用时域热反射法对其进行试验测量[19-20],因此,在后续研究中,可以结合理论与试验来更好地评定界面热阻这个重要参数。

  • 1.2 细分有效介质(DEM)模型与HasselmanJohnson(H-J)模型

  • DEM模型是考虑增强体体积、粒径及界面空隙和裂缝对复合材料热学性能的影响建立的有效导热预测模型 [15],该模型公式如式 (5) 所示。 HASSELMAN等[16]在Maxwell-Eucken模型的基础上考虑了增强体粒径及界面热阻的影响,提出了H-J模型,其公式如式(6)所示。当界面热阻 G 趋于0时,即为Maxwell-Eucken模型[2]

  • 1-Vdλcλm13=λdeff -λcλdeff -λm
    (5)
  • λcλm=2λdλm-λdrhc-1Vd+λdλm+2Gλdr+21-λdλm+λdrhcVd+λdλm+2Gλdr+2
    (6)
  • 式中,λcλm 分别为复合材料和铜基体的热导率; V d 为金刚石颗粒的体积分数;λdeff为金刚石颗粒的有效热导率,计算公式为λdeff=λd/1+Gλdr,其中 G 为金刚石与铜的界面热阻,r 为金刚石颗粒半径, λ d 为金刚石的本征热导。由公式可知,DEM与H-J模型都考虑了颗粒粒径、体积分数与界面热阻对复合材料热导率(λ)的综合影响。后者假定金刚石与铜的复合界面是完美接触的,使得预测模型更加理想化,文献[18-20, 22-24]利用其来评价试验结果。但当考虑复合材料无限相衬的界面热阻(即微纳米尺度下间隙部分充填层热阻)时,使用DEM模型预测复合材料有效热导率更具适用性与预测性[21]。如PAN等[21]采用真空烧结技术制备W-Cu双涂层的金刚石/铜复合材料,在AMM模型与DMM模型下估算界面热阻,之后使用H-J模型对复合材料的热导率进行理论预测,考虑了无限相衬的界面热阻,同时使用DEM模型进一步评价热导率,结果表明双涂层金刚石颗粒可降低复合材料的界面热阻,从而提高其热导率。WU等[24]采用真空热压烧结法制备出表面粗糙的金刚石/铜复合材料,刻蚀金刚石(100)与(111)面,增加金刚石与Cu的接触面积,在复合材料界面上构建高效的导热通道,使用H-J模型计算其理论热导率与通过傅里叶定律计算的热导率进行比较,结果发现复合材料热导率提高至512W/(m·K)。

  • 1.3 “三明治”复合结构及经验公式

  • 金刚石/铜复合材料通常使用金刚石颗粒作为增强体,与铜粉混合,在一定温度压力下制备而成。在这种情况下,纳米级或微米级金刚石与铜颗粒的混合分布具有任意性与不可控性,无法准确定量分析。为了解决这一问题,LORENZEN等[17]将金刚石粉用焊料焊在铜箔的两面,制备成金刚石/铜/金刚石复合结构,再焊接在激光器上,以期实现金刚石/铜复合材料的纵向导热。在实际应用中,需要金刚石/铜复合材料的热膨胀系数与激光器或芯片相匹配,以防工作过程中产生较大应力而使界面层开裂。对此类“三明治”结构,研究者给出了经验公式(7):

  • α=α1d1E11-v2+α2d2E21-v1d1E11-v2+d2E21-v1
    (7)
  • 式中,d 1/d 2为第一种/第二种材料的总厚度之和; α1/α2 为第一种/第二种材料的热膨胀系数;E 1/E 2 为第一种/第二种材料的弹性模量;v 1/v 2 为第一种/第二种材料的泊松比。必须说明的是,该公式只适用于基体厚度小于其横向尺寸的情况。

  • 为了粗略估计此类复合材料的散热能力,引入了有效导热系数(即平面内平均横向导热系数和面外平均垂直导热系数的平均值),如式(8)所示:

  • λeff=12λ1d1+λ2d2d1+d2+λ1λ2d1+d2λ1d2+λ2d1
    (8)
  • 式中, λ1/λ2 为第一种/第二种材料的导热系数; d 1/d 2 为第一种/第二种材料的总厚度。这两个公式可在一定程度上指导层状复合材料的设计,同时可对类似结构的试验值进行理论验证。YOUNG等[28] 使用化学气相沉积法在硅片上合成金刚石薄膜(厚度大于20 μm),将刻蚀后的硅片与铜进行双面复合,其中一面镀铜的厚度约为100 μm,另一面镀覆铜1.2 μm,从而得到了金刚石与铜的总厚度比值,即 d Cu=5d dia,代入式(6)得到其理论有效导热系数为546W/(m·K)。而文献中使用不同功率的LED灯定性测量的热导率约为650W/(m·K),理论计算值约为实际值的84%。分析理论值与测量值的差异可能由以下两方面因素造成:一是测量热导率的方法通常由测量复合材料的密度、热扩散系数与比热来计算,文献中的测量方式不具有普遍性,偏于定性分析;二是经验公式中只简单地对比两个材料的体积分数,并没有考虑材料的密度、比热等本征参数。不过该经验公式可为研究者后续类似工作中提供理论验证依据。

  • 因此,在理论计算中,研究者可以根据不同的试验材料选择对应的理论模型及计算公式,从而对金刚石/铜复合材料的热学性能进行评估与把控。

  • 2 影响关键性能指标的重要因素

  • 热导率与热膨胀系数是评价金刚石/铜复合材料热学性能优劣的两个关键性能指标。这两个指标同时受复合材料成分(主要指金刚石颗粒粒径与体积分数)、制备工艺以及界面的影响。本文通过分析现有研究结果,总结各个因素对上述两个指标的大致影响规律。

  • 2.1 复合材料成分的影响

  • 在金刚石/铜复合材料中,一般使用粒径为几十到几百微米的金刚石颗粒,通过改变金刚石所占的体积分数来调控复合材料的导热性能,即在复合材料成分中,金刚石颗粒粒径与体积分数是影响其导热性能的主要因素。邓安强等[29]总结了二者对复合材料热导率的影响。结果表明:表面改性与未表面改性的金刚石/铜复合材料的热导率均会随金刚石颗粒粒径增大和体积分数增加,呈先升高后降低的趋势,粒径在200 μm左右,金刚石体积分数在60~70vol.%时,复合材料的热导率最佳[5, 30]。PAN等[21, 31]研究了不同体积分数的Cu-Zr双镀层金刚石对复合材料热导率与热膨胀系数的影响,结果如图1所示。从图中可以看出,复合材料热导率的变化规律与邓安强等[29]的研究结果一致,在金刚石体积分数50~70vol.%范围内有峰值,体积分数为65vol.%时,取得最高热导率720W/(m·K)。然而,在该范围内,热膨胀系数随金刚石体积分数的增加而降低。近年来,为了增大金刚石与铜复合时的接触面积,人们开始使用两种粒径不同的金刚石颗粒 (即双峰金刚石)作为增强相或者引入粒径较小的二次金刚石颗粒。XIE等[32-33]通过调节双峰金刚石颗粒的分布和体积分数来提高金刚石/铜复合材料的导热性能,结果如表1所示。可以看出,二次金刚石颗粒的引入增加了增强体的体积分数,进而提高了复合材料的热导率。

  • 图1 金刚石体积分数对金刚石/铜复合材料热导率与热膨胀系数的影响[21, 31]

  • Fig.1 Effect of diamond volume fraction on thermal conductivity of diamond/Cu composites and coefficient of thermal expansion[21, 31]

  • 表1 不同双峰金刚石混合方案制备的金刚石/铜复合材料导热性能[32-33]

  • Table1 Thermal conductivity of diamond/Cu composites prepared under different construction schemes of bimodal diamond mixing[32-33]

  • R —Ratio of primary diamond to secondary diamond particles; X s —Proportion of sub-diamonds in the total diamond volume fraction; V d —Total diamond volume fraction; λ—Thermal conductivity of the diamond/copper composite

  • 2.2 制备工艺的影响

  • 目前,金刚石/铜复合材料的制备方法有很多种,主要包括粉末冶金法[34-35, 52]、高温高压法[26-27]、放电等离子烧结法[4, 36]、压力浸渗法[24, 33]、无压浸渗法[41-42]、真空热压浸渗法[21, 31]及复合电沉积法[28] 等。分析各制备方法不难发现,温度与压强是制备过程中两个重要工艺参数。为了更加直观地研究制备工艺对金刚石/铜复合材料的导热性能影响,本文根据文献[69-10121621-2830-3236-44] 中的制备工艺总结了温度与压强对金刚石/铜复合材料热导率的影响规律,如图2所示。研究者使用的温度与压强大部分集中在1 100~1 400K、40~60MPa,制备出金刚石/铜复合材料热导率在600W/(m·K)以上。从图中可以观察到,随着温度与压强的增大,金刚石/铜复合材料的热导率总体上有逐渐增大的趋势,其原因可能是在超高温度与压强下,金刚石与铜、改性元素之间形成较强的化学结合。在中等温度与压强下,如果对界面层进行合适的热处理,也可以制备出高导热的金刚石/铜复合材料。

  • 综上,随着金刚石颗粒粒径和体积分数以及相关制备工艺参数的改变,金刚石/铜复合材料的热导率会发生较大的改变,而热膨胀系数随金刚石体积分数影响较大。针对需要热膨胀系数相匹配的应用场合,可通过试验的方法优先找到合适热膨胀系数下的金刚石体积分数,再通过改变其他参数来提高复合材料的热导率,最终获得所需的高导热金刚石/铜复合材料。

  • 图2 温度与压强对金刚石/铜复合材料热导率的影响[6, 9-10, 12, 16, 21-28, 30-32, 36-44]

  • Fig.2 Influence of temperature and pressure on the thermal conductivity of diamond/Cu composites[6, 9-10, 12, 16, 21-28, 30-32, 36-44]

  • 3 界面改性对金刚石/铜复合材料热学性能的影响

  • 根据AMM模型,可通过在金刚石/铜复合材料中添加合适界面改性元素减少界面热阻,提高复合材料的结合强度和导热性能。在金刚石/铜复合材料中加入改性元素有三种方式,其中最简单的是将金刚石、铜及改性元素以特定比例混合[39-40]。这种方法使改性元素在复合材料中随机分布,试验中可控性和稳定性较差。因此,目前普遍采用另外两种方法:金刚石金属化和铜基体合金化。金刚石金属化是在金刚石颗粒表面预涂改性金属,铜基体合金化是在铜基体中加入改性金属制备合金铜。金刚石金属化一般采用磁控溅射[24, 27-28, 41]、蒸发沉积[3, 6, 43-44]、熔盐法[9, 37, 45]等方法,铜基体合金化一般采用真空熔炼法 [10]。下面将主要探究界面改性元素种类与改性层厚度对金刚石/铜复合材料的影响。

  • 3.1 界面改性元素的影响

  • 界面改性元素一般选择可与金刚石反应形成碳化物的活性金属元素,形成的界面改性层一般包含改性元素层以及相应的界面碳化物层。引入合适的界面改性层,可以提高复合材料的热导率和降低其热膨胀系数[49]。常用的改性元素包括高固溶改性元素Ti[6, 23, 25, 48]、Cr[32-33, 43, 49]、Zr[2, 10, 31, 53]及低固溶改性元素Mo[9, 22, 38]、B[39-40]、W[21, 32, 41-42, 50-52]等,通过各种工艺使其与金刚石界面形成冶金结合或化学结合,来改善金刚石/铜界面的结合强度。表2列举了上述元素及其相应碳化物的热物理性能参数,研究者根据这些参数和试验需求选择不同改性元素进行研究。针对金刚石表面金属化改性,ZHANG等[42]对金刚石进行W-Cu改性,制备了双涂层金刚石/铜复合材料,在金刚石体积分数为55vol.%时,热导率约721W/(m·K)。MA等[9]通过熔盐法在金刚石颗粒表面预涂覆Mo2C亚微米层,当Mo2C层厚度为500nm时,金刚石/铜复合材料的热导率为659W/(m·K)。PAN等[31]使用Cu-ZrC双涂层金刚石颗粒制备高导热的金刚石/铜复合材料,在金刚石体积分数为65vol.%时,热导率为720W/(m·K)。 SUN等[39]使用B对金刚石表面改性,在高温下形成B4C后与铜粉混合,结果发现,B4C更倾向于在金刚石(100)面生长,当B含量为6wt.%时,B4C完全覆盖在金刚石表面,此时复合材料获最大热导率为687W/(m·K)。

  • 表2 常用界面改性元素及其碳化物的性质参数[54]

  • Table2 Property parameters of commonly used interface modification elements and carbides[54]

  • 针对铜基体合金化改性,CHEN等[27]研究以不同改性元素形成的铜合金即Cu-X (X=1wt.%Ti, 0.4wt.%Cr, 0.3wt.%B)作为原料,采用高温高压法制备金刚石/铜复合材料,热导率分别为683、683、 688W/(m·K),不同改性元素获得的热导率值相差不大,调控改性元素含量可降低改性元素的影响。 XIE等[32]使用Cr作为铜基体改性元素,Cr质量分数为1.6wt.%,金刚石体积分数为81.8vol.%时,制备的金刚石/铜复合材料热导率可达853W/(m·K)。CHU等[53]对含不同Zr浓度铜合金制备的金刚石/Cu-xZr(x=0、0.8、1.2、2.4wt.%)复合材料的导热性能进行研究,结果发现,随着Zr浓度的增加,复合材料的界面结合强度增加。不添加Zr元素时,复合材料热导率为只有192W/(m·K),当 x=1.2wt.%时,复合材料热导率达到最大615W/(m·K)。

  • 从热导率的高低可以看出,无论是对金刚石还是铜基体进行改性,均能提高金刚石/铜复合材料的导热性能。由于制备工艺和金刚石体积分数不同,无法抉择出最佳的界面改性元素。但使用上述任一改性元素时,通过调控试验参数都能达到较为理想的试验结果。

  • 3.2 界面改性层厚度/改性元素含量的影响

  • 必须说明的是,界面改性层虽能提高复合材料的导热性能,但并不是改性元素含量越高越好或改性层越厚越好,而是需要调控至合适的厚度或含量。图3为文献[9-10, 42]中对金刚石表面进行金属化改性时,金刚石/铜复合材料的热导率随改性层的厚度的变化规律。可看出,随着界面改性层厚度的增加,复合材料热导率呈先增大后降低的趋势。图4为文献[10, 49, 53]中对铜基体进行合金化改性时,复合材料的热导率与热膨胀系数随改性元素含量的变化规律。热导率变化趋势与对金刚石颗粒进行表面金属化时相同,而热膨胀系数则随改性元素含量增加逐渐降低。

  • 图3 界面改性层厚度对金刚石/铜复合材料热导率的影响[9-10, 42]

  • Fig.3 Effect of interfacial modified layer thickness on thermal conductivity of diamond/Cu composites[9-10, 42]

  • 综上,界面改性能提高金刚石与铜的结合强度与热学性能,选择合适界面改性元素及调节改性层厚度/改性元素含量有望获得热学性能良好的金刚石/铜复合材料。

  • 图4 界面改性元素含量对金刚石/铜复合材料热导率与热膨胀系数的影响[10, 49, 53]

  • Fig.4 Effect of interfacial modified element content on thermal conductivity and coefficient of thermal expansion of diamond/Cu composites[10, 49, 53]

  • 4 有限元模拟在金刚石/铜复合材料研究中的应用

  • 目前有限元软件主要用来预测金刚石/铜复合材料的热导率及应力应变问题。有限元模拟一方面能够减小试验过程中的试错概率,另一方面模拟结果中的热变形云图也可以非常直观地反映复合材料在工作过程中的服役状态。

  • 4.1 基于颗粒混合形式的热学性能预测

  • DEM、H-J模型都假设金刚石颗粒为球形,而实际上,金刚石颗粒以多面体形式随机分布在铜基体中[50]。为了使模拟更接近试验,梁远龙等[55]建立金刚石的多面体三维模型,模拟研究了不同金刚石粒径与体积分数对金刚石/铜复合材料热导率与线性热膨胀系数的影响。构建的金刚石多面体模型如图5a所示。金刚石粒径 R 定义为多面体外接球的直径,可得到多面体的边长(A=18/5R) 与体积 (V=32R3/(55))。在此基础上,建立了镀钨金刚石/铜复合材料模型(图5b),并对其热学性能进行了模拟。结果表明,随着金刚石体积分数的增加,金刚石颗粒粒径的增大以及W涂层厚度的减小,金刚石/铜复合材料的热导率有增大趋势,其中金刚石颗粒粒径在150~200 µm时,热导率为820~840W·m−1 ·K−1;而热膨胀系数受金刚石体积分数影响最大,且随金刚石含量增大而减小,这与文献[21]的热膨胀系数测试规律相吻合。

  • 图5 有限元模拟中三维立体模型示意图[55]

  • Fig.5 Schematic diagram of the three-dimensional model in the finite element simulation[55]

  • 有限元模拟可通过建立模型、设置公式、改变参数得到金刚石/铜复合材料热导率与热膨胀系数的变化规律,从而对试验进行指导。此外, XIE等[33]将复合材料的扫描原始形貌图作为研究对象,利用有限元软件对不同材料的微观组织进行相应的材料参数赋值,模拟其非均匀稳态热传导过程,同时模拟引入二次颗粒后的热流分布,与未引入的试验结果相互比较,发现在不同金刚石颗粒混合模型下复合材料的热导率均超过700W·m−1 ·K−1。证明了引入二次金刚石颗粒能够优化导热模型,提高了热流沿金刚石增强相传导的概率,从而提高金刚石/铜复合材料的导热性能。

  • 4.2 基于金刚石自支撑膜/铜复合结构性能预测

  • 以颗粒形式复合的金刚石/铜复合材料存在较强的热各向异性,使复合材料在散热过程中的垂直导热系数较低。对此,部分研究者开始使用金刚石自支撑膜与铜进行有序复合,以期获得较高的有效热导。而大尺寸金刚石自支撑膜制备工艺严格、价格昂贵且后处理工艺复杂,于是,使用有限元模拟方法研究金刚石自支撑膜/铜复合结构的热变形行为,有助于对散热元件进行优化设计。DENU等[56] 设计铜/金刚石/铜复合散热片模型,结构如图6b所示,将其顶部中间部分连接一个电子元件,设置该电子元件从设备顶部一侧释放温度为127℃的热量,另一侧对流系数为1 500W/(m2 ·K),模拟的温度场分布如图6a所示。当温度为127℃时,金刚石扩散装置应力变化如图6b所示,可以看出铜/金刚石界面的应力比其他地方大。此外,通过有限元模拟不同厚度金刚石/铜复合材料的温度场与应力场,来预测其热导率与热膨胀系数趋势。结果发现,金刚石厚度在0~200 µm时,随着金刚石厚度增加,复合材料的热导率不断增大,而热膨胀系数不断减小。

  • 综上所述,颗粒模型与层状模型分别从微观和宏观的角度对金刚石/铜复合材料的性能进行粗略评估。研究者可根据自身试验需求,选择相应的模型或建立合适的模型对复合材料的服役状态进行模拟。

  • 图6 有限元模拟铜/金刚石/铜散热装置模型的温度场及应力场 [56]

  • Fig.6 Temperature field and stress field of finite element simulation of copper/diamond/copper heat sink model (a) Temperature Field (b) Stress contour of heat spreading device under a heat source at T=200℃ and diamond layer of 80 µm[56]

  • 5 结论与展望

  • 总结了影响金刚石/铜复合材料热学性能的主要因素,以及其中延伸的相关理论计算模型与有限元模拟,主要结论如下:

  • (1)金刚石与铜以颗粒形式随机复合时的界面热阻可通过AMM与DMM模型进行预测,其热导率可使用DEM与H-J模型定量计算获得理论值。若制备有序层状复合的金刚石/铜复合材料,可通过经验公式对复合材料有效热导率与热膨胀系数进行计算。同时,可使用有限元模拟可对其进行预测与服役状态观测。

  • (2)金刚石/铜复合材料的热导率与金刚石颗粒粒径、金刚石体积分数和制备工艺有关。一般来说,金刚石体积分数在60%~70%,颗粒粒径在200 μm左右可以制备热导率较高的金刚石/铜复合材料,且随着温度与压强的升高,复合材料的热导率有增大趋势。双峰金刚石的引入可明显提高复合材料的热导率。而金刚石/铜复合材料的热膨胀系数主要由金刚石体积分数决定,可根据实际条件对其进行调节。

  • (3)界面改性能有效提高金刚石/铜复合材料导热性能,选用合适的改性元素,均可通过调控试验参数达到较为理想的结果。但不管是金刚石表面金属化还是金属基体合金化,界面改性层都不宜过厚。

  • 以颗粒形式复合的金刚石/铜复合材料具有封装局限性,大尺寸自支撑金刚石膜与铜有序复合具有中间绝缘性,可同时兼顾刻蚀电路与散热的性能。为对芯片进行更好的上流封装,后者将成为主流的发展趋势,本文从理论与试验两方面对高导热金刚石/铜复合材料的研究方向进行展望。

  • (1)金刚石与铜复合导热机制尚未明晰,金刚石与铜导热机制不同,是由两者本征物化性质所决定的。宏观上无法判断金刚石与铜复合相界面处的热变形行为。理论上可以将第一性原理和有限元模拟相结合,从晶体结构到应力应变引起的晶体尺寸变形,整体把握复合材料热传导规律。

  • (2)金刚石与铜的润湿性差以致结合强度不高,加入界面改性元素也需要较好的制备工艺才能与金刚石发生碳化。在制备大尺寸层状金刚石/铜复合材料时,通过直接渗碳处理可在金刚石表面激发分解出活性碳原子,能够促进界面改性元素与金刚石更好的结合。

  • (3)除了通过在界面改性处形成碳化物过渡层提高其结合强度,还可以考虑在金刚石表面或铜基体上进行激光刻蚀形成有规律的凹坑阵列,类似这种表面织构的存在可通过增加金刚石与铜的机械咬合力来提高两者的结合强度。

  • 参考文献

    • [1] ZWEBEN C.Advanced composites and other advanced materials for electronic packaging thermal management [C]//International Symposium on Advanced Packaging Materials:Processes,Properties & Interfaces.Georgia,IEEE,2002,42(9):51-40.

    • [2] 张荻,苑孟颖,谭占秋,等.金刚石/Cu 复合界面导热改性及其纳米化研究进展[J].金属学报,2018,54(11):11.ZHANG Di,YUAN Mengyin,TAN Zhanqiu,et al.Progress in interface modification and nanoscale study of diamond/Cu composites[J].Acta Metallurgica Sinica,2018,54(11):11.(in Chinese)

    • [3] KERNS J A,COLELLA N A,MAKOWIECKI D,et a1.Dymalloy:A composite substrate for high power density electronic components[C]//Proceedings of 1995 International Symposium on Microelectronics Losangeles,1995:66.

    • [4] YASUYUKII A,INOUE K,MIZUUEHI K.Thermal conductivity of copper composites dispersed with diamond particles prepared by spark plasmasintering [C]//The 27th Japan Symposium on Thermophysical Properties.Kyoto,2006-09-16.2006:328-330.

    • [5] SCHUBERT T,CIUPINSKI L,ZIELINSKI W,et a1.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J].Scripta Materialia,2008,58:263.

    • [6] EKIMOV E A,SUETIN N V,POPOVICH A F,et al.Thermal conductivity of diamond composites sintered under high pressures[J].Diamond and Related Materials,2008,17(4-5):838-843.

    • [7] XIA Y,SONG Y Q,LIN C G,et al.Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J].Transactions of Nonferrous Metals Society of China,2009,19(5):1161-1166.

    • [8] ZHANG C,WANG R,CAI Z,et al.Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles[J].Journal of Materials Science Materials in Electronics,2015,26(1):185-190.

    • [9] MA S,ZHAO N,SHI C,et al.Mo2C coating on diamond:Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J].Applied Surface Science,2017,402:372-383.

    • [10] 王鲁华.铜/金刚石复合材料的界面结构与导热性能[D].北京:北京科技大学,2019.WANG Luhua.Interfacial structure and thermal conductivity of Cu/diamond composites [D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [11] O’ BRIEN P G,SHENOGIN S,LIU J.et al.Bondinginduced thermal conductance enhancement at inorganic heterointerfaces using nanolecular monolayers[J].Nano Materials,2013,12(2):118-122.

    • [12] KANG Q P,HE X B,REN S B,et al.Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J].Applied Thermal Engineering,2013,60(1-2):423-429.

    • [13] GUNDRUM B C,CAHILL D G,AVERBACK R S,Thermal conductance of metal-metal interfaces[J].Physical Review B,2005,72(24):35011.

    • [14] ZHENG H,JAGANNADHAM K.Interface thermal conductance between metal films and copper[J].Metallurgical & Materials Transactions A,2014,45(5):2480-2486.

    • [15] TAN Z Q,LI Z Q,FAN G L,et al.Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design,2013,47(May):160-166.

    • [16] BAI Guangzhu,WANG Luhua,ZHANG Yongjian,et al.Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix[J].Materials Characterization,2019,152:265-275.

    • [17] LORENZEN D,JENOPTIK P H,GMBH L,et al.Highly thermally conductive substrates with adjustable CTE for diode laser bar packaging[J].International Society for Optics and Photonics,2003,4945:174-185.

    • [18] YUAN M,TAN Z,FAN G,et al.Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J].Diamond and Related Materials,2018,81:38-44.

    • [19] 颜学俊.层状材料热传导性质的理论和试验研究[D].南京:南京大学,2017.YAN Xuejun.Theoretical and experimental studies on the thermal conduction properties of layered materials [D].Nanjing:Nanjing University,2017.(in Chinese)

    • [20] 常国.基于飞秒激光抽运探测技术研究铜/金刚石界面热导及其结构设计[D].北京:北京科技大学,2019.CHANG Guo.Thermal conductance and structure design of copper/diamond interface investigated by femto-second laser pump-probe technique[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [21] PAN Y P,HE X B,REN S B,et al.Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique ScienceDirect[J].Vacuum,2018,153:74-81.

    • [22] SHEN X Y,HE X B,REN S B,et al.Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J].Journal of Alloys & Compounds,2012,529:134-139.

    • [23] CHUNG C Y,LEE M T,TSAI M Y,et al.High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique[J].Applied Thermal Engineering,2014,69(1-2):208-213.

    • [24] WU X,WAN D,ZHANG W,et al.Constructing efficient heat transfer channels at the interface of Diamond/Cu composites[J].Composite Interfaces,2020(6):1-11.

    • [25] LI J,ZHANG H,ZHANG Y,et al.Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J].Journal of Alloys & Compounds,2015,647:941-946.

    • [26] CHEN H,JIA C C,LI S.Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques[J].Journal of Materials Science,2012,47(7):3367-3375.

    • [27] CHEN H,JIA C C,LI S.et al.Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J].Int.J.Miner.,Metall.Mater,2012,19(4):364.

    • [28] YOUNG T F.Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device[J].Surface & Coatings Technology,2007,202(4-7):1208-1213.

    • [29] 邓安强,樊静波,谭占秋,等.金刚石/铜复合材料在电子封装材料领域的研究进展[J].金刚石与磨料磨具工程,2010,30(5):56.DENG Anqiang,FAN Jingbo,TAN Zhanqiu,et al.Research progress of diamond/Cu composite material for electronic packaging[J].Diamond & Abrasives Engineering,2010,30(5):56.(in Chinese)

    • [30] 张毓隽,童震松,沈卓身.SPS 方法制备铜/金刚石复合材料[J].北京科技大学学报,2009,31(8):1019.ZHANG Yujun,TONG Zhensong,SHEN Zhuoshen.Preparation of Cu/diamond composites by spark plasma sintering[J].J Univ Sci Technol B,2009,31(8):1019.(in Chinese)

    • [31] PAN Y,HE X,REN S,et al.High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles[J].Journal of Materials Science,2018,53:8978-8988.

    • [32] XIE Z,GUO H,ZHANG Z,et al.Thermal expansion behaviour and dimensional stability of diamond/Cu composites with different diamond content[J].Journal of Alloys and Compounds,2019,797:122-130.

    • [33] XIE Z,GUO H,ZHANG X,et al.Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J].Diamond and Related Materials,2019,100:107564.

    • [34] 邓丽芳.金刚石/铜复合材料制备的研究[D].昆明:昆明理工大学,2009.DENG Lifang.Research on preparation of diamond/copper composites [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese)

    • [35] 田惟维.新型电子封装用金刚石/铜复合材料的研制[D].昆明:昆明理工大学,2010.TIAN Weiwei.Development of a new type of diamond/copper composites for electronic packaging[D].Kunming:Kunming University of Science and Technology,2010.(in Chinese)

    • [36] WANG C.Microstructure and thermo-physical properties of Cu-Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering[J].Diamond and Related Materials,2020,109:108041.

    • [37] ZHANG Hongdi,LIU Yue,ZHANG Fan,et al.Hot deformation behavior and processing maps of diamond/Cu composites[J].Metallurgical & Materials Transactions A,2018,49(6):1-11.

    • [38] LIU R,LUO G,LI Y,et al.Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating[J].Surface and Coatings Technology,2019,360:376-381.

    • [39] SUN Y,HE L,ZHANG C,et al.Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating[J].Scientific Reports,2017,7(1):10727.

    • [40] HU H,JIAN K.Improved thermal performance of diamond-copper composites with boron carbide coating[J].Journal of Materials Engineering & Performance,2014,23(2):651-657.

    • [41] JIA J,BAI S,XIONG D,et al.Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration[J].Ceramics International,2019,10:810-818.

    • [42] ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.

    • [43] REN S,SHEN X,GUO C,et al.Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy[J].Composites Science & Technology,2011,71(13):1550-1555.

    • [44] WANG Y,DUAN K,WANG K,et al.Structure and thermal properties of layered Ti-clad diamond/Cu composites prepared by SPS and HP[J].Rare Metal Materials and Engineering,2018,47(7):2011-2016.

    • [45] ZHANG H,ZHANG J,LIU Y,et al.Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J].Scripta Materialia,2018,152:84-88.

    • [46] WANG Y L,WANG K K,WANG Y W,et al.Experiment and simulation for rolling of diamond-Cu composites[J].Acta Metallurgica Sinica(English Letters),2017,8:791-800.

    • [47] XIE Z,GUO H,ZHAANG X,et al.Corrosion behavior of pressure infiltration diamond/Cu composites in neutral salt sprayC[J].Materials,2020,13(8):1847.

    • [48] LI Y,ZHOU H,WU C,et al.The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications[J].Metals-Basel.Open Access Metallurgy Journal,2021,11(2):196.

    • [49] ZHANG X,GUO H,YIN F,et al.Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications[J].Rare Metals,2011,30(1):94-98.

    • [50] ZHANG C,CAI Z,TANG Y,et al.Microstructure and thermal behavior of diamond/Cu composites:Effects of surface modification[J].Diamond & Related Materials,2018,86:98-108.

    • [51] GALASHOV E N,YUSUF A A,MANDRIK E M,et al.Preparation and thermo-physical parameters of diamond/W,Cu heat-conducting composite substrates[J].Int.J Adv.Manuf.Tech,2016,86(1-4):475.

    • [52] 尚青亮.电子封装用金刚石/铜复合材料的研究[D].昆明:昆明理工大学,2009.SHANG Qingliang.Research on diamond/copper composites for electronic packaging [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese).

    • [53] CHU Ke,JIA Chengchang,GUO Hong,et al.On the thermal conductivity of Cu–Zr/diamond composites[J].Materials and Design,2013,45:36-42.

    • [54] JIANG G,DIAO L,KUANG K.Introduction to thermal management in microelectronics packaging[M].New York:ASME Press Book Serieson Electronic Packaging 2013.

    • [55] 梁远龙,姜国圣.表面镀钨金刚石/铜复合材料的有限元模拟[J].粉末冶金技术,2019,37(4):283-287.LIANG Yuanlong,JIANG Guoshen.Finite element simulation of tungsten-coated diamond/copper composites[J].Powder Metallurgy Technlogy,2019,37(4):283-287.(in Chinese)

    • [56] DENU G A,MIRANI J H,FU J,et al.FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders[J].AIP Advances,2017,7(3):035102.

  • 参考文献

    • [1] ZWEBEN C.Advanced composites and other advanced materials for electronic packaging thermal management [C]//International Symposium on Advanced Packaging Materials:Processes,Properties & Interfaces.Georgia,IEEE,2002,42(9):51-40.

    • [2] 张荻,苑孟颖,谭占秋,等.金刚石/Cu 复合界面导热改性及其纳米化研究进展[J].金属学报,2018,54(11):11.ZHANG Di,YUAN Mengyin,TAN Zhanqiu,et al.Progress in interface modification and nanoscale study of diamond/Cu composites[J].Acta Metallurgica Sinica,2018,54(11):11.(in Chinese)

    • [3] KERNS J A,COLELLA N A,MAKOWIECKI D,et a1.Dymalloy:A composite substrate for high power density electronic components[C]//Proceedings of 1995 International Symposium on Microelectronics Losangeles,1995:66.

    • [4] YASUYUKII A,INOUE K,MIZUUEHI K.Thermal conductivity of copper composites dispersed with diamond particles prepared by spark plasmasintering [C]//The 27th Japan Symposium on Thermophysical Properties.Kyoto,2006-09-16.2006:328-330.

    • [5] SCHUBERT T,CIUPINSKI L,ZIELINSKI W,et a1.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J].Scripta Materialia,2008,58:263.

    • [6] EKIMOV E A,SUETIN N V,POPOVICH A F,et al.Thermal conductivity of diamond composites sintered under high pressures[J].Diamond and Related Materials,2008,17(4-5):838-843.

    • [7] XIA Y,SONG Y Q,LIN C G,et al.Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J].Transactions of Nonferrous Metals Society of China,2009,19(5):1161-1166.

    • [8] ZHANG C,WANG R,CAI Z,et al.Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles[J].Journal of Materials Science Materials in Electronics,2015,26(1):185-190.

    • [9] MA S,ZHAO N,SHI C,et al.Mo2C coating on diamond:Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J].Applied Surface Science,2017,402:372-383.

    • [10] 王鲁华.铜/金刚石复合材料的界面结构与导热性能[D].北京:北京科技大学,2019.WANG Luhua.Interfacial structure and thermal conductivity of Cu/diamond composites [D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [11] O’ BRIEN P G,SHENOGIN S,LIU J.et al.Bondinginduced thermal conductance enhancement at inorganic heterointerfaces using nanolecular monolayers[J].Nano Materials,2013,12(2):118-122.

    • [12] KANG Q P,HE X B,REN S B,et al.Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J].Applied Thermal Engineering,2013,60(1-2):423-429.

    • [13] GUNDRUM B C,CAHILL D G,AVERBACK R S,Thermal conductance of metal-metal interfaces[J].Physical Review B,2005,72(24):35011.

    • [14] ZHENG H,JAGANNADHAM K.Interface thermal conductance between metal films and copper[J].Metallurgical & Materials Transactions A,2014,45(5):2480-2486.

    • [15] TAN Z Q,LI Z Q,FAN G L,et al.Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design,2013,47(May):160-166.

    • [16] BAI Guangzhu,WANG Luhua,ZHANG Yongjian,et al.Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix[J].Materials Characterization,2019,152:265-275.

    • [17] LORENZEN D,JENOPTIK P H,GMBH L,et al.Highly thermally conductive substrates with adjustable CTE for diode laser bar packaging[J].International Society for Optics and Photonics,2003,4945:174-185.

    • [18] YUAN M,TAN Z,FAN G,et al.Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J].Diamond and Related Materials,2018,81:38-44.

    • [19] 颜学俊.层状材料热传导性质的理论和试验研究[D].南京:南京大学,2017.YAN Xuejun.Theoretical and experimental studies on the thermal conduction properties of layered materials [D].Nanjing:Nanjing University,2017.(in Chinese)

    • [20] 常国.基于飞秒激光抽运探测技术研究铜/金刚石界面热导及其结构设计[D].北京:北京科技大学,2019.CHANG Guo.Thermal conductance and structure design of copper/diamond interface investigated by femto-second laser pump-probe technique[D].Beijing:University of Science and Technology Beijing,2019.(in Chinese)

    • [21] PAN Y P,HE X B,REN S B,et al.Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique ScienceDirect[J].Vacuum,2018,153:74-81.

    • [22] SHEN X Y,HE X B,REN S B,et al.Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J].Journal of Alloys & Compounds,2012,529:134-139.

    • [23] CHUNG C Y,LEE M T,TSAI M Y,et al.High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique[J].Applied Thermal Engineering,2014,69(1-2):208-213.

    • [24] WU X,WAN D,ZHANG W,et al.Constructing efficient heat transfer channels at the interface of Diamond/Cu composites[J].Composite Interfaces,2020(6):1-11.

    • [25] LI J,ZHANG H,ZHANG Y,et al.Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J].Journal of Alloys & Compounds,2015,647:941-946.

    • [26] CHEN H,JIA C C,LI S.Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques[J].Journal of Materials Science,2012,47(7):3367-3375.

    • [27] CHEN H,JIA C C,LI S.et al.Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J].Int.J.Miner.,Metall.Mater,2012,19(4):364.

    • [28] YOUNG T F.Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device[J].Surface & Coatings Technology,2007,202(4-7):1208-1213.

    • [29] 邓安强,樊静波,谭占秋,等.金刚石/铜复合材料在电子封装材料领域的研究进展[J].金刚石与磨料磨具工程,2010,30(5):56.DENG Anqiang,FAN Jingbo,TAN Zhanqiu,et al.Research progress of diamond/Cu composite material for electronic packaging[J].Diamond & Abrasives Engineering,2010,30(5):56.(in Chinese)

    • [30] 张毓隽,童震松,沈卓身.SPS 方法制备铜/金刚石复合材料[J].北京科技大学学报,2009,31(8):1019.ZHANG Yujun,TONG Zhensong,SHEN Zhuoshen.Preparation of Cu/diamond composites by spark plasma sintering[J].J Univ Sci Technol B,2009,31(8):1019.(in Chinese)

    • [31] PAN Y,HE X,REN S,et al.High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles[J].Journal of Materials Science,2018,53:8978-8988.

    • [32] XIE Z,GUO H,ZHANG Z,et al.Thermal expansion behaviour and dimensional stability of diamond/Cu composites with different diamond content[J].Journal of Alloys and Compounds,2019,797:122-130.

    • [33] XIE Z,GUO H,ZHANG X,et al.Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J].Diamond and Related Materials,2019,100:107564.

    • [34] 邓丽芳.金刚石/铜复合材料制备的研究[D].昆明:昆明理工大学,2009.DENG Lifang.Research on preparation of diamond/copper composites [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese)

    • [35] 田惟维.新型电子封装用金刚石/铜复合材料的研制[D].昆明:昆明理工大学,2010.TIAN Weiwei.Development of a new type of diamond/copper composites for electronic packaging[D].Kunming:Kunming University of Science and Technology,2010.(in Chinese)

    • [36] WANG C.Microstructure and thermo-physical properties of Cu-Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering[J].Diamond and Related Materials,2020,109:108041.

    • [37] ZHANG Hongdi,LIU Yue,ZHANG Fan,et al.Hot deformation behavior and processing maps of diamond/Cu composites[J].Metallurgical & Materials Transactions A,2018,49(6):1-11.

    • [38] LIU R,LUO G,LI Y,et al.Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating[J].Surface and Coatings Technology,2019,360:376-381.

    • [39] SUN Y,HE L,ZHANG C,et al.Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating[J].Scientific Reports,2017,7(1):10727.

    • [40] HU H,JIAN K.Improved thermal performance of diamond-copper composites with boron carbide coating[J].Journal of Materials Engineering & Performance,2014,23(2):651-657.

    • [41] JIA J,BAI S,XIONG D,et al.Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration[J].Ceramics International,2019,10:810-818.

    • [42] ZHANG C,WANG R,CAI Z,et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J].Surface and Coatings Technology,2015,277:299-307.

    • [43] REN S,SHEN X,GUO C,et al.Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy[J].Composites Science & Technology,2011,71(13):1550-1555.

    • [44] WANG Y,DUAN K,WANG K,et al.Structure and thermal properties of layered Ti-clad diamond/Cu composites prepared by SPS and HP[J].Rare Metal Materials and Engineering,2018,47(7):2011-2016.

    • [45] ZHANG H,ZHANG J,LIU Y,et al.Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J].Scripta Materialia,2018,152:84-88.

    • [46] WANG Y L,WANG K K,WANG Y W,et al.Experiment and simulation for rolling of diamond-Cu composites[J].Acta Metallurgica Sinica(English Letters),2017,8:791-800.

    • [47] XIE Z,GUO H,ZHAANG X,et al.Corrosion behavior of pressure infiltration diamond/Cu composites in neutral salt sprayC[J].Materials,2020,13(8):1847.

    • [48] LI Y,ZHOU H,WU C,et al.The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications[J].Metals-Basel.Open Access Metallurgy Journal,2021,11(2):196.

    • [49] ZHANG X,GUO H,YIN F,et al.Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications[J].Rare Metals,2011,30(1):94-98.

    • [50] ZHANG C,CAI Z,TANG Y,et al.Microstructure and thermal behavior of diamond/Cu composites:Effects of surface modification[J].Diamond & Related Materials,2018,86:98-108.

    • [51] GALASHOV E N,YUSUF A A,MANDRIK E M,et al.Preparation and thermo-physical parameters of diamond/W,Cu heat-conducting composite substrates[J].Int.J Adv.Manuf.Tech,2016,86(1-4):475.

    • [52] 尚青亮.电子封装用金刚石/铜复合材料的研究[D].昆明:昆明理工大学,2009.SHANG Qingliang.Research on diamond/copper composites for electronic packaging [D].Kunming:Kunming University of Science and Technology,2009.(in Chinese).

    • [53] CHU Ke,JIA Chengchang,GUO Hong,et al.On the thermal conductivity of Cu–Zr/diamond composites[J].Materials and Design,2013,45:36-42.

    • [54] JIANG G,DIAO L,KUANG K.Introduction to thermal management in microelectronics packaging[M].New York:ASME Press Book Serieson Electronic Packaging 2013.

    • [55] 梁远龙,姜国圣.表面镀钨金刚石/铜复合材料的有限元模拟[J].粉末冶金技术,2019,37(4):283-287.LIANG Yuanlong,JIANG Guoshen.Finite element simulation of tungsten-coated diamond/copper composites[J].Powder Metallurgy Technlogy,2019,37(4):283-287.(in Chinese)

    • [56] DENU G A,MIRANI J H,FU J,et al.FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders[J].AIP Advances,2017,7(3):035102.

  • 手机扫一扫看