en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周红霞,女,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为冷喷涂涂层。E-mail:zhouhxhit@163.com

中图分类号:TG148

DOI:10.11933/j.issn.1007−9289.20211018003

参考文献 1
ZHAO J L,XU D,SHAHZAD M B,et al.Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel[J].Applied Surface Science,2016,386(15):371-380.
参考文献 2
虞思琦,杨夏炜,王非凡,等.镁合金表面冷喷涂层防护研究进展[J].表面技术,2018,47(5):43-56.YU Siqi,YANG Xiawei,WANG Feifan,et al.Protection for cold sprayed coating on magnesium alloy[J].Surface Technology,2018,47(5):43-56.(in Chinese)
参考文献 3
LIU X Y,WANG Z P,FU B G,et al.Effects of Mg content on the mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2016,685:209-215.
参考文献 4
KUMAR M,SINGH H,SINGH N,et al.Development of nano-crystalline cold sprayed Ni-20Cr coatings for high temperature oxidation resistance[J].Surface & Coatings Technology,2015,266:122-133.
参考文献 5
HENAO J,CONCUSTELL A,CANO I G,et al.Novel Al-based metallic glass coatings by cold gas spray[J].Materials & Design,2016,94(15):253-261.
参考文献 6
OKIMURA N,CHOI J,NAKAYAMA W,et al.Metal matrix composites using diamond-like carbon-coated particles fabricated by cold spray technique[J].Journal of Thermal Spray Technology,2020,29:1660-1668.
参考文献 7
MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.
参考文献 8
KOIVULUOTO H,VUORISTO P.Effect of powder type and composition on structure and mechanical properties of Cu+Al2O3 coatings prepared by using low-pressure cold spray process[J].Journal of Thermal Spray Technology,2010,19:1081-1092.
参考文献 9
SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.
参考文献 10
KOIVULUOTO H,BOLELLI G,MILANTI A,et al.Microstructural analysis of high-pressure cold-sprayed Ni,NiCu and NiCu+Al2O3 coatings[J].Surface & Coatings Technology,2015,268:224-229.
参考文献 11
SANSOUCY E,MARCOUX P,AJDELSZTAJN L,et al.Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process[J].Surface & Coatings Technology,2008,202(16):3988-3996.
参考文献 12
SUN W,BHOWMIK A,TAN A W Y,et al.Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating[J].Surface and Coatings Technology,2018,358:1006-1012.
参考文献 13
QIU X,TARIQ N U H,QI L,et al.In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment:Microstructure and mechanical properties[J].Journal of Alloys & Compounds,2019,780:597-606.
参考文献 14
MAIER B,LENLING M,YEOM H,et al.A novel approach for manufacturing oxide dispersion strengthened(ODS)steel cladding tubes using cold spray technology[J].Nuclear Engineering and Technology,2019,51(4):1069-1074.
参考文献 15
付斯林,李成新,魏瑛康,等.冷喷连接铝铜异质接头的组织结构和力学性能[J].机械工程学报,2018,54(10):93-102.FU Silin,LI Chengxin,WEI Yingkang,et al.Microstructure and mechanical properties of Al-Cu joints by cold spray bonding[J].Journal of Mechanical Engineering,2018,54(10):93-102.(in Chinese)
参考文献 16
何培龙,程方杰,齐书梅,等.冷喷涂Zn粉后508铝合金的中温钎焊研究[J].材料导报,2017(4):52-55.HE Peilong,CHENG Fangjie,QI Shumei,et al.Study on middle temperature brazing of 5083 aluminum alloy after depositing Zn coating produced by cold gas dynamic spray[J].Materials Review,2017(4):52-55.(in Chinese)
参考文献 17
GOLDBAUM D,POIRIER D,IRISSOU E,et al.Modern cold spray[M].Switzerland:Springer,2015:403-429.
参考文献 18
DANIELE V,JAN K,MARIO G et al.3D modelling of the deposit profile in cold spray additive manufacturing[J].Journal of Manufacturing Processes,2021,67:521-534.
参考文献 19
YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.
参考文献 20
PRASHAR G,VASUDEV H.A comprehensive review on sustainable cold spray additive manufacturing:State of the art,challenges and future challenges[J].Journal of Cleaner Production,2021,310:127606.
参考文献 21
YIN S,LUPOI R.Cold spray additive manufacturing[M].Ireland:Springer,2021:1-7.
参考文献 22
周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings [J].China Surface Engineering,2020,33(2):1-14.(in Chinese)
参考文献 23
王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold spraying metal matrix composite coatings and materials [J].China Surface Engineering,2020,33(4):51-67.(in Chinese)
参考文献 24
SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.
参考文献 25
LI Y J,LUO X T,RASHID H,et al.A new approach to pre pare fully dense Cu with high conductivities and anti-corrosion performance by cold spray[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,740:406-413.
参考文献 26
BHATTIPROLU V S,JOHNSON K W,OZDEMIR O C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2018,335:1-12.
参考文献 27
BAE G,KANG K,NA H,et al.Effect of particle size on the microstructure and properties of kinetic sprayed nickel coatings[J].Surface & Coatings Technology,2010,204(20):3326-3335.
参考文献 28
WONG W,VO P,IRISSOU E,et al.Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2013,22:1140-1153.
参考文献 29
MUNAGALA V N,AKINYI V,VO P,et al.Influence of powder morphology and microstructure on the cold spray and mechanical properties of Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2018,27:827-842.
参考文献 30
靳磊,彭徽,李文亚,等.冷喷涂工艺参数对TC4涂层性能的影响[J].宇航材料工艺,2018,48(1):62-66.JIN Lei,PENG Hui,LI Wenya,et al.Effect of cold spray parameters on properties of TC4 coatings[J].Aerospace Materials Technology,2018,48(1):62-66.(in Chinese)
参考文献 31
BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of cold-sprayed Ti-6Al-4V at the micro-and nano-scale[J].Journal of Thermal Spray Technology,2015,24:1277-1288.
参考文献 32
NIKBAKHT R,ASSADI H,JAHANI K,et al.Cold spray deformation and deposition of blended feedstock powders not necessarily obey the rule of mixture[J].Surface & Coatings Technology,2021,424:127644.
参考文献 33
BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of Ti–6Al–4V powder for cold gas dynamic spray applications[J].Advanced Powder Technology,2015,26(5):1335-1347.
参考文献 34
STORY W A,BREWER L N.Heat treatment of gas-atomized powders for cold spray deposition[J].Metallurgical and Materials Transactions,2018,49:446-449.
参考文献 35
FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Cold spray[M].New York:Springer,2014:305-382.
参考文献 36
KOIVULUOTO H,VUORISTO P.Effect of ceramic particles on properties of cold-sprayed Ni-20Cr+Al2O3 coatings[J].Journal of Thermal Spray Technology,2009,18:555.
参考文献 37
LIENHARD J,CROOK C,AZAR M Z,et al.Surface oxide and hydroxide effects on aluminum microparticle impact bonding[J].Acta Materialia,2020,197:28-39.
参考文献 38
STOLTENHOFF T,VOYER J,KREYE H.Cold spraying-state of the art and applicability Kaltgasspritzen-Stand der Technik und Anwendungsmöglichkeiten[C]//International Thermal Spray Conference-itsc.2002,Essen Germany,March 4,2002,2002.
参考文献 39
LI C J,LI W Y,LIAO H L.Examination of the critical velocity for deposition of particles in cold spraying[J].Journal of Thermal Spray Technology,2006,152(2):212-222.
参考文献 40
GARTNER F,STOLTENHOFF T,SCHMIDT T,et al.The cold spray process and its potential for industrial applications[J].Tournal of Thermal Spray Technology,2006,15:223-232.
参考文献 41
GILMORE D L,DYKHUIZEN R C,NEISER R A,et al.Particle velocity and deposition efficiency in the cold spray process[J].Journal of Thermal Spray Technology,1999,8:576-582.
参考文献 42
LI C J,WANG H T,ZHANG Q,et al.Influence of spray materials and their surface oxidation on the critical velocity in cold spraying[J].Journal of Thermal Spray Technology,2010,19:95-101.
参考文献 43
STEENKISTE T H V,SMITH J R,TEETS R E,et al.Kinetic spray coatings[J].Surface and Coatings Technology,1999,111(1):62-71.
参考文献 44
LI W Y,LIAO H L,LI C J,et al.Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying[J].Applied Surface Science,2007,253(11):5084-5091.
参考文献 45
KANG H K,KANG S B.Tungsten/copper composite deposits produced by a cold spray[J].Scripta Materialia,2003,49(12):1169-1174.
参考文献 46
BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.
参考文献 47
BLOSE R E,WALKER B H,WALKER R M,et al.Depositing titanium alloy additive features to forgings and extrusions using the cold spray process[C]//Thermal Spray 2006:Building on 100 Years of Success,ASM International,Seattle USA,May 15-18,2006,2006.
参考文献 48
GOLDBAUM D,SHOCKLEY J M,CHROMIK R R,et al.The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats[J].Journal of Thermal Spray Technology,2012,21:288-303.
参考文献 49
YIN S,WANG X F,LI W Y,et al.Examination on substrate preheating process in cold gas dynamic spraying[J].Journal of Thermal Spray Technology,2011,20:852-859.
参考文献 50
SABARD A,LOVELOCK H L D V,HUSSAIN T.Microstructural evolution in solution heat treatment of gas-atomized Al alloy(7075)powder for cold spray[J].Journal of Thermal Spray Technology,2018,27:145-158.
参考文献 51
SMAGORINSKI M,TSANTRIZOS P.Production of spherical titanium powder by plasma atomization[J].Advanced Powder Materials,2002,3:243-248.
参考文献 52
ROKNI M R,WIDENER C A,CRAWFORD G A.Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition[J].Journal of Thermal Spray Technology,2014,251:254-263.
参考文献 53
ROKNI M R,WIDENER C A,CRAWFORD G A,et al.An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition[J].Materials Science & Engineering A,2015,625:19-27.
参考文献 54
SHE Y,NARDI A T,KLECKA M A.High temperature fluidized bed for powder treatment:US,14/911211[P].2014-07-30.
参考文献 55
XIE X L,YIN S,RAOELISON R N,et al.Al matrix composites fabricated by solid-state cold spray deposition:a critical review[J].Journal of Materials Science and Technology,2021,86:20-55.
参考文献 56
MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.
参考文献 57
XIE Y C,YIN S,CHEN C Y.New insights into the coating/substrate interfacial bonding mechanism in cold spray[J].Scripta Materialia,2016,125:1-4.
参考文献 58
KIM K,WATANABE M,KURODA S.Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity[J].Surface & Coatings Technology,2009,204(14):2175-2180.
参考文献 59
LUO X T,YAO M L,MA N,et al.Deposition behavior,microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy[J].Materials & Design,2018,155:384-395.
参考文献 60
TARIQ N H,GYANSAH L Q,WANG J Q,et al.Cold spray additive manufacturing:A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications[J].Surface and Coatings Technology,2018,339:224-236.
参考文献 61
ALIDOKHT S A,MUNAGALA V N V,RICHARD R,et al.Role of third bodies in friction and wear of cold-sprayed Ti and Ti–TiC composite coatings[J].Tribology Letters,2017,65(3):114.
参考文献 62
CHENG R H,LUO X T,HUANG G S,et al.Corrosion and wear resistant WC17Co-TC4 composite coatings with fully dense microstructure enabled by in-situ forging of the large-sized WC17Co particles in cold spray[J].Journal of Materials Processing Tech.2021,296:117231.
参考文献 63
AYDIN H,ALOMAIR M,WONG W,et al.Cold sprayability of mixed commercial purity Ti plus Ti6Al4V metal powders[J].Journal of Thermal Spray Technology,2017,26:360-370.
参考文献 64
TARANCÓN S,TEJADO E,RICHOU M,et al.Evaluation of tensile and elastic properties of W/Cu cold-spray coatings for application to the FGM DEMO divertor concept[J].Fusion Engineering and Design,2021,171:112719.
参考文献 65
BIAGI R,VERNA E,BEMBORAD E,et al.Cold spraying of IN 718-Ni composite coatings:microstructure characterization and tribological performance[J].Materials Science Forum,2021,1016:840-845
参考文献 66
SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.
参考文献 67
LEE H Y,JUNG S H,LEE S Y,et al.Correlation between Al2O3 particles and interface of Al-Al2O3 coatings by cold spray[J].Applied Surface Science,2005,252(5):1891-1898.
参考文献 68
LI W Y,YANG C L,LIAO H L.Effect of vacuum heat treatment on microstructure and microhardness of cold-sprayed TiN particle-reinforced Al alloy-based composites[J].Materials & Design,2011,32(1):388-394.
参考文献 69
YANDOUZI M,BOTTGER A J,HENDRIKX R W A,et al.Microstructure and mechanical properties of B4C reinforced Al-based matrix composite coatings deposited by CGDS and PGDS processes[J].Surface & Coatings Technology,2010,205(7):2234-2246.
参考文献 70
CHESNOKOV A E,SMIRNOV A V,KLINKOV S V,et al.Preparation of the composite powder Al-B4C by ball milling for cold spray[J].Journal of Physics:Conference Series,2021,1945(1):22-26.
参考文献 71
谭新海,徐建明,李琼,等.微米尺度与纳米尺度陶瓷颗粒等离子喷涂(APS),超音速火焰喷涂(HVOF),冷喷涂制备 MCrAlY-Al2O3复合涂层的微结构与性能对比[J].热喷涂技术,20146(4):59-59.TAN Xinhai,XU Jianming,LI Qiong,et al.Comparison of microstructure and properties of MCrAlY-Al2O3 composite coatings with both micro-sized and nano-sized ceramic particles deposited by plasma spraying,HVOF and cold spraying[J].Thermal Spray Technology,2014,6(4):59-59.(in Chinese)
参考文献 72
张强,杨冠军,李长久,等.冷喷涂纳米结构NiCrAlY涂层在氩气气氛中的氧化行为[J].中国表面工程,2008,21(6):5-9.ZHANG Qiang,YANG Guanjun,LI Changjiu,et al.Oxidation behavior of nanostructured NiCrAIY coating deposited by cold spray [J].China Surface Engineering,2008,21(6):5-9.(in Chinese)
参考文献 73
LUO X T,LI C X,SHANG F L,et al.WC-Co composite coating deposited by cold spraying of a core-shell-structured WC-Co powder[J].Journal of Thermal Spray Technology,2015,24:100-107.
参考文献 74
ITO K,ICHIKAWA Y.Microstructure control of cold-sprayed pure iron coatings formed using mechanically milled powder[J].Surface and Coatings Technology,2019,357:129-139.
参考文献 75
SWAMINATHAN S,HONG S M,KUMAR M,et al.Microstructural evolution and high temperature oxidation characteristics of cold sprayed Ni-20Cr nanostructured alloy coating[J].Surface and Coatings Technology,2019,362:333-344.
参考文献 76
BORCHERS C,STOLTENHOFF T,HAHN M,et al.Strain-induced phase transformation of MCrAlY[J].Advanced Engineering Materials,2014,17(5):723-731.
参考文献 77
KIM J,LEE J,LEE S,et al.Enhancing the deposition capability of Cr3C2-NiCr in kinetic spraying via damage accumulation in feedstock powder[J].Ceramics International,2020,46(1):1104-1110.
参考文献 78
LI C J,YANG G J,GAO P H,et al.Characterization of nanostructured WC-Co deposited by cold spraying[J].Journal of Thermal Spray Technology,2007,16:1011-1020.
参考文献 79
ALIDOKHT S A,VO P,YUE S,et al.Cold spray deposition of Ni and WC-reinforced Ni matrix composite coatings[J].Journal of Thermal Spray Technology,2017,26:1908-1921.
参考文献 80
BAKSHI S R,SINGH V,BALANI K,et al.Carbon nanotube reinforced aluminum composite coating via cold spraying[J].Surface & Coatings Technology,2008,202(21):5162-5169.
参考文献 81
AL-HAMDANI K S,MURRAY J W,HUSSAIN T,et al.Cold sprayed metal-ceramic coatings using satellited powders[J].Materials Letters,2017,198:184-187.
参考文献 82
WANG Z Y,CAI S,JIN K,et al.In-flight aggregation and deposition behaviour of particles in low pressure cold spray[J].Surface and Coatings Technology,2021,409:126875.
参考文献 83
ALDWELL B,YIN S,MCDONNELL K,et al.A novel method for metal-diamond composite coating deposition with cold spray and formation mechanism[J].Scripta Materialia,2016,115:10-13.
参考文献 84
LI W Y,ZHANG C,LIAO H L,et al.Characterizations of cold-sprayed nickel-alumina composite coating with relatively large nickel-coated alumina powder[J].Surface and Coatings Technology,2008,202(19):4855-4860.
参考文献 85
王秀金.镁合金表面冷喷涂石墨烯/铝复合涂层的制备及其性能研究[D].广州:广东工业大学,2020.WANG Xiujin.Preparation and properties of cold sprayed graphene/aluminum composites coatings on magnesium alloys[D].Guangzhou:Guangdong University of Technology,2020.(in Chinese)
参考文献 86
王哲.海洋防腐污冷喷涂层制备及性能研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所),2017.WANG Zhe.Construction and characterization of marine anticorrosion and antifouling coating by cold spray deposition [D].Ningbo:University of Chinese Academy of Sciences(Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences),2017.(in Chinese)
参考文献 87
BARBAT N,ZANGENEH-MADAR K.Preparation of Ti-Ni binary powder via electroless nickel plating of titanium powder[J].Powder Metallurgy,2014,57(2):97-102.
参考文献 88
FENG C,GUIPONT V,JEANDIN M,et al.B4C/Ni composite coatings prepared by cold spray of blended or CVD-coated powders[J].Journal of Thermal Spray Technology,2012,21:561-570.
参考文献 89
CHOI J,OKIMURA N,YAMADA T,et al.Deposition of graphene-copper composite film by cold spray from particles with graphene grown on copper particles[J].Diamond and Related Materials,2021,116:108384.
参考文献 90
唐丽芳.SiO2包覆磷光复合涂层发光及摩擦磨损性能研究[D].兰州:兰州理工大学,2018.TANG Lifang.Study on luminescence and tribol ogy properties of SiO2 coated phosphorescent composite coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)
目录contents

    摘要

    冷喷涂是近年来发展起来的一种固态材料沉积技术,具有沉积温度低、沉积速度大、沉积效率高等特点,在金属材料尤其是温度敏感的金属材料固态喷涂成型方面具有明显优势。冷喷涂中,喷涂粉末的状态(包括形状、尺寸和含氧量等)对整个涂层的影响较大,对冷喷涂粉末进行改性和合理设计显得十分重要。阅读和整理近年来冷喷涂研究领域中喷涂粉末的前处理技术,主要包括粉末预热和热处理以及粉末复合技术,粉末复合技术的主要方法有机械混合法、球磨法、造粒法和包覆法等。总结整理了各种技术的优缺点,可为冷喷涂过程中粉末处理技术的选择提供参考。

    Abstract

    As a solid material deposition technology, cold spraying has developed rapidly. Because of its low deposition temperature, high deposition velocity and deposition efficiency, it has obvious advantages in solid forming of metal materials, especially temperature-sensitive metal materials. In cold spraying, the nature of the sprayed powder including size, morphology and oxygen content has significant impact on the coating. Therefore, it is very important to modify and design the cold spray powder. The pretreatment and composite technology of sprayed powder in research of cold spraying are summarized, mainly including powder preheating, heat treatment, and powder composite technology, which includes mechanical mixing, ball milling, granulation and coating method, etc., advantages and disadvantages of various technologies are illustrated. The paper provides a reference for the choice of powder processing technology in cold spraying.

  • 0 前言

  • 冷喷涂作为一种新型的固态涂层制备技术,近年来获得了广泛关注。利用冷喷涂技术所制备的涂层在防腐[1-4]、耐磨[5-7]、复合涂层[8-12]及功能领域[13, 14]获得了广泛应用。除此之外,还可以用作异种材料连接[15] 和钎焊中间层[16]等领域。冷喷涂过程中,经过加热的高压气体(通常为N2、He和空气)携带喷涂粉末通过拉瓦尔喷嘴,将预热软化的喷涂材料加速到超音速以上(通常为300~1 200m/s),高速飞行的喷涂粒子在遇到基体后发生剧烈的塑性变形,从而与基体结合形成涂层。冷喷涂技术最突出的特点是加工温度低、颗粒沉积速度高,相比于广泛应用的热喷涂技术,能够避免喷涂过程中的高温带来的诸如高温氧化、高温相变和残留热应力较大的问题 [17]。在材料表面涂层制备和修复再制造领域具有明显的优势。尤其近年来,在材料固态增材制造领域逐渐受到青睐[18-21]

  • 在冷喷涂过程中,影响涂层质量的因素很多,总结起来大致有以下两个方面,一是喷涂过程控制,二是基体和喷涂材料特性。其中,喷涂过程控制主要包括喷涂气体种类、气体温度和压力、喷涂速度、送粉速度、喷涂距离和喷涂角度以及喷嘴材料、喷嘴尺寸等。而基体特性主要包括基体材料的力学和热学性能、基体处理方式和温度。喷涂材料特性主要包括喷涂粉末形状、粒径、表面氧化物状态、粉末的力学和热学性能等。其中,喷涂粉末的性质对涂层的影响大于基体。

  • 关于冷喷涂的研究兴起于2000年以后,并且大部分对于涂层性能的调控主要集中在对于喷涂过程中各项参数的调整方面,对各项参数对涂层性能的影响规律也基本有了清晰的认识。尽管气体温度和压力是决定粒子速度以及所制备出的涂层性能的关键因素,但是受到设备加工能力的限制,这两项指标很难无限提高[22]。相比于对涂层过程参数的控制,对喷涂原材料的改性和设计及其对涂层性能的影响研究目前还略显不足。从原材料设计的角度对喷涂材料进行调控,将直接影响到后续制备出的涂层的显微组织和性能,因而是涂层性能调控的重要方面,必须引起足够重视。

  • 本文在阅读和整理大量文献的基础上,就冷喷涂中喷涂材料对涂层性能的影响和材料处理技术进行了全面的梳理和总结。共分为三部分,第一部分从喷涂材料对涂层性能的影响出发,突出喷涂材料在涂层性能调控中的重要性;第二部分介绍了目前冷喷涂中常见的喷涂材料前处理技术;第三部分系统总结了冷喷涂材料的复合技术。分析原材料状态、前处理和复合技术对涂层性能的影响,为后续冷喷涂原料粉的设计提供借鉴。

  • 1 冷喷涂材料对涂层性能的影响

  • 不同于热喷涂,冷喷涂过程中由于喷涂材料不发生熔融,因此丝状和棒状的材料不能用于冷喷涂过程,冷喷涂材料通常是粉末。由于冷喷涂过程中主要靠颗粒的塑性变形而发生沉积,因此更适合加工塑性金属材料,而脆性的陶瓷材料只能通过与金属复合而发生沉积[7, 23]。对金属粉末而言,其自身的特性,如密度、屈服强度、熔点等等会影响其在高速撞击过程中的变形性[24]。除此之外,主要有形状、尺寸和氧含量等指标对涂层影响较大。

  • 1.1 粉末形状对涂层性能的影响

  • 不同制备方法制备出的粉末形状不同,冷喷涂过程使用的粉末通常为不规则形状和球形形状。例如,铜粉的制备工艺有电解和雾化两种,前者呈不规则的树枝状,后者呈球形,见图1 [25]。钛粉也有氢化脱氢法制备的不规则形状和雾化法制备的球形形状两种[26]。两种粉末有各自的特点。从显微组织可以看出,气雾化工艺制备的粉末组织较为致密,且在喷涂过程中流动性较好。相比之下,树枝状的粉末组织较为多孔,粉末内的孔隙可能会保留到涂层内部从而影响涂层的致密度。另外,由于树枝状颗粒的表面更大,更易氧化[8]。另一方面,气体动力学计算结果显示[27],树枝状粉末由于在气流中受到的拖曳力更高,因此同等喷涂条件下,其飞行速度比规则球形的更高,更容易沉积[8, 28-29]。综合来看,很少采用单一的不规则形状粉末来进行喷涂,往往都是将其与陶瓷颗粒或者球形粉末混合在一起进行喷涂,由此得到的涂层性能更佳。有研究表明[25],将球形铜粉与不规则形状铜粉机械混合后进行喷涂,充分利用球形颗粒对不规则颗粒的锤击作用和不规则颗粒对球形颗粒中间空隙的填充作用,使得涂层的组织更加致密,颗粒间的结合得以改善,从而使混合粉末制备的涂层导电、导热和耐蚀性更高。而对冷喷涂过程中使用的钛粉而言,球形的钛粉由于在等离子雾化过程中经历了急速的冷却,因此粉末横截面上可以看到明显的针状的马氏体组织[26, 30-32],会导致粉末塑性变形变差,涂层的气孔率较高[31, 33]

  • 图1 雾化铜粉和电解铜粉[25]

  • Fig.1 Morphologies of atomizing and electrolytic copper powder[25]

  • 1.2 粉末尺寸对涂层性能的影响

  • 粉末尺寸对喷涂过程的影响主要体现在不同尺寸的粉末临界速度不一样,从而导致沉积特性的差异。冷喷涂粉末的尺寸通常具有一个分布范围,球形粉末直径一般为5~50 μm[34]。理论上来说,在冷喷涂中,大颗粒(d >50 μm)的平均临界速度要高于小颗粒(d <50 μm)[35]。对于大多数材料,粒子尺寸存在一个最佳范围,如图2所示[24]。在此范围内粒子的撞击速度大于临界速度,因此更容易发生沉积,当低于此最佳范围时,粒径太小的颗粒由于受到高速气流作用在基体表面冲击波的影响较大,运动方向很容易偏离,容易引发无效结合[23, 36],而高出此范围的颗粒由于在气流中加速效果下降,从而影响撞击后发生塑性变形的程度,因此将导致沉积效率下降,涂层孔隙率上升。而当颗粒尺寸过大时,只会对基体造成冲蚀效果,很难发生沉积[24]。SCHMIDT等[24]在大量研究的基础之上,给出了不同的材料能够发生绝热变形的最小尺寸,见图3。目前,对于喷涂颗粒粒径对颗粒沉积性能影响的研究还略显不足,究其原因大多是受实验手段的限制,单个喷涂颗粒的沉积行为在试验中很难捕捉。

  • 图2 粒子临界速度和撞击速度随粒径的变化[24]

  • Fig.2 Critical velocity and particle impact velocity over particle size[24]

  • 图3 不同材料发生绝热变形的最小粒径[24]

  • Fig.3 Minimum particle diameter for localized adiabatic straining for different materials[24]

  • 1.3 粉末含氧量对涂层性能的影响

  • 喷涂粉末的含氧量主要是指粉末表面的氧化物 (或氢氧化物)的厚度。研究表明,粉末的氧含量对粉末的沉积效率、涂层内颗粒间结合质量以及涂层与基体之间的结合均有显著影响。一般来讲,粉末的氧含量越高,其临界速度越高,因此粉末越难沉积,颗粒间和与基体间的结合质量越差[37]。表1列出了文献中报道的Cu的临界速度随氧含量的变化关系[38-43],可以看出,随着氧含量的增加,粉末的临界速度呈增加趋势。这是因为粉末表面的氧化层越厚,粒子需要更高的动力才能在撞击过程中使表面氧化膜破碎,实现沉积,因此临界速度更高。在对Al粉末表面氧化膜对粒子变形的影响研究中发现,粒子表面的氧化膜越厚,粒子的压缩比越小,最大有效塑性应变降低,可能是由于部分的动能被用来破坏氧化膜。氧化膜对变形的影响只有通过进一步提高粒子速度从而得以削弱[44]。在最近有关Al表面氧化膜对结合的影响中,LIENHARD等[37]研究表明,当Al粒子表面的氧化膜厚度增加2~3nm,则引起结合的临界速度将上升125m/s,而这种氧化膜的增厚在空气湿度较大的情况下更容易发生。因此,为了提高冷喷涂沉积效率和粒子的结合,粉末的储存和运输应该在干燥的环境中进行。

  • 表1 Cu的氧含量与临界速度的关系

  • Table1 Relationship between the oxygen content of Cu and the critical velocity

  • 2 冷喷涂粉末前处理技术

  • 前面介绍了冷喷涂粉末状态对涂层性能的影响,综合来讲,采用、粉末粒度适中、粉末氧含量少的球形粉末将有利于提高涂层的质量。除此之外,在粉末进行喷涂前,进行适当的前处理,也可以改变粉末性能,进而改善涂层质量。

  • 2.1 粉末预热

  • 在冷喷涂过程中,热气流在喷枪内对喷涂材料进行加热,使得材料温度升高,发生软化,然而这种加热作用时间短,对于热传导系数较低的材料来讲,加热并不充分。因此在粉末被送入气流之前对粉末进行预热,可以补充粉末在热气流中加热效率的不足,从而使粉末充分软化,促使其在撞击到基体后变形能力增强[45]。这对塑性变形能力较差的Ti及Ti合金被证明是一种有效的手段。BAE等[46]和BLOSE等[47]分别对Ti和Ti6Al4V粉末进行了喷涂前的预热,发现粒子的软化程度增加。Ti6Al4V粉末在500~800℃进行预热后喷涂,涂层孔隙率不断降低(表2)[47]。但是需要注意的是,对于高温易氧化的材料来说,预热温度不宜过高,预热时间不宜过长,否则容易加快表面氧化物和氮化物的生成,从而阻碍粒子变形和结合。粉末的预热除单独进行外,还可以通过在冷喷涂设备上合并一个粉末加热器的方式进行[47],这样可以省时省力,防止在粉末转移过程中温度的下降。另外,为了增强粒子与基体的结合,也可以采用预热基体的方法[48-49],增强基体的变形,从而增强粒子的结合。

  • 表2 Ti6Al4V粉末预热温度对涂层性能的影响[47]

  • Table2 Effect of Ti6Al4V powder preheating temperature on coating properties[47]

  • 2.2 粉末热处理

  • 前已述及,冷喷涂过程中常用的粉末是球形的,球形粉末一般采用气雾化或等离子雾化工艺制得,前者的冷却速度高达104 K/s[50],后者为106 K/s [51]。粉末在雾化工艺高速冷却过程中,很容易形成非平衡相[33, 50, 52-53]。Al粉末容易形成胞状的树枝晶,合金元素Zn或Cu在周围富集[34, 51],而Ti与Ti合金更容易形成 α’马氏体相[30, 33],见图4。雾化工艺后粉末内部沉淀相的出现会有损粉末韧性,从而影响粉末在冷喷涂中的变形能力。为了消除粉末内部沉淀硬化相,热处理是首选方案。图4c中显示了AA7075粉末在经过固溶处理之后,胞状组织消失,溶质原子溶入Al基体中。用该粉末喷涂得到的涂层的沉积效率也明显提高,见图5 [34]。由此可见,粉末的热处理可以移除粉末喷涂前内部的硬化相,从而增强粉末的变形性。

  • 图4 AA7075 [51]和Ti6Al4V [33]原始粉末和热处理后的AA7075粉末 [34]横截面组织

  • Fig.4 As-received AA7075 [51] and Ti6Al4V [33] particle and the heat-treated AA7075[34] powder in cross section

  • 图5 三种铝合金粉末在热处理前后的沉积效率[34]

  • Fig.5 Deposition efficiency of aluminum alloy powders in cold spray before and after heat treatment[34]

  • 在粉末热处理工艺中,有几个因素需要考虑,一是热处理过程中粉末的氧化问题。前已述及,粉末表面氧化层的存在会阻碍粉末的变形,因此热处理应该在真空或惰性气氛中进行;二是粉末在热处理过程中的烧结问题。烧结现象在粉末的高温热处理中极易发生,烧结后的粉末无法进行喷涂。因此,多采用粉末前处理专用的流化床炉[54]和炉内管可以旋转的管式炉以及盐水浴中[34]进行热处理的方法,可以有效地避免粉末在热处理过程中的烧结现象。

  • 3 冷喷涂粉末的复合技术

  • 近年来,冷喷涂技术在金属基复合涂层及材料制备方面也展现出了一定的应用前景。金属基复合涂层及材料的制备和性能研究已成为冷喷涂领域的研究热点[55]。通过将铝基、镍基、铜基、钴基等金属材料与氧化物、碳化物、氮化物等陶瓷增强相进行复合制备出冷喷涂复合涂层,其综合性能优于单一的金属涂层[32]。目前,冷喷涂复合涂层或材料的制备方法除可以采用双送粉系统进行基体相和增强相分开送粉,共同沉积的方法外[56],更多采用制备复合粉末的方法进行复合涂层的制备,下面着重介绍复合粉末的制备方法。

  • 3.1 机械混合法

  • 机械混合法是最简单的复合粉末制备方法,通过将硬度不同的两种材料机械混合在一起,能够实现喷涂粉末的简单复合化。由于冷喷涂是靠喷涂粒子依次撞击基体后发生剧烈塑性变形而形成涂层的。在粒子撞击过程中,后续沉积的粒子对已沉积粒子具有二次锤击作用[57-59]。因此,为了进一步提高涂层的致密度或辅助不易变形的材料发生变形,可以将喷涂粉末设计为“软+硬” 组合的方式,依靠硬质颗粒对软质颗粒的后续撞击作用,实现对软质颗粒的二次夯实作用,从而提高涂层致密度。

  • 机械混合是一种低能混合方式,在混合过程中不同的粉末基本保持其原始形貌,并且两相之间不发生反应[23]。已有的研究中,经常通过将金属相和陶瓷相混合在一起制备复合涂层,构成“软+硬” 组合,其中加入陶瓷相可以提高复合涂层的耐磨耐蚀性外[10]。从粒子沉积的角度还有以下作用[8]:一是对金属相具有二次夯实作用;二是还可以起到移走基体表面的杂质和氧化层,使基体表面进一步粗化,从而增强机械结合;三是在喷涂过程中陶瓷相还可以起到保持喷嘴清洁,减少喷嘴堵塞的作用。目前,采用机械混粉方式成功制备了Cu/Al2O3 [8]、 Al/Al2O3 [9]、 NiCu/Al2O3 [10]、 Al-12Si/SiC[11]、 Al/B4C[60]、Ti/TiC[61]、TC4/WC17Co[62]等体系。除此之外,也可以采用硬金属和软金属机械混合来提升涂层致密度,如Ti/Ti6Al4V[63]、W/Cu[64]、 IN718/Ni[65]等。

  • 机械混合具有操作简单、适用范围广和经济性好等优点。然而,两相性质差异大,导致喷涂后的沉积效率不同[8, 66],同时,硬质相的分布也会呈现不均匀性。另外,硬质相在撞击基体后容易发生破碎,由此产生的裂纹会降低涂层性能[67]

  • 3.2 球磨法

  • 球磨法是仅次于机械混合的常用制备复合粉末的方式。相比于简单的两相混合,采用球磨混粉的方式可以使两相复合得更加紧密,从而保留更多的硬质相[68-70]。球磨过程中存在机械合金化作用,使得制备的复合涂层中组成相的成分与粉末接近。谭新海等[71]采用球磨的方法制备了包含微米级与纳米级大小Al2O3的MCrAlY-Al2O3复合粉末,涂层粉末的微结构在冷喷涂涂层中得到了很好的保留。在冷喷涂中,经常采用球磨的方式制备核-壳结构的复合粉体和纳米复合粉体 [72]。KANG等[45]将75%的W和25%的Cu进行球磨,得到了复合W/Cu粉末,其形貌见图6。在涂层中W的含量约达到35%。LUO等[73]将20vol.%Co+80vol.%WC-10Co粉末进行了低能球磨,得到核壳结构的WC-Co粉,形貌见图7。金属Co较好地包裹了球形的WC-Co颗粒,使得更多的WC相被保留到涂层中。此外,ITO等[74] 对纳米铁粉进行球磨,发现用球磨纳米粉制备的涂层硬度提高,比普通粉制备的涂层致密,但沉积效率有所降低。SRINIVASAN等[75]用球磨方法制备了Ni-20Cr粉末,涂层的高温循环耐氧化试验表明,涂层表面生成的Cr2O3 提高了基体的耐蚀性。

  • 虽然相比于机械混合法,球磨法可以提高硬质相的保留量,同时具有较好的经济性。但是球磨过程中的机械硬化作用,导致粉末硬度较大,因此影响粉末的沉积效率。另外,球磨导致的高应变也有可能引发材料相变,改变球磨粉末的结构[76]。解决该问题的常用方法是在球磨后进行热处理,降低粉末的加工硬化,促进相转变,从而提高粉末变形能力[77]

  • 图6 W/Cu复合粉末形貌[45]

  • Fig.6 Morphologies of agglomerated W/Cu composite feedstock[45]

  • 图7 球磨后核壳结构的WC-Co粉末[73]

  • Fig.7 Cross-sectional microstructure of the ball-milled core-shell-structured WC-Co powders [73]

  • 3.3 造粒法

  • 造粒法是将细小的喷涂粉末采用一定的方法团聚为较大尺寸粉末的处理方法。该方法解决了冷喷涂过程中基体表面激波导致细小粉末难沉积的问题[23, 36],也有效克服了机械混合过程中硬质相无法完全保留到涂层内的问题[78]。在WC和Ni复合涂层的制备中[79],将硬质相WC与Ni进行喷雾干燥以WC/Ni团聚颗粒的方式添加到Ni中,相比于单纯的WC-Ni涂层来说,涂层的沉积效率明显提高,WC的保留量达到65%~83%,跟原始粉末中的差不多。图8显示大块的球形WC颗粒和团聚造粒后的WC颗粒在冷喷涂过程中的沉积原理,可以看出,大颗粒的WC在高速撞击基体时会发生撞击破碎和飞溅现象,而相比之下,小颗粒的WC在经过造粒后,由于黏结相Ni的存在,可以更好地保留到涂层中。在CNTs增强的Al-Si复合涂层中[80],也采用了喷雾干燥的方式将CNTs和共晶Al-Si复合粉末实现复合,从而使CNTs可以较好地沉积在复合涂层的内部。另外,也可以通过在混合粉末中添加黏结剂的方式进行造粒,将难以沉积的硬质颗粒与金属颗粒复合在一起,从而提高其在涂层中的保留量,如添加聚乙烯醇将细小的TiC颗粒黏附在Al粉表面形成复合粉末,采用该复合粉末制备的涂层中TiC含量是机械混合粉末制备的涂层的7倍[81]。最新的研究表明[82],随着喷涂气体温度的增加,喷涂粉末会在喷涂过程中产生聚集现象,会导致涂层中的气孔减少,这与粉末造粒后产生的效果类似。

  • 图8 WC大颗粒和团聚造粒后的WC在涂层的存留方式原理 (灰色代表WC颗粒,白色代表Ni颗粒)[79]

  • Fig.8 Schematic graph showing how (a) cast WC,(b) WC/Ni particles were retained in coatings (Gray and white represent WC and Ni particles, respectively)[79]

  • 造粒法相比于机械混合法能有效克服硬质颗粒破碎后沉积效率下降的问题。但是造粒处理一般需要专用设备,成本较高,且工艺较为复杂,粉末在造粒过程中有可能会出现新的变化,目前相关研究还不多见。

  • 3.4 包覆法

  • 机械混合法很难保证硬软两相混合均匀,从而使混合效果降低。为了改善混合效果,可以采用包覆法将硬质相表面包覆一层软质颗粒,由此来保证二者混合均匀,并提高硬质相的沉积效率。 ALDWELL等[83]使用软质相金属Cu/Ni包覆难沉积的金刚石粉末,成功地在铝基体上制备了厚的金属/金刚石冷喷涂涂层。得到的涂层中金刚石含量超过50%。图9是显示了包覆颗粒形貌。常用的包覆方法有还原法[84-85]、电镀法[83]、化学镀法[86-87]、 PVD和CVD法[6, 88-89]、溶胶凝胶法[90]等。目前,采用包覆法成功地制备了Ni包Al2O3、Ni包B4C、石墨烯包覆Al、石墨包覆Cu等粉末,为最大限度地保留硬质相提供了解决手段。然而,这种工艺也存在缺点。一方面粉末包覆的均匀性很难保证,另一方面包覆工艺本身较为复杂,需要对众多参数调控才能达到理想的包覆效果,因而工艺稳定性差,制备的复合粉末种类有限,限制了其应用。包覆法的工艺成本视具体的处理工艺而定,但一般要比机械混合法和球磨法高。

  • 图9 单个Cu/Ni/Diamond包覆颗粒形貌[83]

  • Fig.9 Single Cu and Ni clad diamond particle image after FIB milling[83]

  • 4 结论与展望

  • 冷喷涂中喷涂材料对涂层性能的影响是第一位的,系统总结了粉末状态、粉末前处理技术和复合技术对涂层性能的影响,得出的主要结论如下:

  • (1)喷涂粉末状态对沉积性能的影响主要表现为:球形金属粉末的流动性更好,而不规则粉末的速度更大;喷涂粉末尺寸太大或太小都不容易沉积; 粉末的氧含量过大会造成临界速度上升,从而降低沉积效率;

  • (2)喷涂粉末的前处理技术主要包括粉末预热和热处理。喷涂前可以将粉末预热充分软化粉末,采用热处理可以消除粉末制备过程中形成的非平衡相,两者都可进一步增强粉末在冷喷涂过程中的变形;

  • (3)喷涂粉末的复合技术主要包括机械混合法、球磨法、造粒法和包覆法。机械混合法较为简单,但是硬质相损失较大,而球磨法和包覆法可以提高硬质相在涂层中的保留量,但是总体工艺相对复杂。造粒法是用专用设备将小尺寸颗粒团聚为大颗粒进行喷涂,可以提高小颗粒粉末的沉积性能。

  • 目前,对冷喷涂粉末状态对粉末沉积特性和涂层性能的影响研究还非常有限,需要结合单个粒子试验和模拟等研究手段进一步细化粒子尺寸、形状及氧含量等对临界速度的影响。对粉末前处理技术的开发还略显不足,前处理前后粉末内的微观组织在喷涂过程中如何发生变化还没有细致的研究。在粉末复合技术方面,硬质相的均匀分布一直是个难题,现有的处理技术各有优缺点,亟待开发适合冷喷涂技术的专用复合粉末,从而拓展冷喷涂复合涂层的应用范围。另一方面,复合粉末的冷喷涂沉积特性及其沉积性能与单一粉末的差别,界面结合特征的分析等深入研究还有待于开展。

  • 参考文献

    • [1] ZHAO J L,XU D,SHAHZAD M B,et al.Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel[J].Applied Surface Science,2016,386(15):371-380.

    • [2] 虞思琦,杨夏炜,王非凡,等.镁合金表面冷喷涂层防护研究进展[J].表面技术,2018,47(5):43-56.YU Siqi,YANG Xiawei,WANG Feifan,et al.Protection for cold sprayed coating on magnesium alloy[J].Surface Technology,2018,47(5):43-56.(in Chinese)

    • [3] LIU X Y,WANG Z P,FU B G,et al.Effects of Mg content on the mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2016,685:209-215.

    • [4] KUMAR M,SINGH H,SINGH N,et al.Development of nano-crystalline cold sprayed Ni-20Cr coatings for high temperature oxidation resistance[J].Surface & Coatings Technology,2015,266:122-133.

    • [5] HENAO J,CONCUSTELL A,CANO I G,et al.Novel Al-based metallic glass coatings by cold gas spray[J].Materials & Design,2016,94(15):253-261.

    • [6] OKIMURA N,CHOI J,NAKAYAMA W,et al.Metal matrix composites using diamond-like carbon-coated particles fabricated by cold spray technique[J].Journal of Thermal Spray Technology,2020,29:1660-1668.

    • [7] MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.

    • [8] KOIVULUOTO H,VUORISTO P.Effect of powder type and composition on structure and mechanical properties of Cu+Al2O3 coatings prepared by using low-pressure cold spray process[J].Journal of Thermal Spray Technology,2010,19:1081-1092.

    • [9] SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.

    • [10] KOIVULUOTO H,BOLELLI G,MILANTI A,et al.Microstructural analysis of high-pressure cold-sprayed Ni,NiCu and NiCu+Al2O3 coatings[J].Surface & Coatings Technology,2015,268:224-229.

    • [11] SANSOUCY E,MARCOUX P,AJDELSZTAJN L,et al.Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process[J].Surface & Coatings Technology,2008,202(16):3988-3996.

    • [12] SUN W,BHOWMIK A,TAN A W Y,et al.Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating[J].Surface and Coatings Technology,2018,358:1006-1012.

    • [13] QIU X,TARIQ N U H,QI L,et al.In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment:Microstructure and mechanical properties[J].Journal of Alloys & Compounds,2019,780:597-606.

    • [14] MAIER B,LENLING M,YEOM H,et al.A novel approach for manufacturing oxide dispersion strengthened(ODS)steel cladding tubes using cold spray technology[J].Nuclear Engineering and Technology,2019,51(4):1069-1074.

    • [15] 付斯林,李成新,魏瑛康,等.冷喷连接铝铜异质接头的组织结构和力学性能[J].机械工程学报,2018,54(10):93-102.FU Silin,LI Chengxin,WEI Yingkang,et al.Microstructure and mechanical properties of Al-Cu joints by cold spray bonding[J].Journal of Mechanical Engineering,2018,54(10):93-102.(in Chinese)

    • [16] 何培龙,程方杰,齐书梅,等.冷喷涂Zn粉后508铝合金的中温钎焊研究[J].材料导报,2017(4):52-55.HE Peilong,CHENG Fangjie,QI Shumei,et al.Study on middle temperature brazing of 5083 aluminum alloy after depositing Zn coating produced by cold gas dynamic spray[J].Materials Review,2017(4):52-55.(in Chinese)

    • [17] GOLDBAUM D,POIRIER D,IRISSOU E,et al.Modern cold spray[M].Switzerland:Springer,2015:403-429.

    • [18] DANIELE V,JAN K,MARIO G et al.3D modelling of the deposit profile in cold spray additive manufacturing[J].Journal of Manufacturing Processes,2021,67:521-534.

    • [19] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.

    • [20] PRASHAR G,VASUDEV H.A comprehensive review on sustainable cold spray additive manufacturing:State of the art,challenges and future challenges[J].Journal of Cleaner Production,2021,310:127606.

    • [21] YIN S,LUPOI R.Cold spray additive manufacturing[M].Ireland:Springer,2021:1-7.

    • [22] 周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings [J].China Surface Engineering,2020,33(2):1-14.(in Chinese)

    • [23] 王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold spraying metal matrix composite coatings and materials [J].China Surface Engineering,2020,33(4):51-67.(in Chinese)

    • [24] SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.

    • [25] LI Y J,LUO X T,RASHID H,et al.A new approach to pre pare fully dense Cu with high conductivities and anti-corrosion performance by cold spray[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,740:406-413.

    • [26] BHATTIPROLU V S,JOHNSON K W,OZDEMIR O C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2018,335:1-12.

    • [27] BAE G,KANG K,NA H,et al.Effect of particle size on the microstructure and properties of kinetic sprayed nickel coatings[J].Surface & Coatings Technology,2010,204(20):3326-3335.

    • [28] WONG W,VO P,IRISSOU E,et al.Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2013,22:1140-1153.

    • [29] MUNAGALA V N,AKINYI V,VO P,et al.Influence of powder morphology and microstructure on the cold spray and mechanical properties of Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2018,27:827-842.

    • [30] 靳磊,彭徽,李文亚,等.冷喷涂工艺参数对TC4涂层性能的影响[J].宇航材料工艺,2018,48(1):62-66.JIN Lei,PENG Hui,LI Wenya,et al.Effect of cold spray parameters on properties of TC4 coatings[J].Aerospace Materials Technology,2018,48(1):62-66.(in Chinese)

    • [31] BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of cold-sprayed Ti-6Al-4V at the micro-and nano-scale[J].Journal of Thermal Spray Technology,2015,24:1277-1288.

    • [32] NIKBAKHT R,ASSADI H,JAHANI K,et al.Cold spray deformation and deposition of blended feedstock powders not necessarily obey the rule of mixture[J].Surface & Coatings Technology,2021,424:127644.

    • [33] BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of Ti–6Al–4V powder for cold gas dynamic spray applications[J].Advanced Powder Technology,2015,26(5):1335-1347.

    • [34] STORY W A,BREWER L N.Heat treatment of gas-atomized powders for cold spray deposition[J].Metallurgical and Materials Transactions,2018,49:446-449.

    • [35] FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Cold spray[M].New York:Springer,2014:305-382.

    • [36] KOIVULUOTO H,VUORISTO P.Effect of ceramic particles on properties of cold-sprayed Ni-20Cr+Al2O3 coatings[J].Journal of Thermal Spray Technology,2009,18:555.

    • [37] LIENHARD J,CROOK C,AZAR M Z,et al.Surface oxide and hydroxide effects on aluminum microparticle impact bonding[J].Acta Materialia,2020,197:28-39.

    • [38] STOLTENHOFF T,VOYER J,KREYE H.Cold spraying-state of the art and applicability Kaltgasspritzen-Stand der Technik und Anwendungsmöglichkeiten[C]//International Thermal Spray Conference-itsc.2002,Essen Germany,March 4,2002,2002.

    • [39] LI C J,LI W Y,LIAO H L.Examination of the critical velocity for deposition of particles in cold spraying[J].Journal of Thermal Spray Technology,2006,152(2):212-222.

    • [40] GARTNER F,STOLTENHOFF T,SCHMIDT T,et al.The cold spray process and its potential for industrial applications[J].Tournal of Thermal Spray Technology,2006,15:223-232.

    • [41] GILMORE D L,DYKHUIZEN R C,NEISER R A,et al.Particle velocity and deposition efficiency in the cold spray process[J].Journal of Thermal Spray Technology,1999,8:576-582.

    • [42] LI C J,WANG H T,ZHANG Q,et al.Influence of spray materials and their surface oxidation on the critical velocity in cold spraying[J].Journal of Thermal Spray Technology,2010,19:95-101.

    • [43] STEENKISTE T H V,SMITH J R,TEETS R E,et al.Kinetic spray coatings[J].Surface and Coatings Technology,1999,111(1):62-71.

    • [44] LI W Y,LIAO H L,LI C J,et al.Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying[J].Applied Surface Science,2007,253(11):5084-5091.

    • [45] KANG H K,KANG S B.Tungsten/copper composite deposits produced by a cold spray[J].Scripta Materialia,2003,49(12):1169-1174.

    • [46] BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.

    • [47] BLOSE R E,WALKER B H,WALKER R M,et al.Depositing titanium alloy additive features to forgings and extrusions using the cold spray process[C]//Thermal Spray 2006:Building on 100 Years of Success,ASM International,Seattle USA,May 15-18,2006,2006.

    • [48] GOLDBAUM D,SHOCKLEY J M,CHROMIK R R,et al.The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats[J].Journal of Thermal Spray Technology,2012,21:288-303.

    • [49] YIN S,WANG X F,LI W Y,et al.Examination on substrate preheating process in cold gas dynamic spraying[J].Journal of Thermal Spray Technology,2011,20:852-859.

    • [50] SABARD A,LOVELOCK H L D V,HUSSAIN T.Microstructural evolution in solution heat treatment of gas-atomized Al alloy(7075)powder for cold spray[J].Journal of Thermal Spray Technology,2018,27:145-158.

    • [51] SMAGORINSKI M,TSANTRIZOS P.Production of spherical titanium powder by plasma atomization[J].Advanced Powder Materials,2002,3:243-248.

    • [52] ROKNI M R,WIDENER C A,CRAWFORD G A.Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition[J].Journal of Thermal Spray Technology,2014,251:254-263.

    • [53] ROKNI M R,WIDENER C A,CRAWFORD G A,et al.An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition[J].Materials Science & Engineering A,2015,625:19-27.

    • [54] SHE Y,NARDI A T,KLECKA M A.High temperature fluidized bed for powder treatment:US,14/911211[P].2014-07-30.

    • [55] XIE X L,YIN S,RAOELISON R N,et al.Al matrix composites fabricated by solid-state cold spray deposition:a critical review[J].Journal of Materials Science and Technology,2021,86:20-55.

    • [56] MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.

    • [57] XIE Y C,YIN S,CHEN C Y.New insights into the coating/substrate interfacial bonding mechanism in cold spray[J].Scripta Materialia,2016,125:1-4.

    • [58] KIM K,WATANABE M,KURODA S.Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity[J].Surface & Coatings Technology,2009,204(14):2175-2180.

    • [59] LUO X T,YAO M L,MA N,et al.Deposition behavior,microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy[J].Materials & Design,2018,155:384-395.

    • [60] TARIQ N H,GYANSAH L Q,WANG J Q,et al.Cold spray additive manufacturing:A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications[J].Surface and Coatings Technology,2018,339:224-236.

    • [61] ALIDOKHT S A,MUNAGALA V N V,RICHARD R,et al.Role of third bodies in friction and wear of cold-sprayed Ti and Ti–TiC composite coatings[J].Tribology Letters,2017,65(3):114.

    • [62] CHENG R H,LUO X T,HUANG G S,et al.Corrosion and wear resistant WC17Co-TC4 composite coatings with fully dense microstructure enabled by in-situ forging of the large-sized WC17Co particles in cold spray[J].Journal of Materials Processing Tech.2021,296:117231.

    • [63] AYDIN H,ALOMAIR M,WONG W,et al.Cold sprayability of mixed commercial purity Ti plus Ti6Al4V metal powders[J].Journal of Thermal Spray Technology,2017,26:360-370.

    • [64] TARANCÓN S,TEJADO E,RICHOU M,et al.Evaluation of tensile and elastic properties of W/Cu cold-spray coatings for application to the FGM DEMO divertor concept[J].Fusion Engineering and Design,2021,171:112719.

    • [65] BIAGI R,VERNA E,BEMBORAD E,et al.Cold spraying of IN 718-Ni composite coatings:microstructure characterization and tribological performance[J].Materials Science Forum,2021,1016:840-845

    • [66] SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.

    • [67] LEE H Y,JUNG S H,LEE S Y,et al.Correlation between Al2O3 particles and interface of Al-Al2O3 coatings by cold spray[J].Applied Surface Science,2005,252(5):1891-1898.

    • [68] LI W Y,YANG C L,LIAO H L.Effect of vacuum heat treatment on microstructure and microhardness of cold-sprayed TiN particle-reinforced Al alloy-based composites[J].Materials & Design,2011,32(1):388-394.

    • [69] YANDOUZI M,BOTTGER A J,HENDRIKX R W A,et al.Microstructure and mechanical properties of B4C reinforced Al-based matrix composite coatings deposited by CGDS and PGDS processes[J].Surface & Coatings Technology,2010,205(7):2234-2246.

    • [70] CHESNOKOV A E,SMIRNOV A V,KLINKOV S V,et al.Preparation of the composite powder Al-B4C by ball milling for cold spray[J].Journal of Physics:Conference Series,2021,1945(1):22-26.

    • [71] 谭新海,徐建明,李琼,等.微米尺度与纳米尺度陶瓷颗粒等离子喷涂(APS),超音速火焰喷涂(HVOF),冷喷涂制备 MCrAlY-Al2O3复合涂层的微结构与性能对比[J].热喷涂技术,20146(4):59-59.TAN Xinhai,XU Jianming,LI Qiong,et al.Comparison of microstructure and properties of MCrAlY-Al2O3 composite coatings with both micro-sized and nano-sized ceramic particles deposited by plasma spraying,HVOF and cold spraying[J].Thermal Spray Technology,2014,6(4):59-59.(in Chinese)

    • [72] 张强,杨冠军,李长久,等.冷喷涂纳米结构NiCrAlY涂层在氩气气氛中的氧化行为[J].中国表面工程,2008,21(6):5-9.ZHANG Qiang,YANG Guanjun,LI Changjiu,et al.Oxidation behavior of nanostructured NiCrAIY coating deposited by cold spray [J].China Surface Engineering,2008,21(6):5-9.(in Chinese)

    • [73] LUO X T,LI C X,SHANG F L,et al.WC-Co composite coating deposited by cold spraying of a core-shell-structured WC-Co powder[J].Journal of Thermal Spray Technology,2015,24:100-107.

    • [74] ITO K,ICHIKAWA Y.Microstructure control of cold-sprayed pure iron coatings formed using mechanically milled powder[J].Surface and Coatings Technology,2019,357:129-139.

    • [75] SWAMINATHAN S,HONG S M,KUMAR M,et al.Microstructural evolution and high temperature oxidation characteristics of cold sprayed Ni-20Cr nanostructured alloy coating[J].Surface and Coatings Technology,2019,362:333-344.

    • [76] BORCHERS C,STOLTENHOFF T,HAHN M,et al.Strain-induced phase transformation of MCrAlY[J].Advanced Engineering Materials,2014,17(5):723-731.

    • [77] KIM J,LEE J,LEE S,et al.Enhancing the deposition capability of Cr3C2-NiCr in kinetic spraying via damage accumulation in feedstock powder[J].Ceramics International,2020,46(1):1104-1110.

    • [78] LI C J,YANG G J,GAO P H,et al.Characterization of nanostructured WC-Co deposited by cold spraying[J].Journal of Thermal Spray Technology,2007,16:1011-1020.

    • [79] ALIDOKHT S A,VO P,YUE S,et al.Cold spray deposition of Ni and WC-reinforced Ni matrix composite coatings[J].Journal of Thermal Spray Technology,2017,26:1908-1921.

    • [80] BAKSHI S R,SINGH V,BALANI K,et al.Carbon nanotube reinforced aluminum composite coating via cold spraying[J].Surface & Coatings Technology,2008,202(21):5162-5169.

    • [81] AL-HAMDANI K S,MURRAY J W,HUSSAIN T,et al.Cold sprayed metal-ceramic coatings using satellited powders[J].Materials Letters,2017,198:184-187.

    • [82] WANG Z Y,CAI S,JIN K,et al.In-flight aggregation and deposition behaviour of particles in low pressure cold spray[J].Surface and Coatings Technology,2021,409:126875.

    • [83] ALDWELL B,YIN S,MCDONNELL K,et al.A novel method for metal-diamond composite coating deposition with cold spray and formation mechanism[J].Scripta Materialia,2016,115:10-13.

    • [84] LI W Y,ZHANG C,LIAO H L,et al.Characterizations of cold-sprayed nickel-alumina composite coating with relatively large nickel-coated alumina powder[J].Surface and Coatings Technology,2008,202(19):4855-4860.

    • [85] 王秀金.镁合金表面冷喷涂石墨烯/铝复合涂层的制备及其性能研究[D].广州:广东工业大学,2020.WANG Xiujin.Preparation and properties of cold sprayed graphene/aluminum composites coatings on magnesium alloys[D].Guangzhou:Guangdong University of Technology,2020.(in Chinese)

    • [86] 王哲.海洋防腐污冷喷涂层制备及性能研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所),2017.WANG Zhe.Construction and characterization of marine anticorrosion and antifouling coating by cold spray deposition [D].Ningbo:University of Chinese Academy of Sciences(Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences),2017.(in Chinese)

    • [87] BARBAT N,ZANGENEH-MADAR K.Preparation of Ti-Ni binary powder via electroless nickel plating of titanium powder[J].Powder Metallurgy,2014,57(2):97-102.

    • [88] FENG C,GUIPONT V,JEANDIN M,et al.B4C/Ni composite coatings prepared by cold spray of blended or CVD-coated powders[J].Journal of Thermal Spray Technology,2012,21:561-570.

    • [89] CHOI J,OKIMURA N,YAMADA T,et al.Deposition of graphene-copper composite film by cold spray from particles with graphene grown on copper particles[J].Diamond and Related Materials,2021,116:108384.

    • [90] 唐丽芳.SiO2包覆磷光复合涂层发光及摩擦磨损性能研究[D].兰州:兰州理工大学,2018.TANG Lifang.Study on luminescence and tribol ogy properties of SiO2 coated phosphorescent composite coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)

  • 参考文献

    • [1] ZHAO J L,XU D,SHAHZAD M B,et al.Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel[J].Applied Surface Science,2016,386(15):371-380.

    • [2] 虞思琦,杨夏炜,王非凡,等.镁合金表面冷喷涂层防护研究进展[J].表面技术,2018,47(5):43-56.YU Siqi,YANG Xiawei,WANG Feifan,et al.Protection for cold sprayed coating on magnesium alloy[J].Surface Technology,2018,47(5):43-56.(in Chinese)

    • [3] LIU X Y,WANG Z P,FU B G,et al.Effects of Mg content on the mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2016,685:209-215.

    • [4] KUMAR M,SINGH H,SINGH N,et al.Development of nano-crystalline cold sprayed Ni-20Cr coatings for high temperature oxidation resistance[J].Surface & Coatings Technology,2015,266:122-133.

    • [5] HENAO J,CONCUSTELL A,CANO I G,et al.Novel Al-based metallic glass coatings by cold gas spray[J].Materials & Design,2016,94(15):253-261.

    • [6] OKIMURA N,CHOI J,NAKAYAMA W,et al.Metal matrix composites using diamond-like carbon-coated particles fabricated by cold spray technique[J].Journal of Thermal Spray Technology,2020,29:1660-1668.

    • [7] MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.

    • [8] KOIVULUOTO H,VUORISTO P.Effect of powder type and composition on structure and mechanical properties of Cu+Al2O3 coatings prepared by using low-pressure cold spray process[J].Journal of Thermal Spray Technology,2010,19:1081-1092.

    • [9] SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.

    • [10] KOIVULUOTO H,BOLELLI G,MILANTI A,et al.Microstructural analysis of high-pressure cold-sprayed Ni,NiCu and NiCu+Al2O3 coatings[J].Surface & Coatings Technology,2015,268:224-229.

    • [11] SANSOUCY E,MARCOUX P,AJDELSZTAJN L,et al.Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process[J].Surface & Coatings Technology,2008,202(16):3988-3996.

    • [12] SUN W,BHOWMIK A,TAN A W Y,et al.Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating[J].Surface and Coatings Technology,2018,358:1006-1012.

    • [13] QIU X,TARIQ N U H,QI L,et al.In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment:Microstructure and mechanical properties[J].Journal of Alloys & Compounds,2019,780:597-606.

    • [14] MAIER B,LENLING M,YEOM H,et al.A novel approach for manufacturing oxide dispersion strengthened(ODS)steel cladding tubes using cold spray technology[J].Nuclear Engineering and Technology,2019,51(4):1069-1074.

    • [15] 付斯林,李成新,魏瑛康,等.冷喷连接铝铜异质接头的组织结构和力学性能[J].机械工程学报,2018,54(10):93-102.FU Silin,LI Chengxin,WEI Yingkang,et al.Microstructure and mechanical properties of Al-Cu joints by cold spray bonding[J].Journal of Mechanical Engineering,2018,54(10):93-102.(in Chinese)

    • [16] 何培龙,程方杰,齐书梅,等.冷喷涂Zn粉后508铝合金的中温钎焊研究[J].材料导报,2017(4):52-55.HE Peilong,CHENG Fangjie,QI Shumei,et al.Study on middle temperature brazing of 5083 aluminum alloy after depositing Zn coating produced by cold gas dynamic spray[J].Materials Review,2017(4):52-55.(in Chinese)

    • [17] GOLDBAUM D,POIRIER D,IRISSOU E,et al.Modern cold spray[M].Switzerland:Springer,2015:403-429.

    • [18] DANIELE V,JAN K,MARIO G et al.3D modelling of the deposit profile in cold spray additive manufacturing[J].Journal of Manufacturing Processes,2021,67:521-534.

    • [19] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing,2018,21:628-650.

    • [20] PRASHAR G,VASUDEV H.A comprehensive review on sustainable cold spray additive manufacturing:State of the art,challenges and future challenges[J].Journal of Cleaner Production,2021,310:127606.

    • [21] YIN S,LUPOI R.Cold spray additive manufacturing[M].Ireland:Springer,2021:1-7.

    • [22] 周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings [J].China Surface Engineering,2020,33(2):1-14.(in Chinese)

    • [23] 王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold spraying metal matrix composite coatings and materials [J].China Surface Engineering,2020,33(4):51-67.(in Chinese)

    • [24] SCHMIDT T,GARTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition[J].Acta Materialia,2006,54(3):729-742.

    • [25] LI Y J,LUO X T,RASHID H,et al.A new approach to pre pare fully dense Cu with high conductivities and anti-corrosion performance by cold spray[J].Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2018,740:406-413.

    • [26] BHATTIPROLU V S,JOHNSON K W,OZDEMIR O C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2018,335:1-12.

    • [27] BAE G,KANG K,NA H,et al.Effect of particle size on the microstructure and properties of kinetic sprayed nickel coatings[J].Surface & Coatings Technology,2010,204(20):3326-3335.

    • [28] WONG W,VO P,IRISSOU E,et al.Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2013,22:1140-1153.

    • [29] MUNAGALA V N,AKINYI V,VO P,et al.Influence of powder morphology and microstructure on the cold spray and mechanical properties of Ti6Al4V coatings[J].Journal of Thermal Spray Technology,2018,27:827-842.

    • [30] 靳磊,彭徽,李文亚,等.冷喷涂工艺参数对TC4涂层性能的影响[J].宇航材料工艺,2018,48(1):62-66.JIN Lei,PENG Hui,LI Wenya,et al.Effect of cold spray parameters on properties of TC4 coatings[J].Aerospace Materials Technology,2018,48(1):62-66.(in Chinese)

    • [31] BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of cold-sprayed Ti-6Al-4V at the micro-and nano-scale[J].Journal of Thermal Spray Technology,2015,24:1277-1288.

    • [32] NIKBAKHT R,ASSADI H,JAHANI K,et al.Cold spray deformation and deposition of blended feedstock powders not necessarily obey the rule of mixture[J].Surface & Coatings Technology,2021,424:127644.

    • [33] BIRT A M,CHAMPAGNE V K,SISSON R D,et al.Microstructural analysis of Ti–6Al–4V powder for cold gas dynamic spray applications[J].Advanced Powder Technology,2015,26(5):1335-1347.

    • [34] STORY W A,BREWER L N.Heat treatment of gas-atomized powders for cold spray deposition[J].Metallurgical and Materials Transactions,2018,49:446-449.

    • [35] FAUCHAIS P L,HEBERLEIN J V R,BOULOS M I.Cold spray[M].New York:Springer,2014:305-382.

    • [36] KOIVULUOTO H,VUORISTO P.Effect of ceramic particles on properties of cold-sprayed Ni-20Cr+Al2O3 coatings[J].Journal of Thermal Spray Technology,2009,18:555.

    • [37] LIENHARD J,CROOK C,AZAR M Z,et al.Surface oxide and hydroxide effects on aluminum microparticle impact bonding[J].Acta Materialia,2020,197:28-39.

    • [38] STOLTENHOFF T,VOYER J,KREYE H.Cold spraying-state of the art and applicability Kaltgasspritzen-Stand der Technik und Anwendungsmöglichkeiten[C]//International Thermal Spray Conference-itsc.2002,Essen Germany,March 4,2002,2002.

    • [39] LI C J,LI W Y,LIAO H L.Examination of the critical velocity for deposition of particles in cold spraying[J].Journal of Thermal Spray Technology,2006,152(2):212-222.

    • [40] GARTNER F,STOLTENHOFF T,SCHMIDT T,et al.The cold spray process and its potential for industrial applications[J].Tournal of Thermal Spray Technology,2006,15:223-232.

    • [41] GILMORE D L,DYKHUIZEN R C,NEISER R A,et al.Particle velocity and deposition efficiency in the cold spray process[J].Journal of Thermal Spray Technology,1999,8:576-582.

    • [42] LI C J,WANG H T,ZHANG Q,et al.Influence of spray materials and their surface oxidation on the critical velocity in cold spraying[J].Journal of Thermal Spray Technology,2010,19:95-101.

    • [43] STEENKISTE T H V,SMITH J R,TEETS R E,et al.Kinetic spray coatings[J].Surface and Coatings Technology,1999,111(1):62-71.

    • [44] LI W Y,LIAO H L,LI C J,et al.Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying[J].Applied Surface Science,2007,253(11):5084-5091.

    • [45] KANG H K,KANG S B.Tungsten/copper composite deposits produced by a cold spray[J].Scripta Materialia,2003,49(12):1169-1174.

    • [46] BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J].Acta Materialia,2009,57(19):5654-5666.

    • [47] BLOSE R E,WALKER B H,WALKER R M,et al.Depositing titanium alloy additive features to forgings and extrusions using the cold spray process[C]//Thermal Spray 2006:Building on 100 Years of Success,ASM International,Seattle USA,May 15-18,2006,2006.

    • [48] GOLDBAUM D,SHOCKLEY J M,CHROMIK R R,et al.The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats[J].Journal of Thermal Spray Technology,2012,21:288-303.

    • [49] YIN S,WANG X F,LI W Y,et al.Examination on substrate preheating process in cold gas dynamic spraying[J].Journal of Thermal Spray Technology,2011,20:852-859.

    • [50] SABARD A,LOVELOCK H L D V,HUSSAIN T.Microstructural evolution in solution heat treatment of gas-atomized Al alloy(7075)powder for cold spray[J].Journal of Thermal Spray Technology,2018,27:145-158.

    • [51] SMAGORINSKI M,TSANTRIZOS P.Production of spherical titanium powder by plasma atomization[J].Advanced Powder Materials,2002,3:243-248.

    • [52] ROKNI M R,WIDENER C A,CRAWFORD G A.Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition[J].Journal of Thermal Spray Technology,2014,251:254-263.

    • [53] ROKNI M R,WIDENER C A,CRAWFORD G A,et al.An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition[J].Materials Science & Engineering A,2015,625:19-27.

    • [54] SHE Y,NARDI A T,KLECKA M A.High temperature fluidized bed for powder treatment:US,14/911211[P].2014-07-30.

    • [55] XIE X L,YIN S,RAOELISON R N,et al.Al matrix composites fabricated by solid-state cold spray deposition:a critical review[J].Journal of Materials Science and Technology,2021,86:20-55.

    • [56] MUNAGALA V N V,TORGERSON T B,SCHARF T W,et al.High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings[J].Wear,2019,426-427:357-369.

    • [57] XIE Y C,YIN S,CHEN C Y.New insights into the coating/substrate interfacial bonding mechanism in cold spray[J].Scripta Materialia,2016,125:1-4.

    • [58] KIM K,WATANABE M,KURODA S.Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity[J].Surface & Coatings Technology,2009,204(14):2175-2180.

    • [59] LUO X T,YAO M L,MA N,et al.Deposition behavior,microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy[J].Materials & Design,2018,155:384-395.

    • [60] TARIQ N H,GYANSAH L Q,WANG J Q,et al.Cold spray additive manufacturing:A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications[J].Surface and Coatings Technology,2018,339:224-236.

    • [61] ALIDOKHT S A,MUNAGALA V N V,RICHARD R,et al.Role of third bodies in friction and wear of cold-sprayed Ti and Ti–TiC composite coatings[J].Tribology Letters,2017,65(3):114.

    • [62] CHENG R H,LUO X T,HUANG G S,et al.Corrosion and wear resistant WC17Co-TC4 composite coatings with fully dense microstructure enabled by in-situ forging of the large-sized WC17Co particles in cold spray[J].Journal of Materials Processing Tech.2021,296:117231.

    • [63] AYDIN H,ALOMAIR M,WONG W,et al.Cold sprayability of mixed commercial purity Ti plus Ti6Al4V metal powders[J].Journal of Thermal Spray Technology,2017,26:360-370.

    • [64] TARANCÓN S,TEJADO E,RICHOU M,et al.Evaluation of tensile and elastic properties of W/Cu cold-spray coatings for application to the FGM DEMO divertor concept[J].Fusion Engineering and Design,2021,171:112719.

    • [65] BIAGI R,VERNA E,BEMBORAD E,et al.Cold spraying of IN 718-Ni composite coatings:microstructure characterization and tribological performance[J].Materials Science Forum,2021,1016:840-845

    • [66] SPENCER K,FABIJANIC D M,ZHANG M X.The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys[J].Surface & Coatings Technology,2009,204(3):336-344.

    • [67] LEE H Y,JUNG S H,LEE S Y,et al.Correlation between Al2O3 particles and interface of Al-Al2O3 coatings by cold spray[J].Applied Surface Science,2005,252(5):1891-1898.

    • [68] LI W Y,YANG C L,LIAO H L.Effect of vacuum heat treatment on microstructure and microhardness of cold-sprayed TiN particle-reinforced Al alloy-based composites[J].Materials & Design,2011,32(1):388-394.

    • [69] YANDOUZI M,BOTTGER A J,HENDRIKX R W A,et al.Microstructure and mechanical properties of B4C reinforced Al-based matrix composite coatings deposited by CGDS and PGDS processes[J].Surface & Coatings Technology,2010,205(7):2234-2246.

    • [70] CHESNOKOV A E,SMIRNOV A V,KLINKOV S V,et al.Preparation of the composite powder Al-B4C by ball milling for cold spray[J].Journal of Physics:Conference Series,2021,1945(1):22-26.

    • [71] 谭新海,徐建明,李琼,等.微米尺度与纳米尺度陶瓷颗粒等离子喷涂(APS),超音速火焰喷涂(HVOF),冷喷涂制备 MCrAlY-Al2O3复合涂层的微结构与性能对比[J].热喷涂技术,20146(4):59-59.TAN Xinhai,XU Jianming,LI Qiong,et al.Comparison of microstructure and properties of MCrAlY-Al2O3 composite coatings with both micro-sized and nano-sized ceramic particles deposited by plasma spraying,HVOF and cold spraying[J].Thermal Spray Technology,2014,6(4):59-59.(in Chinese)

    • [72] 张强,杨冠军,李长久,等.冷喷涂纳米结构NiCrAlY涂层在氩气气氛中的氧化行为[J].中国表面工程,2008,21(6):5-9.ZHANG Qiang,YANG Guanjun,LI Changjiu,et al.Oxidation behavior of nanostructured NiCrAIY coating deposited by cold spray [J].China Surface Engineering,2008,21(6):5-9.(in Chinese)

    • [73] LUO X T,LI C X,SHANG F L,et al.WC-Co composite coating deposited by cold spraying of a core-shell-structured WC-Co powder[J].Journal of Thermal Spray Technology,2015,24:100-107.

    • [74] ITO K,ICHIKAWA Y.Microstructure control of cold-sprayed pure iron coatings formed using mechanically milled powder[J].Surface and Coatings Technology,2019,357:129-139.

    • [75] SWAMINATHAN S,HONG S M,KUMAR M,et al.Microstructural evolution and high temperature oxidation characteristics of cold sprayed Ni-20Cr nanostructured alloy coating[J].Surface and Coatings Technology,2019,362:333-344.

    • [76] BORCHERS C,STOLTENHOFF T,HAHN M,et al.Strain-induced phase transformation of MCrAlY[J].Advanced Engineering Materials,2014,17(5):723-731.

    • [77] KIM J,LEE J,LEE S,et al.Enhancing the deposition capability of Cr3C2-NiCr in kinetic spraying via damage accumulation in feedstock powder[J].Ceramics International,2020,46(1):1104-1110.

    • [78] LI C J,YANG G J,GAO P H,et al.Characterization of nanostructured WC-Co deposited by cold spraying[J].Journal of Thermal Spray Technology,2007,16:1011-1020.

    • [79] ALIDOKHT S A,VO P,YUE S,et al.Cold spray deposition of Ni and WC-reinforced Ni matrix composite coatings[J].Journal of Thermal Spray Technology,2017,26:1908-1921.

    • [80] BAKSHI S R,SINGH V,BALANI K,et al.Carbon nanotube reinforced aluminum composite coating via cold spraying[J].Surface & Coatings Technology,2008,202(21):5162-5169.

    • [81] AL-HAMDANI K S,MURRAY J W,HUSSAIN T,et al.Cold sprayed metal-ceramic coatings using satellited powders[J].Materials Letters,2017,198:184-187.

    • [82] WANG Z Y,CAI S,JIN K,et al.In-flight aggregation and deposition behaviour of particles in low pressure cold spray[J].Surface and Coatings Technology,2021,409:126875.

    • [83] ALDWELL B,YIN S,MCDONNELL K,et al.A novel method for metal-diamond composite coating deposition with cold spray and formation mechanism[J].Scripta Materialia,2016,115:10-13.

    • [84] LI W Y,ZHANG C,LIAO H L,et al.Characterizations of cold-sprayed nickel-alumina composite coating with relatively large nickel-coated alumina powder[J].Surface and Coatings Technology,2008,202(19):4855-4860.

    • [85] 王秀金.镁合金表面冷喷涂石墨烯/铝复合涂层的制备及其性能研究[D].广州:广东工业大学,2020.WANG Xiujin.Preparation and properties of cold sprayed graphene/aluminum composites coatings on magnesium alloys[D].Guangzhou:Guangdong University of Technology,2020.(in Chinese)

    • [86] 王哲.海洋防腐污冷喷涂层制备及性能研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所),2017.WANG Zhe.Construction and characterization of marine anticorrosion and antifouling coating by cold spray deposition [D].Ningbo:University of Chinese Academy of Sciences(Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences),2017.(in Chinese)

    • [87] BARBAT N,ZANGENEH-MADAR K.Preparation of Ti-Ni binary powder via electroless nickel plating of titanium powder[J].Powder Metallurgy,2014,57(2):97-102.

    • [88] FENG C,GUIPONT V,JEANDIN M,et al.B4C/Ni composite coatings prepared by cold spray of blended or CVD-coated powders[J].Journal of Thermal Spray Technology,2012,21:561-570.

    • [89] CHOI J,OKIMURA N,YAMADA T,et al.Deposition of graphene-copper composite film by cold spray from particles with graphene grown on copper particles[J].Diamond and Related Materials,2021,116:108384.

    • [90] 唐丽芳.SiO2包覆磷光复合涂层发光及摩擦磨损性能研究[D].兰州:兰州理工大学,2018.TANG Lifang.Study on luminescence and tribol ogy properties of SiO2 coated phosphorescent composite coatings[D].Lanzhou:Lanzhou University of Technology,2018.(in Chinese)

  • 手机扫一扫看