en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马俊凯,男,1995年出生,硕士研究生。主要研究方向为材料空蚀机理。E-mail:326496668@qq.com;

段文山(通信作者),男,1962年出生,博士,教授。主要研究方向为等离子体物理。E-mail:duanws@nwnu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210430002

参考文献 1
陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation erosion[J].China Basic Science,2010,12(6):3-7.(in Chinese)
参考文献 2
OPARE W,KANG C,WEI X,et al.Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology 2020,234(9):1425-1435.
参考文献 3
TAN K L,YEO S H.Velocity estimation of micro-particles driven by cavitation bubble collapses through controlled erosion experiments[J].International Journal of Multiphase Flow,2020,127:103271.
参考文献 4
AI W J,LO K H,KWOK C T.Cavitation erosion of a spinodally decomposed wrought duplex stainless steel in a benign environment[J].Wear,2019,424-425:111-121.
参考文献 5
WANG Y,WU J H,MA F.Cavitation erosion of AISI1045 steel in polyacrylamide solutions[J].Wear,2018,414-415:227-233.
参考文献 6
林翠,赵晓斌,张翼飞.金属材料的空化腐蚀行为及影响因素研究进展[J].中国腐蚀与防护学报,2016,36(1):11-19.LIN Cui,ZHAO Xiaobin,ZHANG Yifei,et al.Research progress on cavitation-corrosion of metallic materials[J].Journal of Chinese Society for Corrosion and Protection,2016,36(1):11-19.(in Chinese)
参考文献 7
梁亮,刘皝,庞佑霞,等.冲击形式产生的冲蚀、空蚀和腐蚀联合磨损试验研究[J].润滑与密封,2019,44(8):42-48.LIANG Liang,LIU Huang,PANG Youxia,et al.Experimental study on erosion,cavitation and corrosion combined wear caused by impact[J].Lubrication Engineering,2019,44(8):42-48.(in Chinese)
参考文献 8
骆超,吴建华,吴瑜.金属材料空蚀试验方法研究进展 [J].水利水电科技进展,2007,27(5):90-94.LUO Chao,WU Jianhua,WU Yu.Comparison of cavitation erosion test methods for metallic materials[J].Advances in Science and Technology Water of Sources,2007,27(5):90-94.(in Chinese)
参考文献 9
杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)
参考文献 10
张伟,杨朴,朱兵.云空化结构的溃灭与空蚀风险预估研究进展[J].空气动力学学报,2020,38(4):761-770.ZHANG Wei,YANG Pu,ZHU Bing.Review of cloud cavitation structure collapse and its prediction of erosion risk[J].Acta Aerodynamica Sinica,2020,38(4):961-770.(in Chinese)
参考文献 11
HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.
参考文献 12
KROGSTAD H N,JOHNSEN R.Corrosion properties of nickel-aluminium bronze in natural seawater effect of galvanic coupling to UNS S31603[J].Corrosion Science,2017,121:43-56.
参考文献 13
PAOLANTONIO M,HANKE S.Damage mechanisms in cavitation erosion of nitrogen-containing austenitic steels in 3.5% NaCl solution[J].Wear,2021,464-465:12.
参考文献 14
鄂猛,胡红祥,国旭明,等.钴基和镍基涂层的微观组织及空蚀性能[J].材料热处理学报,2018,39(1):90-96.E Meng,HU Hongxiang,GUO Xuming,et al.Microstructure and cavitation erosion resistance of cobalt-based and nickel-based coatings[J].Transactions of Materials and Heat Treatment,2018,39(1):90-96.(in Chinese)
参考文献 15
王维夫,陈军,徐贤统,等.铝合金电火花沉积层的组织和抗空蚀性能[J].材料热处理学报,2013,34(6):120-124.WANG Weifu,CHEN Jun,XU Xiantong,et al.Microstructure and cavitation erosion resistance of aluminum alloy electrodeposited layer[J].Transactions of Materials and Heat Treatment,2013,34(6):120-124.(in Chinese)
参考文献 16
LUO Q,ZHANG Q,QIN Z B,et al.The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy[J].Journal of Alloys and Compounds,2018,747:861-868.
参考文献 17
SONG Q N,ZHENG Y G,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.
参考文献 18
SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.
参考文献 19
ZHANG L M,MA A L,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.
参考文献 20
BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2020,147:104834.
参考文献 21
HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5 wt% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.
参考文献 22
WEI Z,WU Y P,HONG S,et al.Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel(HVOF)sprayed AlCoCrFeNi high-entropy alloy coating in different solutions[J].Surface & Coatings Technology,2021,409:126899.
参考文献 23
CHEN H S,LI J.A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipient cavitation erosion[J].Wear,2008,266(7-8):884-887.
参考文献 24
LI J,WU B,CHEN H S.Formation and development of iridescent rings around cavitation erosion pits[J].Tribology Letters,2013,52(3):495-500.
参考文献 25
BORDEASU I,MITELEA I,LAZAR I,et al.Cavitation erosion behaviour of cooper base layers deposited by HVOF thermal spraying[J].Revista de Chimie Bucharest Original Edition,2017,68(12):2914-2917.
参考文献 26
KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface & Coatings Technology,2019,357:993-1003.
参考文献 27
林翠,杨颖,赵晓斌.钝态金属的空蚀研究方法和研究进展[J].腐蚀与防护,2018,39(5):369-374,394.LIN Cui,YANG Ying,ZHAO Xiaobin,et al.Research methods and research progress for cavitation corrosion of passive metals[J].Corrosion & Protection,2018,39(5):369-374,394.(in Chinese)
参考文献 28
FLANNIGAN D J,SUSLICK K S.Plasma formation and temperature measurement during single-bubble cavitation[J].Nature,2005,434(7029):52-55.
参考文献 29
JIANG L,HU Y J,SUN K,et al.Irradiation induced ‐ extremes create hierarchical face-/body-centered-cubic phases in nanostructured high entropy alloys[J].Advanced Materials,2020,32(39):2002652.
参考文献 30
石绪忠.舰船螺旋桨用涂层技术研究进展[J].腐蚀科学与防护技术,2017,29(2):199-203.SHI Xuzhong.Research progress of coatings used on marine propeller[J].Corrosion Science and Protection Technology,2017,29(2):199-203.(in Chinese)
参考文献 31
朱晶,姜元军,何大川.船用螺旋桨典型腐蚀类型与防护措施研究进展[J].腐蚀科学与防护技术,2019,31(4):443-448.ZHU Jing,JIANG Yuanjun,HE Dachuan,et al.Research progress on corrosion and prevention measure of marine propeller[J].Corrosion Science and Protection Technology,2019,31(4):443-448.(in Chinese)
参考文献 32
ZHANG P,JIANG J H,MA A B,et al.Cavitation erosion resistance of WC-Cr-Co and Cr3C2-NiCr coatings prepared by HVOF[J].Advanced Materials Research,2007,15-17:199-204.
参考文献 33
VARIS T,SOHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.
参考文献 34
LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.
参考文献 35
ZHANG H J,GONG Y,CHEN X,et al.A comparative study of cavitation erosion resistance of several HVOF-sprayed coatings in deionized water and artificial seawater[J].Journal of Thermal Spray Technology,2019,28(5):1060-1071.
参考文献 36
HAO E K,LIU X,AN Y L,et al.The coupling effect of immersion corrosion and cavitation erosion of NiCoCrAlYTa coatings in artificial seawater[J].Corrosion Science,2020,169:108635.
参考文献 37
HOU G L,REN Y,ZHANG X L,et al.Cavitation erosion mechanisms in Co-based coatings exposed to seawater[J].Ultrasonics Sonochemistry,2020,60:104799.
参考文献 38
MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.
参考文献 39
DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.
参考文献 40
WANG Y,DARUT G,POIRIRE T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.
参考文献 41
DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface & Coatings Technology,2020,399:126133.
参考文献 42
DENG W,AN Y L,HOU G L,et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.
参考文献 43
DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.
参考文献 44
ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.
参考文献 45
BABU A,ARORA H S,GREWAL H S.Microwaveassisted post-processing of detonation gun-sprayed coatings for better slurry and cavitation erosion resistance[J].Journal of Thermal Spray Technology,2019,28(7):1565-1578.
参考文献 46
WU J,ZHANG S D,SUN W H,et al.Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings[J].Surface & Coatings Technology,2018,335:205-218.
参考文献 47
ZHANG X,WANG Z,LIN J,et al.A study on high temperature oxidation behavior of high-velocity arc sprayed Fe-based coatings[J].Surface & Coatings Technology,2015,283:255-261.
参考文献 48
HAN L,DONG S,WANG E.Transition-metal(Co,Ni,and Fe)-based electrocatalysts for the water oxidation reaction[J].Advanced Materials,2016,28(42):9266-9291.
参考文献 49
陶翀,吴玉萍,高华,等.超音速火焰喷涂 Fe-Cr-Ni 基涂层的组织与性能研究[J].金属热处理,2008(7):46-49.TAO Chong,WU Yuping,GAO Hua,et al.Microstructure and properties of Fe-Cr-Ni based alloy spraying coated by high velocity oxygen fuel[J].Heat Treatment of Metals,2008(7):46-49.(in Chinese)
参考文献 50
QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2018,52:142-149.
参考文献 51
LIN J,WANG Z,CHENG J,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2018,12:597-602.
参考文献 52
PUSHIN V,KURANOVA N,MARCHENKOVA E,et al.Design and development of Ti-Ni,Ni-Mn-Ga and Cu-Al-Ni-based alloys with high and low temperature shape memory effects[J].Materials,2019,12(16):2616.
参考文献 53
杨二娟,李太江,李巍,等.HVOF/HVAF 制备镍基涂层的抗热腐蚀性能[J].金属热处理,2018,43(7):209-214.YANG Erjuan,LI Taijiang,LI Wei,et al.Thermal corrosion resistance of Ni-based coating prepared by HVOF/HVAF[J].Heat Treatment of Metals,2018,43(7):209-214.(in Chinese)
参考文献 54
STELLA J,SCHÜLLER E,HEßING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2005,260(9-10):1020-1027.
参考文献 55
HONG S,WU Y P,WANG Q,et al.Cavitation silt erosion behaviour of HVOF sprayed nickel based alloy coatings[J].Surface Engineering,2013,29(8):588-593.
参考文献 56
MITSUNOBU T,KOIZUMI Y,LEE B,et al.Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co-Cr-Mo-N alloys[J].Acta Materialia,2014,81:377-385.
参考文献 57
ZHANG H J,CHEN X,GONG Y,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2019,60:104760.
参考文献 58
DING H Q,JIANG S Y,XU J.Cavitation erosion resistance of ZrC nanoceramic coating[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2020,234(6):833-841.
参考文献 59
MARKO P,MARINA D,SANJA M,et al.Determination of degradation level during cavitation erosion of zircon based ceramic[J].Science of Sintering,2017,49(2):175-185.
参考文献 60
GONG X,HE W,LI Z,et al.Microstructural effect of α-Sialon ceramic on the resistance to cavitation erosion in deionized water[J].Ceramics International,2014,40(5):7161-7169.
参考文献 61
LV J J,KARL-HEINZ Z G,SCHNEIDER J.Microstructural effects on the resistance to cavitation erosion of ZrO2 ceramics in water[J].Wear,2008,265(11):1680-1686.
参考文献 62
SZALA M,ŁATK L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings[J].Processes,2020,8(12):1544.
参考文献 63
SILVEIRA L L,PUKASIEWICZ A G M,DE AGUIAR D J M,et al.Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings[J].Surface & Coatings Technology,2019,347:910-922.
参考文献 64
GABRIEL T,FABRICE P,SEBASTIEN L,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.
参考文献 65
丁彰雄,石琎,丁翔,等.超音速火焰喷涂 WC-Co(Cr)涂层在NaCl溶液中抗空蚀性能研究[J].船海工程,2016,45(1):86-90.DING Zhangxiong,SHI Jin,DING Xiang,et al.Resistance of cavitation erosion of HVOF sprayed WC-Co(Cr)coating in NaCl solution[J].Ship & Ocean Engineering,2016,45(1):86-90.(in Chinese)
参考文献 66
AKIHIRO K,KAITO T,MASAYUKI A.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.
参考文献 67
MAN,GUO L,CHENG Z,et al.Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure[J].Applied Surface Science,2014,320:364-371.
参考文献 68
BARBEZAT G,NICOL A R,JIN Y S,et al.Abrasive wear performance of Cr3C2-25%NiCr coatings by plasma spray and CDS detonation spray[J].Tribology Transactions,1995,38(4):845-850.
参考文献 69
MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF and HVAF sprayed coatings:Abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.
参考文献 70
KIM S,GALKIN V,JEONG J,KUCHI R,et al.Enhanced magnetic and structural properties of chemically prepared Nd-Fe-B particles by reduction-diffusion method through optimization of heat treatments[J].Journal of Alloys and Compounds,2021,869:159337.
参考文献 71
孙凯,安宁,付拴拴,等.热处理对铁基复合材料性能的影响[J].热加工工艺,2012,41(12):200-201.SUN Kai,AN Ning,FU Shuanshuan,et al.Effects of heat treatment on properties of iron-based composite materials[J].Hot Working Technology,2012,41(12):200-201.(in Chinese)
参考文献 72
ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393403.
参考文献 73
BABU A,ARORA H S,SINGH H,et al.Microwave synthesized composite claddings with enhanced cavitation erosion resistance[J].Wear,2019,422:242-251.
参考文献 74
NAIR R B,ARORA H,GREWAL H S.Microwave synthesized complex concentrated alloy coatings:plausible solution to cavitation induced erosion-corrosion[J].Ultrasonics Sonochemistry,2018,50:114-125.
参考文献 75
MORISADA Y,FUJII H,MIZUNO T,et al.Modification of thermally sprayed cemented carbide layer by friction stir processing[J].Surface & Coatings Technology,2010,204(15):2459-2464.
参考文献 76
PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing[J].Applied Surface Science,2016,396:1635-1648.
参考文献 77
PEAT T,GALLOWAY A,TOUMPIS A,et al.Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing[J].Materials & Design,2017,120:22-35.
目录contents

    摘要

    当今世界各国对高速舰船、绿色水电设施以及先进飞行器的需求愈发迫切,但动力核心部件-推进器、水轮机和航空发动机无一例外存在严重的空蚀损坏问题,亟需利用对部件尺寸适应性好的热喷涂技术在其表面制备抗空蚀涂层进行防护。针对现役过流部件常用金属材料在不同液体介质中易空蚀损坏的本质问题,分类详述热喷涂技术制备的金属、陶瓷和金属陶瓷三大类抗空蚀涂层的优势和研究现状,着重介绍其抗空蚀机理,并基于热喷涂涂层空蚀损坏的共性难题,论述多种行之有效的改性技术。通过与常用金属材料的空蚀性能对比,指出在不同工况环境下分别最有潜力获得应用的涂层种类。提出未来应从研制新材料和发展实用性更强的改性技术两个方面共同设计构筑性能更为优异的抗空蚀涂层,更好地推动其应用并解决装备的空蚀损伤问题。

    Abstract

    The demand for high-speed ships, green hydropower facilities and advanced aircraft is becoming more and more urgent around the world. However, the serious cavitation erosion (CE) damage problems in their core power components (such as in propeller, turbine and aeroengine) severely restrict the extensive application. Thus, it is necessary to prepare anti-CE coating on the surface of these parts by thermal spraying technology which has excellent dimensions adaptability. Aiming at the essential issues of cavitation erosion damage problems towards the currently severed metal materials for flow passage components, the advantages and research status of three kinds of thermal sprayed anti-CE coatings including metal, ceramic and cermet are reviewed when carried out in different liquid media. In addition, the anti-CE mechanism of these coatings is especially emphasized, and a variety of effective modification technologies are discussed based on the common problem of CE damage of thermal spraying coatings. By comparing the CE performance with conventional metal materials, the potential coating types under different working conditions are pointed out. Meanwhile, it is suggested that the anti-CE coating with better performance should be jointly designed and constructed from two aspects, developing new materials and developing more practical modification technology, to further promote its application and solve the CE damage problem of equipment.

  • 0 前言

  • 当固体与周围液体发生高速相对运动时,液体压强变化剧烈,造成大量空泡在低压区形成并在高压区溃灭,进而产生高速、高压的冲击波与微射流,并释放极高的瞬间高温[1-3],材料表面在机械冲击和高温氧化的共同作用下将因严重疲劳断裂而损伤,即发生空蚀[4-6]。空蚀普遍存在于各种过流部件中,时常导致器械的失稳和失灵,如使螺旋桨推力下降、舰艇抛锚、发动机故障和发电机组停机等[7-10],不仅造成巨大经济损失,还给相关装备的安全运行带来极其严重的安全隐患。

  • 铸铝合金、镍铝青铜和钢材分别是现役航空发动机各类泵体、舰艇螺旋桨和水轮机叶片使用最多的三类金属材料[11-14],也是遭受空蚀损坏最为严重的材料。王维夫等[15]研究了ZL101铸铝合金的空蚀性能,发现铸铝合金在经历短暂的孕育期后失重迅速增加,抗空蚀性能极差,这主要是因为该材料的物相分布非常不均匀、高硬度相沿晶界分布,造成空蚀率先在晶粒内部发生。镍铝青铜(Nickel aluminum bronze, NAB)是一类以镍、铝、铁为主要成分的多相合金材料[16-19],力学性能明显优于铸铝合金,但NAB中的 α 和 κ 相的电极电势明显不同,这使得它在海水等腐蚀性介质中易发生电偶腐蚀,最终造成广泛使用该材料制造的螺旋桨的空蚀损坏[20]。水轮机常用材料06Cr13Ni5Mo马氏体不锈钢的空蚀破坏机理主要表现为材料抗塑性变形能力较差导致的疲劳剥落失效[21-22]。另外,CHEN等[23-24]通过观察1Cr18Ni9Ti不锈钢和中碳钢空蚀表面的形貌,发现大量空蚀坑的周围分布着由多个彩色圆环组成的 “彩虹环”,说明材料表面除了遭受冲击载荷破坏以外,空泡溃灭产生的瞬间高温同样对其产生明显的破坏作用,除了造成氧化,还导致材料在高温下回火从而引发表面硬度下降,即空蚀引发的力学-热学耦合作用对材料造成了更为严重的破坏。

  • 不难发现,过流部件常用金属材料抗空蚀性能较差的原因主要是其力学性能、抗氧化性以及耐腐蚀性不佳,而空蚀又是从表面开始发生,因而通过先进表面工程技术在过流部件表面制备高硬度、高韧性、抗氧化和耐腐蚀的涂层材料是提升空蚀抵抗力的主要研究方向[25-29]。其中,热喷涂技术由于可喷涂材料种类广泛、制备涂层的成分和厚度易控、与基材结合强度高、对复杂异形部件的尺寸适应性好等诸多优点,成为国内外制备抗空蚀涂层使用最多的技术[30-34]。本文详述了热喷涂抗空蚀涂层及改性技术的最新研究进展,对比分析了典型涂层分别在淡水和海水环境中抵抗空蚀损坏的内在机理及存在问题,介绍多种提升热喷涂涂层空蚀抵抗力的方法及其局限性,指出目前在螺旋桨和水轮机等部件表面获得防护应用最有潜力的涂层种类和制备工艺,并对其未来主要研究方向做出展望。

  • 1 热喷涂抗空蚀涂层的种类及其空蚀行为

  • 使用Web of Science数据库统计了2009—2021年国内外有关热喷涂抗空蚀涂层的研究文献,如图1所示,从涂层种类上主要分为金属涂层、陶瓷涂层和金属陶瓷涂层,所占比例分别约为46.4%、 10.3%和43.3%。人们的研究焦点之所以集中在这三类涂层,除了因为它们比较适合采用热喷涂技术制备以外,还跟其分别在力学性能、抗氧化性和耐腐蚀性等方面比传统金属有明显的优势密切相关,因此下文将按此分类对其中典型涂层的空蚀性能和抗空蚀机理进行重点阐述,表1给出了它们在不同液体介质中的空蚀体积损失速率。

  • 图1 热喷涂抗空蚀涂层的分类及占比

  • Fig.1 Classification and proportion of thermal spraying anti-Cavitation erosion (CE) coatings

  • 表1 常用金属材料和典型涂层的空蚀性能对比

  • Table1 Comparison of CE performance between common metal materials and typical coating

  • 1.1 金属涂层

  • 1.1.1 铁基非晶涂层

  • 非晶合金由于不存在晶态结构,具有不同于常规晶态合金的一系列独特性质和性能,其中Fe基非晶合金具有硬度高、耐腐蚀好且成本低的特点,是一种理想的抗空蚀涂层材料[46-48]。陶翀等[49]使用焰流温度较低但速度极高的超音速氧气燃料喷涂技术 (high-velocity oxy-fuel, HVOF)制备了Fe-Cr-Ni基非晶合金涂层,其硬度是不锈钢基材的5倍。此外,非晶相和硼化物的存在还可延缓微裂纹的扩展速度,最终使其空蚀质量损失仅为不锈钢的1/3。 QIAO等[50]对比研究了采用HVOF技术在AISI 321钢表面制备的Fe基非晶/纳米晶涂层的空蚀行为和机理,结果表明涂层的硬度可以达到1121±53HV0.2,能够抵抗冲击载荷引发的塑性变形,并且可以吸收部分能量使非晶相先转变为纳米晶,然后再剥落损坏。所以,该涂层的空蚀过程表现出明显的周期性破坏行为,与AISI 321钢相比,铁基涂层在去离子水中的空蚀碎屑分布非常集中,主要分布在0.5~5.0 μm,尺寸小于AISI 321钢的空蚀碎屑 (图2a),展现出良好的空蚀抵抗力。LIN等[51]利用电弧喷涂制备了FeNiCrBSiNbW铁基非晶/纳米晶涂层,并评价其在3.5%NaCl溶液中的空蚀性能。该涂层具有 α-( Fe, Cr)纳米晶和非晶相的组合结构,较316L涂层具有更好的抗空蚀性能,但由于电弧喷涂的焰流速度比HVOF慢,造成涂层中形成了更多的孔隙、微裂纹、层状结构和氧化物等缺陷,这一定程度上破坏了涂层中的非晶结构,使其更易发生点蚀、剥蚀和脆性脱落,见图2b和图2c,说明喷涂工艺同样显著影响涂层的抗空蚀性能。

  • 图2 Fe基非晶涂层的空蚀碎屑粒径分布及空蚀后的表面、截面形貌[50-51]

  • Fig.2 CE debris distribution as well as surface and cross-sectional morphologies of Fe-based amorphous coatings after CE[50-51]

  • 1.1.2 镍基涂层

  • 镍基合金具有良好的韧性、热稳定性、耐热腐蚀性及抗氧化性,是作为抗空蚀涂层被研究较多的一类材料[52-53]。STELLA等[54]使用真空等离子喷涂技术(Vacuum plasma spraying, VPS)在不锈钢基材上制备了两种Ni-Ti涂层,分别由预合金化Ni-Ti粉末(C1)和Ni、Ti粉混合粉末(C2)喷涂制得。与C2涂层相比,C1涂层具有更高的NiTi含量比例, C1涂层中非形状记忆相(Ni3Ti等)的尺寸较C2涂层中的小(微米级)且分布更均匀(图3a、3b),故C1涂层具有比C2涂层更高的抗空蚀性能,因此粉末合成技术也是影响涂层性能的关键因素。 HONG等[55]利用HVOF技术制备NiCrWSiFeBCoC合金涂层,主要成分为 γ-Ni,还有一些Ni3B、Cr23C6、 Cr7C3 和WC,正是得益于这些碳化物和硼化物的均匀分布,涂层表现出较高的显微硬度(约1 100HV) 和低的孔隙率(0.88±0.06%),能够很好地抵抗冲击载荷造成的破坏,空蚀质量损失均明显低于1Cr18Ni9Ti不锈钢(图3c)。HAO等[36]详细研究了抛光态以及在海水中浸泡35d、 70d后的NiCoCrAlYTa涂层的空蚀性能(分别标记为S1、S2、 S3),发现涂层整体的耐腐蚀性能优异,涂层浸泡腐蚀后表面形成的富Al、Cr氧化物钝化膜甚至可以进一步改善涂层的力学性能和耐腐蚀性能,然而涂层中带状氧化物的选择性溶解造成表面出现更多缺陷,最终加速了涂层的空蚀破坏,说明相对于力学性能和耐腐蚀性,组织结构的致密性是影响这类涂层抗空蚀性能的关键。不过该涂层即使在海水中浸泡70d后(S3),其抗空蚀性能依然好于316L不锈钢(图3d),更明显优于铸铝合金和NAB等(见表1),再次说明镍基涂层在提升传统金属抗空蚀性能方面优势明显。

  • 图3 Ni基涂层形貌及抗空蚀性能[36, 54-55]

  • Fig.3 Microstructure and cavitation erosion resistance of Ni-based coatings

  • 1.1.3 钴基涂层

  • 钴基合金在铸造过程中由于其稳态面心立方结构(α-fcc)向密排六方结构(ε-hcp)转变存在滞后性,所以室温下的钴基合金通常为非稳态面心立方结构(γ-fcc),这种结构的堆垛层错能极低,在机械力作用下还会发生 γ-fcc→ε-hcp相转变,从而使其具有高韧性、高屈服强度和优异的耐疲劳性,因此这类材料是一类非常好的抗空蚀材料[56]。ZHANG等[57]利用SEM原位观察法研究HVOF技术制备的CoCrNiSiMo和其他多种热喷涂涂层在去离子水中的空蚀行为,发现空蚀是在已有的孔隙和裂纹处开始发生,水力渗透和塑性变形导致裂纹进一步扩大、形成孔洞,接着相邻孔洞连接在一起导致材料发生明显损失。可见微缺陷(如裂纹和孔隙)是导致热喷涂涂层空蚀损伤的重要原因,而CoCrNiSiMo涂层由于孔隙率相对较低,因此展现出比Fe基非晶涂层更好的抗空蚀性能(图4a)。HOU等[37]研究发现, HVOF技术制备的CoCrAlYTaCSi涂层的抗氧化性和耐腐蚀性能较为优异,空泡溃灭产生的瞬间高温可以将涂层表面的Co和Cr元素氧化成纳米颗粒,而海水腐蚀则可以促进更多纳米氧化物的生成 (图4b),不仅更好地填充了涂层表面的孔隙,还改善了表面的力学性能,因而该涂层在海水中表现出较高的空蚀抵抗力。为进一步提升性能,加入10%的Al2O3 制得CoCrAlYTaCSi-Al2O3 涂层,该涂层在去离子水和海水中表现出很好的抗空蚀性能,而且在海水中的性能更加优异,体积损失速率相较于去离子水中的下降幅度超过40%,这归因于涂层中Co单质更易与海水发生反应形成氧化物,进而可以和Al2O3 一起促进表面致密钝化膜的形成。加之Al2O3 陶瓷自身较高的硬度,最终使该涂层能够更好地抵抗空蚀和腐蚀的耦合破坏,体积损失损率分别仅为铸铝合金、NAB和1Cr18Ni9Ti钢的0.8%、33.3%和18.2%(见表1)。因此,相比于其他金属涂层,具有“自修复”和“自增强”能力的Co基涂层更有希望作为海洋环境中高性能空蚀防护涂层材料使用。

  • 图4 Co基涂层空蚀性能及物相变化[37,57]

  • Fig.4 CE performance and Change in composition of Co-based coatings

  • 1.2 陶瓷涂层

  • 与金属材料相比,陶瓷材料则主要以离子键和共价键结合,其键能高、原子间结合力强、表面自由能低、原子间距小且无自由电子运动,这些特点赋予陶瓷材料高熔点、高硬度和耐腐蚀性等诸多优异特性[58],所以国内一些学者也致力于将这类材料制备成涂层用于空蚀防护,但由于陶瓷材料的熔点较高,只能采用焰流温度更高的等离子喷涂(Plasma spraying, PS)技术制备[59-61],然而PS技术制备的陶瓷涂层的致密度相对较差,这成为制约其在抗空蚀领域应用的主要因素。WANG等[40]研究了粉末粒径对PS技术制备YSZ涂层抗空蚀性能的影响,结果表明大的粉末粒径导致涂层的孔隙率更高、显微硬度更低,涂层的空蚀抵抗力与孔隙率密切相关,因为在空蚀过程中蚀坑是由初始孔隙长大、合并形成的,因此选择合适粒径的粉末喂料是制备抗空蚀陶瓷涂层的关键。SZALA等[62]研究使用不同大气等离子喷涂(Atmospheric Plasma Spraying, APS)工艺参数制备的Al2O3-13%TiO2 陶瓷涂层的空蚀行为,发现涂层呈典型的层状结构并存在微裂纹、未熔粉末和较多的孔隙(见图5a和图5b),即使最优喷涂工艺制备的陶瓷涂层的孔隙率依然高达2.3%,虽然其硬度已高至1 235HV0.1,但涂层在空蚀过程中几乎没有孕育期,容易发生大片扁平粒子剥落,另外较差的韧性还导致涂层中的柱状晶容易发生脆性断裂(见图5c),这同样加速了涂层的破坏。由此可见,这类涂层离实际防护应用仍然任重道远,降低陶瓷涂层的孔隙率并提升其韧性将是未来提高其抗空蚀能力的主要研究方向。

  • 图5 Al2O3-13wt.%TiO2 陶瓷涂层SEM-BSD形貌[62]

  • Fig.5 SEM-BSD morphologies of Al2O3-13wt%TiO2 ceramic coating

  • 1.3 金属陶瓷涂层

  • 金属陶瓷涂层不仅具有金属材料良好的韧性,还具有陶瓷材料高的硬度和好的耐腐蚀性[63-64],并且适合采用HVOF技术喷涂制备,孔隙率也较低,因此这类涂层的抗空蚀性能通常更加优异,其中的典型代表是WC基、Cr3C2 基金属陶瓷涂层。

  • 1.3.1 WC基金属陶瓷涂层

  • 丁彰雄等[65]研究了两种燃料类型(液体燃料和气体燃料)HVOF技术制备的微米结构WC-10Co4Cr和纳米结构WC-12Co金属陶瓷涂层在3.5%NaCl溶液中的抗空蚀-腐蚀性能,发现粉末喂料在液体燃料HVOF的焰流中具有更高的动能和热焓值,能明显降低涂层的孔隙率并提高其致密性、显微硬度和韧性,因而抗空蚀耐腐蚀性能更优。此外,金属Cr的适量加入能进一步提高材料在腐蚀性介质中的抗空蚀-腐蚀性能。ZHANG等[57]对比研究了WC-10Co4Cr涂层、WC-10Co4Cr/Co基复合涂层在去离子水和海水中的空蚀行为,并利用扫描电镜原位观察涂层的空蚀行为特征,充分验证了微观结构缺陷(如裂纹、气孔)对空蚀性能有直接影响,即空蚀优先发生在孔隙和微裂纹附近,硬质相的剥离使涂层中形成较大的裂纹和凹坑,从而加速空蚀损坏。另外还发现海水腐蚀明显加剧不锈钢、WC-10Co4Cr涂层的空蚀损坏,它们在海水中的体积损失率分别约为去离子水中的2.5倍、3倍,但对WC-10Co4Cr/Co基复合涂层空蚀的影响较小(去离子水体积损失率为0.30mm3/h,人工海水中的体积损失率为0.21mm3/h),这应该与该涂层中含有更多的Co元素有关[35]

  • AKIHIRO等 [66] 研究组分( WC-CrC-Ni和WC-CoCr)、WC晶粒尺寸和喷涂条件对WC基金属陶瓷涂层抗空蚀性能的影响,结果表明CoCr合金的加入比金属Ni更好地提高了WC涂层的抗空蚀性能,高燃烧压力提高了WC颗粒与金属粘结相的结合强度,能够更好地提高涂层的致密性,明显改善了抗空蚀性能。此外,尽管通常硬质颗粒尺寸越小,其增强增韧效果越好,但是对于WC基金属陶瓷涂层,WC颗粒尺寸的减小容易造成其在喷涂过程中脱碳[67],而过多W2C相的形成会降低涂层断裂韧性,一定程度上破坏了涂层的抗空蚀能力(图6a)。为了更好地发挥纳米颗粒的增强增韧能力并防止其严重脱碳带来的负面影响, DING等[39]采用HVOF技术制备了由纳米、亚微米、微米WC颗粒和CoCr合金组成的多元WC-10Co4Cr涂层,并与二元(纳米、微米)WC-10Co4Cr涂层以及纳米WC-10Co4Cr涂层进行对比研究,发现多元涂层中无明显脱碳现象(图6b),较另外两类涂层具有更高的断裂韧性,特殊的多元结构能有效抑制裂纹形成和扩展,使其在去离子水中的抗空蚀能力极为优异 (图6c和表1),表明该涂层非常适合在水轮机等服役于淡水环境中的过流部件表面使用。

  • 图6 WC基金属陶瓷涂层物相组分及抗空蚀性能[39,66]

  • Fig.6 Phase composition and CE resistance of WC-based cermet coating

  • 1.3.2 Cr3C2基金属陶瓷涂层

  • 尽管Cr3C2 的硬度低于WC,但是由于它的热稳定性更好,在喷涂过程中不会发生严重的脱碳现象,因此Cr3C2 基金属陶瓷涂层也是研究较多的一类涂层材料。BARBEZAT等[68]使用HVOF制备不同组分配比的Cr3C2-NiCr复合涂层,发现75%Cr3C2 与25%NiCr组成的涂层具有最高的抗氧化性和热稳定性。MAYER等[38]研究发现Cr3C2-25NiCr涂层在3.5%NaCl溶液中的空蚀质量损失与在蒸馏水中的相近,说明对耐腐蚀性能较好的涂层来说,与腐蚀引起的质量损失相比,空蚀造成的质量损失更高,即空蚀对该涂层腐蚀动力学的影响要大于腐蚀对其抗空蚀性能的影响。MATIKAINEN等[69]对比评估了采用HVOF和超音速空气燃料喷涂技术 (High-velocity air-fuel, HVAF)制备的四种Cr3C2 基金属陶瓷涂层和WC-10Co4Cr涂层的抗空蚀性能,结果表明涂层性能受助燃气类型影响较大,使用空气作为助燃气制备的HVAF涂层的弹性模量比使用氧气作为助燃气制备的HVOF涂层高5%~10%,从而使得涂层的内聚强度提高,缺陷尺寸或数量减少,这归因于HVAF技术具有送粉率高、喷涂温度低不会导致碳化物溶解的优点。此外金属含量较高的Cr3C2-50NiCrMoNb涂层具有最高的断裂韧性,能够更好地抵抗空蚀引发的疲劳损坏,因此选择合适的喷涂工艺和提高金属陶瓷中的金属含量应是提高其抗空蚀性能的有效手段。

  • 2 提升热喷涂抗空蚀涂层性能的方法

  • 尽管多种热喷涂金属和金属陶瓷涂层都表现出好的抗空蚀性能,但是它们都是由熔融或半熔融的粉末颗粒不断撞击涂层表面堆叠形成的,所以涂层中不可避免存在孔隙等缺陷并呈典型的层状结构,导致扁平粒子之间的内聚强度相对较低,在空蚀过程中常会发生大片粒子的整体剥落,这严重制约材料自身抗空蚀能力的充分发挥。因此,如果能够通过有效的处理技术提升热喷涂涂层的致密性和内聚强度,改善组织均匀性,就有望更进一步提升其抗空蚀性能,目前已证实比较有效的改性技术主要有基材预热处理、涂层热处理、热机械处理、微波后处理以及真空浸渍封孔处理。

  • 2.1 基材预热处理

  • DENG等[42]以Inconel718合金为基材,先利用电磁感应加热技术(Pre-heating, PH)将其快速预热至目标温度,然后再使用APS技术在高温基材表面沉积8YSZ涂层(YSZPH),研究结果表明随着基材温度的升高,陶瓷扁平粒子铺展更加充分,当基材温度升高到800℃时,吸附在基材表面的水分以及其他可蒸发性杂质在涂层沉积之前被完全蒸发,从而使得熔融粒子在涂层表面铺展得非常好,呈典型的“圆盘”状(图7a、7b),且层间柱状晶能够发生规则的外延生长(图7c),不仅使陶瓷涂层的孔隙和裂纹明显减少,还使涂层的致密性、硬度、韧性以及层间结合强度均得到显著提高。室温基材表面上制备的8YSZ涂层的空蚀损坏以大尺寸粒子的整体剥落为主,随着预热温度的升高,这种现象逐渐得到抑制,800℃基材表面制备的YSZPH涂层空蚀损坏转变为小尺寸颗粒的脆性剥落,抗空蚀性能明显提高,空蚀寿命约是室温基材表面沉积涂层的8倍(表1)。基材预热处理技术的使用大大提高热喷涂陶瓷涂层的抗空蚀性能,然而这种方法需要把基材预热至比较高的温度,这有可能造成过流部件常用金属的组织结构和性能发生不可逆的损坏,因而实际应用范围受到很大限制。

  • 图7 室温和800℃条件下黏结层抛光表面沉积的8YSZ扁平粒子形貌以及涂层断面形貌[42]

  • Fig.7 SEM images of 8YSZ splats on mirror-polished bonding coating surface as well as fractured cross section of coatings at RT and 800℃

  • 2.2 热处理

  • 热处理(Heat treatment, HT)通常可以使涂层的组织分布均匀化、亚稳态相的含量减少、硬度提高 [70-71]。DU等[43]在650℃、800℃、950℃和1 100℃氮气气氛下对WC-12Co涂层进行1h热处理 (WC-12CoHT),发现随着热处理温度的升高,涂层的孔隙率先减小后增大,800℃热处理的涂层具有最低的孔隙率,这是因为当热处理温度提升到950℃和1 100℃时,更多的WC会转化为 η 相Co6W6C, Co6W6C的摩尔体积比WC高,导致 η 相周围易产生微孔和裂纹。空蚀试验结果表明,800℃下热处理的WC-12Co涂层抗空蚀性能最好,空蚀率与表面粗糙度呈正相关。ZHENG等[72]研究了HVOF技术制备的铁基非晶涂层在不同温度热处理后的微观结构、硬度及抗空蚀性能,XRD结果显示550℃热处理的涂层保留了与喷涂态涂层类似的非晶态结构,但650℃和750℃处理后的涂层发生明显的重结晶现象,见图8a,大大提高涂层的硬度和在蒸馏水中的抗空蚀性能(图8b)。但是,热处理后的涂层在3.5%NaCl溶液中的抗空蚀性能反而变差(图8b),这是热处理形成的晶态组织破坏了非晶结构的耐腐蚀能力,导致腐蚀加剧空蚀的作用显著增强,因此涂层在腐蚀介质中的质量损失受空蚀性能和腐蚀性能双重变量的共同影响。此外,热处理技术和基材预热处理类似,同样存在处理温度过高破坏金属基材结构性能的可能性。

  • 图8 Fe基非晶涂层热处理前后的XRD图及空蚀质量损失速率[72]

  • Fig.8 XRD patterns and CE mass loss rate of Fe-based amorphous coatings before and after heat treatment

  • 2.3 微波后处理技术

  • 微波后处理(Microwave post processing, MPP) 较传统的热处理用时更短,可有效显著降低能源消耗,此外该处理技术引起的体积加热效应可以有效提高界面强度[73-74]。BABU等[45]使用微波技术对316L不锈钢表面制备的WC-10Co-4CrMPP 和NiMPP 涂层进行后处理,发现MPP处理能明显改善涂层的微观结构、消除扁平粒子边界和裂纹并降低孔隙率,与未处理样品的层状组织相比,MPP处理样品的显微组织为柱状结构。此外组织均匀化的增强和元素从基材扩散导致的固溶强化,使得NiMPP 涂层的硬度和断裂韧性等力学性能得到提高,虽然WC-10Co-4CrMPP 涂层由WC的降解导致硬度降低15%,但断裂韧性仍然提高了67%(图9a、9b)。与喷涂态涂层相比,经过MPP后的涂层空蚀孕育期明显延长、稳态期空蚀速率显著降低、空蚀坑和裂纹明显变小,处理后的Ni和WC基涂层的空蚀损失率较未处理的涂层分别降低16倍和10倍(图9c)。但是微波处理在可加工样品尺寸方面存在局限性,同时由于元素从基材中扩散,会导致涂层稀释,这可能会因成分变化而劣化涂层性能。

  • 2.4 热机械处理

  • 搅拌摩擦加工(Friction Stir Processing, FSP)是一种使材料发生严重塑性变形的处理技术,工件在旋转工具的剧烈搅拌、摩擦作用下承受高应变和高应变率,热场和应变场的耦合作用能在短时间内显著细化涂层的微观结构,明显提升涂层硬度值和抗疲劳能力[75]。 PEAT等[76-77]使用FSP处理冷喷涂技术制备WC-CoCr、 Cr3C2-NiCr等涂层,发现FSP处理能使涂层组织均匀化、硬度提高、平均层间距离减少。静摩擦加工 (Stationary friction processing, SFP)类似于FSP,不同之处在于运行期间刀具在工件的固定位置持续旋转,图10a为示意图,这使得对涂层的细化程度和处理深度明显提高。 ARORA等[44]使用HVOF技术在SS316L不锈钢上制备Ni-Cr-5Al2O3涂层,并分别使用SFP和FSP技术进行后处理,发现FSP和SFP处理可以细化喷涂态涂层的微观结构和组织,去除缺陷,但是FSP处理深度较浅,仅能使涂层表面以下大约50 μm深度内的微观结构得到细化,50 μm以下涂层仍然保留原始的非均匀结构(图10b),而且处理后的区域仍有一定的元素偏析,但SFP处理能使涂层结构完全细化,而且细化深度可达涂层-基材界面(图10c),涂层内部整体的组织细化以及处理后表面钝化膜中更高的Cr含量使得SFP处理涂层较基材、喷涂态以及FSP处理涂层涂层具有更高的力学性能和耐腐蚀性能(图10d~10f)。在蒸馏水和3.5%NaCl溶液中的超声空蚀试验结果显示,SFP处理的涂层具有最长的空蚀孕育期和最低的体积损失,在蒸馏水和3.5%NaCl溶液空蚀20h的体积损失分别仅为0.6mm3、1.0mm3,展现出最优的抗空蚀性能,FSP处理的次之,分别仅为1.4mm3、2.2mm3。使用这两种方法改性后涂层的抗空蚀性能均较铸铝合金、镍铝青铜及1Cr18Ni9Ti不锈钢得到很大提升(表1),显示出好的应用前景。但是该技术对工件尺寸、形状要求较高,目前仍难以在复杂异形过流部件表面进行施工。

  • 图9 MPP涂层力学性能及抗空蚀性能比较[45]

  • Fig.9 Comparison of mechanical properties and cavitation erosion resistance of MPP coatings

  • 图10 SFP原理图以及热机械处理后Ni-Cr-5Al2O3涂层的截面形貌、力学性能及抗腐蚀性能[44]

  • Fig.10 The schematic of SFP as well as the cross-section morphology, mechanical properties and corrosion resistance of Ni-Cr-5Al2O3 coating after thermal mechanical processing[44]

  • 2.5 真空浸渍封孔处理

  • 真空浸渍技术是一种温和的涂层改性手段,能够使渗透性较好的材料穿过热喷涂涂层中的微缺陷渗透到涂层内部,固化后可以封闭涂层中的孔隙缺陷并提高其内聚强度。近期DENG等[41]通过真空浸渍封孔工艺把环氧树脂渗入APS技术制备的Al2O3-13%TiO2 陶瓷涂层中,获得一种新型的陶瓷树脂复合涂层(AT-PE),环氧树脂几乎完全填充陶瓷涂层内部的所有缺陷,渗入深度可达涂层与基材的界面处。与喷涂态陶瓷涂层相比,陶瓷树脂复合涂层的硬度、内聚强度和结合强度等力学性能和致密性均有大幅提高,而且表面粗糙度更低,不仅能够更好地抵抗冲击载荷的破坏,还能减少空蚀过程中气泡的积聚。另外,高弹性、高韧性的树脂也能有效吸收冲击能量,延缓空蚀过程中裂纹的扩展和扁平粒子的散裂,最终延长空蚀孕育期,显著提高涂层的抗空蚀性能。目前真空浸渍封孔工艺仅适用于孔隙缺陷较多的陶瓷涂层,对于更为致密的金属和金属陶瓷涂层尚无法使用,另外所制备的陶瓷树脂复合涂层的抗空蚀性能尽管相对于纯陶瓷涂层有明显提高,但环氧树脂的耐温性较差,在空化热的作用下容易老化脆裂,导致该复合涂层的抗空蚀性能与其他典型金属涂层和金属陶瓷涂层相比依然有明显差距(见表1)。

  • 3 结语与展望

  • 分类详述了热喷涂抗空蚀涂层的研究现状及空蚀机理,并基于热喷涂涂层空蚀损坏的共性难题,论述了多种改性技术,具体结论如下:

  • (1)热喷涂涂层可以明显提高过流部件常用金属材料的空蚀抵抗力,其中力学性能、抗氧化性、耐腐蚀性及致密性是影响涂层材料抗空蚀性能的关键因素。

  • (2)强韧一体化的高致密金属陶瓷涂层更适合在水轮机等过流部件表面应用,而在海水中具有更好“自修复”和“自增强”能力的Co基涂层则有望在螺旋桨等舰船过流部件表面获得应用。

  • (3)基材预热处理、涂层热处理、热机械加工、微波处理和真空浸渍封孔处理可以很好地解决热喷涂涂层微观缺陷问题,能够进一步提高涂层的空蚀抵抗力。

  • 基于当前热喷涂抗空蚀涂层及改性技术在研究和应用中所存在的问题,未来应重点研究的方向如下:

  • (1)针对国内外对于材料的空蚀机理至今尚未形成完整、统一理论的问题,有必要系统研究复杂工况环境如不同种类腐蚀介质、液体温度、压强等对材料的空蚀行为的影响,更加深刻地揭示材料尤其是涂层材料空蚀损坏的根本机制及主要影响因素。

  • (2)针对传统成分设计方法制备周期长严重制约高性能涂层研发和应用的问题,有必要采取高通量技术对抗空蚀涂层进行成分设计及工艺参数优化,有效改善涂层的硬度、韧性、吸能能力、致密性和耐腐蚀性等综合性能,并针对不同工况环境,分别研制出适用性更强的空蚀防护涂层。

  • (3)针对现有改性技术因高温环境或技术瓶颈无法很好地推广应用的问题,有必要对其进行持续改良,以更好地满足实际复杂工况环境的要求。例如可以通过合理优化搅拌头参数、加工过程参数以及发展高速高精密功能复合化的数控车床技术等,实现搅拌摩擦对多种复杂异形工件表面涂层的处理改性。

  • 参考文献

    • [1] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation erosion[J].China Basic Science,2010,12(6):3-7.(in Chinese)

    • [2] OPARE W,KANG C,WEI X,et al.Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology 2020,234(9):1425-1435.

    • [3] TAN K L,YEO S H.Velocity estimation of micro-particles driven by cavitation bubble collapses through controlled erosion experiments[J].International Journal of Multiphase Flow,2020,127:103271.

    • [4] AI W J,LO K H,KWOK C T.Cavitation erosion of a spinodally decomposed wrought duplex stainless steel in a benign environment[J].Wear,2019,424-425:111-121.

    • [5] WANG Y,WU J H,MA F.Cavitation erosion of AISI1045 steel in polyacrylamide solutions[J].Wear,2018,414-415:227-233.

    • [6] 林翠,赵晓斌,张翼飞.金属材料的空化腐蚀行为及影响因素研究进展[J].中国腐蚀与防护学报,2016,36(1):11-19.LIN Cui,ZHAO Xiaobin,ZHANG Yifei,et al.Research progress on cavitation-corrosion of metallic materials[J].Journal of Chinese Society for Corrosion and Protection,2016,36(1):11-19.(in Chinese)

    • [7] 梁亮,刘皝,庞佑霞,等.冲击形式产生的冲蚀、空蚀和腐蚀联合磨损试验研究[J].润滑与密封,2019,44(8):42-48.LIANG Liang,LIU Huang,PANG Youxia,et al.Experimental study on erosion,cavitation and corrosion combined wear caused by impact[J].Lubrication Engineering,2019,44(8):42-48.(in Chinese)

    • [8] 骆超,吴建华,吴瑜.金属材料空蚀试验方法研究进展 [J].水利水电科技进展,2007,27(5):90-94.LUO Chao,WU Jianhua,WU Yu.Comparison of cavitation erosion test methods for metallic materials[J].Advances in Science and Technology Water of Sources,2007,27(5):90-94.(in Chinese)

    • [9] 杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)

    • [10] 张伟,杨朴,朱兵.云空化结构的溃灭与空蚀风险预估研究进展[J].空气动力学学报,2020,38(4):761-770.ZHANG Wei,YANG Pu,ZHU Bing.Review of cloud cavitation structure collapse and its prediction of erosion risk[J].Acta Aerodynamica Sinica,2020,38(4):961-770.(in Chinese)

    • [11] HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.

    • [12] KROGSTAD H N,JOHNSEN R.Corrosion properties of nickel-aluminium bronze in natural seawater effect of galvanic coupling to UNS S31603[J].Corrosion Science,2017,121:43-56.

    • [13] PAOLANTONIO M,HANKE S.Damage mechanisms in cavitation erosion of nitrogen-containing austenitic steels in 3.5% NaCl solution[J].Wear,2021,464-465:12.

    • [14] 鄂猛,胡红祥,国旭明,等.钴基和镍基涂层的微观组织及空蚀性能[J].材料热处理学报,2018,39(1):90-96.E Meng,HU Hongxiang,GUO Xuming,et al.Microstructure and cavitation erosion resistance of cobalt-based and nickel-based coatings[J].Transactions of Materials and Heat Treatment,2018,39(1):90-96.(in Chinese)

    • [15] 王维夫,陈军,徐贤统,等.铝合金电火花沉积层的组织和抗空蚀性能[J].材料热处理学报,2013,34(6):120-124.WANG Weifu,CHEN Jun,XU Xiantong,et al.Microstructure and cavitation erosion resistance of aluminum alloy electrodeposited layer[J].Transactions of Materials and Heat Treatment,2013,34(6):120-124.(in Chinese)

    • [16] LUO Q,ZHANG Q,QIN Z B,et al.The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy[J].Journal of Alloys and Compounds,2018,747:861-868.

    • [17] SONG Q N,ZHENG Y G,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.

    • [18] SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.

    • [19] ZHANG L M,MA A L,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.

    • [20] BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2020,147:104834.

    • [21] HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5 wt% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.

    • [22] WEI Z,WU Y P,HONG S,et al.Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel(HVOF)sprayed AlCoCrFeNi high-entropy alloy coating in different solutions[J].Surface & Coatings Technology,2021,409:126899.

    • [23] CHEN H S,LI J.A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipient cavitation erosion[J].Wear,2008,266(7-8):884-887.

    • [24] LI J,WU B,CHEN H S.Formation and development of iridescent rings around cavitation erosion pits[J].Tribology Letters,2013,52(3):495-500.

    • [25] BORDEASU I,MITELEA I,LAZAR I,et al.Cavitation erosion behaviour of cooper base layers deposited by HVOF thermal spraying[J].Revista de Chimie Bucharest Original Edition,2017,68(12):2914-2917.

    • [26] KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface & Coatings Technology,2019,357:993-1003.

    • [27] 林翠,杨颖,赵晓斌.钝态金属的空蚀研究方法和研究进展[J].腐蚀与防护,2018,39(5):369-374,394.LIN Cui,YANG Ying,ZHAO Xiaobin,et al.Research methods and research progress for cavitation corrosion of passive metals[J].Corrosion & Protection,2018,39(5):369-374,394.(in Chinese)

    • [28] FLANNIGAN D J,SUSLICK K S.Plasma formation and temperature measurement during single-bubble cavitation[J].Nature,2005,434(7029):52-55.

    • [29] JIANG L,HU Y J,SUN K,et al.Irradiation induced ‐ extremes create hierarchical face-/body-centered-cubic phases in nanostructured high entropy alloys[J].Advanced Materials,2020,32(39):2002652.

    • [30] 石绪忠.舰船螺旋桨用涂层技术研究进展[J].腐蚀科学与防护技术,2017,29(2):199-203.SHI Xuzhong.Research progress of coatings used on marine propeller[J].Corrosion Science and Protection Technology,2017,29(2):199-203.(in Chinese)

    • [31] 朱晶,姜元军,何大川.船用螺旋桨典型腐蚀类型与防护措施研究进展[J].腐蚀科学与防护技术,2019,31(4):443-448.ZHU Jing,JIANG Yuanjun,HE Dachuan,et al.Research progress on corrosion and prevention measure of marine propeller[J].Corrosion Science and Protection Technology,2019,31(4):443-448.(in Chinese)

    • [32] ZHANG P,JIANG J H,MA A B,et al.Cavitation erosion resistance of WC-Cr-Co and Cr3C2-NiCr coatings prepared by HVOF[J].Advanced Materials Research,2007,15-17:199-204.

    • [33] VARIS T,SOHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.

    • [34] LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.

    • [35] ZHANG H J,GONG Y,CHEN X,et al.A comparative study of cavitation erosion resistance of several HVOF-sprayed coatings in deionized water and artificial seawater[J].Journal of Thermal Spray Technology,2019,28(5):1060-1071.

    • [36] HAO E K,LIU X,AN Y L,et al.The coupling effect of immersion corrosion and cavitation erosion of NiCoCrAlYTa coatings in artificial seawater[J].Corrosion Science,2020,169:108635.

    • [37] HOU G L,REN Y,ZHANG X L,et al.Cavitation erosion mechanisms in Co-based coatings exposed to seawater[J].Ultrasonics Sonochemistry,2020,60:104799.

    • [38] MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.

    • [39] DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.

    • [40] WANG Y,DARUT G,POIRIRE T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.

    • [41] DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface & Coatings Technology,2020,399:126133.

    • [42] DENG W,AN Y L,HOU G L,et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [43] DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.

    • [44] ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.

    • [45] BABU A,ARORA H S,GREWAL H S.Microwaveassisted post-processing of detonation gun-sprayed coatings for better slurry and cavitation erosion resistance[J].Journal of Thermal Spray Technology,2019,28(7):1565-1578.

    • [46] WU J,ZHANG S D,SUN W H,et al.Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings[J].Surface & Coatings Technology,2018,335:205-218.

    • [47] ZHANG X,WANG Z,LIN J,et al.A study on high temperature oxidation behavior of high-velocity arc sprayed Fe-based coatings[J].Surface & Coatings Technology,2015,283:255-261.

    • [48] HAN L,DONG S,WANG E.Transition-metal(Co,Ni,and Fe)-based electrocatalysts for the water oxidation reaction[J].Advanced Materials,2016,28(42):9266-9291.

    • [49] 陶翀,吴玉萍,高华,等.超音速火焰喷涂 Fe-Cr-Ni 基涂层的组织与性能研究[J].金属热处理,2008(7):46-49.TAO Chong,WU Yuping,GAO Hua,et al.Microstructure and properties of Fe-Cr-Ni based alloy spraying coated by high velocity oxygen fuel[J].Heat Treatment of Metals,2008(7):46-49.(in Chinese)

    • [50] QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2018,52:142-149.

    • [51] LIN J,WANG Z,CHENG J,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2018,12:597-602.

    • [52] PUSHIN V,KURANOVA N,MARCHENKOVA E,et al.Design and development of Ti-Ni,Ni-Mn-Ga and Cu-Al-Ni-based alloys with high and low temperature shape memory effects[J].Materials,2019,12(16):2616.

    • [53] 杨二娟,李太江,李巍,等.HVOF/HVAF 制备镍基涂层的抗热腐蚀性能[J].金属热处理,2018,43(7):209-214.YANG Erjuan,LI Taijiang,LI Wei,et al.Thermal corrosion resistance of Ni-based coating prepared by HVOF/HVAF[J].Heat Treatment of Metals,2018,43(7):209-214.(in Chinese)

    • [54] STELLA J,SCHÜLLER E,HEßING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2005,260(9-10):1020-1027.

    • [55] HONG S,WU Y P,WANG Q,et al.Cavitation silt erosion behaviour of HVOF sprayed nickel based alloy coatings[J].Surface Engineering,2013,29(8):588-593.

    • [56] MITSUNOBU T,KOIZUMI Y,LEE B,et al.Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co-Cr-Mo-N alloys[J].Acta Materialia,2014,81:377-385.

    • [57] ZHANG H J,CHEN X,GONG Y,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2019,60:104760.

    • [58] DING H Q,JIANG S Y,XU J.Cavitation erosion resistance of ZrC nanoceramic coating[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2020,234(6):833-841.

    • [59] MARKO P,MARINA D,SANJA M,et al.Determination of degradation level during cavitation erosion of zircon based ceramic[J].Science of Sintering,2017,49(2):175-185.

    • [60] GONG X,HE W,LI Z,et al.Microstructural effect of α-Sialon ceramic on the resistance to cavitation erosion in deionized water[J].Ceramics International,2014,40(5):7161-7169.

    • [61] LV J J,KARL-HEINZ Z G,SCHNEIDER J.Microstructural effects on the resistance to cavitation erosion of ZrO2 ceramics in water[J].Wear,2008,265(11):1680-1686.

    • [62] SZALA M,ŁATK L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings[J].Processes,2020,8(12):1544.

    • [63] SILVEIRA L L,PUKASIEWICZ A G M,DE AGUIAR D J M,et al.Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings[J].Surface & Coatings Technology,2019,347:910-922.

    • [64] GABRIEL T,FABRICE P,SEBASTIEN L,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.

    • [65] 丁彰雄,石琎,丁翔,等.超音速火焰喷涂 WC-Co(Cr)涂层在NaCl溶液中抗空蚀性能研究[J].船海工程,2016,45(1):86-90.DING Zhangxiong,SHI Jin,DING Xiang,et al.Resistance of cavitation erosion of HVOF sprayed WC-Co(Cr)coating in NaCl solution[J].Ship & Ocean Engineering,2016,45(1):86-90.(in Chinese)

    • [66] AKIHIRO K,KAITO T,MASAYUKI A.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [67] MAN,GUO L,CHENG Z,et al.Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure[J].Applied Surface Science,2014,320:364-371.

    • [68] BARBEZAT G,NICOL A R,JIN Y S,et al.Abrasive wear performance of Cr3C2-25%NiCr coatings by plasma spray and CDS detonation spray[J].Tribology Transactions,1995,38(4):845-850.

    • [69] MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF and HVAF sprayed coatings:Abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.

    • [70] KIM S,GALKIN V,JEONG J,KUCHI R,et al.Enhanced magnetic and structural properties of chemically prepared Nd-Fe-B particles by reduction-diffusion method through optimization of heat treatments[J].Journal of Alloys and Compounds,2021,869:159337.

    • [71] 孙凯,安宁,付拴拴,等.热处理对铁基复合材料性能的影响[J].热加工工艺,2012,41(12):200-201.SUN Kai,AN Ning,FU Shuanshuan,et al.Effects of heat treatment on properties of iron-based composite materials[J].Hot Working Technology,2012,41(12):200-201.(in Chinese)

    • [72] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393403.

    • [73] BABU A,ARORA H S,SINGH H,et al.Microwave synthesized composite claddings with enhanced cavitation erosion resistance[J].Wear,2019,422:242-251.

    • [74] NAIR R B,ARORA H,GREWAL H S.Microwave synthesized complex concentrated alloy coatings:plausible solution to cavitation induced erosion-corrosion[J].Ultrasonics Sonochemistry,2018,50:114-125.

    • [75] MORISADA Y,FUJII H,MIZUNO T,et al.Modification of thermally sprayed cemented carbide layer by friction stir processing[J].Surface & Coatings Technology,2010,204(15):2459-2464.

    • [76] PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing[J].Applied Surface Science,2016,396:1635-1648.

    • [77] PEAT T,GALLOWAY A,TOUMPIS A,et al.Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing[J].Materials & Design,2017,120:22-35.

  • 参考文献

    • [1] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation erosion[J].China Basic Science,2010,12(6):3-7.(in Chinese)

    • [2] OPARE W,KANG C,WEI X,et al.Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology 2020,234(9):1425-1435.

    • [3] TAN K L,YEO S H.Velocity estimation of micro-particles driven by cavitation bubble collapses through controlled erosion experiments[J].International Journal of Multiphase Flow,2020,127:103271.

    • [4] AI W J,LO K H,KWOK C T.Cavitation erosion of a spinodally decomposed wrought duplex stainless steel in a benign environment[J].Wear,2019,424-425:111-121.

    • [5] WANG Y,WU J H,MA F.Cavitation erosion of AISI1045 steel in polyacrylamide solutions[J].Wear,2018,414-415:227-233.

    • [6] 林翠,赵晓斌,张翼飞.金属材料的空化腐蚀行为及影响因素研究进展[J].中国腐蚀与防护学报,2016,36(1):11-19.LIN Cui,ZHAO Xiaobin,ZHANG Yifei,et al.Research progress on cavitation-corrosion of metallic materials[J].Journal of Chinese Society for Corrosion and Protection,2016,36(1):11-19.(in Chinese)

    • [7] 梁亮,刘皝,庞佑霞,等.冲击形式产生的冲蚀、空蚀和腐蚀联合磨损试验研究[J].润滑与密封,2019,44(8):42-48.LIANG Liang,LIU Huang,PANG Youxia,et al.Experimental study on erosion,cavitation and corrosion combined wear caused by impact[J].Lubrication Engineering,2019,44(8):42-48.(in Chinese)

    • [8] 骆超,吴建华,吴瑜.金属材料空蚀试验方法研究进展 [J].水利水电科技进展,2007,27(5):90-94.LUO Chao,WU Jianhua,WU Yu.Comparison of cavitation erosion test methods for metallic materials[J].Advances in Science and Technology Water of Sources,2007,27(5):90-94.(in Chinese)

    • [9] 杨小佳,刘智勇,张达威,等.工业纯钛TA2在含硫化物深海水环境中的应力腐蚀行为[J].中国表面工程,2019,32(4):17-26.YANG Xiaojia,LIU Zhiyong,ZHANG Dawei,et al.Stress corrosion cracking behavior of industrial pure titanium TA2 in sulfide containing deep seawater environment[J].China Surface Engineering,2019,32(4):17-26.(in Chinese)

    • [10] 张伟,杨朴,朱兵.云空化结构的溃灭与空蚀风险预估研究进展[J].空气动力学学报,2020,38(4):761-770.ZHANG Wei,YANG Pu,ZHU Bing.Review of cloud cavitation structure collapse and its prediction of erosion risk[J].Acta Aerodynamica Sinica,2020,38(4):961-770.(in Chinese)

    • [11] HOU G L,ZHAO X Q,ZHOU H D,et al.Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater[J].Wear,2014,311(1-2):81-92.

    • [12] KROGSTAD H N,JOHNSEN R.Corrosion properties of nickel-aluminium bronze in natural seawater effect of galvanic coupling to UNS S31603[J].Corrosion Science,2017,121:43-56.

    • [13] PAOLANTONIO M,HANKE S.Damage mechanisms in cavitation erosion of nitrogen-containing austenitic steels in 3.5% NaCl solution[J].Wear,2021,464-465:12.

    • [14] 鄂猛,胡红祥,国旭明,等.钴基和镍基涂层的微观组织及空蚀性能[J].材料热处理学报,2018,39(1):90-96.E Meng,HU Hongxiang,GUO Xuming,et al.Microstructure and cavitation erosion resistance of cobalt-based and nickel-based coatings[J].Transactions of Materials and Heat Treatment,2018,39(1):90-96.(in Chinese)

    • [15] 王维夫,陈军,徐贤统,等.铝合金电火花沉积层的组织和抗空蚀性能[J].材料热处理学报,2013,34(6):120-124.WANG Weifu,CHEN Jun,XU Xiantong,et al.Microstructure and cavitation erosion resistance of aluminum alloy electrodeposited layer[J].Transactions of Materials and Heat Treatment,2013,34(6):120-124.(in Chinese)

    • [16] LUO Q,ZHANG Q,QIN Z B,et al.The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy[J].Journal of Alloys and Compounds,2018,747:861-868.

    • [17] SONG Q N,ZHENG Y G,et al.Studies of the nobility of phases using scanning Kelvin probe microscopy and its relationship to corrosion behaviour of Ni-Al bronze in chloride media[J].Corrosion Science,2015,92:95-103.

    • [18] SONG Q N,XU N,BAO Y F,et al.Corrosion and cavitation erosion behaviors of two marine propeller materials in clean and sulfide-polluted 3.5% NaCl solutions[J].Acta Metallurgica Sinica(English Letters),2017,30(8):712-720.

    • [19] ZHANG L M,MA A L,YU H,et al.Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater[J].Tribology International,2019,136:250-258.

    • [20] BASUMATARY J,WOOD R J K.Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution[J].Tribology International,2020,147:104834.

    • [21] HONG S,WU Y P,ZHANG J F,et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5 wt% NaCl solution[J].Transactions of the Indian Institute of Metals,2015,68(1):151-159.

    • [22] WEI Z,WU Y P,HONG S,et al.Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel(HVOF)sprayed AlCoCrFeNi high-entropy alloy coating in different solutions[J].Surface & Coatings Technology,2021,409:126899.

    • [23] CHEN H S,LI J.A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipient cavitation erosion[J].Wear,2008,266(7-8):884-887.

    • [24] LI J,WU B,CHEN H S.Formation and development of iridescent rings around cavitation erosion pits[J].Tribology Letters,2013,52(3):495-500.

    • [25] BORDEASU I,MITELEA I,LAZAR I,et al.Cavitation erosion behaviour of cooper base layers deposited by HVOF thermal spraying[J].Revista de Chimie Bucharest Original Edition,2017,68(12):2914-2917.

    • [26] KOGA G Y,WOLF W,SCHULZ R,et al.Corrosion and wear properties of FeCrMnCoSi HVOF coatings[J].Surface & Coatings Technology,2019,357:993-1003.

    • [27] 林翠,杨颖,赵晓斌.钝态金属的空蚀研究方法和研究进展[J].腐蚀与防护,2018,39(5):369-374,394.LIN Cui,YANG Ying,ZHAO Xiaobin,et al.Research methods and research progress for cavitation corrosion of passive metals[J].Corrosion & Protection,2018,39(5):369-374,394.(in Chinese)

    • [28] FLANNIGAN D J,SUSLICK K S.Plasma formation and temperature measurement during single-bubble cavitation[J].Nature,2005,434(7029):52-55.

    • [29] JIANG L,HU Y J,SUN K,et al.Irradiation induced ‐ extremes create hierarchical face-/body-centered-cubic phases in nanostructured high entropy alloys[J].Advanced Materials,2020,32(39):2002652.

    • [30] 石绪忠.舰船螺旋桨用涂层技术研究进展[J].腐蚀科学与防护技术,2017,29(2):199-203.SHI Xuzhong.Research progress of coatings used on marine propeller[J].Corrosion Science and Protection Technology,2017,29(2):199-203.(in Chinese)

    • [31] 朱晶,姜元军,何大川.船用螺旋桨典型腐蚀类型与防护措施研究进展[J].腐蚀科学与防护技术,2019,31(4):443-448.ZHU Jing,JIANG Yuanjun,HE Dachuan,et al.Research progress on corrosion and prevention measure of marine propeller[J].Corrosion Science and Protection Technology,2019,31(4):443-448.(in Chinese)

    • [32] ZHANG P,JIANG J H,MA A B,et al.Cavitation erosion resistance of WC-Cr-Co and Cr3C2-NiCr coatings prepared by HVOF[J].Advanced Materials Research,2007,15-17:199-204.

    • [33] VARIS T,SOHONEN T,LAAKSO J,et al.Evaluation of residual stresses and their influence on cavitation erosion resistance of high kinetic HVOF and HVAF-sprayed WC-CoCr coatings[J].Journal of Thermal Spray Technology,2020,29(6):1365-1381.

    • [34] LAVIGNE S,POUGOUM F,SAVOIE S,et al.Cavitation erosion behavior of HVOF CaviTec coatings[J].Wear,2017,386-387:90-98.

    • [35] ZHANG H J,GONG Y,CHEN X,et al.A comparative study of cavitation erosion resistance of several HVOF-sprayed coatings in deionized water and artificial seawater[J].Journal of Thermal Spray Technology,2019,28(5):1060-1071.

    • [36] HAO E K,LIU X,AN Y L,et al.The coupling effect of immersion corrosion and cavitation erosion of NiCoCrAlYTa coatings in artificial seawater[J].Corrosion Science,2020,169:108635.

    • [37] HOU G L,REN Y,ZHANG X L,et al.Cavitation erosion mechanisms in Co-based coatings exposed to seawater[J].Ultrasonics Sonochemistry,2020,60:104799.

    • [38] MAYER A R,BERTUOL K,SIQUEIRA I,et al.Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process[J].Ultrasonics Sonochemistry,2020,69:105271.

    • [39] DING X,CHENG X D,YU X,et al.Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC-10Co4Cr coating[J].Transactions of Nonferrous Metals Society of China,2018,28(3):487-494.

    • [40] WANG Y,DARUT G,POIRIRE T,et al.Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes[J].Tribology International,2017,111:226-233.

    • [41] DENG W,AN Y L,ZHAO X Q,et al.Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater[J].Surface & Coatings Technology,2020,399:126133.

    • [42] DENG W,AN Y L,HOU G L,et al.Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings[J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [43] DU J,ZHANG J F,ZHANG C.Effect of heat treatment on the cavitation erosion performance of WC-12Co coatings[J].Coatings,2019,9(10):690.

    • [44] ARORA H S,RANI M,PERUMAL G,et al.Enhanced cavitation erosion-corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing[J].Journal of Thermal Spray Technology,2020,29(5):1183-1194.

    • [45] BABU A,ARORA H S,GREWAL H S.Microwaveassisted post-processing of detonation gun-sprayed coatings for better slurry and cavitation erosion resistance[J].Journal of Thermal Spray Technology,2019,28(7):1565-1578.

    • [46] WU J,ZHANG S D,SUN W H,et al.Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings[J].Surface & Coatings Technology,2018,335:205-218.

    • [47] ZHANG X,WANG Z,LIN J,et al.A study on high temperature oxidation behavior of high-velocity arc sprayed Fe-based coatings[J].Surface & Coatings Technology,2015,283:255-261.

    • [48] HAN L,DONG S,WANG E.Transition-metal(Co,Ni,and Fe)-based electrocatalysts for the water oxidation reaction[J].Advanced Materials,2016,28(42):9266-9291.

    • [49] 陶翀,吴玉萍,高华,等.超音速火焰喷涂 Fe-Cr-Ni 基涂层的组织与性能研究[J].金属热处理,2008(7):46-49.TAO Chong,WU Yuping,GAO Hua,et al.Microstructure and properties of Fe-Cr-Ni based alloy spraying coated by high velocity oxygen fuel[J].Heat Treatment of Metals,2008(7):46-49.(in Chinese)

    • [50] QIAO L,WU Y P,HONG S,et al.Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J].Ultrasonics Sonochemistry,2018,52:142-149.

    • [51] LIN J,WANG Z,CHENG J,et al.Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J].Results in Physics,2018,12:597-602.

    • [52] PUSHIN V,KURANOVA N,MARCHENKOVA E,et al.Design and development of Ti-Ni,Ni-Mn-Ga and Cu-Al-Ni-based alloys with high and low temperature shape memory effects[J].Materials,2019,12(16):2616.

    • [53] 杨二娟,李太江,李巍,等.HVOF/HVAF 制备镍基涂层的抗热腐蚀性能[J].金属热处理,2018,43(7):209-214.YANG Erjuan,LI Taijiang,LI Wei,et al.Thermal corrosion resistance of Ni-based coating prepared by HVOF/HVAF[J].Heat Treatment of Metals,2018,43(7):209-214.(in Chinese)

    • [54] STELLA J,SCHÜLLER E,HEßING C,et al.Cavitation erosion of plasma-sprayed NiTi coatings[J].Wear,2005,260(9-10):1020-1027.

    • [55] HONG S,WU Y P,WANG Q,et al.Cavitation silt erosion behaviour of HVOF sprayed nickel based alloy coatings[J].Surface Engineering,2013,29(8):588-593.

    • [56] MITSUNOBU T,KOIZUMI Y,LEE B,et al.Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co-Cr-Mo-N alloys[J].Acta Materialia,2014,81:377-385.

    • [57] ZHANG H J,CHEN X,GONG Y,et al.In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings[J].Ultrasonics Sonochemistry,2019,60:104760.

    • [58] DING H Q,JIANG S Y,XU J.Cavitation erosion resistance of ZrC nanoceramic coating[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2020,234(6):833-841.

    • [59] MARKO P,MARINA D,SANJA M,et al.Determination of degradation level during cavitation erosion of zircon based ceramic[J].Science of Sintering,2017,49(2):175-185.

    • [60] GONG X,HE W,LI Z,et al.Microstructural effect of α-Sialon ceramic on the resistance to cavitation erosion in deionized water[J].Ceramics International,2014,40(5):7161-7169.

    • [61] LV J J,KARL-HEINZ Z G,SCHNEIDER J.Microstructural effects on the resistance to cavitation erosion of ZrO2 ceramics in water[J].Wear,2008,265(11):1680-1686.

    • [62] SZALA M,ŁATK L,AWTONIUK M,et al.Neural modelling of APS thermal spray process parameters for optimizing the hardness,porosity and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings[J].Processes,2020,8(12):1544.

    • [63] SILVEIRA L L,PUKASIEWICZ A G M,DE AGUIAR D J M,et al.Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings[J].Surface & Coatings Technology,2019,347:910-922.

    • [64] GABRIEL T,FABRICE P,SEBASTIEN L,et al.Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings[J].Wear,2016,364:201-210.

    • [65] 丁彰雄,石琎,丁翔,等.超音速火焰喷涂 WC-Co(Cr)涂层在NaCl溶液中抗空蚀性能研究[J].船海工程,2016,45(1):86-90.DING Zhangxiong,SHI Jin,DING Xiang,et al.Resistance of cavitation erosion of HVOF sprayed WC-Co(Cr)coating in NaCl solution[J].Ship & Ocean Engineering,2016,45(1):86-90.(in Chinese)

    • [66] AKIHIRO K,KAITO T,MASAYUKI A.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [67] MAN,GUO L,CHENG Z,et al.Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure[J].Applied Surface Science,2014,320:364-371.

    • [68] BARBEZAT G,NICOL A R,JIN Y S,et al.Abrasive wear performance of Cr3C2-25%NiCr coatings by plasma spray and CDS detonation spray[J].Tribology Transactions,1995,38(4):845-850.

    • [69] MATIKAINEN V,KOIVULUOTO H,VUORISTO P.A study of Cr3C2-based HVOF and HVAF sprayed coatings:Abrasion,dry particle erosion and cavitation erosion resistance[J].Wear,2020,446:203188.

    • [70] KIM S,GALKIN V,JEONG J,KUCHI R,et al.Enhanced magnetic and structural properties of chemically prepared Nd-Fe-B particles by reduction-diffusion method through optimization of heat treatments[J].Journal of Alloys and Compounds,2021,869:159337.

    • [71] 孙凯,安宁,付拴拴,等.热处理对铁基复合材料性能的影响[J].热加工工艺,2012,41(12):200-201.SUN Kai,AN Ning,FU Shuanshuan,et al.Effects of heat treatment on properties of iron-based composite materials[J].Hot Working Technology,2012,41(12):200-201.(in Chinese)

    • [72] ZHENG Z B,ZHENG Y G,SUN W H,et al.Effect of heat treatment on the structure,cavitation erosion and erosion-corrosion behavior of Fe-based amorphous coatings[J].Tribology International,2015,90:393403.

    • [73] BABU A,ARORA H S,SINGH H,et al.Microwave synthesized composite claddings with enhanced cavitation erosion resistance[J].Wear,2019,422:242-251.

    • [74] NAIR R B,ARORA H,GREWAL H S.Microwave synthesized complex concentrated alloy coatings:plausible solution to cavitation induced erosion-corrosion[J].Ultrasonics Sonochemistry,2018,50:114-125.

    • [75] MORISADA Y,FUJII H,MIZUNO T,et al.Modification of thermally sprayed cemented carbide layer by friction stir processing[J].Surface & Coatings Technology,2010,204(15):2459-2464.

    • [76] PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing[J].Applied Surface Science,2016,396:1635-1648.

    • [77] PEAT T,GALLOWAY A,TOUMPIS A,et al.Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing[J].Materials & Design,2017,120:22-35.

  • 手机扫一扫看