en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

葛倩倩,女,1998年出生,硕士。主要研究方向为超疏水材料的开发与制备。E-mail:geqianqian0807@foxmail.com;

鲁浈浈(通信作者),女,1986年出生,博士,教授,博士研究生导师。主要研究方向为光催化材料、超疏水材料的开发与制备。E-mail:luzz@foxmail.com

中图分类号:U414

DOI:10.11933/j.issn.1007−9289.20210429002

参考文献 1
DAS S,KUMAR S,SAMAL S K,et al.A review on superhydrophobic polymer nanocoatings:Recent development and applications[J].Industrial & Engineering Chemistry Research,2018,57(8):2727-2745.
参考文献 2
ZHAO Z Q,WANG H Y,LIU Z J,et al.Durable fluorine-free superhydrophobic polyether sulfone(PES)composite coating with uniquely weathering stability,anti-corrosion and wear-resist-ance[J].Progress in Organic Coatings,2019,127:16-26.
参考文献 3
HUANG Y F,YI S P,LV Z S,et al.Facile fabrication of superhydrophobic coatings based on two silica sols[J].Colloid and Polymer Science,2016,294(9):1503-1509.
参考文献 4
WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with anti-icing,UV-durability,and corrosion resistance properties[J].ACS Applied Materials and Interfaces,2015,7(11):6260-6272.
参考文献 5
LV J Y,SONG Y L,JIANG L,et al.Bio-inspired strategies for anti-icing[J].ACS Nano,2014,8(4):3152-3169.
参考文献 6
YOON H,KIM H,LATTHE S S,et al.A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J].Journal of Materials Chemistry A,2015,3(21):11403-11410.
参考文献 7
GUNTARI S N,KHIN A C H,WONG E H H,et al.(Super)hydrophobic and multilayered amphiphilic films prepared by continuous assembly of polymers[J].Advanced Functional Materials,2013,23(41):5159-5166.
参考文献 8
LAI Y K,TANG Y X,GONG J J,et al.Transparent superhydrophobic/superhydrophobic TiO2-based coatings for self-cleaning and antifogging[J].Journal of Materials Chemistry,2012,22(15):7420-7426.
参考文献 9
马万鹏,张伟,赵阳等.微胶囊自修复材料的修复反应[J].高分子通报,2015(8):17-28.MA Wanpeng,ZHANG Wei,ZHAO Yang,et al.Healing chemistry for self-healing material based on microcapsule[J].Polymer Bulletin,2015(8):17.(in Chinese)
参考文献 10
WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.
参考文献 11
SIVA T,SATHIYANARAYANAN S.Self healing coatings containing dual active agent loaded urea formaldehyde(UF)microcapsules[J].Progress in Organic Coatings,2015,82:57-67.
参考文献 12
LI J,HUGHES A D,KALANTAR T H,et al.Pickering-emulsion-templated encapsulation of a hydrophilic amine and its enhanced stability using poly(allyl amine)[J].ACS Macro Letters,2014,3(10):976-980.
参考文献 13
SONG Y K,JO Y H,LIM Y J,et al.Sunlight-induced self-healing of a microcapsule-type protective coating[J].ACS Applied Materials & Interfaces,2013,5(4):1378-1384.
参考文献 14
DONG B Q,WANG Y S,DING W J,et al.Electrochemical impedance study on steel corrosion in the simulated concrete system with a novel self-healing microcapsule[J].Construction&Building Materials,2014,56:1-6.
参考文献 15
郭自灿.自愈合微胶囊在RAS沥青混合料中的应用[J].新型建筑材料,2018,45(6):104-108.GUO Zican.Application of self-healing microcapsules in RAS asphalt mixture[J].New Building Materials,2018,45(6):104-108.(in Chinese)
参考文献 16
BAH M G,BILAL H M,WANG Jingtao.Fabrication and application of complex microcapsules:A review[J].Soft Matter,2020,16(3):570-590.
参考文献 17
NEWNHAM R E,RUSCHAU G R.Electromechanical properties of smart materials[J].Journal of Intelligent Material Systems and Structures,1993,4(3):289-294.
参考文献 18
GARCIA A,SCHLANGEN E,VANDE V M,et al.Preparation of capsules containing rejuvenators for their use in asphalt concrete[J].Journal of Hazardous Materials,2010,184(1-3):603-611.
参考文献 19
唐璇,任蕊,雷珂等.原位聚合法制备聚 α-烯烃减阻剂微囊的工艺研究[J].应用化工,2017,46(12):2370-2373.TANG Xuan,REN Rui,LEI Ke,et al.Study on preparation of coated poly alpha olefin drag reduction agent microcapsules by insitu polymerization[J].Applied Chemical Industry,2017,46(12):2370-2373.(in Chinese)
参考文献 20
ZHANG Z,KANG G D,YU H J,et al.From reverse osmosis to nanofiltration:precise control of the pore size and charge of polyamide membranes via interfacial polymerization[J].Desalination,2019,466:16-23.
参考文献 21
汪海平,胡思前,张远方.溶剂挥发法制备苯乙烯微胶囊[J].化工新型材料,2012,40(3):52-53.WANG Haiping,HU Siqian,ZHANG Yuanfang.Preparation of styrene microcapsules by solvent evaporation method[J].New Chemical Materials,2012,40(3):52-53.(in Chinese)
参考文献 22
MANOJ A,RAMACHANDRAN R,MENEZES P L.Self-healing and superhydrophobic coatings for corrosion inhibition and protection[J].The International Journal of Advanced Manufacturing Technology,2020,106(5):2119-2131.
参考文献 23
MEN X H,ZHANG Z Z,YANG J,et al.Spray-coated superhydrophobic coatings with regenerability[J].New Journal of Chemistry,2011,35(4):881-886.
参考文献 24
WANG Q,LI J L,ZHANG C L,et al.Regenerative superhydrophobic coating from microcapsules[J].Journal of Materials Chemistry,2010,20(16):3211-3215.
参考文献 25
RASITHA T P,VANITHAKUMARI S C,GEORGE R P,et al.Porous microcapsule-based regenerating superhydrophobic coating on 304L SS and its corrosion properties[J].Journal of Materials Engineering and Performance,2019,28(11):7047-7057.
参考文献 26
WU Y J,SI T Y,SHAO J X,et al.Near-infrared light-driven Janus capsule motors:Fabrication,propulsion,and simulation[J].Nano Research,2016,9(12):3747-3756.
参考文献 27
LI W,WU G,TAN J H,et al.Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light[J].Journal of Materials Science,2019,54(10):7702-7718.
参考文献 28
LI W,ZHANG X H,YU X F,et al.Near infrared light responsive self-healing superhydrophobic coating based on solid wastes[J].Journal of Colloid and Interface Science,2020,560:198-207.
参考文献 29
LIU Y H,PEI X W,LIU Z L,et al.Accelerating the healing of superhydrophobicity through photothermogenesis[J].Journal of Materials Chemistry A,2015,3(33):17074-17079.
参考文献 30
QIANG S Y,CHEN K L,YIN Y J,et al.Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability[J].Materials & Design,2017,116:395-402.
参考文献 31
CHEN K L,ZHOU J L,CHE X G,et al.One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings[J].Journal of Colloid and Interface Science,2020,566:401-410.
参考文献 32
RAO Q Q,CHEN K L,WANG C X.Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J].RSC Advances,2016,6(59):53949-53954.
参考文献 33
CHEN K L,ZHOU S X,YANG S,et al.Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J].Advanced Functional Materials,2015,25(7):1035-1041.
参考文献 34
SHANG B,CHEN M,WU L M.Fabrication of UV-triggered liquid-repellent coatings with long-term self-repairing performance[J].ACS Applied Materials & Interfaces,2018,10(37):31777-31783.
参考文献 35
ZHU Y Y,CHEN M,WU L M.Synthesis of UV-responsive dual-functional microspheres for highly efficient self-healing coatings[J].Chemical Engineering Journal,2021,422:130034.
参考文献 36
UZOMA P C,LIU F C,HAN E H.Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J].Journal of Materials Science & Technology,2020,45:70-83.
参考文献 37
FAN W J,ZHANG Y,LI W H,et al.Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating[J].Chemical Engineering Journal,2019,368:1033-1044.
参考文献 38
MA C Q,SHI W Z,LIU J S,et al.Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly(vinyl alcohol)/phase change microcapsule composites[J].Society of Chemical Industry,2021,70:803-811.
参考文献 39
PAN S Y,CHEN M,WU L M.Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J].ACS Applied Materials & Interfaces,2020,12(4):5157-5165.
参考文献 40
CONG Y,CHEN K L,ZHOU S X,et al.Synthesis of pH and UV dual-responsive microcapsules with high loading capacity and their application in self-healing hydrophobic coatings[J].Journal of Materials Chemistry A,2015,3(37):19093-19099.
参考文献 41
CHEN K L,GU K,QIANG S Y,et al.Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J].RSC Advances,2017,7(1):543-550.
参考文献 42
LI W,NI X X,ZHANG X H,et al.UV-NIR Dual-responsive nanocomposite coatings with healable,superhydrophobic,and contaminant-resistant properties[J].ACS Applied Materials & Interfaces,2020,12(42):48101-48108.
参考文献 43
NI X X,GAO Y J,ZHANG X H,et al.An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres[J].Chemical Engineering Journal,2021,406:126725.
参考文献 44
LIU Q Z,WANG X L,YU B,et al.Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J].Langmuir,2012,28(13):5845-5849.
参考文献 45
LIU Y H,LIU Y P,HU H Y,et al.Mechanically induced self-healing superhydrophobicity[J].The Journal of Physical Chemistry C,2015,119(13):7109-7114.
参考文献 46
WU G,AN J L,TANG X Z,et al.A versatile approach towards multifunctional robust microcapsules with tunable,restorable,and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J].Advanced Functional Materials,2014,24(43):6751-6761.
参考文献 47
HUANG M X,ZHANG H,YANG J L.Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings[J].Corrosion Science,2012,65:561-566.
参考文献 48
HONES R,RUHE J.Extending the lotus effect:repairing superhydrophobic surfaces after contamination or damage by chic chemistry[J].Langmuir,2018,34(29):8661-8669.
目录contents

    摘要

    超疏水涂层在自清洁、防腐蚀、抗凝冰、减阻等领域具有广阔的应用前景,但其耐久性还有待提高。由于微胶囊在修复剂的封装、制备等方面具备独特优势,利用微胶囊技术将修复剂封装,均匀分散于超疏水涂层后,涂层可同时具有疏水性和自修复性,但目前对微胶囊技术与超疏水涂层结合并进行归纳总结的文献较少。总结了微胶囊技术在超疏水材料自修复领域的研究现状,归纳了微胶囊超疏水涂层自修复的修复机理与常用制备方法,对不同刺激响应方式下微胶囊超疏水涂层的性能(响应速度、自修复效果、耐久性、耐磨性)进行对比。结果表明,以紫外光照射为修复手段的涂层机械耐久性较好,近红光刺激响应是微胶囊超疏水自修复涂层中响应修复效率最快、修复效果最好的修复方式,并且以紫外光和近红光双重刺激响应的超疏水涂层的耐久性、耐化学腐蚀性远超过单一刺激响应型超疏水自修复涂层。最后,提出当前基于微胶囊技术的超疏水自修复涂层存在的问题并对该涂层的应用前景进行展望。

    Abstract

    Superhydrophobic coating can be used in diverse areas such as self-cleaning, anti-corrosive, anti-icing, drag reduction and so on, but the durability of superhydrophobic coating needs to be improved. Microcapsules have unique advantages in encapsulation and preparation of repair agents. Microcapsules are used to encapsulate the repair remediation agent into the superhydrophobic coating, which has superhydrophobic and self-healing properties. However, few researchers have summarized the combination of microcapsules and superhydrophobic coating. The research status of superhydrophobic coatings is summarized. Meanwhile, the healing mechanism and the preparation methods of superhydrophobic coating are provided. The performance of the prepared superhydrophobic coating with self-healing characteristic responded to different patterns is compared. The comparison includes response speed, self-healing, durability, and abrasion resistance. By comparison, it turns out that the self-healing of superhydrophobic coatings excited by ultraviolet (UV) irradiation possesses the best mechanical endurance. And the durability and chemical corrosion resistance of the superhydrophobic coatings simulated by UV and near red light are much better than those superhydrophobic coatings simulated by a single factor. Finally, the existing problems of superhydrophobic and self-healing coating based on microcapsule are proposed and the application prospect are prospected.

  • 0 前言

  • 超疏水涂层是利用复合材料制成的水滴接触角 (CA)大于150°且滚动角(SA)低于10°的表面,在自清洁、防水、抗黏附、减阻、防腐蚀、防覆冰、油水分离、防雾等方向具有广阔的应用前景[1-8]。然而,在实际应用过程中,涂层表面容易遭到不同程度的物理或化学损伤,这些损伤会消耗超疏水涂层中的低表面能物质或破坏涂层内部微纳结构,从而使涂层的疏水性能降低、使用寿命减少。因此,涂层的机械耐久性和耐化学腐蚀性等性能亟需提升。

  • 针对上述问题,研究者们提出一种具有自修复功能的超疏水涂层,根据实现自修复的机理可将自修复技术分为本征型和埋植型两大类[9]。其中,本征型自修复是指借助可逆的化学反应,在不添加任何修复剂的情况下,通过材料本身或外界刺激使材料完成自修复;埋植型自修复即外援型自修复,主要通过在材料中预先埋入包覆修复剂的载体,当基体受到作用时载体破裂,修复剂流出从而进行修复。埋植型自修复主要有在基体中埋设微胶囊、纤维管、碳纳米管等。与本征型自修复相比,埋植型自修复具有响应速度快、制备简单、与材料结合稳定等优点。

  • 目前微胶囊技术在木材及金属防腐、混凝土开裂自修复等领域中应用广泛。其作用机理为涂层表面的化学物质被破坏后,可通过一些外部的条件变化,使材料内部的化学成分向涂层表面迁移,重新恢复原有性能。研究表明,添加微胶囊的木材涂层具备自修复功能,可以延长木材制品的使用寿命[10-11]。在金属表面涂覆的超疏水涂层中添加微胶囊会在涂层受损后形成一层保护膜,延长其防金属腐蚀、覆冰的服役时长[12]。将微胶囊技术应用于道路材料中,可使水泥混凝土[13-14]、沥青混凝土[15]的裂缝随养护时间的增长而逐渐愈合。由于微胶囊在修复剂的封装、制备等方面显示出独特的优势,基于微胶囊技术的自修复涂层成为超疏水材料领域的研究热点。本文对微胶囊在超疏水材料自修复领域的研究现状进行总结,归纳了微胶囊超疏水涂层自修复的修复机理与常用制备方法,对比不同刺激响应方式下微胶囊超疏水涂层的性能,并对该领域的发展趋势进行展望。

  • 1 微胶囊技术

  • 1.1 微胶囊概念

  • 微胶囊技术是采用纳米、微米尺度的微型容器或微型包装物将不同功能材料进行封装,控制化合物的释放,防止功能材料受温度、光线、氧气和水分等环境影响的一种方法。如图1所示,功能材料作为芯材,可采用液滴、固体或分散体等形式[16]。包覆芯材的物质称为囊壳。根据微胶囊的不同结构,可将微胶囊分为单芯、多芯和基质型三类。

  • 图1 微胶囊结构[16]

  • Fig.1 Morphologies of the microcapsule[16]

  • 1.2 微胶囊自修复体系形成

  • 20世纪30年代,微胶囊起源于医药行业,直至20世纪70年代中期开始逐渐应用于军事、建筑等领域。材料自愈合的概念是美国军方在20世纪80年代中期首次提出的[17]。进入21世纪后,微胶囊技术逐渐与建筑材料结合,WHITE等[10]将微胶囊应用于木材涂料后,在微胶囊的自修复技术领域取得开创性的发现,即木材表面涂层受损开裂即可自行修复。随后, GARCIA等[18]将微胶囊技术应用于提高沥青自修复能力的研究中,微胶囊技术与沥青材料自修复结合日趋成熟。与传统修补裂缝的养护方法相比,微胶囊自修复技术在沥青材料裂缝产生初期即可进行自修复,具有节能减排、养护成本低、防止裂缝扩展和延长路面使用寿命等优势,符合沥青路面养护的发展趋势。随后,微胶囊技术不断应用于木材及金属防腐、混凝土开裂修复、超疏水涂层自修复等方面的研究。

  • 1.3 微胶囊自修复机理

  • 微胶囊自修复是对材料的破损进行修复的一种技术。修复过程如下图2所示,微胶囊自修复是将微胶囊埋植于涂层中,在外界荷载作用等情况下,聚合物材料内部破损形成微裂纹,破坏材料结构、功能甚至使聚合物降解。此时微胶囊感知到涂层中出现裂纹、破损,胶囊自动破裂,释放内部修复剂。由于毛细管作用,释放的修复剂经过运输渗透至破损处,在催化剂的作用下使涂层发生自主聚合,使涂层实现自修复。

  • 图2 微胶囊自修复材料的修复过程[10]

  • Fig.2 Repair progress of the microcapsule[10]

  • 2 微胶囊材料的制备方法

  • 微胶囊制备方法大体上可以分为化学法、物理法和物理化学法。化学法中可分为界面聚合法、原位聚合法及悬浮聚合法等,物理法中常见的有喷雾冷却法、溶剂挥发法、喷雾干燥法等,物理化学法又可分为水溶液相分离法、油相分离法和干燥浴法等。虽然制备微胶囊的方法多种多样,但目前制备微胶囊大多采用化学法。

  • 2.1 原位聚合法

  • 原位聚合法简单易行、便于控制,成为工业化生产微胶囊的首选方法[19]。原位聚合法是将单体与催化剂全部加到分散相、连续相中,使单体与催化剂全部位于芯材液滴的内部或外部。通过在液滴表面发生聚合反应形成微胶囊。原位聚合法容易控制微胶囊的粒径大小和壁材厚度,制备工艺简单、成本低,但成壳速率慢,反应时间长,一般在制备过程中需要添加催化剂。

  • 2.2 界面聚合法

  • 界面聚合法是制备微胶囊重要的方法之一。界面聚合法首先将两种发生聚合反应的油溶性单体A、水溶性单体B分别溶解于两个不混溶的C、D溶液,在溶解后的AC、BD混合溶液中添加乳化剂乳化,形成水包油或油包水乳液[20]。A、B单体逐渐扩散到两相界面,在界面上或界面附近相互作用,产生聚合物膜,包覆芯材形成微胶囊。该方法不仅对芯材单体的溶剂没有要求,还具有操作简单、成本低、包覆率高、反应速率快等优点。

  • 2.3 溶剂挥发法

  • 除了原位聚合法和界面聚合法,物理法中的溶剂挥发法也是微胶囊制备的另一常用方法。溶剂挥发法[21]主要是将固化剂和壁材溶解于不溶于水的低沸点溶剂中。由于两种材料的表面张力不同,当溶剂蒸发时,壁材使涂层固化剂的液滴沉淀形成微胶囊,从而避免固化剂在水中的损失。这种方法可以避免固化剂溶于水而流失,适用于在室温内制备微胶囊。

  • 微胶囊技术发展至今,制备微胶囊的方法已经有几百种,但由于应用领域及制备材料不同,没有哪一种方法可以满足所有情况下微胶囊的制备。因此制备微胶囊的方法需要根据微胶囊的应用领域、性能要求等因素共同确定。

  • 3 微胶囊超疏水自修复涂层的研究进展

  • 由于微胶囊技术在木材及金属防腐和混凝土开裂修复等自修复应用中日渐成熟,研究者们提出使用微胶囊封装修复剂埋植于超疏水材料中制备超疏水自修复涂层的设想。MANOJ等[22]将包裹活性剂的微胶囊与疏水涂层结合,得到既耐腐蚀又疏水的表面,证实微胶囊技术可以应用于超疏水涂层。但目前关于微胶囊超疏水涂层在特定刺激方式下实现自修复的相关研究工作较少,根据目前的研究结果总结出微胶囊超疏水涂层实现自修复的刺激方法主要有硬脂酸盐溶液浸泡、加热、近红光辐射、紫外光照射、酸碱溶液浸泡等。本文根据刺激响应类型的数量,将微胶囊超疏水自修复涂层划分为单一刺激响应型或多重刺激响应型。

  • 3.1 单一刺激响应型

  • 硬脂酸盐溶液对微胶囊超疏水涂层的自修复具有促进作用。涂层损伤后,浸入硬脂酸盐溶液后,囊芯的氢氧化钙通过微胶囊的孔扩散,与硬脂酸盐离子反应形成硬脂酸钙针状物,形成的纳米硬脂酸钙针状物具有疏水性,使涂层的超疏水性得以修复。MEN等[23]采用硬脂酸钾溶液对复合涂层进行改性,制备出自修复超疏水涂层。 WANG等[24]在微胶囊超疏水自修复涂层表面构造类似荷叶的粗糙结构,RASITHA等[25]在304L不锈钢基底上制备出一种再生微胶囊超疏水涂层。WANG、RASITHA团队均以硬质酸盐溶液浸泡作为修复手段,且受损涂层在硬质酸盐溶液中浸泡时间越长,接触角不断增加,最终实现涂层超疏水性的修复。

  • 近红外光辐射是刺激微胶囊发生自修复响应的一种方式。近红光刺激响应微胶囊超疏水涂层利用近红外光辐射产生的光热效应,使复合材料温度升高至囊壳的熔点,释放修复剂,涂层恢复疏水状态。 WU等[26]首先制备出近红光刺激响应微胶囊,随后LI等[27]制备出在近红外光照射下,裂纹可以迅速自愈合的超疏水涂层。受近红光刺激响应微胶囊的启发,LI等结合微胶囊技术与近红光刺激响应超疏水涂层,研发出近红光响应微胶囊超疏水自修复涂层。涂层内碳氟颗粒产生光热效应,使微胶囊内温度在60s内升高至囊壳熔点,释放FAS13,修复涂层的超疏水性[28]。而LIU等[29]利用光热效应提升微胶囊的响应速度,利用微胶囊涂层中的Fe3O4 纳米粒子,近红外辐射仅40s即可诱导十八胺释放使受损涂层愈合。同样是将温度升高至囊壳熔点,释放修复剂, QIANG等[30]、CHEN等[31]则通过直接加热升温使受损复合织物涂层恢复超疏水性

  • 紫外光照射是刺激微胶囊发生自修复响应的另一方式。紫外光照射后,胶囊内TiO2 纳米粒子发生光催化,使聚合物分解,释放疏水分子,恢复涂层的超疏水性。RAO等[32]与CHEN等[33]以改性TiO2/SiO2 纳米粒子为皮克林乳化剂合成了负载FAS12/FAS13的微胶囊,并应用于超疏水自修复涂层。研究发现,在微胶囊中添加硅油可以使紫外响应微胶囊超疏水自修复涂层变得光滑[34]。除利用TiO2 光催化反应之外,ZHU等[35]合成含氟硅烷的紫外响应微胶囊,应用于涂料时也可以修复涂层裂纹和超疏水性。CHEN等[33]还分析了紫外刺激响应微胶囊超疏水自修复涂层在加速老化试验下的耐久性,得到了涂层的接触角与紫外线照射时间的关系曲线,如图3所示。本文在CHEN等[33]研究的基础上,进一步分析得知,在加速老化试验仪和室外曝光下,涂层接触角随老化时间增加而不断增加,当加速老化720h后,涂层接触角保持在150°以上。室外曝光时间增加至2 160h,接触角基本稳定在152°。因此,本文认为该种涂层在紫外光照射下具有持续的超疏水性能,且涂层的耐久性良好,可推广至户外使用。

  • 图3 紫外光照射下涂层接触角的变化情况[33]

  • Fig.3 Change of contact angle of the coating under UV irradiation[33]

  • 3.2 多重刺激响应型

  • 上述近红外刺激响应、紫外刺激响应、酸碱刺激响应、加热刺激响应等类型的微胶囊均采用单一的刺激响应方式对超疏水涂层进行修复。 UZOMA等[36]通过界面聚合法制备出的多重刺激响应型涂层,可以使涂层同时具备多种修复方法。

  • 即使涂层可以使用多种方法来修复,但实现超疏水涂层的微纳结构和表面化学成分的双重修复仍具有挑战,因此这一研究方向受到了专家学者们的广泛关注。FAN等[37]首先将微胶囊引入到热敏型形状记忆聚氨酯中,根据形状记忆效应,提出一步修复表面裂缝和内部微纳结构的方法。随后,MA等[38]将相变微胶囊引入多孔聚乙烯醇 (PVA)中,研制出在80℃下放置5min就可使破碎微结构恢复的热响应型形状记忆复合材料。 PAN等[39]开发了由形状记忆微柱阵列组成的超疏水自修复涂层。由于形状记忆效应,涂层不仅可以修复受损的表面化学成分,还可以通过加热恢复破碎的涂层微结构和超疏水性。

  • 在微胶囊刺激响应方面,CONG等[40]、CHEN等[41]制备出的双重响应微胶囊超疏水自修复涂层在紫外光或酸碱刺激下,可使受损涂层恢复超疏水性。LI等[42]以紫外响应微胶囊和近红外响应纳米粒子制备了一种紫外、近红外光双重响应的自修复超疏水涂层,受损涂层经紫外光和近红光同时照射8min就可快速愈合。随后,该课题组的NI等[43] 将微胶囊、疏水纳米粒子与水性树脂涂料简单混合,制备出的涂层在近红外光照射或酸碱刺激下不仅可以修复涂层的超疏水性,还可以修复涂层的自清洁性。

  • 3.3 其他修复方法

  • LIU等[44-45]、WU等[46]及HUANG等[47]构造出的微胶囊超疏水涂层均无需外界采用特定方式对微胶囊进行刺激,涂层受损后胶囊会自主破裂修复涂层。经O2等离子刻蚀后,涂层表面低表面能物质损失,超疏水性能丧失。此时,LIU等[44]制备的微胶囊内的十八胺分子向外扩散,与聚多巴胺反应形成疏水烷基链层,使涂层恢复超疏水性能。在此研究基础上,2015年LIU等在囊芯中添加硫醇使胶囊中的十八胺/硫醇只有在拉伸、压缩和摩擦等机械力的作用下才会向外迁移[45]。WU等[46]构造的涂层仅需在室温下放置72h,涂层的超疏水性即可恢复。而HUANG等[47]合成的微胶囊超疏水涂层被刮擦后,会在受损界面立即形成一层氟硅基膜来修复涂层性能。除此之外,HONES等[48] 经过研究制备出一种超薄涂层,经紫外光照射,受损处会发生交联反应覆盖污染物,恢复涂层的超疏水性。

  • 在制备上述微胶囊超疏水自修复涂层时,均采用了微胶囊和聚合物共混的方式。涂层表面形貌和内部结构相似,当涂层磨损时,新露出的涂层表面与原涂层的表面形貌、结构相似,可以缓解超疏水涂层因不耐磨导致的超疏水性的丧失。此外,微胶囊具有良好的耐腐蚀性、热稳定性,为低表面能物质的储存提供了保障,并且只有在一定的外界刺激下囊壳破裂或胶囊自主发生破裂后,才会激发修复功能,使微胶囊的修复更有针对性。

  • 4 微胶囊超疏水自修复涂层的性能

  • 为了延长涂层在实际应用中的使用寿命,微胶囊超疏水自修复涂层应具备一定的机械耐磨性、耐久性、耐化学腐蚀性。因此,通过一系列的试验对单一刺激响应型和多重刺激响应型相关性能进行比较,以此确定刺激响应最快、自修复性能最佳的涂层响应方式。表1、2总结了现有相关参考文献中微胶囊超疏水自修复涂层试验过程中接触角的变化情况。从表中发现,两个以硬脂酸盐溶液浸泡为修复手段的涂层以不同破坏形式破坏,修复后两涂层最终的超疏水性差异较大。而两个近红光刺激响应微胶囊超疏水涂层受损后,利用近红光辐射的光热效应修复涂层。由于在微胶囊中添加了Fe3O4 纳米粒子,辐射时长缩短20s。下文中,针对同一试验,将涂层接触角自修复情况进行对比,对比结果如图4~6所示。

  • 表1 单一刺激响应超疏水涂层自修复情况

  • Table1 Self-healing of superhydrophobic coating with single stimulative response

  • 表2 多重刺激响应超疏水涂层自修复情况

  • Table2 Self-healing of superhydrophobic coatings with multiple stimulative responses

  • 图4 摩擦/修复10个周期各涂层的接触角变化

  • Fig.4 Change of contact angle of coatings during10cycles of abrading/repairing

  • 图5 油酸浸蚀/修复12个周期各涂层的接触角变化

  • Fig.5 Change of contact angle of coatings during12cycles of oleic acid casting/repairing

  • 图6 O2离子刻蚀/修复10个周期各涂层的接触角变化

  • Fig.6 Change of contact angle of coatings during10cycles of O2 plasma etching/repairing

  • 4.1 耐磨性

  • 由于在磨损中涂层表面的微纳结构和疏水物质会被破坏,所以物理磨损是微胶囊超疏水自修复涂层耐久性的另一个挑战。在测试涂层的耐磨性时,一般采用砂纸摩擦或进行圆盘干磨及砂冲击等物理磨损试验。涂层表面在多次摩擦受损后,通过近红外光辐射、紫外光照射能重新恢复超疏水性,且磨损次数越多,表面损伤越严重,涂层的超疏水性越难恢复。图4显示了各涂层经过10个摩擦-修复周期后的接触角变化情况。

  • 由图4可知,单一刺激响应中CHEN等[33]制备的紫外刺激响应涂层摩擦前后接触角变化较小,机械耐磨性较好。而CONG等[40]制备的紫外光、酸碱双重刺激响应涂层经砂纸摩擦10个周期后,涂层接触角仅降低1°,机械耐磨性最好。

  • 4.2 耐久性

  • 在实际环境中,涂层被油酸或表面活性剂等有机物污染后,往往会丧失疏水性。因此,使用油酸、乙醇等表面活性剂作为模型污染物,评估上述超疏水自修复涂层对有机污染物的耐受性。

  • (1)涂层在表面活性剂中浸泡失去的超疏水性可通过一定的刺激方式进行恢复。将CHEN等[31] 制备的涂层放入乙醇溶液,CONG等[40]制备的涂层放入表面活性溶液,LI等[42]制备的涂层放入阳离子和阴离子溶液中浸泡,涂层会失去超疏水性。当通过加热、酸性液体浸泡或紫外光照射等方式修复后,涂层恢复了疏水性。虽然最终接触角与初始接触角相比略微降低,但仍可以保持高疏水性。这表明单一刺激响应超疏水涂层与酸碱、紫外光、近红光刺激响应的多重刺激响应涂层,应用在不同基材时上对表面活性剂均有一定的防污性。

  • (2)涂层的超疏水性在多次油酸浸蚀消失后,可通过紫外光照射或酸碱刺激使其恢复。但涂层被油酸浸蚀次数越多,涂层表面损伤越严重,超疏水性也就越难恢复。各涂层油酸浸蚀-修复12周期后接触角变化情况见图5。

  • 由图5可知,不同刺激响应方式的涂层在同一有机物的污染下,表现出的抗污性和自修复性有所不同。其中,LI等[42]制备的紫外光、近红光双重刺激响应涂层受油酸浸蚀的影响最小,防污性能良好,自修复效果最好。

  • (3)使用O2离子刻蚀破坏涂层表面,发现经外界刺激后超疏水涂层可自我愈合。各涂层O2 离子刻蚀-修复10个周期后,涂层的接触角变化如图6所示。

  • 由图6可知,经修复,LI等[28]制备的近红光辐射响应涂层可完全恢复初始的超疏水性,且LIU等[29]制备的涂层仅需40s就可完全修复涂层的超疏水性。综上所述,单一刺激响应中近红外辐射对O2离子刻蚀后的涂层的修复效率高、修复效果好。多重刺激响应中,近红光与酸碱双重刺激响应方式与其他多重刺激响应方式相比修复效果较好。

  • 4.3 耐化学腐蚀性

  • 在现实环境中,涂层容易被强酸、强碱、可溶性盐等腐蚀,因此将涂层在上述三种环境中放置一段时间后测量接触角,接触角的变化情况如表1、2所示,发现涂层在强酸、强碱及盐溶液环境中具有一定的耐久性。尤其是在酸性溶液中涂层具有出色的化学稳定性,但在碱性溶液或NaCl溶液中,涂层的超疏水性能会略微下降。尽管如此,采用紫外光照射、近红光辐射等修复方式,涂层的超疏水性仍可恢复。由表2可知各涂层的修复方式与修复时长,比较CONG等[40]、LI等[42]制备的涂层的修复时长和修复效果,可知近红光辐射在多重刺激响应涂层中修复时长短、修复效率高且修复效果好。

  • 5 结论与展望

  • 本文通过对比现有文献中不同刺激响应方式下微胶囊超疏水自修复涂层的响应速度及自修复性、机械耐久性、耐化学腐蚀性等性能,得出以紫外照射为修复手段的涂层机械耐久性较好,近红光辐射是涂层修复中响应最快、修复效果最佳的刺激响应方式,且紫外光和近红光双重刺激响应超疏水涂层的耐久性、耐化学腐蚀性远超过单一刺激响应超疏水涂层。虽然微胶囊技术与超疏水自修复涂层的结合目前已取得一些进展,但还处于起步阶段。今后,微胶囊超疏水自修复涂层的研究重点包括以下方面:

  • (1)寻求一种简单经济、芯材包覆率高、具备多种刺激响应方式的微胶囊制备方法,使功能材料能充分被包裹且微胶囊分散均匀,解决目前微胶囊制备中成囊率低、团聚性高的问题。

  • (2)深入研究同一刺激响应型涂层以不同破坏形式破坏后自修复效果的差异,同时对同一刺激响应型微胶囊超疏水涂层响应速度存在差异的原因进行分析。通过宏观试验与分子模拟法间的相互校验确定合适的分子系统模型,并通过该模型分析其修复机理及性能影响因素,提升微胶囊超疏水涂层的开发效率。

  • (3)进一步探究微胶囊超疏水自修复涂层在不同实际工程环境中的响应速度和自修复效果。虽各参考文献中模拟了一些相同环境下的试验,但涂层在其他环境下性能是否会有所不同并不可知,因此需要了解各涂层在其他环境下的自修复情况,对比分析该涂层在不同环境中的修复效果,由此确定每一种刺激响应型微胶囊超疏水涂层的最佳应用场景。

  • 参考文献

    • [1] DAS S,KUMAR S,SAMAL S K,et al.A review on superhydrophobic polymer nanocoatings:Recent development and applications[J].Industrial & Engineering Chemistry Research,2018,57(8):2727-2745.

    • [2] ZHAO Z Q,WANG H Y,LIU Z J,et al.Durable fluorine-free superhydrophobic polyether sulfone(PES)composite coating with uniquely weathering stability,anti-corrosion and wear-resist-ance[J].Progress in Organic Coatings,2019,127:16-26.

    • [3] HUANG Y F,YI S P,LV Z S,et al.Facile fabrication of superhydrophobic coatings based on two silica sols[J].Colloid and Polymer Science,2016,294(9):1503-1509.

    • [4] WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with anti-icing,UV-durability,and corrosion resistance properties[J].ACS Applied Materials and Interfaces,2015,7(11):6260-6272.

    • [5] LV J Y,SONG Y L,JIANG L,et al.Bio-inspired strategies for anti-icing[J].ACS Nano,2014,8(4):3152-3169.

    • [6] YOON H,KIM H,LATTHE S S,et al.A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J].Journal of Materials Chemistry A,2015,3(21):11403-11410.

    • [7] GUNTARI S N,KHIN A C H,WONG E H H,et al.(Super)hydrophobic and multilayered amphiphilic films prepared by continuous assembly of polymers[J].Advanced Functional Materials,2013,23(41):5159-5166.

    • [8] LAI Y K,TANG Y X,GONG J J,et al.Transparent superhydrophobic/superhydrophobic TiO2-based coatings for self-cleaning and antifogging[J].Journal of Materials Chemistry,2012,22(15):7420-7426.

    • [9] 马万鹏,张伟,赵阳等.微胶囊自修复材料的修复反应[J].高分子通报,2015(8):17-28.MA Wanpeng,ZHANG Wei,ZHAO Yang,et al.Healing chemistry for self-healing material based on microcapsule[J].Polymer Bulletin,2015(8):17.(in Chinese)

    • [10] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.

    • [11] SIVA T,SATHIYANARAYANAN S.Self healing coatings containing dual active agent loaded urea formaldehyde(UF)microcapsules[J].Progress in Organic Coatings,2015,82:57-67.

    • [12] LI J,HUGHES A D,KALANTAR T H,et al.Pickering-emulsion-templated encapsulation of a hydrophilic amine and its enhanced stability using poly(allyl amine)[J].ACS Macro Letters,2014,3(10):976-980.

    • [13] SONG Y K,JO Y H,LIM Y J,et al.Sunlight-induced self-healing of a microcapsule-type protective coating[J].ACS Applied Materials & Interfaces,2013,5(4):1378-1384.

    • [14] DONG B Q,WANG Y S,DING W J,et al.Electrochemical impedance study on steel corrosion in the simulated concrete system with a novel self-healing microcapsule[J].Construction&Building Materials,2014,56:1-6.

    • [15] 郭自灿.自愈合微胶囊在RAS沥青混合料中的应用[J].新型建筑材料,2018,45(6):104-108.GUO Zican.Application of self-healing microcapsules in RAS asphalt mixture[J].New Building Materials,2018,45(6):104-108.(in Chinese)

    • [16] BAH M G,BILAL H M,WANG Jingtao.Fabrication and application of complex microcapsules:A review[J].Soft Matter,2020,16(3):570-590.

    • [17] NEWNHAM R E,RUSCHAU G R.Electromechanical properties of smart materials[J].Journal of Intelligent Material Systems and Structures,1993,4(3):289-294.

    • [18] GARCIA A,SCHLANGEN E,VANDE V M,et al.Preparation of capsules containing rejuvenators for their use in asphalt concrete[J].Journal of Hazardous Materials,2010,184(1-3):603-611.

    • [19] 唐璇,任蕊,雷珂等.原位聚合法制备聚 α-烯烃减阻剂微囊的工艺研究[J].应用化工,2017,46(12):2370-2373.TANG Xuan,REN Rui,LEI Ke,et al.Study on preparation of coated poly alpha olefin drag reduction agent microcapsules by insitu polymerization[J].Applied Chemical Industry,2017,46(12):2370-2373.(in Chinese)

    • [20] ZHANG Z,KANG G D,YU H J,et al.From reverse osmosis to nanofiltration:precise control of the pore size and charge of polyamide membranes via interfacial polymerization[J].Desalination,2019,466:16-23.

    • [21] 汪海平,胡思前,张远方.溶剂挥发法制备苯乙烯微胶囊[J].化工新型材料,2012,40(3):52-53.WANG Haiping,HU Siqian,ZHANG Yuanfang.Preparation of styrene microcapsules by solvent evaporation method[J].New Chemical Materials,2012,40(3):52-53.(in Chinese)

    • [22] MANOJ A,RAMACHANDRAN R,MENEZES P L.Self-healing and superhydrophobic coatings for corrosion inhibition and protection[J].The International Journal of Advanced Manufacturing Technology,2020,106(5):2119-2131.

    • [23] MEN X H,ZHANG Z Z,YANG J,et al.Spray-coated superhydrophobic coatings with regenerability[J].New Journal of Chemistry,2011,35(4):881-886.

    • [24] WANG Q,LI J L,ZHANG C L,et al.Regenerative superhydrophobic coating from microcapsules[J].Journal of Materials Chemistry,2010,20(16):3211-3215.

    • [25] RASITHA T P,VANITHAKUMARI S C,GEORGE R P,et al.Porous microcapsule-based regenerating superhydrophobic coating on 304L SS and its corrosion properties[J].Journal of Materials Engineering and Performance,2019,28(11):7047-7057.

    • [26] WU Y J,SI T Y,SHAO J X,et al.Near-infrared light-driven Janus capsule motors:Fabrication,propulsion,and simulation[J].Nano Research,2016,9(12):3747-3756.

    • [27] LI W,WU G,TAN J H,et al.Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light[J].Journal of Materials Science,2019,54(10):7702-7718.

    • [28] LI W,ZHANG X H,YU X F,et al.Near infrared light responsive self-healing superhydrophobic coating based on solid wastes[J].Journal of Colloid and Interface Science,2020,560:198-207.

    • [29] LIU Y H,PEI X W,LIU Z L,et al.Accelerating the healing of superhydrophobicity through photothermogenesis[J].Journal of Materials Chemistry A,2015,3(33):17074-17079.

    • [30] QIANG S Y,CHEN K L,YIN Y J,et al.Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability[J].Materials & Design,2017,116:395-402.

    • [31] CHEN K L,ZHOU J L,CHE X G,et al.One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings[J].Journal of Colloid and Interface Science,2020,566:401-410.

    • [32] RAO Q Q,CHEN K L,WANG C X.Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J].RSC Advances,2016,6(59):53949-53954.

    • [33] CHEN K L,ZHOU S X,YANG S,et al.Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J].Advanced Functional Materials,2015,25(7):1035-1041.

    • [34] SHANG B,CHEN M,WU L M.Fabrication of UV-triggered liquid-repellent coatings with long-term self-repairing performance[J].ACS Applied Materials & Interfaces,2018,10(37):31777-31783.

    • [35] ZHU Y Y,CHEN M,WU L M.Synthesis of UV-responsive dual-functional microspheres for highly efficient self-healing coatings[J].Chemical Engineering Journal,2021,422:130034.

    • [36] UZOMA P C,LIU F C,HAN E H.Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J].Journal of Materials Science & Technology,2020,45:70-83.

    • [37] FAN W J,ZHANG Y,LI W H,et al.Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating[J].Chemical Engineering Journal,2019,368:1033-1044.

    • [38] MA C Q,SHI W Z,LIU J S,et al.Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly(vinyl alcohol)/phase change microcapsule composites[J].Society of Chemical Industry,2021,70:803-811.

    • [39] PAN S Y,CHEN M,WU L M.Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J].ACS Applied Materials & Interfaces,2020,12(4):5157-5165.

    • [40] CONG Y,CHEN K L,ZHOU S X,et al.Synthesis of pH and UV dual-responsive microcapsules with high loading capacity and their application in self-healing hydrophobic coatings[J].Journal of Materials Chemistry A,2015,3(37):19093-19099.

    • [41] CHEN K L,GU K,QIANG S Y,et al.Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J].RSC Advances,2017,7(1):543-550.

    • [42] LI W,NI X X,ZHANG X H,et al.UV-NIR Dual-responsive nanocomposite coatings with healable,superhydrophobic,and contaminant-resistant properties[J].ACS Applied Materials & Interfaces,2020,12(42):48101-48108.

    • [43] NI X X,GAO Y J,ZHANG X H,et al.An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres[J].Chemical Engineering Journal,2021,406:126725.

    • [44] LIU Q Z,WANG X L,YU B,et al.Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J].Langmuir,2012,28(13):5845-5849.

    • [45] LIU Y H,LIU Y P,HU H Y,et al.Mechanically induced self-healing superhydrophobicity[J].The Journal of Physical Chemistry C,2015,119(13):7109-7114.

    • [46] WU G,AN J L,TANG X Z,et al.A versatile approach towards multifunctional robust microcapsules with tunable,restorable,and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J].Advanced Functional Materials,2014,24(43):6751-6761.

    • [47] HUANG M X,ZHANG H,YANG J L.Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings[J].Corrosion Science,2012,65:561-566.

    • [48] HONES R,RUHE J.Extending the lotus effect:repairing superhydrophobic surfaces after contamination or damage by chic chemistry[J].Langmuir,2018,34(29):8661-8669.

  • 参考文献

    • [1] DAS S,KUMAR S,SAMAL S K,et al.A review on superhydrophobic polymer nanocoatings:Recent development and applications[J].Industrial & Engineering Chemistry Research,2018,57(8):2727-2745.

    • [2] ZHAO Z Q,WANG H Y,LIU Z J,et al.Durable fluorine-free superhydrophobic polyether sulfone(PES)composite coating with uniquely weathering stability,anti-corrosion and wear-resist-ance[J].Progress in Organic Coatings,2019,127:16-26.

    • [3] HUANG Y F,YI S P,LV Z S,et al.Facile fabrication of superhydrophobic coatings based on two silica sols[J].Colloid and Polymer Science,2016,294(9):1503-1509.

    • [4] WANG N,XIONG D S,DENG Y L,et al.Mechanically robust superhydrophobic steel surface with anti-icing,UV-durability,and corrosion resistance properties[J].ACS Applied Materials and Interfaces,2015,7(11):6260-6272.

    • [5] LV J Y,SONG Y L,JIANG L,et al.Bio-inspired strategies for anti-icing[J].ACS Nano,2014,8(4):3152-3169.

    • [6] YOON H,KIM H,LATTHE S S,et al.A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J].Journal of Materials Chemistry A,2015,3(21):11403-11410.

    • [7] GUNTARI S N,KHIN A C H,WONG E H H,et al.(Super)hydrophobic and multilayered amphiphilic films prepared by continuous assembly of polymers[J].Advanced Functional Materials,2013,23(41):5159-5166.

    • [8] LAI Y K,TANG Y X,GONG J J,et al.Transparent superhydrophobic/superhydrophobic TiO2-based coatings for self-cleaning and antifogging[J].Journal of Materials Chemistry,2012,22(15):7420-7426.

    • [9] 马万鹏,张伟,赵阳等.微胶囊自修复材料的修复反应[J].高分子通报,2015(8):17-28.MA Wanpeng,ZHANG Wei,ZHAO Yang,et al.Healing chemistry for self-healing material based on microcapsule[J].Polymer Bulletin,2015(8):17.(in Chinese)

    • [10] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.

    • [11] SIVA T,SATHIYANARAYANAN S.Self healing coatings containing dual active agent loaded urea formaldehyde(UF)microcapsules[J].Progress in Organic Coatings,2015,82:57-67.

    • [12] LI J,HUGHES A D,KALANTAR T H,et al.Pickering-emulsion-templated encapsulation of a hydrophilic amine and its enhanced stability using poly(allyl amine)[J].ACS Macro Letters,2014,3(10):976-980.

    • [13] SONG Y K,JO Y H,LIM Y J,et al.Sunlight-induced self-healing of a microcapsule-type protective coating[J].ACS Applied Materials & Interfaces,2013,5(4):1378-1384.

    • [14] DONG B Q,WANG Y S,DING W J,et al.Electrochemical impedance study on steel corrosion in the simulated concrete system with a novel self-healing microcapsule[J].Construction&Building Materials,2014,56:1-6.

    • [15] 郭自灿.自愈合微胶囊在RAS沥青混合料中的应用[J].新型建筑材料,2018,45(6):104-108.GUO Zican.Application of self-healing microcapsules in RAS asphalt mixture[J].New Building Materials,2018,45(6):104-108.(in Chinese)

    • [16] BAH M G,BILAL H M,WANG Jingtao.Fabrication and application of complex microcapsules:A review[J].Soft Matter,2020,16(3):570-590.

    • [17] NEWNHAM R E,RUSCHAU G R.Electromechanical properties of smart materials[J].Journal of Intelligent Material Systems and Structures,1993,4(3):289-294.

    • [18] GARCIA A,SCHLANGEN E,VANDE V M,et al.Preparation of capsules containing rejuvenators for their use in asphalt concrete[J].Journal of Hazardous Materials,2010,184(1-3):603-611.

    • [19] 唐璇,任蕊,雷珂等.原位聚合法制备聚 α-烯烃减阻剂微囊的工艺研究[J].应用化工,2017,46(12):2370-2373.TANG Xuan,REN Rui,LEI Ke,et al.Study on preparation of coated poly alpha olefin drag reduction agent microcapsules by insitu polymerization[J].Applied Chemical Industry,2017,46(12):2370-2373.(in Chinese)

    • [20] ZHANG Z,KANG G D,YU H J,et al.From reverse osmosis to nanofiltration:precise control of the pore size and charge of polyamide membranes via interfacial polymerization[J].Desalination,2019,466:16-23.

    • [21] 汪海平,胡思前,张远方.溶剂挥发法制备苯乙烯微胶囊[J].化工新型材料,2012,40(3):52-53.WANG Haiping,HU Siqian,ZHANG Yuanfang.Preparation of styrene microcapsules by solvent evaporation method[J].New Chemical Materials,2012,40(3):52-53.(in Chinese)

    • [22] MANOJ A,RAMACHANDRAN R,MENEZES P L.Self-healing and superhydrophobic coatings for corrosion inhibition and protection[J].The International Journal of Advanced Manufacturing Technology,2020,106(5):2119-2131.

    • [23] MEN X H,ZHANG Z Z,YANG J,et al.Spray-coated superhydrophobic coatings with regenerability[J].New Journal of Chemistry,2011,35(4):881-886.

    • [24] WANG Q,LI J L,ZHANG C L,et al.Regenerative superhydrophobic coating from microcapsules[J].Journal of Materials Chemistry,2010,20(16):3211-3215.

    • [25] RASITHA T P,VANITHAKUMARI S C,GEORGE R P,et al.Porous microcapsule-based regenerating superhydrophobic coating on 304L SS and its corrosion properties[J].Journal of Materials Engineering and Performance,2019,28(11):7047-7057.

    • [26] WU Y J,SI T Y,SHAO J X,et al.Near-infrared light-driven Janus capsule motors:Fabrication,propulsion,and simulation[J].Nano Research,2016,9(12):3747-3756.

    • [27] LI W,WU G,TAN J H,et al.Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light[J].Journal of Materials Science,2019,54(10):7702-7718.

    • [28] LI W,ZHANG X H,YU X F,et al.Near infrared light responsive self-healing superhydrophobic coating based on solid wastes[J].Journal of Colloid and Interface Science,2020,560:198-207.

    • [29] LIU Y H,PEI X W,LIU Z L,et al.Accelerating the healing of superhydrophobicity through photothermogenesis[J].Journal of Materials Chemistry A,2015,3(33):17074-17079.

    • [30] QIANG S Y,CHEN K L,YIN Y J,et al.Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability[J].Materials & Design,2017,116:395-402.

    • [31] CHEN K L,ZHOU J L,CHE X G,et al.One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings[J].Journal of Colloid and Interface Science,2020,566:401-410.

    • [32] RAO Q Q,CHEN K L,WANG C X.Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J].RSC Advances,2016,6(59):53949-53954.

    • [33] CHEN K L,ZHOU S X,YANG S,et al.Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J].Advanced Functional Materials,2015,25(7):1035-1041.

    • [34] SHANG B,CHEN M,WU L M.Fabrication of UV-triggered liquid-repellent coatings with long-term self-repairing performance[J].ACS Applied Materials & Interfaces,2018,10(37):31777-31783.

    • [35] ZHU Y Y,CHEN M,WU L M.Synthesis of UV-responsive dual-functional microspheres for highly efficient self-healing coatings[J].Chemical Engineering Journal,2021,422:130034.

    • [36] UZOMA P C,LIU F C,HAN E H.Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J].Journal of Materials Science & Technology,2020,45:70-83.

    • [37] FAN W J,ZHANG Y,LI W H,et al.Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating[J].Chemical Engineering Journal,2019,368:1033-1044.

    • [38] MA C Q,SHI W Z,LIU J S,et al.Simultaneous phase change energy storage and thermoresponsive shape memory properties of porous poly(vinyl alcohol)/phase change microcapsule composites[J].Society of Chemical Industry,2021,70:803-811.

    • [39] PAN S Y,CHEN M,WU L M.Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J].ACS Applied Materials & Interfaces,2020,12(4):5157-5165.

    • [40] CONG Y,CHEN K L,ZHOU S X,et al.Synthesis of pH and UV dual-responsive microcapsules with high loading capacity and their application in self-healing hydrophobic coatings[J].Journal of Materials Chemistry A,2015,3(37):19093-19099.

    • [41] CHEN K L,GU K,QIANG S Y,et al.Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J].RSC Advances,2017,7(1):543-550.

    • [42] LI W,NI X X,ZHANG X H,et al.UV-NIR Dual-responsive nanocomposite coatings with healable,superhydrophobic,and contaminant-resistant properties[J].ACS Applied Materials & Interfaces,2020,12(42):48101-48108.

    • [43] NI X X,GAO Y J,ZHANG X H,et al.An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres[J].Chemical Engineering Journal,2021,406:126725.

    • [44] LIU Q Z,WANG X L,YU B,et al.Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J].Langmuir,2012,28(13):5845-5849.

    • [45] LIU Y H,LIU Y P,HU H Y,et al.Mechanically induced self-healing superhydrophobicity[J].The Journal of Physical Chemistry C,2015,119(13):7109-7114.

    • [46] WU G,AN J L,TANG X Z,et al.A versatile approach towards multifunctional robust microcapsules with tunable,restorable,and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J].Advanced Functional Materials,2014,24(43):6751-6761.

    • [47] HUANG M X,ZHANG H,YANG J L.Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings[J].Corrosion Science,2012,65:561-566.

    • [48] HONES R,RUHE J.Extending the lotus effect:repairing superhydrophobic surfaces after contamination or damage by chic chemistry[J].Langmuir,2018,34(29):8661-8669.

  • 手机扫一扫看