en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

纪振冰,男,1998年出生,硕士研究生。主要研究方向为生物医学材料表面工程。E-mail:sdujzb@163.com;

万熠(通信作者),男,1977年出生,博士,教授,博士研究生导师。主要研究方向为生物材料加工制造理论与技术。E-mail:wanyi@sdu.edu.cn

中图分类号:TG146;R318

DOI:10.11933/j.issn.1007−9289.20211123002

参考文献 1
JIANG H H,HAO P J,XU S,et al.The effect of strontium-loaded rough titanium surface on early osseointegration[J].Journal of Biomaterials Applications,2017,32(5):561-569.
参考文献 2
WANG H,LIU J Q,WANG C T,et al.The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration[J].Journal of Materials Science & Technology,2021,63:18-26.
参考文献 3
LAI M,CAI K Y,ZHAO L,et al.Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells[J].Biomacromolecules,2011,12(4):1097-1105.
参考文献 4
QIU J J,LIU L,CHEN B H,et al.Graphene oxide as a dual Zn/Mg ion carrier and release platform:Enhanced osteogenic activity and antibacterial properties[J].Journal of Materials Chemistry.B,2018,6(13):24-212.
参考文献 5
ELLIOTT D T,WIGGINS R J,DUA R.Bioinspired antibacterial surface for orthopedic and dental implants[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2021,109(7):973-981.
参考文献 6
赵梓贺,万熠,于明志,等.激光刻蚀和阳极氧化对纯钛植入体表面性能的影响[J].中国表面工程,2020,33(6):29-36.ZHAO Zihe,WAN Yi,YU Mingzhi,et al.Effects of laser etching and anodic oxidation on surface properties of pure titanium implants[J].China Surface Engineering,2020,33(6):29-36.(in Chinese)
参考文献 7
ROSALES-LEAL J I,RODRIGUEZ-VALVERDE M A,MAZZAGLIA G,et al.Effect of roughness,wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,365(1-3):222-229.
参考文献 8
PONSONNET L,COMTE V,OTHMANE A,et al.Effect of surface topography and chemistry on adhesion,orientation and growth of fibroblasts on nickel–titanium substrates[J].Materials Science and Engineering C,2002,21(1):157-165.
参考文献 9
WANG Q G,ZHOU P,LIU S F,et al.Multi-scale surface treatments of titanium implants for rapid osseointegration:A review[J].Nanomaterials,2020,10(6):1244.
参考文献 10
GITTENS R A,MCLACHLAN T,OLIVARESNAVARRETE R,et al.The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J].Biomaterials,2011,32(13):3395-3403.
参考文献 11
XU K,ZHOU M,CHEN W Z,et al.Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances[J].Chemical Engineering Journal,2021,405:126930.
参考文献 12
HANSSON S,NORTON M.The relation between surface roughness and interfacial shear strength for bone-anchored implants.A Mathematical model[J].Journal of Biomechanics,1999,32(8):829-836.
参考文献 13
HAVLIKOVA J,STRASKY J,VANDROVCOVA M,et al.Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance[J].Materials Science and Engineering:C,2014,39:371-379.
参考文献 14
GUO J L,PADILLA R J,AMBROSE W,et al.The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo[J].Biomaterials,2007,28(36):5418-5425.
参考文献 15
KIM B,KIM J S,PARK Y M,et al.Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell[J].Materials Science and Engineering:C,2013,33(3):1554-1560.
参考文献 16
SAKATSUME H,TAKAHASHI M,KANYI M W,et al.The process of magnesium ion modification of titanium surface and the sustained-release of magnesium ions from its surface[J].Dental Materials Journal,2020,39(3):509-516.
参考文献 17
WANG T,WAN Y,LIU Z Q.Synergistic effects of bioactive ions and micro/nano-topography on the attachment,proliferation and differentiation of murine osteoblasts(MC3T3)[J].Journal of Materials Science:Materials in Medicine,2016,27(8):133.
参考文献 18
于明志.增材制造钛合金植入体表面改性及其生物学性能研究[D].济南:山东大学,2021.YU Mingzhi.Surface modification of additive manufacturing titanium alloys implant and their biological properties[D].Jinan:Shandong University,2021.(in Chinese)
参考文献 19
PARK J,HANAWA T,CHUNG J.The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants[J].International Journal of Nanomedicine,2019,14:5697-5711.
参考文献 20
鲁雄,冯波,翁杰,等.生物材料表面微纳结构对成骨相关细胞的影响[J].中国材料进展,2013,32(10):611-622.LU Xiong,FENG Bo,WENG Jie,et al.The effects of micro-and nano-structured biomaterial surfaces on osteogenetic-related cells[J].Materials China,2013,32(10):611-622.(in Chinese)
参考文献 21
TAO Z S,ZHOU W S,HE X W,et al.A comparative study of zinc,magnesium,strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J].Materials Science and Engineering:C,2016,62:226-232.
参考文献 22
VAN HENGEL I A J,LACIN M,MINNEBOO M,et al.The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants[J].Materials Science and Engineering:C,2021,124:112074.
参考文献 23
WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review[J].Biomaterials,2016,83:127-141.
参考文献 24
RHO J Y,KUHN-S L,ZIOUPOS P.Mechanical properties and the hierarchical structure of bone[J].Medical Engineering & Physics,1998,20(2):92-102.
参考文献 25
HUANG H H,HO C T,LEE T H,et al.Effect of surface roughness of ground titanium on initial cell adhesion[J].Biomolecular Engineering,2004,21(3-5):93-97.
参考文献 26
庞骏德,王杨,蔺增.牙种植体表面喷砂酸蚀工艺的优化[J].中国表面工程,2014,27(2):102-109.PANG Junde,WANG Yang,LIN Zeng.Sandblasted and acid-etched process optimization of the dental implant[J].China Surface Engineering,2014,27(2):102-109.(in Chinese)
参考文献 27
ARIFVIANTO B,SUYITNO,MAHARDIKA M.Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications[J].International Journal of Minerals,Metallurgy and Materials,2013,20(8):788-795.
参考文献 28
LIU C F,CHANG K C,SUN Y S,et al.Combining sandblasting,alkaline etching,and collagen immobilization to promote cell growth on biomedical titanium implants[J].Polymers,2021,13(15):2550.
参考文献 29
CLARK P,CONNOLLY P,CURTIS A S G,et al.Cell guidance by ultrafine topography in vitro[J].Journal of Cell Science,1991,99:73-77.
参考文献 30
LU X,LENG Y.Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,2005,169(2):173-178.
参考文献 31
WANG G S,WAN Y,REN B,et al.Bioactivity of micropatterned TiO2 nanotubes fabricated by micromilling and anodic oxidation[J].Materials Science and Engineering:C,2019,95:114-121.
参考文献 32
GULATI K,MOON H,LI T,et al.Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity[J].Materials Science and Engineering:C,2018,91:624-630.
参考文献 33
GULATI K,PRIDEAUX M,KOGAWA M,et al.Anodized 3D-printed titanium implants with dual microand nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells[J].Journal of Tissue Engineering and Regenerative Medicine,2017,11(12):3313-3325.
参考文献 34
ADVINCULA M C,RAHEMTULLA F G,ADVINCULA R C,et al.Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J].Biomaterials,2006,27(10):2201-2212.
参考文献 35
WANG X H,LI J S,HU R,et al.Mechanical properties and bioactive surface modification via alkali-heat treatment of porous titanium for biomedical applications[J].Advanced Materials Research,2013,647:511-517.
参考文献 36
CHEN F,LAM W M,LIN C J,et al.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:In vitro evaluation using mesenchymal stem cells[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2007,82(1):183-191.
参考文献 37
张艳靖.微米—纳米钛合金表面对成骨细胞生物学行为的影响[D].长春:吉林大学,2011.ZHANG Yanjing.Effect of the micro-nano surface of titanium alloy on biological behavior of osteoblasts.[D].Changchun:Jilin University,2011(in Chinese).
参考文献 38
SHU T Y,ZHANG Y C,SUN G,et al.Enhanced osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J].Frontiers in Bioengineering and Biotechnology,2021,8:621601.
参考文献 39
WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.
参考文献 40
CASSIE A B D,BAXTER S,Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:0546-0550.
参考文献 41
ZHAO C C,WANG X Y,GAO L,et al.The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells[J].Acta Biomaterialia,2018,73:509-521.
参考文献 42
ZHAO L Z,MEI S L,CHU P K,et al.The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions[J].Biomaterials,2010,31(19):5072-5082.
参考文献 43
FU J N,LIU X M,TAN L,et al.Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation[J].Acta Biomaterialia,2020,101:152-167.
参考文献 44
PAN H H,XIE Y T,ZHANG Z Q,et al.YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure[J].Colloids and Surfaces B:Biointerfaces,2017,152:344-353.
参考文献 45
ZHAO X F,XIE L,WANG Z Y,et al.ZBP1(DAI/DLM-1)promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling[J].Bone Research,2020,8(2):219-228.
参考文献 46
WANG W,ZHAO L Z,WU K M,et al.The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography[J].Biomaterials,2013,34(3):631-640.
参考文献 47
王薇.种植体微纳米形貌对成骨细胞行为影响的分子机制研究[D].西安:第四军医大学,2013.WANG Wei.The mechanisms of implant micro/nanotextured topography effects on osteoblasts behaviors[D].Xi’ an:The Fourth Military Medical University,2013.(in Chinese)
参考文献 48
WANG W,ZHAO L Z,MA Q L,et al.The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation[J].Biomaterials,2012,33(32):7993-8002.
参考文献 49
YANG J,ANDRE P,YE L,et al.The Hedgehog signalling pathway in bone formation[J].International Journal of Oral Science,2015,7(2):73-79.
参考文献 50
LIN Y,HUANG Y H,HE J B,et al.Role of Hedgehog-Gli1 signaling in the enhanced proliferation and differentiation of MG63 cells enabled by hierarchical micro-/nanotextured topography[J].International Journal of Nanomedicine 2017,12:3267-3280.
参考文献 51
GU K,FU X C,TIAN H,et al.TAZ promotes the proliferation and osteogenic differentiation of human periodontal ligament stem cells via the p‐SMAD3[J].Journal of Cellular Biochemistry,2020,121(2):1101-1113.
参考文献 52
OHASHI K,FUJIWARA S,MIZUNO K.Roles of the cytoskeleton,cell adhesion and rho signalling in mechanosensing and mechanotransduction[J].Journal of Biochemistry,2017,161(3):245-254.
参考文献 53
LIU X,HOU W Q,HE L,et al.AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J].Colloids and Surfaces B:Biointerfaces,2019,182:110332.
参考文献 54
NADAR Y S,KUTTY M G,ABDUL A A R.Relative effect of sand blasting and acid etching on the surface roughness of pure titanium and titanium alloy for dental implants[J].Advanced Materials Research,2014,1043:145-148.
参考文献 55
杜青.喷砂酸蚀(SLA)钛表面生物活化及性能表征[D].哈尔滨:哈尔滨工业大学,2015.DU Qing.The bioactivation and characterization of the sandblasting etching(SLA)titanium surfaces[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)
参考文献 56
WANG C N,FENG Y B,WANG D F,et al.Effect of a hybrid micro/nano-integrated titanium surface on behavior of rat osteoblasts[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2017,32(2):459-468.
参考文献 57
ZHUANG X M,ZHOU B,OUYANG J L,et al.Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces[J].Biomedical materials,2014,9(4):045001.
参考文献 58
马宗敏,谢艳娜,石云波,等.TiO2 纳米管的阳极氧化制备及改性应用研究综述[J].表面技术,2015,44(9):66-71.MA Z M,XIE Y N,SHI Y B,et al.Review on applied research of anodic preparation and modification of TiO2 nanotubes[J].Surface Technology,2015,44(9):66-71.(in Chinese)
参考文献 59
LI T,GULATI K,WANG N,et al.Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants[J].Materials Science and Engineering:C,2018,88:182-195.
参考文献 60
YEO I L.Modifications of dental implant surfaces at the micro-and nano-level for enhanced osseointegration[J].Materials,2020,13(1):89.
参考文献 61
SHIN Y C,PANG K M,HAN D W,et al.Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation[J].Materials Science and Engineering:C,2019,99:1174-1181.
参考文献 62
CHEN X Y,CAI K Y,LAI M,et al.Mesenchymal stem cells differentiation on hierarchically micro/nanostructured titanium substrates[J].Advanced Engineering Materials,2012,14(5):B216-B223.
参考文献 63
HAO J Z,LI Y,LI B E,et al.Biological and mechanical effects of micro-nanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo[J].Applied Biochemistry and Biotechnology,2017,183(1):280-292.
参考文献 64
HUANG X Y,ZHOU W,ZHOU X D,et al.Effect of novel micro-arc oxidation implant material on preventing peri-implantitis[J].Coatings,2019,9(11):691.
参考文献 65
LI Y D,WANG W Q,LIU H Y,et al.Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J].Materials Science and Engineering:C,2018,87:90-103.
参考文献 66
HE W L,YIN X,XIE L,et al.Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification[J].Journal of Materials Science:Materials in Medicine,2019,30(6):73.
参考文献 67
DENG F L,ZHANG W Z,ZHANG P F,et al.Improvement in the morphology of micro-arc oxidised titanium surfaces:A new process to increase osteoblast response[J].Materials Science and Engineering:C,2010,30(1):141-147.
参考文献 68
王桂森,万熠,王滕,等.植入体微纳结构表面制备及生物相容性研究综述[J].表面技术,2016,45(5):8-18.WANG G S,WAN Y,WANG T,et al.Review on preparation of micro/nano structure on implant surface and its biocompatibility[J].Surface Technology,2016,45(5):8-18.(in Chinese)
参考文献 69
FILIZ S,XIE L K,WEISS L E,et al.Micromilling of microbarbs for medical implants[J].International Journal of Machine Tools and Manufacture,2008,48(3-4):459-472.
参考文献 70
王滕.钛合金植入体微纳双级结构表面设计制造及其生物相容性研究[D].济南:山东大学,2017.WANG Teng.Design and manufacturing of hierarchical micro/nano-structured surface on biomedical titanium alloy and its biocompatibility[D].Jinan:Shandong University,2017.(in Chinese)
参考文献 71
WAN Y,WANG T,WANG Z S,et al.Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation[J].The International Journal of Advanced Manufacturing Technology,2018,98(1-4):29-35.
参考文献 72
GAO T,ZHANG J W,ZHANG N H,et al.Dopamine assisted incorporation of Sr ions in porous titanium alloy and its in-vitro bioactivity and cellular responses[J].Materials Letters,2021,287:129308.
参考文献 73
ZHANG X J,HUANG Y,WANG B B,et al.A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity[J].Ceramics International,2020,46(10):14796-14807.
参考文献 74
WANG L Y,LUO Q M,ZHANG X M,et al.Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts[J].Bioactive Materials,2021,6(1):64-74.
参考文献 75
RODRIGUEZ-CONTRERAS A,TORRES D,RAFIK B,et al.Bioactivity and antibacterial properties of calciumand silver-doped coatings on 3D printed titanium scaffolds[J].Surface and Coatings Technology,2021,421:127476.
参考文献 76
LIU J C,ZHAO Y Y,ZHANG Y,et al.Exosomes derived from macrophages upon Zn ion stimulation promote osteoblast and endothelial cell functions[J].Journal of Materials Chemistry B,2021,9(18):3800-3807.
参考文献 77
ZHOU M,XIONG P,JIA Z J,et al.Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J].Materials Letters,2017,202:9-12.
参考文献 78
ALSHAMMARI H,BAKITIAN F,NEILANDS J,et al.Antimicrobial properties of strontium functionalized titanium surfaces for oral applications,a systematic review[J].Coatings,2021,11(7):810.
参考文献 79
HABIBOVIC P,BARRALET J E.Bioinorganics and biomaterials:Bone repair[J].Acta Biomaterialia,2011,7(8):3013-3026.
参考文献 80
GORBET M B,SEFTON M V.Biomaterial-associated thrombosis:Roles of coagulation factors,complement,platelets and leukocytes[J].Biomaterials,2004,25(26):5681-5703.
参考文献 81
MARIE P J.The calcium-sensing receptor in bone cells:A potential therapeutic target in osteoporosis[J].Bone,2010,46(3):571-576.
参考文献 82
EIRIK E J.A study on the mechanism of protein adsorption to TiO2[J].Biomaterials,1991,12(6):593-596.
参考文献 83
PARK I S,OH H J,BAE T S.Bioactivity and generation of anodized nanotubular TiO2 layer of Ti–6Al–4V alloy in glycerol solution[J].Thin Solid Films,2013,548:292-298.
参考文献 84
ALLAM N K,GRIMES C A.Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte[J].The Journal of Physical Chemistry C,2007,111(35):13028-13032.
参考文献 85
OSHIRO W,AYUKAWA Y,ATSUTA I,et al.Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing[J].Colloids and Surfaces B:Biointerfaces,2015,131:141-147.
参考文献 86
SUNARSO,TOITA R,TSURU K,et al.Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants[J].Materials Science and Engineering C,2016,68:291-298.
参考文献 87
ANITUA E,PINAS L,MURIAS A,et al.Effects of calcium ions on titanium surfaces for bone regeneration[J].Colloids and Surfaces B:Biointerfaces,2015,130:173-181.
参考文献 88
SAUER G R,SMITH D M,CAHALANE M,et al.Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes[J].Journal of Cellular Biochemistry,2003,88(5):954-969.
参考文献 89
GUO B L,YANG M W,LIANG D,et al.Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway[J].Molecular and Cellular Biochemistry,2012,361(1-2):209-216.
参考文献 90
余毅,向一鸣,李伊朗,等,钛植入体表面构建具有抗菌活性和生物相容性的 PDA/RGDC/氧化锌量子点复合涂层[J].中国表面工程,2019,32(5):13-21.YU Yi,XIANG Yiming,LI Yilang,et,al.Construction of PDA/RGDC/Zinc oxide quantum dot composite coatings with antibacterial activity and biocompatibility on surface of titanium implants[J].China Surface Engineering,2019,32(5):13-21.(in Chinese)
参考文献 91
SEO H J,CHO Y E,KIM T,et al.Zinc may increase bone formation through stimulating cell proliferation,alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells[J].Nutrition Research and Practice,2010,4(5):356-361.
参考文献 92
ZHAO Z H,WAN Y,YU M Z,et al.Biocompability evaluation of micro textures coated with zinc oxide on Ti-6Al-4V treated by nanosecond laser[J].Surface and Coatings Technology,2021,422:127453.
参考文献 93
LI J,TAN L,LIU X M,et al.Balancing bacteriaosteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods[J].ACS Nano,2017,11(11):11250-11263.
参考文献 94
TAPIERO H,TEW K D.Trace elements in human physiology and pathology:Zinc and metallothioneins[J].Biomedicine & Pharmacotherapy,2003,57(9):399-411.
参考文献 95
LI X D,LI Y F,PENG S C,et al.Effect of zinc ions on improving implant fixation in osteoporotic bone[J].Connective Tissue Research,2013,54(4-5):290-296.
参考文献 96
FANG J,ZHAO J H,SUN Y,et al.Biocompatibility and antibacterial properties of zinc-ion implantation on titanium[J].Journal of Hard Tissue Biology,2014,23(1):35-44.
参考文献 97
WANG L,SHANG X F,HAO Y F,et al.Bi-functional titanium-polydopamine-zinc coatings for infection inhibition and enhanced osseointegration[J].RSC Advances,2019,9(6):2295-2892.
参考文献 98
LIGIA A M.Magnesium supplementation and bone turnover[J].Nutrition Reviews,1999,57(7):227-229.
参考文献 99
WITTE F,KAESE V,HAFERKAMP H,et al.In vivo corrosion of four magnesium alloys and the associated bone response[J].Biomaterials,2005,26(17):3557-3563.
参考文献 100
WANG C Y,WANG S F,YAO Y S,et al.Study on vertical mandibular distraction osteogenesis using magnesium alloy on canine[J].Progress in Natural Science:Materials International,2014,24(5):446-451.
参考文献 101
ZHANG Y F,XU J K,RUAN Y C,et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J].Nature Medicine,2016,22(10):1160-1169.
参考文献 102
ZHAO Q M,YI L,JIANG L B,et al.Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating[J].Nanomedicine,2019,14(9):1109-1133.
参考文献 103
LI X K,GAO P,WAN P,et al.Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants:In vitro and in vivo study[J].Scientific Reports,2017,7(1):1-11.
参考文献 104
ZHU Y,ZHANG C N,GU Y X,et al.The responses of human gingival fibroblasts to magnesium-doped titanium[J].Journal of Biomedical Materials Research Part A,2020,108(2):267-278.
参考文献 105
LIU Y T,KUNG K C,YANG C Y,et al.Engineering three-dimensional structures using bio-inspired dopamine and strontium on titanium for biomedical application[J].Journal of Materials Chemistry B,2014,2(45):7927-7935.
参考文献 106
BOSE S,FIELDING G,TARAFDER S,et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J].Trends in Biotechnology,2013,31(10):594-605.
参考文献 107
BRAUX J,VELARD F,GUILLAUME C,et al.A new insight into the dissociating effect of strontium on bone resorption and formation[J].Acta Biomaterialia,2011,7(6):2593-2603.
参考文献 108
PENG S L,LIU X S,HUANG S S,et al.The cross-talk between osteoclasts and osteoblasts in response to strontium treatment:Involvement of osteoprotegerin[J].Bone,2011,49(6):1290-1298.
参考文献 109
YASUDA H,SHIMA N,NAKAGAWA N,et al.Identity of osteoclastogenesis inhibitory factor(OCIF)and osteoprotegerin(OPG):A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro[J].Endocrinology,1998,139(3):1329-1337.
参考文献 110
UDAGAWA N,TAKAHASHI N,YASUDA H,et al.Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J].Endocrinology,2000,141(9):3478-3484.
参考文献 111
LACEY D L,TIMMS E,TAN H L,et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J].Cell,1998,93(2):165-176.
参考文献 112
O'BRIEN E A,WILLIAMS J H H,MARSHALL M J.Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria[J].Biochemical and Biophysical Research Communications,2000,274(2):281-290.
参考文献 113
BURGESS T L,QIAN Y,KAUFMAN S,et al.The ligand for osteoprotegerin(OPGL)directly activates mature osteoclasts[J].Journal of Cell Biology,1999,145(3):527-538.
参考文献 114
TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts[J].Journal of Experimental Medicine,1998,188(5):997-1001.
参考文献 115
JIANG H H,ZHOU W J,WANG B C,et al.The effect of strontium modified rough titanium surface on biologic response of MC3T3-E1 cells[J].Dental Materials Journal,2020,39(5):808-814.
参考文献 116
LIN G F,ZHOU C,LIN M N,et al.Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits[J].Clinical Oral Implants Research,2019,30(8):777-790.
参考文献 117
OKUZU Y,FUJIBAYASHI S,YAMAGUCHI S,et al.In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions[J].Journal of Biomaterials Applications,2021,35(6):670-680.
参考文献 118
XING H Y,LI R Y,WEI Y J,et al.Improved osteogenesis of selective-laser-melted titanium alloy by coating strontium-doped phosphate with high-efficiency air-plasma treatment[J].Frontiers in Bioengineering and Biotechnology,2020,8:367.
参考文献 119
XU K,CHEN W Z,FU G L,et al.In situ self-assembly of graphene oxide/polydopamine/Sr2+ nanosheets on titanium surfaces for enhanced osteogenic differentiation of mesenchymal stem cells[J].Carbon,2019,142:567-579.
参考文献 120
YU H W,HUANG X B,YANG X N,et al.Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization[J].Materials Science and Engineering:C,2017,78:175-184.
参考文献 121
ZHANG W J,WANG G C,LIU Y,et al.The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J].Biomaterials,2013,34(13):3184-3195.
参考文献 122
KO S,HWANG M,MOON W,et al.Characterizations of Ca-and Mg-incorporating micro/nano-structured surfaces on titanium fabricated by microarc oxidation and hydrothermal treatments[J].Journal of Physics and Chemistry of Solids,2015,87:147-152.
参考文献 123
ZHANG H,LIU K,LU M M,et al.Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Materials Science and Engineering:C,2021,118:111402.
参考文献 124
SHAO S Y,CHEN J X,TANG H Y,et al.A titanium surface modified with zinc-containing nanowires:Enhancing biocompatibility and antibacterial property in vitro[J].Applied Surface Science,2020,515:146107.
参考文献 125
WANG G F,LI J H,ZHANG W J,et al.Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function[J].International Journal of Nanomedicine,2014,9:2387-2398.
参考文献 126
WANG H Y,XU Q P,HU H,et al.The Fabrication and function of strontium-modified hierarchical micro/nano titanium implant[J].International Journal of Nanomedicine,2020,15:8983-8998.
目录contents

    摘要

    生物医用钛植入体的表面微观形貌及化学组成作为影响植入体生物相容性的重要因素,决定了植入的稳定性和使用寿命, 得到广泛研究,对钛植入体的表面改性研究现状进行系统梳理变得极为重要。针对钛植入体表面微纳米复合结构的构建及添加典型生物活性离子的研究现状进行综述,以及二者的结合对促进细胞黏附、增殖、分化和促进动物体内成骨的协同效应,简述微纳米复合结构对细胞行为的内在调控机制。结果表明,钛植入体表面的微纳米复合结构及生物活性离子对细胞的行为均表现出积极作用,兼具二者的植入体能够更好地促进细胞的黏附、增殖及分化,植入动物体内后更有利于植入体与周围组织的骨性整合。最后,根据当前生物医用钛植入体表面改性研究中存在的抗菌性能较差、对细胞的影响机制不明确等问题,提出植入体在表面改性领域的研究趋势。提出了钛植入体表面改性领域微纳结构构建和生物活性离子添加的研究现状和未来的发展方向,填补了钛植入体表面改性领域目前缺少综述文章来引领的空白,可为未来钛植入体的表面改性的发展提供借鉴。

    Abstract

    As an important factor affecting the biocompatibility of implant, the surface micromorphology and chemical composition of the biomedical titanium implant determine the stability and service life of the implant, and have been widely studied. It is extremely important to systematically review the research status of surface modification of titanium implants. This paper reviews the research status of the construction of micro-nano structure on the surface of titanium implants and the addition of typical bioactive ions, and the synergistic effects of the combination of the two on promoting cell adhesion, proliferation, differentiation and promoting osteogenesis in animals. Besides, this paper briefly describes the internal regulation mechanism of micro-nano structure on cell behavior. The review indicates that the micro-nano structure and bioactive ions on the surface of titanium implants have a positive effect on the behavior of cells, and implants with both can better promote cell adhesion, proliferation and differentiation. It is more conducive to the osseointegration of the implant and the surrounding tissue after in vivo. Finally, according to the problems of poor antibacterial performance and unclear effect on cells in the current research on surface modification of biomedical titanium implants, the research trend in the field of surface modification is proposed. The research status and future development direction of micro-nano structure construction and bioactive ions addition in the field of titanium implant surface modification are proposed, This paper fills the gap in the surface modification of titanium implant and provides a reference for the future development of titanium implant surface modification.

  • 0 前言

  • 钛及其合金具有良好的力学性能、耐腐蚀性和生物相容性,广泛应用于骨骼和牙齿等硬组织的替换领域[1-3]。然而,钛植入体具有生物惰性,难以与周围组织发生良好的骨结合,在植入体内后,容易产生松动甚至脱落以及周围组织炎症等问题[4-6]。因此,对钛植入体进行表面改性,提高其与周围组织的结合强度、结合稳定性和使用寿命,已成为钛植入体领域研究的热点问题。

  • 现有研究表明,表面微观形貌和表面化学组成是影响植入体与周围细胞和组织结合的重要因素[7-8],针对二者的改性研究,得到了学者们的广泛关注[9-11]。当前,钛植入体的表面改性主要分为表面形貌改性和表面化学成分改性。在表面形貌改性领域,人们已通过喷砂酸蚀、阳极氧化、微弧氧化、碱热处理等方法在植入体表面构建出微米级或纳米级形貌,以增强其表面的生物活性。研究发现,植入体表面的微米级 (表面单元和尺寸为1~100 μm)结构有利于成骨细胞的迁移和生长,增加植入体与周围骨组织的嵌合 [12],而纳米级(表面单元和尺寸为1~100nm)结构则有利于细胞的黏附和成骨相关基因的表达 [13-14]。在表面化学成分改性领域,众多研究者通过等离子体注入[15]、水热处理[16]、离子置换[17-18]等方式,在植入体表面添加了各种生物活性离子,其中,水热处理和离子置换常结合使用,通过离子置换,将溶液中有助于成骨的生物活性离子与植入体表面的离子发生交换,从而将离子添加到表面。离子置换多发生在碱热反应后,当对钛植入体进行碱热反应后表面会生成钛酸钠纳米层,再将碱热处理后的钛植入体置于其他阳离子浓度较高的溶液中时,阳离子会将钠离子置换出来达到添加生物活性离子的目的。体内外试验结果表明,成骨细胞的迁移、生长等活动及新骨的形成受到多种生物活性离子的影响,在材料表面添加生物活性离子能够影响细胞的行为,增强细胞内某些信号通路的表达,从而加速植入体周围组织的骨生长和骨整合[19]

  • 植入体的表面微观形貌从尺寸上讲,主要分为微米级形貌和纳米级形貌[20]。然而,单一的微米级形貌和纳米级形貌对细胞行为的促进作用表现出一定的局限性,因此,越来越多的研究聚焦在对促进细胞行为具有协同效应的微纳米复合结构上。同时,为进一步提高植入体的生物活性,在构建微纳米复合结构的基础上,进一步在其表面添加生物活性离子逐渐成为当前的研究热点[21-22]。本文对钛植入体表面微纳米复合结构的构建和生物活性离子的添加及其对生物相容性的影响的研究现状进行了概述,并针对当前研究存在的问题,提出了未来钛植入体表面改性的研究展望。

  • 1 微纳米复合结构制备及其生物相容性

  • 天然骨组织由密质骨和松质骨组成,其表面包含微米、亚微米和纳米等多级结构[23-24],从仿生学的观点来看,植入体表面的微纳米复合结构有助于周围骨组织与植入体形成较好的骨结合。

  • 微米结构(1~100 μm)表面分为不规则微米结构表面和规则微米结构表面。不规则微米结构表面主要通过磨削[25]、酸蚀[26]、喷丸[27]、喷砂[28]等方法获得。规则微米结构表面可以通过光刻[29]、掩膜曝光电化学微加工[30]和微细铣削[31]等方法获得。表面的微图形对细胞的增殖、分化和骨整合均有着积极作用[32]

  • 纳米结构(1~100nm)包括纳米花、纳米线、纳米管等纳米结构表面,钛表面获得纳米结构的方法主要包括阳极氧化法[33]、溶胶-凝胶法[34]、碱热处理法[35]、电化学沉积法[36]等,通过控制反应条件可在表面获得不同纳米结构。植入体表面的纳米结构可以通过影响RGD肽的构象来改善植入体与蛋白的相互作用,从而增强细胞在具有纳米结构的植入体表面的黏附[37]

  • 微纳米复合结构能够发挥微米级结构和纳米级结构的协同作用,通过在具有微米级结构的基底上制备纳米级结构,细胞内碱性磷酸酶的活性和成骨相关基因的表达均得到增强[38]。目前,人们在构建规则微米结构和不规则微米结构的基础上,通过各种方法的排列组合在微米级表面叠加纳米管、纳米花、纳米线等纳米级结构,获得了规则微纳米复合结构和不规则微纳米复合结构,同时,微纳米复合结构的形貌大多呈现出纳米级形貌的特征。表面润湿性试验结果表明,微米级表面的润湿性根据Wenzel模型[39],液滴会渗透进表面的微结构中,造成接触角降低,然而根据Cassie-Baxter模型[40],当将液滴滴在表面时,会在水滴下形成空气垫,造成接触角增大,表面在叠加纳米级结构形成微纳米复合结构后,空气垫的作用大大减小,表面的亲水性则会进一步增强。体内外试验结果表明,相比于单一的微米级结构和纳米级结构,微纳米复合结构有效促进了细胞的黏附、增殖和分化及动物体内新骨的形成。

  • 为进一步精确调控细胞行为,众多学者对微纳米复合结构调控细胞行为的分子机制进行了深入探究[41-42]。Wnt/β-catenin、Hedgehog-Gli1、YAP/TAZ作为影响细胞行为的典型信号通路,得到了越来越多的关注[43-44]。Wnt信号通路在细胞成骨分化中发挥着重要作用,参与干细胞的分化调控和细胞对机械信号的响应[45]。研究表明,植入体表面的微纳米复合结构可以影响整合素介导信号的途径,调控Wnt/β-catenin信号通路的调节因子,激活 β-catenin信号,从而 β-catenin信号入核调控成骨相关基因的表达,促进细胞的成骨分化 [46-47],但对于Wnt/β-catenin信号通路对促进细胞成骨分化的具体实施途径仍然存在争议[48]。Hedgehog-Gli1信号通路可以调控细胞向成骨方向分化并参与新骨的形成[49]。 LIN等[50]将MG63成骨细胞接种到具有微纳米复合结构的钛表面,发现微纳米复合结构有效促进了细胞内Hedgehog家族蛋白Shh(Sonic hedgehog)、细胞膜受体蛋白Smo(Smoothened)以及下游蛋白Gli1的表达,并通过促进Runx2、ALP、OCN及BMP-2等相关基因的表达来促进细胞的成骨分化。 YAP/TAZ作为细胞内重要的机械响应分子,参与基底硬度、剪切应力等机械因素对细胞行为的调控,并对细胞的分化有着重要作用[51]。在微纳米复合结构对细胞分化的调控过程中,细胞通过感受基底的机械特性,获取基底的位置、内在机械力的方向、强度等信息,并通过YAP和YZP的调控作用,实现对细胞骨架的调控,进而促进细胞的成骨分化[52]。LIU等[53]通过酸蚀和阳极氧化,在钛植入体表面构建了微纳米复合结构,结果显示,微纳米复合结构通过提高蛋白AMOT130的水平,增强了成骨基因的表达和YAP对细胞核的定位,进而将细胞骨架和细胞核之间的机械连接信息更好地传递至细胞核,促进了干细胞的成骨分化,调节过程如图1所示。然而,对于微纳米复合结构对细胞行为的具体调控方式和影响机理仍然不明确,需要进行更多更深入的研究。

  • 图1 AMOT130介导骨髓间充质干细胞对微纳米复合结构应答的分子机制示意图[51]

  • Fig.1 Schematic of molecular mechanism by which AMOT130mediates BMSC response to micro-nano structure cues[51]

  • 1.1 喷砂酸蚀+碱热处理

  • 喷砂是一种以压缩空气为动力,将氧化铝、二氧化硅等小颗粒喷到材料表面以在材料表面获得微米级凹坑的方法。喷砂之后表面通常会有残余颗粒和碎屑,且表面凹坑形状不规则,有较多的棱角等,后续的酸蚀处理可以将残余的颗粒去除并使表面变得更加平整光顺,使表面应力不均一的情况得到改善,同时在表面构建微米级和亚微米级形貌[54]。碱热处理是指将钛或钛合金放在一定温度特定浓度的强碱溶液中,OH 与钛发生反应,在钛表面生成纳米级多孔结构的方法[55],改性后的表面能够有效诱导羟基磷灰石的形成,两种方法结合后有效提高了植入体的生物相容性。

  • WANG等[56]通过喷砂酸蚀和碱热处理,在钛合金样品表面制备了微纳米复合结构,抛光组表现出较为平坦的表面,经过喷砂酸蚀处理后,表面形成了微米级和亚微米级的凹坑,具有光滑表面的样品经过碱热处理后,形成了精细多孔的表面,产生了纳米级大小的凹坑,喷砂酸蚀后的样品碱热处理后,表面形成了微纳米复合织构表面形貌。

  • 为进一步研究微纳米复合结构对体内外生物相容性的影响,进行了一系列体内外生物相容性试验。 ZHUANG等[57]通过喷砂酸蚀在表面构建了微米级和亚微米级结构,之后分别通过高温和低温碱热处理,在纯钛表面叠加了纳米针和纳米网结构,表面形貌如图2所示。体内外试验结果表明,喷砂酸蚀和碱热处理构建的微纳米复合结构有效促进了细胞的黏附、增殖及分化,并增加了骨与植入体之间的接触面积和骨结合力,提高了植入体的稳定性(如图3所示,其中, Ti-control为抛光钛表面,SLA为喷砂酸蚀后的微米结构表面,SB-AH1为喷砂酸蚀+高温碱热处理后的微纳米复合结构表面,SB-AH2为喷砂酸蚀+低温碱热处理后的微纳米复合结构表面)。

  • 图2 各组试件表面的SEM图[57]

  • Fig.2 SEM images of each specimen surface [57]

  • 图3 细胞增殖、胞内蛋白和ALP活性[57]

  • Fig.3 Cell proliferation, intracellular proteins and ALP activity[57]

  • 1.2 酸蚀+阳极氧化

  • 阳极氧化是在基于氟化物的电解液中,将钛作为阳极并施加恒定电压,在钛表面生成二氧化钛纳米管的过程,与其他方法相比,该方法效率较高且纳米管长度和管径可控[58],其中,氧化过程中的电流、溶液的温度和pH值均会影响最终纳米管的形貌[59-61]

  • CHEN等[62]通过酸蚀和阳极氧化,在钛植入体表面构建了微纳米复合结构,表面形貌如图4所示,细胞试验结果表明,相比于未经过处理的钛,具有微纳米复合结构的钛基底有效促进了间充质干细胞的成骨分化。HAO等[63]通过酸蚀,在植入体表面构建了峰-谷状的凹槽,而后,阳极氧化在植入体表面构建了直径约70nm的有序排列的纳米管阵列。体内外生物相容性试验结果表明,改性后的表面有利于小鼠成骨细胞MC3T3的增殖分化和成骨相关基因的表达,植入小鼠体内后,改性后的植入体与周围骨组织的结合强度明显增强,组织学染色结果如图5所示,改性后的表面有效促进了新骨的形成。

  • 图4 不同样品表面形貌[62]

  • Fig.4 Surface morphology of different samples [62]

  • 图5 植入5周后的组织学切片染色[63]

  • Fig.5 Staining of histological sections 5weeks after implantation [63]

  • 1.3 喷砂酸蚀+微弧氧化

  • 喷砂酸蚀可以在植入体表面构建不规则的微米级和亚微米级凹坑,而微弧氧化可以在表面构建纳米级形貌。微弧氧化又称等离子体电解氧化,是一种在钛、铝、镁等表面制备多孔陶瓷涂层的技术,通过调整微弧氧化过程中的参数(电压、电流、电解液浓度和工作时间等)可以改变氧化层的厚度、表面的微观结构和粗糙度等[64-65]

  • HE等[66]将钛植入体进行喷砂处理后,在含有醋酸和醋酸钠的电解液中进行微弧氧化,相比于抛光钛,改性后的植入体的表面粗糙度和润湿性均得到显著提升,体内外试验结果表明,处理后的植入体有效促进了细胞的增殖分化和动物体内新骨的形成。DENG等[67]对纯钛植入体进行喷砂酸蚀,而后在含有醋酸钙和磷酸钙的电解质溶液中进行微弧氧化,扫描电镜结果如图6所示,结果显示,经过处理,表面产生了30~40 μm的不规则峰-谷状结构和微弧氧化产生的微孔,细胞试验结果表明,经过喷砂酸蚀和微弧氧化的钛植入体具有增强的生物相容性,细胞内ALP含量和总蛋白含量均显著提升。

  • 图6 各组样品的表面形貌[67]

  • Fig.6 Surface morphology of different samples[67]

  • 1.4 微细铣削+阳极氧化

  • 随着精密和超精密加工技术的发展,微细铣削因具有极高的加工精度和表面质量,广泛应用于植入体的表面改性。微细铣削是指通过微细铣削机床在植入体表面加工出特定图案的方法,微细铣削过程中,切削深度很小,因此可以直接加工出微米级沟槽。该方法的最大特点是可以加工自由曲面和规则微图形,且参数可控[68]

  • FILIZ等[69]使用两种微铣刀,通过微细铣削在生物相容性材料表面构建了不同尺寸、包含角度和杆高的微倒钩阵列,并研究了微铣削条件对微铣削力、表面粗糙度和毛刺形成的影响,加工过程如图7所示。在植入体表面加工出的微沟槽、微倒钩等微米尺度结构可以增加植入体的表面积,增强与人体的组织嵌合,有效降低了植入体脱落和松动的风险[70]

  • 图7 构建微倒钩的工艺步骤[69]

  • Fig.7 Process steps for the creation of microbarbs[69]

  • WAN等[71]首先使用微细铣刀在钛合金表面加工出深度为40 μm、间距为150 μm的微槽,阳极氧化后,微细铣削产生的毛刺被去除,并生成了有序排列的直径为70nm左右的纳米管阵列。表面润湿性结果显示,光滑表面、微米级表面、微纳米复合结构表面的接触角分别为67.3°、 114.8°、60.3°,阳极氧化显著增强了微细铣削后的表面润湿性。

  • 2 生物活性离子的添加及其生物相容性

  • 为进一步提高钛植入体的生物活性和与周围组织的生物相容性,在植入体表面添加生物活性离子得到了越来越多学者的关注[72-74],其中,钙[75]、锌[76]、镁[77]、锶[78]作为组成人体骨骼的重要元素,在促进成骨细胞的黏附、增殖、分化和新骨的形成中起着极大的促进作用,添加各种生物活性离子后,原表面的物理特性基本不发生变化,而表面物相和元素组成会发生变化造成化学特性的变化。

  • 2.1 钙离子

  • 钙作为骨骼的重要组成元素,在骨再生中起着十分重要的作用,钙离子参与了骨从形成到修复的整个生命周期[79-81],介导血小板的激活和临时基质的生成,能够结合富含酸性的蛋白质,并为骨矿核的形成创造过饱和条件。植入体表面注入钙离子可以使磷灰石薄膜与钛基底之间形成强键,加速植入体表面磷酸钙的沉积,使细胞和其他生物矿化分子优先与植入体发生静电结合[82-84],同时,钙是羟基磷灰石的重要组成部分,参与骨的矿化,从而促进植入体和天然骨的骨整合。研究表明,在表面钙离子浓度较高时,α5β1整合素水平显著上调,整合素与基质黏附以及细胞活化密切相关,其通过与纤维连接蛋白的结合介导细胞与底物的黏附,这一过程也会产生细胞内的信号,导致细胞增殖的增加[85]

  • SUNARSO等[86]将纯钛分别用NaH2PO4 和CaCl2 溶液处理,制备了钙和磷酸盐改性的钛,相比于抛光钛,改性后的钛的表面润湿性得到很大提升,细胞试验结果显示,钙离子改性后的钛有效促进了细胞的黏附、增殖和分化。ANITUA等[87]通过将钛植入体在CaCl2 溶液中进行超声处理,将钙离子添加到样品表面,细胞试验结果如图8所示。结果表明,成骨细胞在添加钙离子的植入体表面的黏附和增殖明显高于对照组,植入绵羊胫骨后,Micro-CT和组织切片染色结果表明(图9),添加钙离子的植入体的骨体积、骨表面、骨体积密度、骨表面密度和骨种植接触均优于对照组。

  • 图8 人胎儿成骨细胞hFOB 1:19的细胞行为[87]

  • Fig.8 Human Fetal Osteoblast hFOB 1:19cell behavior[87]

  • 图9 Micro-CT和组织学切片结果[87]

  • Fig.9 Micro-CT and histological section results[87]

  • 2.2 锌离子

  • 锌是人体内重要的微量元素,参与人体内的蛋白质代谢、细胞膜稳定和生长发育,并能促进成骨细胞的骨形成和矿化,加速破骨细胞的凋亡,同时,锌缺乏与胎儿在生长过程中的骨骼异常和生长迟缓密切相关[88-90]。研究表明,锌离子作为一种生物活性离子,能够有效调节成骨细胞的活性和行为,以提高钛植入体与周围组织的骨整合能力,在细胞微环境中,锌可以阻止破骨细胞的吸收过程并刺激成骨细胞的造骨过程。同时,锌离子是碱性磷酸酶的辅基,能促进细胞内ALP和胶原蛋白的表达,促进新骨形成,锌的缺乏会降低ALP的活性,进而引起骨钙化[91-92]。另外,锌离子表现出较好的抗菌活性,能够有效降低植入体的感染风险[93-95]

  • FANG等[96]采用等离子体浸没离子注入技术对抛光后的钛表面进行修饰,通过改变注入时间产生含不同锌离子浓度的表面,XPS分析结果表明,随着注入时间的延长,锌离子的浓度逐渐增加。抗菌试验结果表明,随着锌离子浓度的增加,植入体表面对细菌生长的抑制作用逐渐增强,锌离子浓度的增加有效促进了细胞的黏附、增殖和分化。WANG等[97]将含锌离子的聚多巴胺涂层添加到钛植入体表面,并将改性后的植入体植入到大鼠股骨内。各组样品的表面形貌如图10所示,相比于未改性的钛,添加锌离子后的植入体表面覆盖了一层聚集的颗粒。Micro-CT结果表明(图11),相比于未经过处理的钛植入体,含锌离子的聚多巴胺涂层有效促进了植入体周围骨的矿化,骨结合性能得到了明显提高。

  • 图10 各组样品的表面形貌[97]

  • Fig.10 Surface morphology of each sample [97]

  • 图11 种植4周后Ti、Ti-PDA、Ti-PDA-Zn周围骨整合情况及三组骨体积分数(n=4)[97]

  • Fig.11 Osseointegration around Ti, Ti-PDA, Ti-PDA-Zn 4weeks after implantation, and Bone volume fraction in three groups (n=4)[97]

  • 2.3 镁离子

  • 镁离子是人体内含量极其丰富的离子,富集在骨骼和牙齿中,高镁摄入量已被证明可以有效防止骨质疏松患者骨密度的降低[98]。镁离子可以通过激活成骨细胞、促进细胞内BMP-2的分泌来促进新骨的形成,并诱导破骨细胞的凋亡[99-100],ZHANG等研究结果表明,镁离子可促进由降钙素基因相关肽 (CGRP)介导的成骨分化[101],同时,镁已被证明具有较好的抗菌性能,能够有效阻止细菌的附着和生物膜的形成[102]

  • LI等[103]通过脉冲偏置电弧离子镀在多孔钛合金植入体表面成功添加了镁涂层,SEM结果表明,涂层由尺寸约为1 μm的均匀镁晶粒组成,涂层厚度约为5 μm,细胞增殖结果表明,相比于未经过处理的样品,添加镁涂层后的钛合金有效促进了细胞的增殖,免疫荧光染色结果显示,镁包覆的多孔钛合金植入体的钙化沉积明显高于未经过处理的钛合金,Micro-CT及组织切片染色结果表明,沉积镁涂层的多孔钛合金的BV/TV值及新生骨组织的生成量明显高于原生组。ZHU等[104]通过等离子体浸没离子注入技术将镁固定在钛基底上,SEM结果如图12所示,等离子体浸没离子注入处理未改变植入体原有的表面形貌,但亲水性得到改善。对细胞的活力、黏附、增殖、迁移和分化进行了分析,细胞活力分析结果如图13所示,染色结果表明,添加镁离子后,细胞行为均得到明显增强。蛋白质印迹结果表明,镁离子可以通过激活PIK3来诱导碱性磷酸酶的磷酸化,从而促进细胞的成骨分化。

  • 图12 等离子体沉积前后试件的表面形貌[104]

  • Fig.12 Surface morphology of the sample before and after Mg-PIII treatments [104]

  • 图13 细胞活力分析(绿色代表活细胞,红色代表死细胞)[104]

  • Fig.13 Cell viability assay, indicating live cells (green) and dead ones (red)[104]

  • 2.4 锶离子

  • 锶主要存在于骨组织中,是人体内一种重要的微量元素,具有与钙几乎相同的生物性能[105],研究表明,锶离子可以刺激成骨细胞中的钙敏感受体(CaSR),从而促进OPG(骨保护素)的形成[106],同时,锶离子可以刺激成骨细胞的增殖并抑制破骨细胞的生成和骨吸收[107-108]。另外,锶可以在成骨细胞中增加OPG的产生和降低RANKL(kB受体活化因子配体)的表达[109-110], RANKL-RANK相互作用对许多破骨细胞分化和功能至关重要,包括破骨细胞前体分化为成熟的破骨细胞[111],并附着在骨表面[112]以及骨吸收的激活[111, 113-114],OPG是一种通过作为RANKL的诱导受体抑制RANKL诱导的破骨细胞发生的蛋白。因此,成骨前细胞和成骨细胞中OPG/RANKL的比值是决定破骨细胞发生和骨吸收的重要因素。由于锶离子在骨再生和骨重建中具有双重作用,很多研究将锶离子加入到生物材料的表面,以促进植入体与周围组织的骨整合[115-117]

  • XING等[118]通过选择性激光熔化、微弧氧化和空气等离子体处理技术在钛合金植入体表面制备了掺锶的磷酸钙涂层。SEM结果显示,锶离子的引入没有改变涂层b5的形貌,电化学腐蚀试验结果表明, Sr-CaP涂层有效提高了植入体的耐腐蚀性。改性后的植入体表面润湿性得到了明显改善。体外试验结果表明,添加了锶离子的钛植入体有效促进了细胞的增殖和成骨分化。XU等[119]通过原位自组装,在钛表面成功制备了氧化石墨烯/聚多巴胺/锶离子纳米复合涂层(图14),EDS分析结果显示,锶元素均匀的沉积在样品表面;体外细胞试验结果表明,添加了锶离子的复合涂层有效促进了细胞的黏附、增殖和迁移,并增强了成骨相关基因的表达和细胞外基质的矿化。

  • 图14 样品表面表征[119]

  • Fig.14 Sample surface characterization [119]

  • 3 微纳米复合结构及生物活性离子对提高生物相容性的协同作用

  • 为进一步提高钛植入体的生物活性和成骨性能,当前研究不仅局限于单一的表面形貌改性和化学成分改性,更多则是将二者结合,通过物理或化学的方法将生物活性离子添加到具有微纳米复合结构的钛植入体表面。钙、锌、镁、锶作为骨骼重要的组成元素,得到了广泛研究 [120-122]

  • ZHANG等[123]通过对纯钛进行喷砂酸蚀,产生了层次化的微结构钛表面,之后在植酸和饱和氢氧化钙混合溶液中进行水热处理,通过化学转化沉积,成功制备了兼具微纳米复合结构和植酸钙涂层的钛植入体,表面形貌如图15所示,喷砂酸蚀后,Ti-SLA表面出现了微米级的凹坑,水热处理后,Ti-PACH表面形貌未发生明显变化。表面润湿性试验结果表明(图16),水热处理后的表面接触角明显小于喷砂酸蚀后的表面接触角,表现出较好的亲水性,体内外试验结果表明,添加了钙离子的微纳米复合结构能够有效促进细胞的增殖、分化和动物体内新骨组织的生成。

  • 图15 两种表面在不同放大倍数下的SEM图[123]

  • Fig.15 SEM images of two surfaces at different magnifications[123]

  • 图16 新制备的样品及在干燥、阴凉、密封的环境中贮存一个月后的表面接触角[123]

  • Fig.16 Surface contact angle of freshly prepared samples and stored in a dry, cool and sealed environment for one month[123]

  • SHAO等[124]通过对抛光钛进行喷砂酸蚀,制备了具有微米级和亚微米级结构的表面,之后在NaOH溶液中进行碱热处理,获得了具有微纳米复合结构的钛表面,在ZnSO4 溶液中通过水热处理进行离子置换后,锌离子将表面生成的钛酸钠纳米层中的钠离子成功置换,在植入体表面沉积了锌离子,试验过程如图17所示,其中,SEM结果表明,水热处理后,喷砂酸蚀和碱热处理构建的微纳米复合结构未发生明显变化。表面润湿性结果表明,水热处理后的表面具有较好的亲水性。XPS结果显示,经过水热处理,表面成功添加了锌离子,离子释放试验结果表明,在初始阶段锌离子大量释放,随后一直保持在较高的水平。体外试验结果表明,相比于具有单一的微米级结构和微纳米复合结构的表面,添加了锌离子的表面有效促进了细胞的增殖分化和成骨相关基因的表达,并表现出良好的抗菌性。

  • 图17 钛植入体表面喷砂酸蚀-碱热处理-水热处理试验过程示意图[124]

  • Fig.17 Schematic diagram of the experimental process of sandblasting, acid etching and alkali heat treatment-hydrothermal treatment on the surface of titanium implants[124]

  • WANG等[125]将纯钛在草酸中进行酸洗,之后在H2O2 和NaOH溶液中进行水热处理,在钛植入体表面构建了微纳米复合结构,并通过盐酸对表面进行质子化,而后采用过滤阴极电弧等离子体源将镁注入具有微纳米复合结构的钛表面。 SEM结果显示(图18),与碱性H2O2 反应后,具有微米级结构的基底表面生成了均匀的纳米尖端结构,经过等离子体注入后,纳米尖端形貌发生了变化。EDS分析结果表明,镁元素均匀分布在样品表面。体外细胞试验结果表明,兼具镁和微纳米复合结构的钛表面有效促进了rBMMSCs的增殖和成骨分化。

  • 图18 不同倍数下三种样品的表面形貌[125]

  • Fig.18 Surface morphology of three samples at different magnifications[125]

  • WANG等[126]将抛光钛进行碱热处理后,成功在表面构建出微纳米复合结构,之后,通过磁控溅射将锶离子沉积在钛表面,获得了叠加生物活性离子的微纳米复合结构表面。SEM图像和AFM图像如图19所示,抛光组表面可以观察到明显的划痕,经过碱热处理,表面呈现海绵网状结构,而沉积锶离子后,海绵结构的纳米线变厚,表面发现了大量的纳米颗粒,随着溅射时间的延长,纳米层的厚度逐渐增加。EDS分析结果表明,随着磁控溅射时间的延长,锶元素的含量逐渐升高。细胞试验结果表明,细胞在添加了锶离子后的植入体表面的增殖分化能力明显增强,Micro-CT和组织切片染色结果显示,加入锶离子后的植入体更有效地促进了新骨的形成。

  • 图19 不同样品的SEM图像和AFM图像[126]

  • Fig.19 SEM images and AFM images of different samples[126]

  • 4 结论与展望

  • 综述了钛植入体表面微观形貌和化学组成对生物相容性的影响,得出的主要结论如下:

  • (1)植入体表面的理化特性对生物相容性有着十分重要的影响。其中,植入体表面的微纳米复合结构相较于单一的微米级结构和纳米级结构,更有利于细胞的黏附、增殖和分化以及动物体内新骨的形成。

  • (2)通过等离子体注入、水热处理、离子置换等方式添加钙、锌、镁、锶等生物活性离子后,相比于未经过处理的钛,植入体的生物相容性得到明显增强。

  • (3)在构建微纳米复合结构的基础上,加入生物活性离子后,二者可以发挥协同作用,进一步增强植入体的成骨性能。

  • 目前,多采用物理、化学或生物化学的方式在钛植入体表面构建微纳米复合结构并添加生物活性离子,但存在一定的局限性,对未来钛植入体表面改性的研究展望如下:

  • (1)在构建微纳米复合结构和添加生物活性离子等生物活性物质的基础上,未来可深入对其细胞行为内在影响机制和信号通路激活方式的研究,为植入体表面改性研究构建理论基础。

  • (2)目前关于细胞对植入体表面微纳结构和生物活性离子的反应的研究较多,由于体内的生理环境较复杂,未来可深入到动物体内植入试验,研究其对促进成骨的内在影响机制。

  • (3)目前对于巨噬细胞极化对促进成骨的作用机制尚未明确,未来可通过调控巨噬细胞的极化方向减轻医用材料植入体内后的炎症反应,并探索炎症反应影响成骨的内在机理。

  • (4)当前对于促进细胞行为的最佳微纳米复合结构的形式、尺寸及各种离子的最佳浓度范围尚未明确,需进一步研究。

  • (5)细菌感染是当前植入手术失败的重要原因之一,未来可通过载药、载抗菌离子等方式进行抗菌表面的设计制造。

  • 参考文献

    • [1] JIANG H H,HAO P J,XU S,et al.The effect of strontium-loaded rough titanium surface on early osseointegration[J].Journal of Biomaterials Applications,2017,32(5):561-569.

    • [2] WANG H,LIU J Q,WANG C T,et al.The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration[J].Journal of Materials Science & Technology,2021,63:18-26.

    • [3] LAI M,CAI K Y,ZHAO L,et al.Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells[J].Biomacromolecules,2011,12(4):1097-1105.

    • [4] QIU J J,LIU L,CHEN B H,et al.Graphene oxide as a dual Zn/Mg ion carrier and release platform:Enhanced osteogenic activity and antibacterial properties[J].Journal of Materials Chemistry.B,2018,6(13):24-212.

    • [5] ELLIOTT D T,WIGGINS R J,DUA R.Bioinspired antibacterial surface for orthopedic and dental implants[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2021,109(7):973-981.

    • [6] 赵梓贺,万熠,于明志,等.激光刻蚀和阳极氧化对纯钛植入体表面性能的影响[J].中国表面工程,2020,33(6):29-36.ZHAO Zihe,WAN Yi,YU Mingzhi,et al.Effects of laser etching and anodic oxidation on surface properties of pure titanium implants[J].China Surface Engineering,2020,33(6):29-36.(in Chinese)

    • [7] ROSALES-LEAL J I,RODRIGUEZ-VALVERDE M A,MAZZAGLIA G,et al.Effect of roughness,wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,365(1-3):222-229.

    • [8] PONSONNET L,COMTE V,OTHMANE A,et al.Effect of surface topography and chemistry on adhesion,orientation and growth of fibroblasts on nickel–titanium substrates[J].Materials Science and Engineering C,2002,21(1):157-165.

    • [9] WANG Q G,ZHOU P,LIU S F,et al.Multi-scale surface treatments of titanium implants for rapid osseointegration:A review[J].Nanomaterials,2020,10(6):1244.

    • [10] GITTENS R A,MCLACHLAN T,OLIVARESNAVARRETE R,et al.The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J].Biomaterials,2011,32(13):3395-3403.

    • [11] XU K,ZHOU M,CHEN W Z,et al.Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances[J].Chemical Engineering Journal,2021,405:126930.

    • [12] HANSSON S,NORTON M.The relation between surface roughness and interfacial shear strength for bone-anchored implants.A Mathematical model[J].Journal of Biomechanics,1999,32(8):829-836.

    • [13] HAVLIKOVA J,STRASKY J,VANDROVCOVA M,et al.Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance[J].Materials Science and Engineering:C,2014,39:371-379.

    • [14] GUO J L,PADILLA R J,AMBROSE W,et al.The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo[J].Biomaterials,2007,28(36):5418-5425.

    • [15] KIM B,KIM J S,PARK Y M,et al.Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell[J].Materials Science and Engineering:C,2013,33(3):1554-1560.

    • [16] SAKATSUME H,TAKAHASHI M,KANYI M W,et al.The process of magnesium ion modification of titanium surface and the sustained-release of magnesium ions from its surface[J].Dental Materials Journal,2020,39(3):509-516.

    • [17] WANG T,WAN Y,LIU Z Q.Synergistic effects of bioactive ions and micro/nano-topography on the attachment,proliferation and differentiation of murine osteoblasts(MC3T3)[J].Journal of Materials Science:Materials in Medicine,2016,27(8):133.

    • [18] 于明志.增材制造钛合金植入体表面改性及其生物学性能研究[D].济南:山东大学,2021.YU Mingzhi.Surface modification of additive manufacturing titanium alloys implant and their biological properties[D].Jinan:Shandong University,2021.(in Chinese)

    • [19] PARK J,HANAWA T,CHUNG J.The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants[J].International Journal of Nanomedicine,2019,14:5697-5711.

    • [20] 鲁雄,冯波,翁杰,等.生物材料表面微纳结构对成骨相关细胞的影响[J].中国材料进展,2013,32(10):611-622.LU Xiong,FENG Bo,WENG Jie,et al.The effects of micro-and nano-structured biomaterial surfaces on osteogenetic-related cells[J].Materials China,2013,32(10):611-622.(in Chinese)

    • [21] TAO Z S,ZHOU W S,HE X W,et al.A comparative study of zinc,magnesium,strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J].Materials Science and Engineering:C,2016,62:226-232.

    • [22] VAN HENGEL I A J,LACIN M,MINNEBOO M,et al.The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants[J].Materials Science and Engineering:C,2021,124:112074.

    • [23] WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review[J].Biomaterials,2016,83:127-141.

    • [24] RHO J Y,KUHN-S L,ZIOUPOS P.Mechanical properties and the hierarchical structure of bone[J].Medical Engineering & Physics,1998,20(2):92-102.

    • [25] HUANG H H,HO C T,LEE T H,et al.Effect of surface roughness of ground titanium on initial cell adhesion[J].Biomolecular Engineering,2004,21(3-5):93-97.

    • [26] 庞骏德,王杨,蔺增.牙种植体表面喷砂酸蚀工艺的优化[J].中国表面工程,2014,27(2):102-109.PANG Junde,WANG Yang,LIN Zeng.Sandblasted and acid-etched process optimization of the dental implant[J].China Surface Engineering,2014,27(2):102-109.(in Chinese)

    • [27] ARIFVIANTO B,SUYITNO,MAHARDIKA M.Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications[J].International Journal of Minerals,Metallurgy and Materials,2013,20(8):788-795.

    • [28] LIU C F,CHANG K C,SUN Y S,et al.Combining sandblasting,alkaline etching,and collagen immobilization to promote cell growth on biomedical titanium implants[J].Polymers,2021,13(15):2550.

    • [29] CLARK P,CONNOLLY P,CURTIS A S G,et al.Cell guidance by ultrafine topography in vitro[J].Journal of Cell Science,1991,99:73-77.

    • [30] LU X,LENG Y.Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,2005,169(2):173-178.

    • [31] WANG G S,WAN Y,REN B,et al.Bioactivity of micropatterned TiO2 nanotubes fabricated by micromilling and anodic oxidation[J].Materials Science and Engineering:C,2019,95:114-121.

    • [32] GULATI K,MOON H,LI T,et al.Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity[J].Materials Science and Engineering:C,2018,91:624-630.

    • [33] GULATI K,PRIDEAUX M,KOGAWA M,et al.Anodized 3D-printed titanium implants with dual microand nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells[J].Journal of Tissue Engineering and Regenerative Medicine,2017,11(12):3313-3325.

    • [34] ADVINCULA M C,RAHEMTULLA F G,ADVINCULA R C,et al.Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J].Biomaterials,2006,27(10):2201-2212.

    • [35] WANG X H,LI J S,HU R,et al.Mechanical properties and bioactive surface modification via alkali-heat treatment of porous titanium for biomedical applications[J].Advanced Materials Research,2013,647:511-517.

    • [36] CHEN F,LAM W M,LIN C J,et al.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:In vitro evaluation using mesenchymal stem cells[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2007,82(1):183-191.

    • [37] 张艳靖.微米—纳米钛合金表面对成骨细胞生物学行为的影响[D].长春:吉林大学,2011.ZHANG Yanjing.Effect of the micro-nano surface of titanium alloy on biological behavior of osteoblasts.[D].Changchun:Jilin University,2011(in Chinese).

    • [38] SHU T Y,ZHANG Y C,SUN G,et al.Enhanced osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J].Frontiers in Bioengineering and Biotechnology,2021,8:621601.

    • [39] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.

    • [40] CASSIE A B D,BAXTER S,Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:0546-0550.

    • [41] ZHAO C C,WANG X Y,GAO L,et al.The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells[J].Acta Biomaterialia,2018,73:509-521.

    • [42] ZHAO L Z,MEI S L,CHU P K,et al.The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions[J].Biomaterials,2010,31(19):5072-5082.

    • [43] FU J N,LIU X M,TAN L,et al.Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation[J].Acta Biomaterialia,2020,101:152-167.

    • [44] PAN H H,XIE Y T,ZHANG Z Q,et al.YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure[J].Colloids and Surfaces B:Biointerfaces,2017,152:344-353.

    • [45] ZHAO X F,XIE L,WANG Z Y,et al.ZBP1(DAI/DLM-1)promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling[J].Bone Research,2020,8(2):219-228.

    • [46] WANG W,ZHAO L Z,WU K M,et al.The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography[J].Biomaterials,2013,34(3):631-640.

    • [47] 王薇.种植体微纳米形貌对成骨细胞行为影响的分子机制研究[D].西安:第四军医大学,2013.WANG Wei.The mechanisms of implant micro/nanotextured topography effects on osteoblasts behaviors[D].Xi’ an:The Fourth Military Medical University,2013.(in Chinese)

    • [48] WANG W,ZHAO L Z,MA Q L,et al.The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation[J].Biomaterials,2012,33(32):7993-8002.

    • [49] YANG J,ANDRE P,YE L,et al.The Hedgehog signalling pathway in bone formation[J].International Journal of Oral Science,2015,7(2):73-79.

    • [50] LIN Y,HUANG Y H,HE J B,et al.Role of Hedgehog-Gli1 signaling in the enhanced proliferation and differentiation of MG63 cells enabled by hierarchical micro-/nanotextured topography[J].International Journal of Nanomedicine 2017,12:3267-3280.

    • [51] GU K,FU X C,TIAN H,et al.TAZ promotes the proliferation and osteogenic differentiation of human periodontal ligament stem cells via the p‐SMAD3[J].Journal of Cellular Biochemistry,2020,121(2):1101-1113.

    • [52] OHASHI K,FUJIWARA S,MIZUNO K.Roles of the cytoskeleton,cell adhesion and rho signalling in mechanosensing and mechanotransduction[J].Journal of Biochemistry,2017,161(3):245-254.

    • [53] LIU X,HOU W Q,HE L,et al.AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J].Colloids and Surfaces B:Biointerfaces,2019,182:110332.

    • [54] NADAR Y S,KUTTY M G,ABDUL A A R.Relative effect of sand blasting and acid etching on the surface roughness of pure titanium and titanium alloy for dental implants[J].Advanced Materials Research,2014,1043:145-148.

    • [55] 杜青.喷砂酸蚀(SLA)钛表面生物活化及性能表征[D].哈尔滨:哈尔滨工业大学,2015.DU Qing.The bioactivation and characterization of the sandblasting etching(SLA)titanium surfaces[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [56] WANG C N,FENG Y B,WANG D F,et al.Effect of a hybrid micro/nano-integrated titanium surface on behavior of rat osteoblasts[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2017,32(2):459-468.

    • [57] ZHUANG X M,ZHOU B,OUYANG J L,et al.Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces[J].Biomedical materials,2014,9(4):045001.

    • [58] 马宗敏,谢艳娜,石云波,等.TiO2 纳米管的阳极氧化制备及改性应用研究综述[J].表面技术,2015,44(9):66-71.MA Z M,XIE Y N,SHI Y B,et al.Review on applied research of anodic preparation and modification of TiO2 nanotubes[J].Surface Technology,2015,44(9):66-71.(in Chinese)

    • [59] LI T,GULATI K,WANG N,et al.Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants[J].Materials Science and Engineering:C,2018,88:182-195.

    • [60] YEO I L.Modifications of dental implant surfaces at the micro-and nano-level for enhanced osseointegration[J].Materials,2020,13(1):89.

    • [61] SHIN Y C,PANG K M,HAN D W,et al.Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation[J].Materials Science and Engineering:C,2019,99:1174-1181.

    • [62] CHEN X Y,CAI K Y,LAI M,et al.Mesenchymal stem cells differentiation on hierarchically micro/nanostructured titanium substrates[J].Advanced Engineering Materials,2012,14(5):B216-B223.

    • [63] HAO J Z,LI Y,LI B E,et al.Biological and mechanical effects of micro-nanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo[J].Applied Biochemistry and Biotechnology,2017,183(1):280-292.

    • [64] HUANG X Y,ZHOU W,ZHOU X D,et al.Effect of novel micro-arc oxidation implant material on preventing peri-implantitis[J].Coatings,2019,9(11):691.

    • [65] LI Y D,WANG W Q,LIU H Y,et al.Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J].Materials Science and Engineering:C,2018,87:90-103.

    • [66] HE W L,YIN X,XIE L,et al.Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification[J].Journal of Materials Science:Materials in Medicine,2019,30(6):73.

    • [67] DENG F L,ZHANG W Z,ZHANG P F,et al.Improvement in the morphology of micro-arc oxidised titanium surfaces:A new process to increase osteoblast response[J].Materials Science and Engineering:C,2010,30(1):141-147.

    • [68] 王桂森,万熠,王滕,等.植入体微纳结构表面制备及生物相容性研究综述[J].表面技术,2016,45(5):8-18.WANG G S,WAN Y,WANG T,et al.Review on preparation of micro/nano structure on implant surface and its biocompatibility[J].Surface Technology,2016,45(5):8-18.(in Chinese)

    • [69] FILIZ S,XIE L K,WEISS L E,et al.Micromilling of microbarbs for medical implants[J].International Journal of Machine Tools and Manufacture,2008,48(3-4):459-472.

    • [70] 王滕.钛合金植入体微纳双级结构表面设计制造及其生物相容性研究[D].济南:山东大学,2017.WANG Teng.Design and manufacturing of hierarchical micro/nano-structured surface on biomedical titanium alloy and its biocompatibility[D].Jinan:Shandong University,2017.(in Chinese)

    • [71] WAN Y,WANG T,WANG Z S,et al.Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation[J].The International Journal of Advanced Manufacturing Technology,2018,98(1-4):29-35.

    • [72] GAO T,ZHANG J W,ZHANG N H,et al.Dopamine assisted incorporation of Sr ions in porous titanium alloy and its in-vitro bioactivity and cellular responses[J].Materials Letters,2021,287:129308.

    • [73] ZHANG X J,HUANG Y,WANG B B,et al.A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity[J].Ceramics International,2020,46(10):14796-14807.

    • [74] WANG L Y,LUO Q M,ZHANG X M,et al.Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts[J].Bioactive Materials,2021,6(1):64-74.

    • [75] RODRIGUEZ-CONTRERAS A,TORRES D,RAFIK B,et al.Bioactivity and antibacterial properties of calciumand silver-doped coatings on 3D printed titanium scaffolds[J].Surface and Coatings Technology,2021,421:127476.

    • [76] LIU J C,ZHAO Y Y,ZHANG Y,et al.Exosomes derived from macrophages upon Zn ion stimulation promote osteoblast and endothelial cell functions[J].Journal of Materials Chemistry B,2021,9(18):3800-3807.

    • [77] ZHOU M,XIONG P,JIA Z J,et al.Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J].Materials Letters,2017,202:9-12.

    • [78] ALSHAMMARI H,BAKITIAN F,NEILANDS J,et al.Antimicrobial properties of strontium functionalized titanium surfaces for oral applications,a systematic review[J].Coatings,2021,11(7):810.

    • [79] HABIBOVIC P,BARRALET J E.Bioinorganics and biomaterials:Bone repair[J].Acta Biomaterialia,2011,7(8):3013-3026.

    • [80] GORBET M B,SEFTON M V.Biomaterial-associated thrombosis:Roles of coagulation factors,complement,platelets and leukocytes[J].Biomaterials,2004,25(26):5681-5703.

    • [81] MARIE P J.The calcium-sensing receptor in bone cells:A potential therapeutic target in osteoporosis[J].Bone,2010,46(3):571-576.

    • [82] EIRIK E J.A study on the mechanism of protein adsorption to TiO2[J].Biomaterials,1991,12(6):593-596.

    • [83] PARK I S,OH H J,BAE T S.Bioactivity and generation of anodized nanotubular TiO2 layer of Ti–6Al–4V alloy in glycerol solution[J].Thin Solid Films,2013,548:292-298.

    • [84] ALLAM N K,GRIMES C A.Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte[J].The Journal of Physical Chemistry C,2007,111(35):13028-13032.

    • [85] OSHIRO W,AYUKAWA Y,ATSUTA I,et al.Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing[J].Colloids and Surfaces B:Biointerfaces,2015,131:141-147.

    • [86] SUNARSO,TOITA R,TSURU K,et al.Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants[J].Materials Science and Engineering C,2016,68:291-298.

    • [87] ANITUA E,PINAS L,MURIAS A,et al.Effects of calcium ions on titanium surfaces for bone regeneration[J].Colloids and Surfaces B:Biointerfaces,2015,130:173-181.

    • [88] SAUER G R,SMITH D M,CAHALANE M,et al.Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes[J].Journal of Cellular Biochemistry,2003,88(5):954-969.

    • [89] GUO B L,YANG M W,LIANG D,et al.Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway[J].Molecular and Cellular Biochemistry,2012,361(1-2):209-216.

    • [90] 余毅,向一鸣,李伊朗,等,钛植入体表面构建具有抗菌活性和生物相容性的 PDA/RGDC/氧化锌量子点复合涂层[J].中国表面工程,2019,32(5):13-21.YU Yi,XIANG Yiming,LI Yilang,et,al.Construction of PDA/RGDC/Zinc oxide quantum dot composite coatings with antibacterial activity and biocompatibility on surface of titanium implants[J].China Surface Engineering,2019,32(5):13-21.(in Chinese)

    • [91] SEO H J,CHO Y E,KIM T,et al.Zinc may increase bone formation through stimulating cell proliferation,alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells[J].Nutrition Research and Practice,2010,4(5):356-361.

    • [92] ZHAO Z H,WAN Y,YU M Z,et al.Biocompability evaluation of micro textures coated with zinc oxide on Ti-6Al-4V treated by nanosecond laser[J].Surface and Coatings Technology,2021,422:127453.

    • [93] LI J,TAN L,LIU X M,et al.Balancing bacteriaosteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods[J].ACS Nano,2017,11(11):11250-11263.

    • [94] TAPIERO H,TEW K D.Trace elements in human physiology and pathology:Zinc and metallothioneins[J].Biomedicine & Pharmacotherapy,2003,57(9):399-411.

    • [95] LI X D,LI Y F,PENG S C,et al.Effect of zinc ions on improving implant fixation in osteoporotic bone[J].Connective Tissue Research,2013,54(4-5):290-296.

    • [96] FANG J,ZHAO J H,SUN Y,et al.Biocompatibility and antibacterial properties of zinc-ion implantation on titanium[J].Journal of Hard Tissue Biology,2014,23(1):35-44.

    • [97] WANG L,SHANG X F,HAO Y F,et al.Bi-functional titanium-polydopamine-zinc coatings for infection inhibition and enhanced osseointegration[J].RSC Advances,2019,9(6):2295-2892.

    • [98] LIGIA A M.Magnesium supplementation and bone turnover[J].Nutrition Reviews,1999,57(7):227-229.

    • [99] WITTE F,KAESE V,HAFERKAMP H,et al.In vivo corrosion of four magnesium alloys and the associated bone response[J].Biomaterials,2005,26(17):3557-3563.

    • [100] WANG C Y,WANG S F,YAO Y S,et al.Study on vertical mandibular distraction osteogenesis using magnesium alloy on canine[J].Progress in Natural Science:Materials International,2014,24(5):446-451.

    • [101] ZHANG Y F,XU J K,RUAN Y C,et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J].Nature Medicine,2016,22(10):1160-1169.

    • [102] ZHAO Q M,YI L,JIANG L B,et al.Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating[J].Nanomedicine,2019,14(9):1109-1133.

    • [103] LI X K,GAO P,WAN P,et al.Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants:In vitro and in vivo study[J].Scientific Reports,2017,7(1):1-11.

    • [104] ZHU Y,ZHANG C N,GU Y X,et al.The responses of human gingival fibroblasts to magnesium-doped titanium[J].Journal of Biomedical Materials Research Part A,2020,108(2):267-278.

    • [105] LIU Y T,KUNG K C,YANG C Y,et al.Engineering three-dimensional structures using bio-inspired dopamine and strontium on titanium for biomedical application[J].Journal of Materials Chemistry B,2014,2(45):7927-7935.

    • [106] BOSE S,FIELDING G,TARAFDER S,et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J].Trends in Biotechnology,2013,31(10):594-605.

    • [107] BRAUX J,VELARD F,GUILLAUME C,et al.A new insight into the dissociating effect of strontium on bone resorption and formation[J].Acta Biomaterialia,2011,7(6):2593-2603.

    • [108] PENG S L,LIU X S,HUANG S S,et al.The cross-talk between osteoclasts and osteoblasts in response to strontium treatment:Involvement of osteoprotegerin[J].Bone,2011,49(6):1290-1298.

    • [109] YASUDA H,SHIMA N,NAKAGAWA N,et al.Identity of osteoclastogenesis inhibitory factor(OCIF)and osteoprotegerin(OPG):A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro[J].Endocrinology,1998,139(3):1329-1337.

    • [110] UDAGAWA N,TAKAHASHI N,YASUDA H,et al.Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J].Endocrinology,2000,141(9):3478-3484.

    • [111] LACEY D L,TIMMS E,TAN H L,et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J].Cell,1998,93(2):165-176.

    • [112] O'BRIEN E A,WILLIAMS J H H,MARSHALL M J.Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria[J].Biochemical and Biophysical Research Communications,2000,274(2):281-290.

    • [113] BURGESS T L,QIAN Y,KAUFMAN S,et al.The ligand for osteoprotegerin(OPGL)directly activates mature osteoclasts[J].Journal of Cell Biology,1999,145(3):527-538.

    • [114] TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts[J].Journal of Experimental Medicine,1998,188(5):997-1001.

    • [115] JIANG H H,ZHOU W J,WANG B C,et al.The effect of strontium modified rough titanium surface on biologic response of MC3T3-E1 cells[J].Dental Materials Journal,2020,39(5):808-814.

    • [116] LIN G F,ZHOU C,LIN M N,et al.Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits[J].Clinical Oral Implants Research,2019,30(8):777-790.

    • [117] OKUZU Y,FUJIBAYASHI S,YAMAGUCHI S,et al.In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions[J].Journal of Biomaterials Applications,2021,35(6):670-680.

    • [118] XING H Y,LI R Y,WEI Y J,et al.Improved osteogenesis of selective-laser-melted titanium alloy by coating strontium-doped phosphate with high-efficiency air-plasma treatment[J].Frontiers in Bioengineering and Biotechnology,2020,8:367.

    • [119] XU K,CHEN W Z,FU G L,et al.In situ self-assembly of graphene oxide/polydopamine/Sr2+ nanosheets on titanium surfaces for enhanced osteogenic differentiation of mesenchymal stem cells[J].Carbon,2019,142:567-579.

    • [120] YU H W,HUANG X B,YANG X N,et al.Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization[J].Materials Science and Engineering:C,2017,78:175-184.

    • [121] ZHANG W J,WANG G C,LIU Y,et al.The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J].Biomaterials,2013,34(13):3184-3195.

    • [122] KO S,HWANG M,MOON W,et al.Characterizations of Ca-and Mg-incorporating micro/nano-structured surfaces on titanium fabricated by microarc oxidation and hydrothermal treatments[J].Journal of Physics and Chemistry of Solids,2015,87:147-152.

    • [123] ZHANG H,LIU K,LU M M,et al.Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Materials Science and Engineering:C,2021,118:111402.

    • [124] SHAO S Y,CHEN J X,TANG H Y,et al.A titanium surface modified with zinc-containing nanowires:Enhancing biocompatibility and antibacterial property in vitro[J].Applied Surface Science,2020,515:146107.

    • [125] WANG G F,LI J H,ZHANG W J,et al.Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function[J].International Journal of Nanomedicine,2014,9:2387-2398.

    • [126] WANG H Y,XU Q P,HU H,et al.The Fabrication and function of strontium-modified hierarchical micro/nano titanium implant[J].International Journal of Nanomedicine,2020,15:8983-8998.

  • 参考文献

    • [1] JIANG H H,HAO P J,XU S,et al.The effect of strontium-loaded rough titanium surface on early osseointegration[J].Journal of Biomaterials Applications,2017,32(5):561-569.

    • [2] WANG H,LIU J Q,WANG C T,et al.The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration[J].Journal of Materials Science & Technology,2021,63:18-26.

    • [3] LAI M,CAI K Y,ZHAO L,et al.Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells[J].Biomacromolecules,2011,12(4):1097-1105.

    • [4] QIU J J,LIU L,CHEN B H,et al.Graphene oxide as a dual Zn/Mg ion carrier and release platform:Enhanced osteogenic activity and antibacterial properties[J].Journal of Materials Chemistry.B,2018,6(13):24-212.

    • [5] ELLIOTT D T,WIGGINS R J,DUA R.Bioinspired antibacterial surface for orthopedic and dental implants[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2021,109(7):973-981.

    • [6] 赵梓贺,万熠,于明志,等.激光刻蚀和阳极氧化对纯钛植入体表面性能的影响[J].中国表面工程,2020,33(6):29-36.ZHAO Zihe,WAN Yi,YU Mingzhi,et al.Effects of laser etching and anodic oxidation on surface properties of pure titanium implants[J].China Surface Engineering,2020,33(6):29-36.(in Chinese)

    • [7] ROSALES-LEAL J I,RODRIGUEZ-VALVERDE M A,MAZZAGLIA G,et al.Effect of roughness,wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,365(1-3):222-229.

    • [8] PONSONNET L,COMTE V,OTHMANE A,et al.Effect of surface topography and chemistry on adhesion,orientation and growth of fibroblasts on nickel–titanium substrates[J].Materials Science and Engineering C,2002,21(1):157-165.

    • [9] WANG Q G,ZHOU P,LIU S F,et al.Multi-scale surface treatments of titanium implants for rapid osseointegration:A review[J].Nanomaterials,2020,10(6):1244.

    • [10] GITTENS R A,MCLACHLAN T,OLIVARESNAVARRETE R,et al.The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J].Biomaterials,2011,32(13):3395-3403.

    • [11] XU K,ZHOU M,CHEN W Z,et al.Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances[J].Chemical Engineering Journal,2021,405:126930.

    • [12] HANSSON S,NORTON M.The relation between surface roughness and interfacial shear strength for bone-anchored implants.A Mathematical model[J].Journal of Biomechanics,1999,32(8):829-836.

    • [13] HAVLIKOVA J,STRASKY J,VANDROVCOVA M,et al.Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance[J].Materials Science and Engineering:C,2014,39:371-379.

    • [14] GUO J L,PADILLA R J,AMBROSE W,et al.The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo[J].Biomaterials,2007,28(36):5418-5425.

    • [15] KIM B,KIM J S,PARK Y M,et al.Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell[J].Materials Science and Engineering:C,2013,33(3):1554-1560.

    • [16] SAKATSUME H,TAKAHASHI M,KANYI M W,et al.The process of magnesium ion modification of titanium surface and the sustained-release of magnesium ions from its surface[J].Dental Materials Journal,2020,39(3):509-516.

    • [17] WANG T,WAN Y,LIU Z Q.Synergistic effects of bioactive ions and micro/nano-topography on the attachment,proliferation and differentiation of murine osteoblasts(MC3T3)[J].Journal of Materials Science:Materials in Medicine,2016,27(8):133.

    • [18] 于明志.增材制造钛合金植入体表面改性及其生物学性能研究[D].济南:山东大学,2021.YU Mingzhi.Surface modification of additive manufacturing titanium alloys implant and their biological properties[D].Jinan:Shandong University,2021.(in Chinese)

    • [19] PARK J,HANAWA T,CHUNG J.The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants[J].International Journal of Nanomedicine,2019,14:5697-5711.

    • [20] 鲁雄,冯波,翁杰,等.生物材料表面微纳结构对成骨相关细胞的影响[J].中国材料进展,2013,32(10):611-622.LU Xiong,FENG Bo,WENG Jie,et al.The effects of micro-and nano-structured biomaterial surfaces on osteogenetic-related cells[J].Materials China,2013,32(10):611-622.(in Chinese)

    • [21] TAO Z S,ZHOU W S,HE X W,et al.A comparative study of zinc,magnesium,strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J].Materials Science and Engineering:C,2016,62:226-232.

    • [22] VAN HENGEL I A J,LACIN M,MINNEBOO M,et al.The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants[J].Materials Science and Engineering:C,2021,124:112074.

    • [23] WANG X J,XU S Q,ZHOU S W,et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants:A review[J].Biomaterials,2016,83:127-141.

    • [24] RHO J Y,KUHN-S L,ZIOUPOS P.Mechanical properties and the hierarchical structure of bone[J].Medical Engineering & Physics,1998,20(2):92-102.

    • [25] HUANG H H,HO C T,LEE T H,et al.Effect of surface roughness of ground titanium on initial cell adhesion[J].Biomolecular Engineering,2004,21(3-5):93-97.

    • [26] 庞骏德,王杨,蔺增.牙种植体表面喷砂酸蚀工艺的优化[J].中国表面工程,2014,27(2):102-109.PANG Junde,WANG Yang,LIN Zeng.Sandblasted and acid-etched process optimization of the dental implant[J].China Surface Engineering,2014,27(2):102-109.(in Chinese)

    • [27] ARIFVIANTO B,SUYITNO,MAHARDIKA M.Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications[J].International Journal of Minerals,Metallurgy and Materials,2013,20(8):788-795.

    • [28] LIU C F,CHANG K C,SUN Y S,et al.Combining sandblasting,alkaline etching,and collagen immobilization to promote cell growth on biomedical titanium implants[J].Polymers,2021,13(15):2550.

    • [29] CLARK P,CONNOLLY P,CURTIS A S G,et al.Cell guidance by ultrafine topography in vitro[J].Journal of Cell Science,1991,99:73-77.

    • [30] LU X,LENG Y.Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,2005,169(2):173-178.

    • [31] WANG G S,WAN Y,REN B,et al.Bioactivity of micropatterned TiO2 nanotubes fabricated by micromilling and anodic oxidation[J].Materials Science and Engineering:C,2019,95:114-121.

    • [32] GULATI K,MOON H,LI T,et al.Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity[J].Materials Science and Engineering:C,2018,91:624-630.

    • [33] GULATI K,PRIDEAUX M,KOGAWA M,et al.Anodized 3D-printed titanium implants with dual microand nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells[J].Journal of Tissue Engineering and Regenerative Medicine,2017,11(12):3313-3325.

    • [34] ADVINCULA M C,RAHEMTULLA F G,ADVINCULA R C,et al.Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide[J].Biomaterials,2006,27(10):2201-2212.

    • [35] WANG X H,LI J S,HU R,et al.Mechanical properties and bioactive surface modification via alkali-heat treatment of porous titanium for biomedical applications[J].Advanced Materials Research,2013,647:511-517.

    • [36] CHEN F,LAM W M,LIN C J,et al.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:In vitro evaluation using mesenchymal stem cells[J].Journal of Biomedical Materials Research Part B-Applied Biomaterials,2007,82(1):183-191.

    • [37] 张艳靖.微米—纳米钛合金表面对成骨细胞生物学行为的影响[D].长春:吉林大学,2011.ZHANG Yanjing.Effect of the micro-nano surface of titanium alloy on biological behavior of osteoblasts.[D].Changchun:Jilin University,2011(in Chinese).

    • [38] SHU T Y,ZHANG Y C,SUN G,et al.Enhanced osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J].Frontiers in Bioengineering and Biotechnology,2021,8:621601.

    • [39] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.

    • [40] CASSIE A B D,BAXTER S,Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:0546-0550.

    • [41] ZHAO C C,WANG X Y,GAO L,et al.The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells[J].Acta Biomaterialia,2018,73:509-521.

    • [42] ZHAO L Z,MEI S L,CHU P K,et al.The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions[J].Biomaterials,2010,31(19):5072-5082.

    • [43] FU J N,LIU X M,TAN L,et al.Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation[J].Acta Biomaterialia,2020,101:152-167.

    • [44] PAN H H,XIE Y T,ZHANG Z Q,et al.YAP-mediated mechanotransduction regulates osteogenic and adipogenic differentiation of BMSCs on hierarchical structure[J].Colloids and Surfaces B:Biointerfaces,2017,152:344-353.

    • [45] ZHAO X F,XIE L,WANG Z Y,et al.ZBP1(DAI/DLM-1)promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling[J].Bone Research,2020,8(2):219-228.

    • [46] WANG W,ZHAO L Z,WU K M,et al.The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography[J].Biomaterials,2013,34(3):631-640.

    • [47] 王薇.种植体微纳米形貌对成骨细胞行为影响的分子机制研究[D].西安:第四军医大学,2013.WANG Wei.The mechanisms of implant micro/nanotextured topography effects on osteoblasts behaviors[D].Xi’ an:The Fourth Military Medical University,2013.(in Chinese)

    • [48] WANG W,ZHAO L Z,MA Q L,et al.The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation[J].Biomaterials,2012,33(32):7993-8002.

    • [49] YANG J,ANDRE P,YE L,et al.The Hedgehog signalling pathway in bone formation[J].International Journal of Oral Science,2015,7(2):73-79.

    • [50] LIN Y,HUANG Y H,HE J B,et al.Role of Hedgehog-Gli1 signaling in the enhanced proliferation and differentiation of MG63 cells enabled by hierarchical micro-/nanotextured topography[J].International Journal of Nanomedicine 2017,12:3267-3280.

    • [51] GU K,FU X C,TIAN H,et al.TAZ promotes the proliferation and osteogenic differentiation of human periodontal ligament stem cells via the p‐SMAD3[J].Journal of Cellular Biochemistry,2020,121(2):1101-1113.

    • [52] OHASHI K,FUJIWARA S,MIZUNO K.Roles of the cytoskeleton,cell adhesion and rho signalling in mechanosensing and mechanotransduction[J].Journal of Biochemistry,2017,161(3):245-254.

    • [53] LIU X,HOU W Q,HE L,et al.AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J].Colloids and Surfaces B:Biointerfaces,2019,182:110332.

    • [54] NADAR Y S,KUTTY M G,ABDUL A A R.Relative effect of sand blasting and acid etching on the surface roughness of pure titanium and titanium alloy for dental implants[J].Advanced Materials Research,2014,1043:145-148.

    • [55] 杜青.喷砂酸蚀(SLA)钛表面生物活化及性能表征[D].哈尔滨:哈尔滨工业大学,2015.DU Qing.The bioactivation and characterization of the sandblasting etching(SLA)titanium surfaces[D].Harbin:Harbin Institute of Technology,2015.(in Chinese)

    • [56] WANG C N,FENG Y B,WANG D F,et al.Effect of a hybrid micro/nano-integrated titanium surface on behavior of rat osteoblasts[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2017,32(2):459-468.

    • [57] ZHUANG X M,ZHOU B,OUYANG J L,et al.Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces[J].Biomedical materials,2014,9(4):045001.

    • [58] 马宗敏,谢艳娜,石云波,等.TiO2 纳米管的阳极氧化制备及改性应用研究综述[J].表面技术,2015,44(9):66-71.MA Z M,XIE Y N,SHI Y B,et al.Review on applied research of anodic preparation and modification of TiO2 nanotubes[J].Surface Technology,2015,44(9):66-71.(in Chinese)

    • [59] LI T,GULATI K,WANG N,et al.Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants[J].Materials Science and Engineering:C,2018,88:182-195.

    • [60] YEO I L.Modifications of dental implant surfaces at the micro-and nano-level for enhanced osseointegration[J].Materials,2020,13(1):89.

    • [61] SHIN Y C,PANG K M,HAN D W,et al.Enhanced osteogenic differentiation of human mesenchymal stem cells on Ti surfaces with electrochemical nanopattern formation[J].Materials Science and Engineering:C,2019,99:1174-1181.

    • [62] CHEN X Y,CAI K Y,LAI M,et al.Mesenchymal stem cells differentiation on hierarchically micro/nanostructured titanium substrates[J].Advanced Engineering Materials,2012,14(5):B216-B223.

    • [63] HAO J Z,LI Y,LI B E,et al.Biological and mechanical effects of micro-nanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo[J].Applied Biochemistry and Biotechnology,2017,183(1):280-292.

    • [64] HUANG X Y,ZHOU W,ZHOU X D,et al.Effect of novel micro-arc oxidation implant material on preventing peri-implantitis[J].Coatings,2019,9(11):691.

    • [65] LI Y D,WANG W Q,LIU H Y,et al.Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J].Materials Science and Engineering:C,2018,87:90-103.

    • [66] HE W L,YIN X,XIE L,et al.Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification[J].Journal of Materials Science:Materials in Medicine,2019,30(6):73.

    • [67] DENG F L,ZHANG W Z,ZHANG P F,et al.Improvement in the morphology of micro-arc oxidised titanium surfaces:A new process to increase osteoblast response[J].Materials Science and Engineering:C,2010,30(1):141-147.

    • [68] 王桂森,万熠,王滕,等.植入体微纳结构表面制备及生物相容性研究综述[J].表面技术,2016,45(5):8-18.WANG G S,WAN Y,WANG T,et al.Review on preparation of micro/nano structure on implant surface and its biocompatibility[J].Surface Technology,2016,45(5):8-18.(in Chinese)

    • [69] FILIZ S,XIE L K,WEISS L E,et al.Micromilling of microbarbs for medical implants[J].International Journal of Machine Tools and Manufacture,2008,48(3-4):459-472.

    • [70] 王滕.钛合金植入体微纳双级结构表面设计制造及其生物相容性研究[D].济南:山东大学,2017.WANG Teng.Design and manufacturing of hierarchical micro/nano-structured surface on biomedical titanium alloy and its biocompatibility[D].Jinan:Shandong University,2017.(in Chinese)

    • [71] WAN Y,WANG T,WANG Z S,et al.Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation[J].The International Journal of Advanced Manufacturing Technology,2018,98(1-4):29-35.

    • [72] GAO T,ZHANG J W,ZHANG N H,et al.Dopamine assisted incorporation of Sr ions in porous titanium alloy and its in-vitro bioactivity and cellular responses[J].Materials Letters,2021,287:129308.

    • [73] ZHANG X J,HUANG Y,WANG B B,et al.A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity[J].Ceramics International,2020,46(10):14796-14807.

    • [74] WANG L Y,LUO Q M,ZHANG X M,et al.Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts[J].Bioactive Materials,2021,6(1):64-74.

    • [75] RODRIGUEZ-CONTRERAS A,TORRES D,RAFIK B,et al.Bioactivity and antibacterial properties of calciumand silver-doped coatings on 3D printed titanium scaffolds[J].Surface and Coatings Technology,2021,421:127476.

    • [76] LIU J C,ZHAO Y Y,ZHANG Y,et al.Exosomes derived from macrophages upon Zn ion stimulation promote osteoblast and endothelial cell functions[J].Journal of Materials Chemistry B,2021,9(18):3800-3807.

    • [77] ZHOU M,XIONG P,JIA Z J,et al.Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J].Materials Letters,2017,202:9-12.

    • [78] ALSHAMMARI H,BAKITIAN F,NEILANDS J,et al.Antimicrobial properties of strontium functionalized titanium surfaces for oral applications,a systematic review[J].Coatings,2021,11(7):810.

    • [79] HABIBOVIC P,BARRALET J E.Bioinorganics and biomaterials:Bone repair[J].Acta Biomaterialia,2011,7(8):3013-3026.

    • [80] GORBET M B,SEFTON M V.Biomaterial-associated thrombosis:Roles of coagulation factors,complement,platelets and leukocytes[J].Biomaterials,2004,25(26):5681-5703.

    • [81] MARIE P J.The calcium-sensing receptor in bone cells:A potential therapeutic target in osteoporosis[J].Bone,2010,46(3):571-576.

    • [82] EIRIK E J.A study on the mechanism of protein adsorption to TiO2[J].Biomaterials,1991,12(6):593-596.

    • [83] PARK I S,OH H J,BAE T S.Bioactivity and generation of anodized nanotubular TiO2 layer of Ti–6Al–4V alloy in glycerol solution[J].Thin Solid Films,2013,548:292-298.

    • [84] ALLAM N K,GRIMES C A.Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte[J].The Journal of Physical Chemistry C,2007,111(35):13028-13032.

    • [85] OSHIRO W,AYUKAWA Y,ATSUTA I,et al.Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing[J].Colloids and Surfaces B:Biointerfaces,2015,131:141-147.

    • [86] SUNARSO,TOITA R,TSURU K,et al.Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants[J].Materials Science and Engineering C,2016,68:291-298.

    • [87] ANITUA E,PINAS L,MURIAS A,et al.Effects of calcium ions on titanium surfaces for bone regeneration[J].Colloids and Surfaces B:Biointerfaces,2015,130:173-181.

    • [88] SAUER G R,SMITH D M,CAHALANE M,et al.Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes[J].Journal of Cellular Biochemistry,2003,88(5):954-969.

    • [89] GUO B L,YANG M W,LIANG D,et al.Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway[J].Molecular and Cellular Biochemistry,2012,361(1-2):209-216.

    • [90] 余毅,向一鸣,李伊朗,等,钛植入体表面构建具有抗菌活性和生物相容性的 PDA/RGDC/氧化锌量子点复合涂层[J].中国表面工程,2019,32(5):13-21.YU Yi,XIANG Yiming,LI Yilang,et,al.Construction of PDA/RGDC/Zinc oxide quantum dot composite coatings with antibacterial activity and biocompatibility on surface of titanium implants[J].China Surface Engineering,2019,32(5):13-21.(in Chinese)

    • [91] SEO H J,CHO Y E,KIM T,et al.Zinc may increase bone formation through stimulating cell proliferation,alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells[J].Nutrition Research and Practice,2010,4(5):356-361.

    • [92] ZHAO Z H,WAN Y,YU M Z,et al.Biocompability evaluation of micro textures coated with zinc oxide on Ti-6Al-4V treated by nanosecond laser[J].Surface and Coatings Technology,2021,422:127453.

    • [93] LI J,TAN L,LIU X M,et al.Balancing bacteriaosteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods[J].ACS Nano,2017,11(11):11250-11263.

    • [94] TAPIERO H,TEW K D.Trace elements in human physiology and pathology:Zinc and metallothioneins[J].Biomedicine & Pharmacotherapy,2003,57(9):399-411.

    • [95] LI X D,LI Y F,PENG S C,et al.Effect of zinc ions on improving implant fixation in osteoporotic bone[J].Connective Tissue Research,2013,54(4-5):290-296.

    • [96] FANG J,ZHAO J H,SUN Y,et al.Biocompatibility and antibacterial properties of zinc-ion implantation on titanium[J].Journal of Hard Tissue Biology,2014,23(1):35-44.

    • [97] WANG L,SHANG X F,HAO Y F,et al.Bi-functional titanium-polydopamine-zinc coatings for infection inhibition and enhanced osseointegration[J].RSC Advances,2019,9(6):2295-2892.

    • [98] LIGIA A M.Magnesium supplementation and bone turnover[J].Nutrition Reviews,1999,57(7):227-229.

    • [99] WITTE F,KAESE V,HAFERKAMP H,et al.In vivo corrosion of four magnesium alloys and the associated bone response[J].Biomaterials,2005,26(17):3557-3563.

    • [100] WANG C Y,WANG S F,YAO Y S,et al.Study on vertical mandibular distraction osteogenesis using magnesium alloy on canine[J].Progress in Natural Science:Materials International,2014,24(5):446-451.

    • [101] ZHANG Y F,XU J K,RUAN Y C,et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J].Nature Medicine,2016,22(10):1160-1169.

    • [102] ZHAO Q M,YI L,JIANG L B,et al.Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating[J].Nanomedicine,2019,14(9):1109-1133.

    • [103] LI X K,GAO P,WAN P,et al.Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants:In vitro and in vivo study[J].Scientific Reports,2017,7(1):1-11.

    • [104] ZHU Y,ZHANG C N,GU Y X,et al.The responses of human gingival fibroblasts to magnesium-doped titanium[J].Journal of Biomedical Materials Research Part A,2020,108(2):267-278.

    • [105] LIU Y T,KUNG K C,YANG C Y,et al.Engineering three-dimensional structures using bio-inspired dopamine and strontium on titanium for biomedical application[J].Journal of Materials Chemistry B,2014,2(45):7927-7935.

    • [106] BOSE S,FIELDING G,TARAFDER S,et al.Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J].Trends in Biotechnology,2013,31(10):594-605.

    • [107] BRAUX J,VELARD F,GUILLAUME C,et al.A new insight into the dissociating effect of strontium on bone resorption and formation[J].Acta Biomaterialia,2011,7(6):2593-2603.

    • [108] PENG S L,LIU X S,HUANG S S,et al.The cross-talk between osteoclasts and osteoblasts in response to strontium treatment:Involvement of osteoprotegerin[J].Bone,2011,49(6):1290-1298.

    • [109] YASUDA H,SHIMA N,NAKAGAWA N,et al.Identity of osteoclastogenesis inhibitory factor(OCIF)and osteoprotegerin(OPG):A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro[J].Endocrinology,1998,139(3):1329-1337.

    • [110] UDAGAWA N,TAKAHASHI N,YASUDA H,et al.Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J].Endocrinology,2000,141(9):3478-3484.

    • [111] LACEY D L,TIMMS E,TAN H L,et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J].Cell,1998,93(2):165-176.

    • [112] O'BRIEN E A,WILLIAMS J H H,MARSHALL M J.Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria[J].Biochemical and Biophysical Research Communications,2000,274(2):281-290.

    • [113] BURGESS T L,QIAN Y,KAUFMAN S,et al.The ligand for osteoprotegerin(OPGL)directly activates mature osteoclasts[J].Journal of Cell Biology,1999,145(3):527-538.

    • [114] TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts[J].Journal of Experimental Medicine,1998,188(5):997-1001.

    • [115] JIANG H H,ZHOU W J,WANG B C,et al.The effect of strontium modified rough titanium surface on biologic response of MC3T3-E1 cells[J].Dental Materials Journal,2020,39(5):808-814.

    • [116] LIN G F,ZHOU C,LIN M N,et al.Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits[J].Clinical Oral Implants Research,2019,30(8):777-790.

    • [117] OKUZU Y,FUJIBAYASHI S,YAMAGUCHI S,et al.In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions[J].Journal of Biomaterials Applications,2021,35(6):670-680.

    • [118] XING H Y,LI R Y,WEI Y J,et al.Improved osteogenesis of selective-laser-melted titanium alloy by coating strontium-doped phosphate with high-efficiency air-plasma treatment[J].Frontiers in Bioengineering and Biotechnology,2020,8:367.

    • [119] XU K,CHEN W Z,FU G L,et al.In situ self-assembly of graphene oxide/polydopamine/Sr2+ nanosheets on titanium surfaces for enhanced osteogenic differentiation of mesenchymal stem cells[J].Carbon,2019,142:567-579.

    • [120] YU H W,HUANG X B,YANG X N,et al.Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization[J].Materials Science and Engineering:C,2017,78:175-184.

    • [121] ZHANG W J,WANG G C,LIU Y,et al.The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J].Biomaterials,2013,34(13):3184-3195.

    • [122] KO S,HWANG M,MOON W,et al.Characterizations of Ca-and Mg-incorporating micro/nano-structured surfaces on titanium fabricated by microarc oxidation and hydrothermal treatments[J].Journal of Physics and Chemistry of Solids,2015,87:147-152.

    • [123] ZHANG H,LIU K,LU M M,et al.Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application[J].Materials Science and Engineering:C,2021,118:111402.

    • [124] SHAO S Y,CHEN J X,TANG H Y,et al.A titanium surface modified with zinc-containing nanowires:Enhancing biocompatibility and antibacterial property in vitro[J].Applied Surface Science,2020,515:146107.

    • [125] WANG G F,LI J H,ZHANG W J,et al.Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function[J].International Journal of Nanomedicine,2014,9:2387-2398.

    • [126] WANG H Y,XU Q P,HU H,et al.The Fabrication and function of strontium-modified hierarchical micro/nano titanium implant[J].International Journal of Nanomedicine,2020,15:8983-8998.

  • 手机扫一扫看