en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨毕肖,男,硕士研究生。主要研究方向为钛合金高温合金防护涂层。E-mail:1484415020@qq.com;

宋鹏(通信作者),男,博士,教授。主要研究方向为高温合金抗氧化涂层制备。E-mail:songpeng@kust.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211031001

参考文献 1
HE L,TAN Y F,TAN H,et al.Tribological properties of nanostructured Al2O3-40%TiO2 multiphase ceramic particles reinforced Ni-based alloy composite coatings[J].Transactions of Nonferrous Metals Society of China,2013,23(9):2618-2627.
参考文献 2
张继豪,宋凯强,张敏,等.高性能陶瓷涂层及其制备工艺发展趋势[J].表面技术,2017,46(12):96-103.ZHANG Jihao,SONG Kaiqiang,ZHANG Min,et al.Development trend of high performance ceramic coatings and preparation technologies[J].Surface Technology,2017,46(12):96-103.(in Chinese)
参考文献 3
张彦彦,赵文杰,周成旭,等.纳米颗粒增强 TiO2涂层的制备及其防污性能[J].中国表面工程,2017,30(6):1-10.ZHANG Yanyan,ZHAO Wenjie,ZHOU Chengxu,et al.Preparation and antifouling performance of nano-particle reinforced TiO2 coating[J].China Surface Engineering,2017,30(6):1-10.(in Chinese)
参考文献 4
WU S,WU X,WANG S,et al.Fretting wear behaviors of APS AT40 coating and Al2O3/AT40 composite coating on TC6 alloy[J].Journal of Materials Processing Technology,2021,290:116983.
参考文献 5
XIONG Y,HU J,NIE X,et al.One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite:Influence of Graphene Coating[J].Materials & Design,2020,191:108633.
参考文献 6
裴晨蕊,孙德恩,ZHANG Sam,等.硬质陶瓷涂层增韧及其评估研究进展[J].中国表面工程,2016,29(2):1-9.PEI Chenrui,SUN Deen,ZHANG Sam,et al.Thoughening and thoughess evaluation of hard ceramic coating:A critical review[J].China Surface Ergineerting,2016,29(2):1-9.(in Chinese)
参考文献 7
LIU J,YANG J,YI G,et al.Effect of high-temperature oxidation on Si3N4 containing Ti3AlC2[J].Ceramics International,2020,46(10):14697-14705.
参考文献 8
LEE D K,LEE S H,LEE J J.The structure and mechanical properties of multilayer TiN/(Ti0.5Al 0.5)N coatings deposited by plasma enhanced chemical vapor deposition[J].Surface Coatings Technology,2003,169:433-437.
参考文献 9
吴向清,胡慧玲,谢发勤,等.等离子喷涂镍基合金涂层的组织与耐蚀性[J].中国表面工程,2011,24(5):13-17.WU Xiangqing,HU Huiling,XIE Faqin,et al.Microstructure and corrision properties of plasma arc spraying Ni-base coating[J].China Surface Engineering,2011,24(5):13-17.(in Chinese)
参考文献 10
YE K,LI Z.Toward ceramic anticorrosion coatings:A Review[J].Corrosion,2020,76(10):895-917.
参考文献 11
钟长荣,毕松,苏勋家,等.层状复合陶瓷的增韧与设计研究进展[J].耐火材料,2007(4):302-306.ZHONG Changrong,BI Song,SU Xun,et al.Progress in research on toughening and designing of laminated ceramic composites[J].Refractories,2007(4):302-306.(in Chinese)
参考文献 12
ZHANG Y,YANG B,ZHANG P,et al.SiC nanowire toughened ZrB2-SiC ablative coating for SiC coated C/C composites[J].Ceramics International,2015,41(10):14579-14584.
参考文献 13
WANG C,LI K,HE Q,et al.Oxidation resistance and mechanical properties of LaB6-MoSi2-SiC ceramic coating toughened by SiC nanowires[J].Ceramics International,2018,44:16365-16378.
参考文献 14
XIA Z,RIESTER L,CURTIN W A,et al.Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites[J].Acta Materialia,2004,52(4):931-944.
参考文献 15
玄伟建.层状复合陶瓷的增韧与设计研究[J].智能城市,2020(2):196-197.XUAN Weijian.Toughening and design of layered composite ceramics[J].Intelligent City,2020(2):196-197.(in Chinese)
参考文献 16
LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.
参考文献 17
LUO H,SONG P,KHAN A,et al.Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40wt% TiO2 coating[J].Surface and Coatings Technology,2017,321:200-212.
参考文献 18
袁鸿斌,王泽华,张晶晶,等.热处理对等离子喷涂 Al2O3-13%TiO2 涂层结合强度的影响[J].机械工程材料,2011,35(1):65-68.YUAN Hongbin,WANG Zehua,ZHANG Jingjing,et al.Effect of heat treatment on bonding strength of plasma sprayd Al2O3-13%TiO2 coating[J].Materials for Mechanical Engineering,2011,35(1):65-68.(in Chinese)
参考文献 19
赵小健,周青.热处理对等离子喷涂 Al2O3/TiO2 涂层断裂韧性的影响[J].热加工艺,2015,44(8):133-139.ZHAO Xiaojian,ZHOU Qing.Effect of heat treatment on fracture toughness of plasma sprayed Al2O3/TiO2 Coating[J].Hot Working Technology,2015,44(8):133-139.(in Chinese)
参考文献 20
陈昆伦,黄勇,季强,等.热处理温度对 Al2O3-TiO2-MgO 等离子喷涂层微观结构和硬度的影响[J].材料保护,2018,51(12):43-45.CHEN Kunlun,HUANG Yong,JI Qiang,et al.Effect of heat-treatment temperature on microstructure and hardness of plasma-sprayed Al2O3-TiO2-MgO coatings[J].Material Protection,2018,51(12):43-45.(in Chinese)
参考文献 21
黎红英,罗朝勇,谢善,等.大气等离子喷涂和超音速火焰喷涂制备的CoMoCrSi涂层组织结构和性能[J].热喷涂技术,2020,12(1):62-68.LI Hongying,LUO Chaoyong,XIE Shan,et al.Microstructures and properties of CoMoCrSi coatings sprayed by HVOF and APS[J].Thermal Spray Technology,2020,12(1):62-68.(in Chinese)
参考文献 22
王铀,王亮,刘赛月,等.热喷涂纳米结构 La2Zr2O7(LZ)/8YSZ 双陶瓷热障涂层[J].中国表面工程,2016,29(1):16-24.WANG You,WANG Liang,LIU Saiyue,et al.Nanostructure LA2Zr2O7(LZ)/8YSZ double ceramic layer thermal barrier coatings fabricated by thermal spraying[J].China Surface Engineering,2016,29(1):16-24.(in Chinese)
参考文献 23
张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13%TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resisitance of plasma sprayed G-Al2O3-13%TiO2 glass-ceramic compsite coatings[J].China Surface Engineering,2020,33(3):95-103.
参考文献 24
沈春豫,樊科社,王俊,等.热处理对爆炸焊接 316L/Q235B 复合板组织和性能的影响[J].金属热处理,2019,44(9):204-208.SHEN Chunyu,FAN Keshe,WANG Jun,et al.Effect of heat treatment on the microstructure and property of 316L/Q235B explosive welding clad plate[J].Heat Treatment of Metals,2019,44(9):204-208.(in Chinese)
参考文献 25
徐刚,韩高荣.钛酸铝材料的结构、热膨胀及热稳定性[J].材料导报 2003,12(17):44-47.XU Gang,HAN Gaorong.Structure,thermal expansion and thermal stability of aluminium titanate materials[J].Materias Reports.2003,12(17):44-47.(in Chinese)
参考文献 26
邓春明,周克崧,刘敏,等.大气等离子喷涂 Al2O3-3% TiO2 涂层的性能[J].中国表面工程,2010,23(1):19-23.DENG Chunming,ZHOU Kesong,LIU Min,et al.Properties of air plasma sprayed Al2O3– 3 % TiO2 Coatings[J].China Surface Engineering,2010,23(1):19-23.(in Chinese)
参考文献 27
LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.
目录contents

    摘要

    AT40 陶瓷涂层与黏结层界面裂纹萌生、扩展是导致涂层失效的主要原因,制备多层陶瓷 / 金属低应力涂层为陶瓷涂层增韧的方法之一。利用 APS(大气等离子喷涂)在 Q235 上制备 AT40-NiAl-AT40-NiAl 四层复合多层涂层并对复合多层进行热处理。使用 SEM、EPMA、3PB 等表征手段研究热处理对四层复合金属-陶瓷涂层的微观结构及涂层断裂韧性的影响。结果表明,热处理过程中陶瓷层-黏结层界面、陶瓷层富 Al 相富 Ti 相界面均发生了元素扩散;热处理后陶瓷层硬度增加 30%,复合涂层断裂韧性提高。热处理过程中元素扩散形成的氧化物一方面在黏结层与陶瓷层之间形成钉扎效应增强黏结性,另一方面填充涂层中的孔隙、裂纹等缺陷提高涂层的硬度,降低裂纹扩展的面积从而提升涂层的断裂韧性。多层金属陶瓷沉积形成的复合陶瓷涂层及对其使用热处理的方法能有效提升 AT40 等陶瓷涂层的断裂韧性,对解决铁基零部件表面耐磨陶瓷容易脆断失效和扩展陶瓷涂层的应用范围提供了新的思路。

    Abstract

    Coating failure principally leads to crack initiation and propagation at the interface between the AT40 ceramic coating and the bond coat. One of the methods of toughening ceramic coatings is to make a multilayer ceramic and low-metal-stress coating. A four-layer AT40-NiAl-AT40-NiAl composite coating is prepared on Q235 using APS (Atmospheric Plasma Spray) and all the composite multilayer should be engaged in heat treatment. SEM, EPMA, 3PB and other characterization methods are then used to study the effects of heat treatment on the microstructure of the four-layer metal-ceramic composite coating and the fracture toughness of the coating. The results show that element diffusion occurrs at the interface between the ceramic layer and the bond coat and at the Al-rich phase-Ti-rich phase interface of the ceramic layer during heat treatment; the hardness of the ceramic layer increases by 30%, and the fracture toughness of the composite coating improves after the heat treatment. On the one hand, the oxide formed by element diffusion during the heat treatment causes a pinning effect between the bond coat and the ceramic layer to improve the cohesion; and on the other hand, filled pores, cracks and others in the coating to improve the hardness of the coating and reduce the area of crack propagation to improve the fracture toughness of the coating. The composite ceramic coating formed by the deposition of multi-metal ceramics, together with the use of heat treatment thereon, can effectively improve the fracture toughness of ceramic coatings such as AT40. This creates a new idea for avoiding the possible brittle fracture failure of surface abrasion-resistant ceramics of iron-based components and expanding the range of application for ceramic coatings.

  • 0 前言

  • 高性能陶瓷材料具有耐腐蚀、硬度高、强度大等优点被广泛应用于航空航天、医疗、化工等行业,但是陶瓷材料容易出现脆性断裂而限制了陶瓷材料的进一步使用[1-5]。为了扩展陶瓷材料的应用范围,增加陶瓷材料的韧性具有重要研究意义[6]。高性能陶瓷涂层是陶瓷材料的一个重要应用领域,韧性是决定陶瓷涂层使用寿命和耐腐蚀性能的关键之一。目前,增韧陶瓷涂层有很多方法。引入金属增强相,在烧结氮化硅涂层掺杂了银作为第二相掺杂剂,结果显示涂层的韧性得到增强[7]。优化设计涂层结构,有研究者利用大气等离子喷涂(APS)在高速钢和硅片上制备了多层TiN/(Ti0.5Al0.5)N涂层,与单层的相比,多层涂层具有更高的硬度、黏结性和耐磨性[8-9]。除此外,涂层增韧的方法还有利用相变增韧以及引入SiC/HfC纳米线、碳纳米管等[10-14]。在优化陶瓷涂层结构中,设计多层层状金属-陶瓷涂层结构为增加陶瓷强韧性的有效方法之一。涂层体系中增加梯度夹层制备多层复合涂层可以通过降低涂层体系中存在的应力梯度,从而提高涂层的服役寿命[15-16]。此外,梯度变化的AT40-NiAl涂层与传统的双层结构相比,可以有效降低涂层应力梯度从而增强涂层的韧性[17]

  • AT40粉末是工业上较为常用的陶瓷粉末之一,关于AT40双层涂层在微观结构及失效机制已经有过大量研究。传统双层AT40涂层内部应力梯度过大容易引起涂层开裂,研究多层涂层可以为降低涂层应力梯度和扩展应用范围提供新的思路。研究发现,热处理对于降低涂层应力,减少涂层制备时形成的缺陷,增加涂层结合强度等具有重要作用[18]。研究人员对APS制备的Al2O3-TiO2 涂层进行热处理,发现退火处理可以有效提高其断裂韧性[19]。另外,热处理对与提高Al2O3-TiO2-MgO涂层的硬度,增强涂层黏结性具有重要作用[20]。APS以其工艺简单、生产成本低、效率高等优点被广泛应用制备热障涂层(TBCs)、耐磨涂层、耐腐蚀涂层[21-23]。本文设计并利用APS在Q235钢表面制备AT40-NiAl-AT40-NiAl多层复合增韧涂层,然后研究热处理对其界面结构和力学性能的影响。

  • 1 材料与方法

  • 1.1 材料准备与热处理

  • 采用耐磨性能较好的Al2O3-40wt.%TiO2(AT40) 粉末作陶瓷层,NiAl合金粉末作黏结层,尺寸范围分别为15~45 μm和9~50 μm,粉末形貌如图1所示。试验使用低碳钢Q235作为基体,其尺寸分别为13mm×13mm×2mm和40mm×10mm× 2mm。在喷涂前,用相同粒径的刚玉砂和稳定气压 (0.6MPa)的喷砂机对试样表面进行喷砂处理,以获得相同的基体表面粗糙度。在喷涂之前使用超声波清洗仪对样品表面清洁。在整个喷涂过程中,为防止喷涂火焰高温产生较大的热应力,使用压缩空气对样品涂层表面进行冷却。对制备的部分样品进行热处理。设置热处理温度为900℃,气氛为Ar+1vol.%O2。热处理的工艺为:从室温以5℃/min的速度升温至500℃,然后以9℃/min的速度升温至900℃,保温720min,再以9℃/min的速度降温至500℃,然后随炉冷却至室温。黏结层喷涂参数为喷涂电压50V,电流600A,陶瓷层喷涂电压为50V,电流为630A,喷涂距离均为9cm。

  • 1.2 涂层表征及性能测试

  • 为了观察黏结层与陶瓷层界面微观结构,对样品横截面进行研磨和抛光,使用配备EDS的扫描电子显微镜(SEM,FEI-Quanta600)、电子探针微量分析仪(EPMA-1720,Shimadzu)分析热处理前后微观截面形貌及元素分布。对于微观力学性能,采用显微硬度试验(Buehler Micromet 594, Akashi Corporation, Japan),试验载荷为200g,饱载时间为9s。对于每个样品,在具有一定倾斜角度的直线上进行压痕测试,对样品进行至少三条平行直线上的显微硬度测试,以确保数据的可靠性。对于宏观力学性能,通过三点弯曲(3PB)试验(Instron 5848, Canton, MA) 12312来分析热处理前后样品 (40mm×10mm×2mm)的力学性能和裂纹扩展行为,同时压头以0.1mm/min的速度向下移动,直至涂层出现微观裂纹。两个支撑销之间的跨距为25mm,样品的中间被称重传感器压住。为了减小误差,原始样品及热处理后的样品分别测试3个。

  • 图1 粉末形貌图

  • Fig.1 Powder Morphology

  • 2 结果与讨论

  • 2.1 涂层截面微观形貌与元素组成

  • 图2 为热处理前后的多层复合增韧涂层的截面微观结构形貌图。图2a为热处理前复合涂层的截面形貌,该复合涂层总共由4层涂层组成,其中深色的涂层为Al2O3-TiO2 陶瓷涂层,浅色的涂层则为NiAl黏结层。为了叙述方便,对涂层进行编号,自基体向上依次为第一层黏结层,第一层陶瓷层,第二层黏结层,第二层陶瓷层。图2j为复合涂层处理后截面宏观形貌,与2a相比,两者的陶瓷层形貌相似,没有明显区别,热处理后黏结层内部出现了很多黑色条纹。Al2O3-TiO2 陶瓷层中深色区域为富Al相,浅色区域为富Ti相。原始样品陶瓷层黏结层、黏结层-基体界面呈起伏状,机械结合,整体黏结较好。放大后黏结层与陶瓷层之间存在少许的孔隙,如图2d所示。热处理后,富Al相与富Ti相扩散到NiAl表面的缝隙与孔隙之中,基体与原始样品的基体相比也出现了等轴状铁素体(如图2g所示)[24]。另外,陶瓷层中富Al相与富Ti相由原来光滑的界面变得模糊,放大后呈不规则的齿状(如图2h所示),富Ti相中出现富Al相。图3a、3b分别为热处理前后的从基体到顶层涂层的EDS图,箭头指示方向为EDS线扫描方向,长度为扫描的距离。图3a与3b相比,图3b各AT40陶瓷涂层元素的曲线具有更多小的起伏,这证明热处理后富Al相与富Ti相界面元素发生了互扩散(如图2h所示)。另外,图在3a、 3b的第一层黏结层中元素的峰值明显不同,热处理之后NiAl黏结层中Al、Ti元素明显上升,扩散明显,基体中的Fe元素也从基体扩散到黏结层之中,在基体中也观察到明显的Al元素。

  • 图2 NiAl-AT40复合涂层横截面的SEM图像(a)~(d)原始涂层(e)~(h)热处理涂层

  • Fig.2 SEM image of the cross section of NiAl-AT40composite coating, (a)-(d) original coating, (e)-(h) heat-treated coating

  • 图3 NiAl-AT40涂层界面EDS元素分析

  • Fig.3 EDS element analysis of NiAl-AT40coating interface

  • 图4、5分别显示了热处理前后的NiAl-AT40复合涂层界面元素的分布结果。陶瓷涂层由Al、Ti、O元素组成,黏结层由Ni、Al元素组成。另外,热处理前NiAl黏结层中存在少量O元素,说明在喷涂过程中在黏结层中的元素发生了氧化。原始样品各元素的界面清晰分明,而热处理后的样品富Al相与富Ti相、黏结层-陶瓷层元素界面模糊,且出现大量的不规则的齿状“突起”(如图5b)。边界“突起”和模糊元素界面的出现也证明了在热处理过程中元素在各界面出现明显地扩散。图5d所示,在NiAl黏结层的边缘出现大量的氧元素,这与图5b的Al、图5c的Ni元素重叠,表明热处理过程中黏结层发生了氧化,生成Al2O3、NiO等氧化物[25],其中主要的氧化物为Al2O3。由于大气等离子喷涂技术的特性,原始样品黏结层内部及两侧存在独立的层状氧化物和裂纹、孔隙等缺陷 [26],这些缺陷的存在会降低界面附着力。热处理后,黏结涂层中相互连接的氧化物显著增多,氧化物富集在黏结层与陶瓷层之间的界面,填补了界面缺陷(如图6a所示)。另外,热处理过程中元素扩散也会填补涂层中的孔隙、裂纹等[18]。陶瓷层-黏结层、黏结层-基体界面中出现的“突起”一方面会扩大黏接层与陶瓷层的黏结面积,另一方面会形成 “Al2O3 钉扎”而提高涂层的黏接性及安全性(如图6b所示)。

  • 图4 EDS元素分析原始NiAl-AT40复合涂层界面 (a)SEM形貌图 (b)~(e)元素分布图

  • Fig.4 EDS element analysis of the original NiAl-AT40composite coating interface, (a) SEM topography, (b)-(e) element distribution

  • 图5 EDS元素分析热处理后NiAl-AT40复合涂层界面 (a)SEM形貌图 (b)~(e)元素分布图

  • Fig.5 EDS element analysis of NiAl-AT40composite coating interface after heat treatment, (a) SEM topography, (b)-(e) element distribution

  • 图6 钉扎效应增强复合涂层示意图

  • Fig.6 Schematic diagram of pinning effect enhanced composite coating

  • 2.2 涂层力学性能测试

  • 图7a为涂层处理热处理前后各区域显微硬度值分布图,图7b显微硬度测试方法示意图,图7c~7f为原始涂层和热处理涂层的显微硬度压痕图。热处理前基体与第一层黏结层界面附近的硬度为1.70GPa,第一层黏结层与第一层陶瓷层界面附近的硬度值为4.85GPa,第一层陶瓷层与第二层黏结层界面附近硬度为3.10GPa,第二层陶瓷层与中间黏结层界面的硬度为4.55GPa,原始陶瓷涂层的显微硬度约为9.00GPa。陶瓷层与黏结层界面硬度值低的结果表明样品在界面黏结处内存在明显缺陷,即力学性能弱区域。涂层显微硬度在陶瓷-黏结层、黏结层-基体的界面附近出现较大波动,这从力学性能上反应了陶瓷层-黏结层界面的氧化物与黏结层内部氧化物是有连接的[27]。热处理后的陶瓷涂层硬度值增加到12.00GPa,陶瓷涂层的整体硬度值提高了30%。图7c、7d显示了原始涂层显微硬度压痕图。图7c所示陶瓷-金属界面附近压痕中陶瓷涂层一侧产生裂纹,而黏结层一侧没有发现明显裂纹。图7d所示原始陶瓷层压痕附近出现了大量裂纹,这些裂纹扩展远,且部分裂纹出现相交呈环形。热处理之后,如图7e所示陶瓷-金属界面附近压痕附近并未出现明显裂纹,图7f所示为热处理后陶瓷层压痕,其裂纹数量明显少于未处理的样品,只在一侧出现裂纹。在热处理过程中,黏结层与陶瓷层界面硬度得到改善,其原因是黏结层的边缘层状结构中的缺陷被界面生成的氧化物填充,导致黏结层与陶瓷层紧密结合,这些氧化物的弹性模量较大,使得涂层的力学性能得到较好的改善。另外,陶瓷涂层的硬度上升也与元素扩散填充其内部孔隙、裂纹等缺陷有关。结合图5给出的元素分布,氧化物的连接与缺陷的填充都是因为在热处理过程中,元素在各个界面扩散。整个扩散过程,伴随着氧化物的生成及涂层内部应力的释放,涂层的硬度及黏结性得到提高,涂层中裂纹的扩展面积和裂纹数量均减少,断裂韧性得到提升。

  • 图7 原始及热处理复合涂层的显微硬度分布和压痕图

  • Fig.7 Microhardness distribution and indentation diagram of the original and heat-treated composite coatings

  • 图8 显示了涂层热处理前后三点弯曲载荷-位移曲线,涂层三点弯曲示意图如图8b所示。从载荷-位移曲线8c可知,原始复合涂层载荷-位移曲线的第一阶段呈线性关系。在这一阶段,基体应力应变符合胡克定律,经历弹性形变。同时,涂层随基体一起经历形变,外加应力不足以损伤涂层,为加载过程中裂纹的萌生和扩展累积应变能。第二阶段涂层表面开始产生微裂纹,但是此时仍处于弹性变形阶段,裂纹继续扩展。第三个阶段载荷的急速下降意味着大量的应力释放和裂纹传播,涂层断裂失效。如图8d所示,经过热处理之后复合涂层未出现明显的负载下降位置,即未有明显的应力释放位移,而未处理的涂层在位移0.3mm左右,负载980N左右出现明显的应力释放位移。同样,基体的应力释放位移和负载也出现明显的变化。另外,复合涂层与基体在热处理之后另一个明显变化是,涂层的总体负载均出现明显的下降(如图8e、8f所示),这主要是由热处理之后基体的强度下降导致的。原始涂层中的应力释放大于热处理后涂层的应力释放,热处理后涂层拥有更低的应力梯度和更好的韧性。

  • 图8 复合涂层、基体的3PB测试载荷-位移图与示意图

  • Fig.8 Three-point test load-displacement diagram of composite coating and substrate, schematic diagram of the experiment

  • 图9 显示了原始和热处理复合涂层在经过图8三点弯曲试验后横截面裂纹扩展SEM图。图9a为热处理前复合涂层三点弯曲裂纹扩展SEM图,在外加应力作用下裂纹从涂层表面开始向内扩展,在陶瓷-黏结层界面时发生偏转形成横向裂纹。横向裂纹扩展一段时间之后,在正应力的作用下撕裂NiAl黏结层,然后向正应力最大方向偏转为纵向裂纹继续扩展。热处理之后,如图9b所示裂纹在外加应力作用下向涂层内扩展。裂纹从陶瓷层扩展到黏结层时,同样会偏转成横向裂纹然后继续扩展,与原始涂层不一样的是横向裂纹扩展的距离和面积远小于原始涂层,其偏转为横向裂纹后会迅速偏转为纵向裂纹。样品在三点弯曲试验中,除应力大小之外,热处理前后所受的应力的方向和形式是一致的,但是涂层的裂纹扩展路径不相同。原始涂层在经过NiAl黏结层时产生的横向裂纹更大,横向扩展也更远。这主要是涂层在热处理时,O元素通过陶瓷层中的孔隙和裂纹进入黏结层,与陶瓷层-黏结层界面的Al、 Ni元素反应生成Al2O3和NiO。这些氧化物形成的从钉扎效应增强了黏结层和陶瓷层的黏结强度。另外,图9中可明显看出热处理后的涂层裂纹扩展面积低于原始涂层裂纹面积。综上所述,涂层热处理之后,涂层中裂纹扩展能力降低,断裂韧性提高。

  • 图9 涂层裂纹扩展路径形貌

  • Fig.9 Morphology of the crack propagation path of the coating

  • 3 结论

  • 采用APS在Q235上制备的AT40-NiAl-AT40-NiAl金属陶瓷四层复合涂层,并对样品进行热处理。结合相应的分析手段证明了热处理前后各界面界面间出现明显的元素扩散,形成钉扎效应。还研究了热处理前后复合涂层硬度及裂纹扩展方式的变化。得出以下结论:

  • (1)热处理对复合涂层陶瓷层力学性能产生明显影响,陶瓷层硬度上升,涂层整体断裂韧性改善。

  • (2)复合涂层微观结构热处理后发生显著变化,陶瓷层富铝相与富钛相的界面由光滑的线条状变为不规则的锯齿状,黏结层与陶瓷层之间形成Al2O3 钉扎。

  • (3)热处理对基体性能具有一定影响,影响机制仍需进一步明确。

  • 参考文献

    • [1] HE L,TAN Y F,TAN H,et al.Tribological properties of nanostructured Al2O3-40%TiO2 multiphase ceramic particles reinforced Ni-based alloy composite coatings[J].Transactions of Nonferrous Metals Society of China,2013,23(9):2618-2627.

    • [2] 张继豪,宋凯强,张敏,等.高性能陶瓷涂层及其制备工艺发展趋势[J].表面技术,2017,46(12):96-103.ZHANG Jihao,SONG Kaiqiang,ZHANG Min,et al.Development trend of high performance ceramic coatings and preparation technologies[J].Surface Technology,2017,46(12):96-103.(in Chinese)

    • [3] 张彦彦,赵文杰,周成旭,等.纳米颗粒增强 TiO2涂层的制备及其防污性能[J].中国表面工程,2017,30(6):1-10.ZHANG Yanyan,ZHAO Wenjie,ZHOU Chengxu,et al.Preparation and antifouling performance of nano-particle reinforced TiO2 coating[J].China Surface Engineering,2017,30(6):1-10.(in Chinese)

    • [4] WU S,WU X,WANG S,et al.Fretting wear behaviors of APS AT40 coating and Al2O3/AT40 composite coating on TC6 alloy[J].Journal of Materials Processing Technology,2021,290:116983.

    • [5] XIONG Y,HU J,NIE X,et al.One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite:Influence of Graphene Coating[J].Materials & Design,2020,191:108633.

    • [6] 裴晨蕊,孙德恩,ZHANG Sam,等.硬质陶瓷涂层增韧及其评估研究进展[J].中国表面工程,2016,29(2):1-9.PEI Chenrui,SUN Deen,ZHANG Sam,et al.Thoughening and thoughess evaluation of hard ceramic coating:A critical review[J].China Surface Ergineerting,2016,29(2):1-9.(in Chinese)

    • [7] LIU J,YANG J,YI G,et al.Effect of high-temperature oxidation on Si3N4 containing Ti3AlC2[J].Ceramics International,2020,46(10):14697-14705.

    • [8] LEE D K,LEE S H,LEE J J.The structure and mechanical properties of multilayer TiN/(Ti0.5Al 0.5)N coatings deposited by plasma enhanced chemical vapor deposition[J].Surface Coatings Technology,2003,169:433-437.

    • [9] 吴向清,胡慧玲,谢发勤,等.等离子喷涂镍基合金涂层的组织与耐蚀性[J].中国表面工程,2011,24(5):13-17.WU Xiangqing,HU Huiling,XIE Faqin,et al.Microstructure and corrision properties of plasma arc spraying Ni-base coating[J].China Surface Engineering,2011,24(5):13-17.(in Chinese)

    • [10] YE K,LI Z.Toward ceramic anticorrosion coatings:A Review[J].Corrosion,2020,76(10):895-917.

    • [11] 钟长荣,毕松,苏勋家,等.层状复合陶瓷的增韧与设计研究进展[J].耐火材料,2007(4):302-306.ZHONG Changrong,BI Song,SU Xun,et al.Progress in research on toughening and designing of laminated ceramic composites[J].Refractories,2007(4):302-306.(in Chinese)

    • [12] ZHANG Y,YANG B,ZHANG P,et al.SiC nanowire toughened ZrB2-SiC ablative coating for SiC coated C/C composites[J].Ceramics International,2015,41(10):14579-14584.

    • [13] WANG C,LI K,HE Q,et al.Oxidation resistance and mechanical properties of LaB6-MoSi2-SiC ceramic coating toughened by SiC nanowires[J].Ceramics International,2018,44:16365-16378.

    • [14] XIA Z,RIESTER L,CURTIN W A,et al.Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites[J].Acta Materialia,2004,52(4):931-944.

    • [15] 玄伟建.层状复合陶瓷的增韧与设计研究[J].智能城市,2020(2):196-197.XUAN Weijian.Toughening and design of layered composite ceramics[J].Intelligent City,2020(2):196-197.(in Chinese)

    • [16] LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.

    • [17] LUO H,SONG P,KHAN A,et al.Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40wt% TiO2 coating[J].Surface and Coatings Technology,2017,321:200-212.

    • [18] 袁鸿斌,王泽华,张晶晶,等.热处理对等离子喷涂 Al2O3-13%TiO2 涂层结合强度的影响[J].机械工程材料,2011,35(1):65-68.YUAN Hongbin,WANG Zehua,ZHANG Jingjing,et al.Effect of heat treatment on bonding strength of plasma sprayd Al2O3-13%TiO2 coating[J].Materials for Mechanical Engineering,2011,35(1):65-68.(in Chinese)

    • [19] 赵小健,周青.热处理对等离子喷涂 Al2O3/TiO2 涂层断裂韧性的影响[J].热加工艺,2015,44(8):133-139.ZHAO Xiaojian,ZHOU Qing.Effect of heat treatment on fracture toughness of plasma sprayed Al2O3/TiO2 Coating[J].Hot Working Technology,2015,44(8):133-139.(in Chinese)

    • [20] 陈昆伦,黄勇,季强,等.热处理温度对 Al2O3-TiO2-MgO 等离子喷涂层微观结构和硬度的影响[J].材料保护,2018,51(12):43-45.CHEN Kunlun,HUANG Yong,JI Qiang,et al.Effect of heat-treatment temperature on microstructure and hardness of plasma-sprayed Al2O3-TiO2-MgO coatings[J].Material Protection,2018,51(12):43-45.(in Chinese)

    • [21] 黎红英,罗朝勇,谢善,等.大气等离子喷涂和超音速火焰喷涂制备的CoMoCrSi涂层组织结构和性能[J].热喷涂技术,2020,12(1):62-68.LI Hongying,LUO Chaoyong,XIE Shan,et al.Microstructures and properties of CoMoCrSi coatings sprayed by HVOF and APS[J].Thermal Spray Technology,2020,12(1):62-68.(in Chinese)

    • [22] 王铀,王亮,刘赛月,等.热喷涂纳米结构 La2Zr2O7(LZ)/8YSZ 双陶瓷热障涂层[J].中国表面工程,2016,29(1):16-24.WANG You,WANG Liang,LIU Saiyue,et al.Nanostructure LA2Zr2O7(LZ)/8YSZ double ceramic layer thermal barrier coatings fabricated by thermal spraying[J].China Surface Engineering,2016,29(1):16-24.(in Chinese)

    • [23] 张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13%TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resisitance of plasma sprayed G-Al2O3-13%TiO2 glass-ceramic compsite coatings[J].China Surface Engineering,2020,33(3):95-103.

    • [24] 沈春豫,樊科社,王俊,等.热处理对爆炸焊接 316L/Q235B 复合板组织和性能的影响[J].金属热处理,2019,44(9):204-208.SHEN Chunyu,FAN Keshe,WANG Jun,et al.Effect of heat treatment on the microstructure and property of 316L/Q235B explosive welding clad plate[J].Heat Treatment of Metals,2019,44(9):204-208.(in Chinese)

    • [25] 徐刚,韩高荣.钛酸铝材料的结构、热膨胀及热稳定性[J].材料导报 2003,12(17):44-47.XU Gang,HAN Gaorong.Structure,thermal expansion and thermal stability of aluminium titanate materials[J].Materias Reports.2003,12(17):44-47.(in Chinese)

    • [26] 邓春明,周克崧,刘敏,等.大气等离子喷涂 Al2O3-3% TiO2 涂层的性能[J].中国表面工程,2010,23(1):19-23.DENG Chunming,ZHOU Kesong,LIU Min,et al.Properties of air plasma sprayed Al2O3– 3 % TiO2 Coatings[J].China Surface Engineering,2010,23(1):19-23.(in Chinese)

    • [27] LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.

  • 参考文献

    • [1] HE L,TAN Y F,TAN H,et al.Tribological properties of nanostructured Al2O3-40%TiO2 multiphase ceramic particles reinforced Ni-based alloy composite coatings[J].Transactions of Nonferrous Metals Society of China,2013,23(9):2618-2627.

    • [2] 张继豪,宋凯强,张敏,等.高性能陶瓷涂层及其制备工艺发展趋势[J].表面技术,2017,46(12):96-103.ZHANG Jihao,SONG Kaiqiang,ZHANG Min,et al.Development trend of high performance ceramic coatings and preparation technologies[J].Surface Technology,2017,46(12):96-103.(in Chinese)

    • [3] 张彦彦,赵文杰,周成旭,等.纳米颗粒增强 TiO2涂层的制备及其防污性能[J].中国表面工程,2017,30(6):1-10.ZHANG Yanyan,ZHAO Wenjie,ZHOU Chengxu,et al.Preparation and antifouling performance of nano-particle reinforced TiO2 coating[J].China Surface Engineering,2017,30(6):1-10.(in Chinese)

    • [4] WU S,WU X,WANG S,et al.Fretting wear behaviors of APS AT40 coating and Al2O3/AT40 composite coating on TC6 alloy[J].Journal of Materials Processing Technology,2021,290:116983.

    • [5] XIONG Y,HU J,NIE X,et al.One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite:Influence of Graphene Coating[J].Materials & Design,2020,191:108633.

    • [6] 裴晨蕊,孙德恩,ZHANG Sam,等.硬质陶瓷涂层增韧及其评估研究进展[J].中国表面工程,2016,29(2):1-9.PEI Chenrui,SUN Deen,ZHANG Sam,et al.Thoughening and thoughess evaluation of hard ceramic coating:A critical review[J].China Surface Ergineerting,2016,29(2):1-9.(in Chinese)

    • [7] LIU J,YANG J,YI G,et al.Effect of high-temperature oxidation on Si3N4 containing Ti3AlC2[J].Ceramics International,2020,46(10):14697-14705.

    • [8] LEE D K,LEE S H,LEE J J.The structure and mechanical properties of multilayer TiN/(Ti0.5Al 0.5)N coatings deposited by plasma enhanced chemical vapor deposition[J].Surface Coatings Technology,2003,169:433-437.

    • [9] 吴向清,胡慧玲,谢发勤,等.等离子喷涂镍基合金涂层的组织与耐蚀性[J].中国表面工程,2011,24(5):13-17.WU Xiangqing,HU Huiling,XIE Faqin,et al.Microstructure and corrision properties of plasma arc spraying Ni-base coating[J].China Surface Engineering,2011,24(5):13-17.(in Chinese)

    • [10] YE K,LI Z.Toward ceramic anticorrosion coatings:A Review[J].Corrosion,2020,76(10):895-917.

    • [11] 钟长荣,毕松,苏勋家,等.层状复合陶瓷的增韧与设计研究进展[J].耐火材料,2007(4):302-306.ZHONG Changrong,BI Song,SU Xun,et al.Progress in research on toughening and designing of laminated ceramic composites[J].Refractories,2007(4):302-306.(in Chinese)

    • [12] ZHANG Y,YANG B,ZHANG P,et al.SiC nanowire toughened ZrB2-SiC ablative coating for SiC coated C/C composites[J].Ceramics International,2015,41(10):14579-14584.

    • [13] WANG C,LI K,HE Q,et al.Oxidation resistance and mechanical properties of LaB6-MoSi2-SiC ceramic coating toughened by SiC nanowires[J].Ceramics International,2018,44:16365-16378.

    • [14] XIA Z,RIESTER L,CURTIN W A,et al.Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites[J].Acta Materialia,2004,52(4):931-944.

    • [15] 玄伟建.层状复合陶瓷的增韧与设计研究[J].智能城市,2020(2):196-197.XUAN Weijian.Toughening and design of layered composite ceramics[J].Intelligent City,2020(2):196-197.(in Chinese)

    • [16] LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.

    • [17] LUO H,SONG P,KHAN A,et al.Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40wt% TiO2 coating[J].Surface and Coatings Technology,2017,321:200-212.

    • [18] 袁鸿斌,王泽华,张晶晶,等.热处理对等离子喷涂 Al2O3-13%TiO2 涂层结合强度的影响[J].机械工程材料,2011,35(1):65-68.YUAN Hongbin,WANG Zehua,ZHANG Jingjing,et al.Effect of heat treatment on bonding strength of plasma sprayd Al2O3-13%TiO2 coating[J].Materials for Mechanical Engineering,2011,35(1):65-68.(in Chinese)

    • [19] 赵小健,周青.热处理对等离子喷涂 Al2O3/TiO2 涂层断裂韧性的影响[J].热加工艺,2015,44(8):133-139.ZHAO Xiaojian,ZHOU Qing.Effect of heat treatment on fracture toughness of plasma sprayed Al2O3/TiO2 Coating[J].Hot Working Technology,2015,44(8):133-139.(in Chinese)

    • [20] 陈昆伦,黄勇,季强,等.热处理温度对 Al2O3-TiO2-MgO 等离子喷涂层微观结构和硬度的影响[J].材料保护,2018,51(12):43-45.CHEN Kunlun,HUANG Yong,JI Qiang,et al.Effect of heat-treatment temperature on microstructure and hardness of plasma-sprayed Al2O3-TiO2-MgO coatings[J].Material Protection,2018,51(12):43-45.(in Chinese)

    • [21] 黎红英,罗朝勇,谢善,等.大气等离子喷涂和超音速火焰喷涂制备的CoMoCrSi涂层组织结构和性能[J].热喷涂技术,2020,12(1):62-68.LI Hongying,LUO Chaoyong,XIE Shan,et al.Microstructures and properties of CoMoCrSi coatings sprayed by HVOF and APS[J].Thermal Spray Technology,2020,12(1):62-68.(in Chinese)

    • [22] 王铀,王亮,刘赛月,等.热喷涂纳米结构 La2Zr2O7(LZ)/8YSZ 双陶瓷热障涂层[J].中国表面工程,2016,29(1):16-24.WANG You,WANG Liang,LIU Saiyue,et al.Nanostructure LA2Zr2O7(LZ)/8YSZ double ceramic layer thermal barrier coatings fabricated by thermal spraying[J].China Surface Engineering,2016,29(1):16-24.(in Chinese)

    • [23] 张昊,张晶晶,刘旭,等.等离子喷涂不同比例掺杂 G-Al2O3-13%TiO2 复合涂层的耐腐蚀性能[J].中国表面工程,2020,33(3):95-103.ZHANG Hao,ZHANG Jingjing,LIU Xu,et al.Corrosion resisitance of plasma sprayed G-Al2O3-13%TiO2 glass-ceramic compsite coatings[J].China Surface Engineering,2020,33(3):95-103.

    • [24] 沈春豫,樊科社,王俊,等.热处理对爆炸焊接 316L/Q235B 复合板组织和性能的影响[J].金属热处理,2019,44(9):204-208.SHEN Chunyu,FAN Keshe,WANG Jun,et al.Effect of heat treatment on the microstructure and property of 316L/Q235B explosive welding clad plate[J].Heat Treatment of Metals,2019,44(9):204-208.(in Chinese)

    • [25] 徐刚,韩高荣.钛酸铝材料的结构、热膨胀及热稳定性[J].材料导报 2003,12(17):44-47.XU Gang,HAN Gaorong.Structure,thermal expansion and thermal stability of aluminium titanate materials[J].Materias Reports.2003,12(17):44-47.(in Chinese)

    • [26] 邓春明,周克崧,刘敏,等.大气等离子喷涂 Al2O3-3% TiO2 涂层的性能[J].中国表面工程,2010,23(1):19-23.DENG Chunming,ZHOU Kesong,LIU Min,et al.Properties of air plasma sprayed Al2O3– 3 % TiO2 Coatings[J].China Surface Engineering,2010,23(1):19-23.(in Chinese)

    • [27] LI Q,DENG C,LI L,et al.Microstructure and interface-adhesion of thermally sprayed continuous gradient elastic modulus FeCrAl-ceramic coatings[J].Ceramics International,2019,46(5):5946-5959.

  • 手机扫一扫看