en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

焦拥军,男,1971年出生,硕士,研究员级高级工程师,博士研究生导师。主要研究方向为核燃料元件研发。E-mail:jiaoyj@npic.ac.cn;

蒲曾坪(通信作者),男,1985年出生,硕士,研究员级高级工程师。主要研究方向为反应堆燃料设计。E-mail:270345036@qq.com

中图分类号:TG178

DOI:10.11933/j.issn.1007−9289.20220113001

参考文献 1
YUAN R,XIE Y P,LI T,et al.An origin of corrosion resistance changes of Zr alloys:Effects of Sn and Nb on grain boundary strength of surface oxide[J].Acta Materialia,2021,209:116804.
参考文献 2
KIM T,COUET A,KIM S,et al.In-situ electrochemical study of zirconium alloy in high temperature hydrogenated water conditions[J].Corrosion Science,2020,173:108745.
参考文献 3
CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.
参考文献 4
LI Z Y,CAI Z B,CUI X J,et al.Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy[J].Surface and Coatings Technology,2021,410:126949.
参考文献 5
KIM T H,KIM S S.Fretting wear mechanisms of zircaloy-4 and inconel 600 contact in air[J].KSME Int J,2001,15:1274-1280.
参考文献 6
高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90.GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)
参考文献 7
ATTIA M H,DE PANNEMAECKER A,WILLIAMS G.Effect of temperature on tribo-oxide formation and the fretting wear and friction behavior of zirconium and nickel-based alloys[J].Wear,2021:203722.
参考文献 8
LEE Y H,KIM H K.Effect of spring shapes on the variation of loading conditions and the wear behaviour of the nuclear fuel rod during fretting wear tests[J].Wear,2007,263:451-457.
参考文献 9
KOVÁCS S,STABEL J,REN M,et al.Comparative study on rod fretting behavior of different spacer spring geometries[J].Wear,2009,266:194-199
参考文献 10
SINGH K,MAYANK T,ANIRBAN M.Evolution of regimes of wear in zircaloy-4/inconel-600 contact subjected to fretting loading[J].Tribology International,2020,147:106274.
参考文献 11
YUAN X L,ZHANG X Y,ZHANG Q,et al.Study on the fretting maps of zircaloy-4 alloy against inconel 718 alloy[J].Tribology International,2021,160:107024.
参考文献 12
江海霞,段泽文,马鹏翔,等.核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展[J].摩擦学学报,2021,41(3):423-436.JIANG Haixia,DUAN Zewen,MA Pengxiang,et al.Research progress on fretting wear behavior of fuel cladding materials in nuclear reactor[J].Tribology,2021,41(3):423-436.(in Chinese)
参考文献 13
LAZAREVIC S,LU R Y,FAVEDE C,et al.Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J].Wear,2018,412:30-37.
参考文献 14
ZHANG L,LAI P,LIU Q,et al.Fretting wear behavior of zirconium alloy in B-Li water at 300 ℃[J].Journal of Nuclear Materials,2018,499:401-409.
参考文献 15
LIU Y,ZHU D,PIERRE D,et al.Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline:Potential and cycles to initiation[J].Acta Biomaterialia,2019,97:565-577.
参考文献 16
蔡振兵,朱旻昊.扭动微动磨损的研究进展和现状[J].中国表面工程,2014,27(4):1-11.CAI Zhenbing,ZHU Minhao.Research and prospect on the torsional fretting wear[J].China Surface Engineering,2014,27(4):1-11.(in Chinese)
参考文献 17
王书文,廖玉红,王腾迪.激光熔覆 Ni625/WC 涂层的减振降噪和摩擦磨损性能[J].中国表面工程,2021,34(2):94-103.WANG Shuwen,LIAO Yuhong,WANG Tengdi.Properties of vibration and noise reduction and friction/wear performance of laser cladded Ni625/WC coatings[J].China Surface Engineering,2021,34(2):94-103.(in Chinese)
参考文献 18
LI J,YANG B B,LU Y H,et al.The effects of electrochemical polarization condition and applied potential on tribocorrosion behaviors of Inconel 690 alloys in water environment[J].Materials & Design,2017,119:93-103.
参考文献 19
代燕,吴旋,杨峰,等.TC6 钛合金渗碳层在不同介质环境中的腐蚀磨损性能[J].中国表面工程,2020,33(2):47-56.DAI Yan,WU Xuan,YANG Feng,et al.Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments[J].China Surface Engineering,2020,33(2):47-56.(in Chinese)
参考文献 20
LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.
目录contents

    摘要

    锆合金燃料棒包壳在反应堆内会由于流致振动与定位格架发生微动磨蚀,现有研究并未考虑高温水环境下燃料棒包壳与格架之间的腐蚀加速磨损现象。通过微动磨损试验设备结合电化学工作站,研究不同外加电位(−0.8 V、−0.4 V、0 V、0.4 V 和 0.8 V)下锆合金包壳的微动磨蚀行为。采用 SEM、EDX、XPS、EPMA 和三维光学显微镜对磨痕表面的微观形貌和化学成分等进行分析,探究不同外加电位下锆合金的摩擦氧化行为及微动损伤机理。结果表明:随着电位的增加,微动过程中的腐蚀电流增加,加速磨损过程中锆合金的氧化腐蚀,锆合金的微动损伤加剧。不同外加电位下磨痕表面均存在明显的犁沟及氧化物颗粒堆积,主要磨损机制为磨粒磨损和氧化磨损。随着外加电位的增加,锆合金的磨损深度和磨损率增加,这是因为电位的增加使得腐蚀加剧,从而磨损与腐蚀交互作用增强导致磨损率的增加。揭示了电位对锆合金包壳磨痕形貌、磨损量和摩擦腐蚀交互作用的影响规律,阐明了不同电位条件下锆合金的磨损机制,为锆合金包壳在长周期服役过程中磨损行为的分析和预测提供理论支撑。

    Abstract

    Fretting corrosion of zirconium (Zr) alloy fuel rod cladding with spacer grid will occur due to flow induced vibration in reactor. The corrosion accelerated wear between fuel rod cladding and spacer grid in high temperature water environment has not been considered in the existing research. The fretting corrosion behavior of Zr alloy cladding in different potential (–0.8 V, –0.4 V, 0 V, 0.4 V, and 0.8 V) is studied by fretting wear test equipment combined with electrochemical workstation. The SEM, EDS, XPS, EBSD, and 3D optical microscope are used to obtain the information of morphology and surface chemical composition. The friction oxidation behavior and fretting damage mechanism of Zr alloy under different applied potentials are studied. The results show that the corrosion current in the fretting process increases with the increase of potential, which accelerates the oxidation corrosion of Zr alloy in the wear process and aggravates the fretting damage. The obvious furrows and oxide particles accumulated on the surface of wear scar in different potential is observed. The main wear mechanism is abrasive wear and oxidation wear. The wear depth and wear rate of Zr alloy increase with the increase of potential, because the increase of potential would accelerate corrosion and improve the interaction between wear and corrosion, resulting in the wear rate increasing. The effect of potential on the wear morphology, wear volume, and interaction of wear and corrosion of Zr alloy is revealed. The wear mechanism of Zr alloy under different potential conditions is clarified, and this paper provides the theoretical support for the analysis and prediction of fretting corrosion behavior of Zr alloy in long-term operation condition.

    关键词

    锆合金电位微动磨蚀磨损机制

  • 0 前言

  • 锆合金燃料棒包壳作为核电反应堆第一道且最重要的安全屏障,其结构完整性是决定反应堆安全、高效运行的关键因素[1-2]。在反应堆运行时,锆合金包壳处于高温、高压、高流速和强辐照的水化学环境中,导致其失效形式极其复杂。据IAEA调查统计,由高速流动冷却剂诱发的格架与燃料棒包壳的微动磨蚀(Grid to rod fretting, GTRF)是造成压水堆内燃料棒包壳失效的最主要因素[3-4]。因此,开展锆合金包壳的微动磨蚀行为研究,揭示其微动磨蚀失效机理对核安全运行水平提升至关重要。

  • 针对反应堆内运行环境的复杂性及苛刻性,不同位移幅值[5]、载荷[6]、温度[7]、夹持结构[8-9]和循环次数[10]下锆合金包壳的微动磨蚀特性已经开展了大量的研究,建立了Zr-4合金在常温大气环境下的微动运行工况图[11]。燃料棒包壳在反应堆内被格架上的弹簧和刚凸夹持定位,而锆合金包壳与弹簧/刚凸间存在电位差,引发锆合金包壳发生电偶腐蚀,加速燃料棒包壳的微动磨蚀[3, 12]。核燃料向高燃耗迈进,势必导致中子辐照剂量加大,锆合金包壳的自腐蚀电位降低,加速电偶腐蚀过程。因此,有必要开展不同外加电位下锆合金包壳的微动腐蚀性能研究,为高燃耗下锆合金包壳的应用提供技术支持。

  • 本文研究了不同电位条件下锆合金包壳的微动磨蚀性能,揭示了电位对磨痕形貌、磨损量和摩擦腐蚀交互作用的影响规律,阐明了不同电位条件下锆合金的磨损机制。

  • 1 材料与方法

  • 本试验采用N36锆合金,其化学成分(质量分数/wt.%)为1.0%Nb、1.0%Sn、0.35%Fe和Zr。锆合金管的外径为9.5mm,壁厚为0.57mm,锆合金的表面粗糙度为0.32 μm。对磨副材料为氧化锆陶瓷柱,直径为10mm,采用十字正交的接触方式。

  • 微动磨蚀试验采用自制的微动磨损试验机结合电化学工作站(CHI660E,上海辰华)进行,其示意图如图1a所示。微动试验参数基于文献中的分析结果[13-14],载荷为20N、位移幅值为100 μm、频率为5Hz、循环次数为1×105。测试溶液为1.2g/L H3BO3 + 2.2mg/L LiOH。

  • 图1 微动磨蚀试验设备和锆合金在硼锂水环境下的Tafel曲线

  • Fig.1 Schematic diagram of fretting corrosion equipment and the Tafel plot of zirconium alloy in B-Li solution

  • 图1b所示为锆合金在硼锂水环境下的Tafel曲线。可以看出,锆合金的自腐蚀电位为−0.425V。当腐蚀电位低于 E corr 时,锆合金处于阴极,电流为负,受到阴极保护难以发生腐蚀。当腐蚀电位高于 E corr 时,锆合金处于阳极,在机械磨损的作用下,呈现出磨损和腐蚀耦合的损伤形式,加速锆合金的材料去除。基于锆合金的自腐蚀电位,本文采用–0.8V、–0.4V、0V、0.4V和0.8V电位,研究锆合金包壳在阴极和阳极电位下的微动磨蚀行为。

  • 微动试验后,采用无水乙醇超声清洗试样并干燥。采用JSM-7001F型扫描电镜、EDAX-7760/68M型能谱仪、Thermo-250Xi型X射线光电子能谱和Symmetry型电子背散射衍射分析磨痕形貌、微观结构、损伤机理和摩擦化学反应。磨痕的三维形貌和磨损体积通过白光干涉仪(Bruker Contour GT-K1) 测量。

  • 2 结果与讨论

  • 图2 表示不同外加电位下锆合金腐蚀电流和摩擦因数曲线。可以看出,当电位为–0.8V时,锆合金处于阴极区,腐蚀电流为负,其值约为–408nA。当电位为–0.4V时,锆合金处于阳极区,腐蚀电流为正,其值约为951nA。随着微动的进行,腐蚀电流呈现出急剧的上升并保持稳定直到微动结束。随着电位的增加,微动过程中锆合金的腐蚀电流增加。当腐蚀电位为0.8V时,腐蚀电流为398 μA。当电位小于0.4V时,微动结束时腐蚀电流迅速降低至初始值附近。值的注意的是,当电位大于0.4V时,微动结束后腐蚀电流出现持续增高。这是因为微动磨蚀会导致锆合金磨痕表面出现缺陷和微裂纹,导致腐蚀更容易出现在这些缺陷和损伤处,出现缝隙腐蚀的现象。缝隙腐蚀的出现会导致锆合金的腐蚀电流急剧增加[15]。因此,微动后锆合金表面出现缝隙腐蚀是后续研究中值得持续关注的问题。

  • 从摩擦因素曲线可以看出,摩擦因素值在初始阶段快速增加并随后达到稳定状态。这是因为摩擦界面在经历快速磨损后达到动态的平衡。随着电位的增加,摩擦因素值轻微的增加。

  • 图2 不同外加电位下锆合金的腐蚀电流和摩擦因数

  • Fig.2 Corrosion current and friction factor of Zr alloy in different potential

  • 图3 表示不同外加电位下锆合金的 F-D 曲线。 F-D 曲线主要反映微动运行的区域和摩擦耗散能[16]。在–0.8V条件下,由于微动过程中磨屑的生成较少,摩擦副之间直接接触,相互滑动时摩擦力较大。因此,电位为–0.8V时的试样初始阶段的 F-D 曲线更偏向于椭圆形。当电位为0.8V时,摩擦界面的氧化物磨屑数量增加,接触界面之间存在磨屑的第三体参与,摩擦副间容易发生相对滑动。因此,电位为0.8V时的试样初始阶段的F-D曲线更偏向于平行四边形。总的摩擦耗散能如图3d所示,随着电位的增加,摩擦耗散能逐渐增加,表明微动过程中更多的能量作用于材料破坏或去除。

  • 图3 不同外加电位下锆合金的 F-D 曲线

  • Fig.3 F-D curves of Zr alloy in different potential

  • 不同电位条件下磨痕的SEM形貌及EDS面扫描结果如图4所示。当电位为–0.8V时,锆合金的磨痕表面呈现出明显的犁沟,表明微动过程中存在磨粒磨损[17]。EDS面扫描结果看出磨痕处的元素组成主要为Zr、O、Sn和Nb,其含量如表1所示。其中Zr元素强度在磨痕中心的分布较弱而O元素强度主要聚集于磨痕中心,表明微动过程中存在氧化磨损。此外,由于锆合金中Sn元素和Nb元素的含量较低,因此两种元素在磨痕位置强度较弱。随着电位的增加,O元素在磨痕处的强度逐渐增加,氧化程度加剧。这是因为电位的增加,加速了锆合金的氧化腐蚀。

  • 图4 磨痕的SEM形貌及EDS面扫描

  • Fig.4 SEM morphology and EDS mapping of wear scar

  • 表1 磨痕的元素含量

  • Table1 The element contents of wear scar (wt.%)

  • 图5 表示不同外加电位下锆合金的磨痕微观形貌。当锆合金处于阴极时,磨痕表现出明显的犁沟痕迹,部分颗粒状磨屑堆积于沟槽中。磨痕处存在微裂纹和剥层损伤的现象,这是由微动过程中的剪切作用导致的材料损伤[4]。结合微观形貌及EDS结果可以看出,主要磨损机理为磨粒磨损和轻微的氧化磨损。随着腐蚀电位的增加,锆合金处于阳极时,腐蚀过程会氧化表面暴露的锆合金,生成疏松的氧化物颗粒。在微动过程中,表面疏松的氧化层极易在剪切力的作用下被破坏或去除,加速锆合金的损伤[18]。因此,当锆合金处于阳极时,氧化磨损加剧,锆合金磨痕表面的氧化物颗粒会增多。同时,部分氧化物颗粒在微动过程中会被压实并聚集形成磨屑层。当电位为0.8V时,犁沟表面及沟壑处会出现大量颗粒状的氧化物及磨屑层,锆合金的磨损机理主要以磨粒磨损和氧化磨损为主[19]。图5f中EDS测试的C元素主要来自于磨痕表面的污染物。

  • 图5 锆合金磨痕的微观形貌

  • Fig.5 Micro-morphology of wear scar on Zr alloy

  • 不同外加电位下磨痕的XPS分析结果如图6所示。在XPS全谱中可以明显观察到C1s、O1s、 Zr3d和Nb3d的特征峰,以284.8eV的C1s作为标准电荷校正。从Zr3d的高分辨率图谱可以看出,在178.8eV、182.3eV和184.7eV结合能处的峰属于金属Zr、Zr4+ 3d5/2 和Zr4+ 3d3/2 [4]。这表明磨损过程中部分Zr已经被氧化生成Zr4+。结合O1s的图谱,在结合能为530.1和531.6eV处的峰对应于O2+和OH-,可以推测磨痕中的Zr4+ 为ZrO2 磨屑颗粒,这与EDS的分析结果一致。从O2+峰强度可以看出,随着电位的增加,O2+ 峰的强度增加,氧化程度增加。此外,Nb3d的图谱在结合能为209.9eV和207.0eV的峰对应于Zr4+ 3d3/2 和Zr4+ 3d5/2 (Nb2O5)的化合物。这表明金属Nb在微动过程中也氧化生成Nb2O5 [20]

  • 图6 锆合金磨痕的XPS谱图

  • Fig.6 XPS results of wear scar on Zr alloy

  • 图7 表示不同外加电位下磨痕的截面形貌。电位为–0.8V时磨痕的截面形貌主要表现为由犁沟导致的表面凹凸起伏,截面没有裂纹或疲劳损伤的存在。从电位为0V时的截面形貌可以看到部分的氧化层和微裂纹的出现,氧化层主要是腐蚀过程中生成的细小氧化锆颗粒在微动过程中被压实堆积而成。电位为0.8V时的截面形貌氧化层更加明显,这是因为电位较高时,腐蚀过程加剧,导致生成的氧化物颗粒增加,堆积的氧化层厚度增加。

  • 图7 不同外加电位下磨痕的截面形貌

  • Fig.7 Cross-section morphology of wear scar in different potentials

  • 图8 所示是电位为0.8V时的磨痕截面EBSD结果。检测区域 XYZ 方向的IPF面扫描结果能够反映取向空间分布,即反映每一个像素点的特征方向所平行的晶向。图中不同颜色代表不同晶向,颜色越接近,取向差越小。由图8可知,沿 XYZ 方向不存在择优取向,表面各晶向分布比较均匀。磨痕表面由于摩擦剪切作用出现晶粒细化,因为高应变主要分布于距磨损表面较近的区域,且距离磨损表面越远,应变越低。磨痕截面主要由锆合金(紫色)和氧化锆 (黄色)组成,靠近磨痕表面时氧化锆相含量增加。

  • 不同电位条件下磨痕的三维形貌,如图9所示。所有磨痕均呈现出半椭圆的损伤形貌。磨痕表面主要为犁沟滑动痕迹,磨痕边缘没有呈现出明显的凸起,表明微动过程中生成的磨屑在水环境下更多地被冲刷带出而非堆积于磨痕边缘[12]。磨痕的损伤面积和损伤程度随着电位的增加而逐渐增加。

  • 图8 电位为0.8V的磨痕截面EBSD结果

  • Fig.8 Cross-section EBSD result of wear scar in potential of 0.8V

  • 图9 不同电位下锆合金磨痕的三维形貌

  • Fig.9 3D profile of wear scar on Zr alloy in different potentials

  • 不同外加电位下磨痕的轮廓及磨损深度、磨损率如图10所示。从轮廓可以看出,在阴极保护下锆合金的磨损较为轻微。随着电位的增加,磨损的宽度和深度均增加。当电位为0.8V时,磨损深度达到45.2 μm。这是因为电位的增加导致腐蚀加剧,氧化腐蚀加速了锆合金的磨损,导致锆合金的磨损体积增加。因此,从磨损率结果可以看出,电位的增加会导致磨损率的增大。当电位为0.8V时,磨损率达到3.28×105 μm 3/Nm。

  • 图10 磨痕的轮廓、磨损深度和磨损率

  • Fig.10 2D profile, wear depth, and wear rate of wear scar

  • 3 结论

  • (1)微动过程中电位的增加会导致腐蚀电流的增加,加速锆合金的磨损与腐蚀耦合损伤。当电位大于0.4V时,微动结束后腐蚀电流的持续增加表明磨痕存在缺陷或微裂纹,导致锆合金表面出现缝隙腐蚀的现象。

  • (2)锆合金处于阳极时,磨痕表面的形貌为犁沟以及部分氧化物颗粒堆积于沟壑中。随着电位的增加,氧化腐蚀加剧,磨痕表面的氧化物磨屑增加、磨损加剧,主要磨损机制为磨粒磨损和氧化磨损。

  • (3)随着电位的增加,磨损和腐蚀的交互作用是导致材料损失体积增加的主要原因。当电位为0.8V时,磨损率达到3.28×105 μm 3/Nm。

  • 参考文献

    • [1] YUAN R,XIE Y P,LI T,et al.An origin of corrosion resistance changes of Zr alloys:Effects of Sn and Nb on grain boundary strength of surface oxide[J].Acta Materialia,2021,209:116804.

    • [2] KIM T,COUET A,KIM S,et al.In-situ electrochemical study of zirconium alloy in high temperature hydrogenated water conditions[J].Corrosion Science,2020,173:108745.

    • [3] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.

    • [4] LI Z Y,CAI Z B,CUI X J,et al.Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy[J].Surface and Coatings Technology,2021,410:126949.

    • [5] KIM T H,KIM S S.Fretting wear mechanisms of zircaloy-4 and inconel 600 contact in air[J].KSME Int J,2001,15:1274-1280.

    • [6] 高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90.GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)

    • [7] ATTIA M H,DE PANNEMAECKER A,WILLIAMS G.Effect of temperature on tribo-oxide formation and the fretting wear and friction behavior of zirconium and nickel-based alloys[J].Wear,2021:203722.

    • [8] LEE Y H,KIM H K.Effect of spring shapes on the variation of loading conditions and the wear behaviour of the nuclear fuel rod during fretting wear tests[J].Wear,2007,263:451-457.

    • [9] KOVÁCS S,STABEL J,REN M,et al.Comparative study on rod fretting behavior of different spacer spring geometries[J].Wear,2009,266:194-199

    • [10] SINGH K,MAYANK T,ANIRBAN M.Evolution of regimes of wear in zircaloy-4/inconel-600 contact subjected to fretting loading[J].Tribology International,2020,147:106274.

    • [11] YUAN X L,ZHANG X Y,ZHANG Q,et al.Study on the fretting maps of zircaloy-4 alloy against inconel 718 alloy[J].Tribology International,2021,160:107024.

    • [12] 江海霞,段泽文,马鹏翔,等.核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展[J].摩擦学学报,2021,41(3):423-436.JIANG Haixia,DUAN Zewen,MA Pengxiang,et al.Research progress on fretting wear behavior of fuel cladding materials in nuclear reactor[J].Tribology,2021,41(3):423-436.(in Chinese)

    • [13] LAZAREVIC S,LU R Y,FAVEDE C,et al.Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J].Wear,2018,412:30-37.

    • [14] ZHANG L,LAI P,LIU Q,et al.Fretting wear behavior of zirconium alloy in B-Li water at 300 ℃[J].Journal of Nuclear Materials,2018,499:401-409.

    • [15] LIU Y,ZHU D,PIERRE D,et al.Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline:Potential and cycles to initiation[J].Acta Biomaterialia,2019,97:565-577.

    • [16] 蔡振兵,朱旻昊.扭动微动磨损的研究进展和现状[J].中国表面工程,2014,27(4):1-11.CAI Zhenbing,ZHU Minhao.Research and prospect on the torsional fretting wear[J].China Surface Engineering,2014,27(4):1-11.(in Chinese)

    • [17] 王书文,廖玉红,王腾迪.激光熔覆 Ni625/WC 涂层的减振降噪和摩擦磨损性能[J].中国表面工程,2021,34(2):94-103.WANG Shuwen,LIAO Yuhong,WANG Tengdi.Properties of vibration and noise reduction and friction/wear performance of laser cladded Ni625/WC coatings[J].China Surface Engineering,2021,34(2):94-103.(in Chinese)

    • [18] LI J,YANG B B,LU Y H,et al.The effects of electrochemical polarization condition and applied potential on tribocorrosion behaviors of Inconel 690 alloys in water environment[J].Materials & Design,2017,119:93-103.

    • [19] 代燕,吴旋,杨峰,等.TC6 钛合金渗碳层在不同介质环境中的腐蚀磨损性能[J].中国表面工程,2020,33(2):47-56.DAI Yan,WU Xuan,YANG Feng,et al.Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments[J].China Surface Engineering,2020,33(2):47-56.(in Chinese)

    • [20] LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.

  • 参考文献

    • [1] YUAN R,XIE Y P,LI T,et al.An origin of corrosion resistance changes of Zr alloys:Effects of Sn and Nb on grain boundary strength of surface oxide[J].Acta Materialia,2021,209:116804.

    • [2] KIM T,COUET A,KIM S,et al.In-situ electrochemical study of zirconium alloy in high temperature hydrogenated water conditions[J].Corrosion Science,2020,173:108745.

    • [3] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.

    • [4] LI Z Y,CAI Z B,CUI X J,et al.Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy[J].Surface and Coatings Technology,2021,410:126949.

    • [5] KIM T H,KIM S S.Fretting wear mechanisms of zircaloy-4 and inconel 600 contact in air[J].KSME Int J,2001,15:1274-1280.

    • [6] 高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90.GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)

    • [7] ATTIA M H,DE PANNEMAECKER A,WILLIAMS G.Effect of temperature on tribo-oxide formation and the fretting wear and friction behavior of zirconium and nickel-based alloys[J].Wear,2021:203722.

    • [8] LEE Y H,KIM H K.Effect of spring shapes on the variation of loading conditions and the wear behaviour of the nuclear fuel rod during fretting wear tests[J].Wear,2007,263:451-457.

    • [9] KOVÁCS S,STABEL J,REN M,et al.Comparative study on rod fretting behavior of different spacer spring geometries[J].Wear,2009,266:194-199

    • [10] SINGH K,MAYANK T,ANIRBAN M.Evolution of regimes of wear in zircaloy-4/inconel-600 contact subjected to fretting loading[J].Tribology International,2020,147:106274.

    • [11] YUAN X L,ZHANG X Y,ZHANG Q,et al.Study on the fretting maps of zircaloy-4 alloy against inconel 718 alloy[J].Tribology International,2021,160:107024.

    • [12] 江海霞,段泽文,马鹏翔,等.核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展[J].摩擦学学报,2021,41(3):423-436.JIANG Haixia,DUAN Zewen,MA Pengxiang,et al.Research progress on fretting wear behavior of fuel cladding materials in nuclear reactor[J].Tribology,2021,41(3):423-436.(in Chinese)

    • [13] LAZAREVIC S,LU R Y,FAVEDE C,et al.Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J].Wear,2018,412:30-37.

    • [14] ZHANG L,LAI P,LIU Q,et al.Fretting wear behavior of zirconium alloy in B-Li water at 300 ℃[J].Journal of Nuclear Materials,2018,499:401-409.

    • [15] LIU Y,ZHU D,PIERRE D,et al.Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline:Potential and cycles to initiation[J].Acta Biomaterialia,2019,97:565-577.

    • [16] 蔡振兵,朱旻昊.扭动微动磨损的研究进展和现状[J].中国表面工程,2014,27(4):1-11.CAI Zhenbing,ZHU Minhao.Research and prospect on the torsional fretting wear[J].China Surface Engineering,2014,27(4):1-11.(in Chinese)

    • [17] 王书文,廖玉红,王腾迪.激光熔覆 Ni625/WC 涂层的减振降噪和摩擦磨损性能[J].中国表面工程,2021,34(2):94-103.WANG Shuwen,LIAO Yuhong,WANG Tengdi.Properties of vibration and noise reduction and friction/wear performance of laser cladded Ni625/WC coatings[J].China Surface Engineering,2021,34(2):94-103.(in Chinese)

    • [18] LI J,YANG B B,LU Y H,et al.The effects of electrochemical polarization condition and applied potential on tribocorrosion behaviors of Inconel 690 alloys in water environment[J].Materials & Design,2017,119:93-103.

    • [19] 代燕,吴旋,杨峰,等.TC6 钛合金渗碳层在不同介质环境中的腐蚀磨损性能[J].中国表面工程,2020,33(2):47-56.DAI Yan,WU Xuan,YANG Feng,et al.Corrosion and wear properties of carburized layer on TC6 titanium alloy in different environments[J].China Surface Engineering,2020,33(2):47-56.(in Chinese)

    • [20] LI Z Y,CAI Z B,DING Y,et al.Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation[J].Applied Surface Science,2020,506:144928.

  • 手机扫一扫看