en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张强,男,1982年出生,博士,副研究员。主要研究方向为反应堆材料。E-mail:1160822362@qq.com

中图分类号:TG171

DOI:10.11933/j.issn.1007−9289.20220105001

参考文献 1
岳雅楠,陈寰,余施佳,等.锆合金Cr涂层包壳管在环向压缩作用下的裂纹行为[J].中国表面工程,2021,34(6):102-110.YUE Yanan,CHEN Huan,YU Shijia,et al.Crack behavior of Cr coating zircaloy cladding tubes under ring compression[J].China Surface Engineering,2021,34(6):102-110.(in Chinese)
参考文献 2
宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/CrN and Cr/CrN/CrAlN coating[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)
参考文献 3
DRYEPONDT S,UNOCIC K A,HOELZER D T,et al.Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J].Journal of Nuclear Materials,2018,501:59-71.
参考文献 4
ZHANG S H,UKAI S,NISHIKAWA T,et al.Development and characterization of γ/α transformable FeCrAl-ODS alloys by cobalt addition[J].Journal of Alloys and Compounds,2019,797:390-398.
参考文献 5
CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:1-16.
参考文献 6
LAI P,ZHANG H,ZHANG L F,et al.Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J].Wear,2019,424-425:53-61.
参考文献 7
KIM J S,PARK S M,LEE Y Z.The effects of wear debris under fluid flow environment on fretting wear mechanism of nuclear fuel cladding tube supported by supporting grid[J].Tribology Transactions,2010,53(3):452-462.
参考文献 8
位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):10-18.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of Cr-Al coating on zirconium alloy[J].China Surface Engineering,2019,32(2):10-18.(in Chinese)
参考文献 9
黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)
参考文献 10
LU W,THOULESS M D,HU Z,et al.CASL structural mechanics modeling of grid-to-rod fretting[J].JOM,2016,68(11):2922-2929.
参考文献 11
高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90 GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)
参考文献 12
HU Z.Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J].Progress in Nuclear Energy,2018,106:293-299.
参考文献 13
齐欢欢,冯志鹏,吴万军,等.压水堆燃料棒包壳微振磨损计算方法[J].核动力工程,2017,38(5):54-57.QI Huanhuan,FENG Zhipeng,WU Wanjun,et al.Method for calculation of fretting wear of PWR fuel rod cladding[J].Nuclear Power Engineering,2017,38(5):54-57.(in Chinese)
参考文献 14
HERPEN A V,REYNIER B,PHALIPPOU C.Effect of test duration on impact/sliding wear damage of 304L stainless steel at room temperature:Metallurgical and micromechanical investigations[J].Wear,2001,249(1-2):37-49.
参考文献 15
YI Meigui,WANG Wenjian,HE Weifeng,et al.Impact-sliding tribology behavior of TC17 alloy treated by laser shock peening[J].Materials,2018,11(7):1229-1245.
参考文献 16
ZINKLE S J,TERRANI K A,GEHIN J C,et al.Accident tolerant fuels for LWRs:A perspective[J].Journal of Nuclear Materials,2014,448(1-3):374-379.
参考文献 17
YU Yanqing,ZHOU Liucheng,CAI Zhenbing,et al.Research on the mechanism of DD6 single crystal superalloy wear resistance improvement by femto second laser modification[J].Applied Surface Science,2021:151691.
参考文献 18
LORENZO-MARTIN C,AJAYI O O,HARTMAN K.Effect of Al2O3 coating on fretting wear performance of Zr alloy[J].Wear,2019,426-427:219-227.
参考文献 19
CAI Z B,CHEN Z Q,SUN Y.Development of a novel cycling impact-sliding wear rig to investigate the complex friction motion[J].Friction,2019,7(1):32-43.
参考文献 20
BLAU P J.A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods[J].Wear,2014,313(1-2):89-96.
参考文献 21
CAI Z B,CHEN Z Q,QIAN H.Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity[J].Tribology International,2017,105:219-228.
参考文献 22
GARCIA A I,RAMIL A,CELIS J P.A mild oxidation model valid for discontinuous contacts in sliding wear tests:role of contact frequency[J].Wear,2003,254(5-6):429-440.
目录contents

    摘要

    磨损是核电厂燃料元件失效的主要形式之一。燃料棒与定位格架磨损可能导致包壳破损和裂变产物泄露,引起一回路剂量超标,影响核电厂安全运行。在实际工况中,流体湍流引起格架和燃料棒之间的相对运动,其界面发生的位移可能是往复滑动,间歇冲击或数个运动的组合,即冲击-滑动摩擦磨损。涂层锆合金是事故容错燃料最有应用潜质的候选包壳,其磨损研究尚不够系统和全面。采用新型可控能量冲击-滑动磨损试验机,研究冲击能量和循环次数对锆合金 Cr 涂层磨蚀损伤行为的影响,并且对试验后试样进行白光干涉仪、扫描电镜(SEM)及电子探针(EPMA)等的表征,阐述锆合金 Cr 涂层磨蚀损伤的行为规律。结果表明:试样磨损随着循环次数的增加而增大,但随着冲击能量的增大而减小;Cr 涂层提高了界面的接触刚度和接触正压力值,并且减少了冲击过程中的接触时间,从而减小了包壳管材料的磨损。关注锆合金 Cr 涂层在低速高频模式下的耐磨损性能,可以为材料的工程应用提供试验数据。

    Abstract

    Rod-grid abrasion is a key failure mode of the nuclear fuel element, which may lead to fuel leakage and radioactivity release. Concerning the reactor safety operation, it is very important to study the friction and wear of the cladding material. As one of the ATF (accident tolerant fuel) candidate cladding material, the wear research on the Cr-coated zirconium alloy is not systematic and comprehensive. A new controllable energy impact-sliding wear testing machine is applied to study the effects of impact energy and cycle times on the abrasive damage behavior of Cr coating on zirconium alloys. The samples after the tests are characterized by white light interferometer, scanning electron microscope (SEM) and electron-probe micro-analysis (EPMA), and the mechanism of abrasion damage of Cr coating of zirconium alloy is explained. The wear of the specimen increases with the increase of the cycle number, but decreases with the increase of the impact energy. The Cr coating improves the interface contact stiffness and contact positive pressure values, and reduces the contact time during impact, thus reducing the wear of the cladding tube material. This paper focuses on the Cr-coated zirconium alloy abrasion in a low speed / high frequency mode, which may provide test data for engineering application.

    关键词

    锆合金Cr 涂层冲击-滑动磨蚀

  • 0 前言

  • 由于良好的力学性能、热物理性能、耐腐蚀性能和抗辐照性能,锆合金成功应用于核反应堆包壳[1-3]。核电站中流致振动往往引起关键部件的严重磨损[4],例如蒸汽发生器传热管、热交换器管道和燃料组件[5-7]。燃料组件与栅格之间的相互运动可能导致燃料棒发生多种类型的失效,如接触疲劳、磨损和腐蚀[8-10]。燃料包壳过度磨损会导致放射性燃料的泄露,增加一回路剂量,严重时导致反应堆停工检修[11-12]

  • 流体湍流引起格架和燃料棒之间的相对运动,其界面发生的位移可能是往复滑动,间歇冲击或数个运动的组合[10],即冲击-滑动摩擦磨损。针对燃料包壳磨损行为,研究表明复合的运动比单一摩擦磨损带来的磨损率高很多倍。齐欢欢等[13]研究了包壳与格架之间的微动磨损,并建立磨损深度模型,评估燃料棒包壳是否满足机械完整性的要求。HERPEN等[14]研究了试验时间对304L不锈钢室温冲击-滑动磨损的影响,结果发现冲击-滑动的磨损机制十分复杂,并不是简单的将滑动定律与冲击定律简单叠加[15],因此研究包壳材料的冲击-滑动磨损行为显得很重要。

  • 2011年日本福岛核事故发生后,核工业界加紧研发安全、可靠、经济并具有耐事故裕度的事故容错燃料(ATF)。目前ATF包壳材料研发有两种思路[16-18]:改进现有锆合金包壳材料的抗氧化性和力学性能(涂层);研发抗氧化性能好的新材料替代锆合金。本文以锆合金及其铬涂层为研究对象,力图揭示其冲击-滑动磨蚀损伤演变规律。

  • 1 材料和测试方法

  • 试验在新型可控能量冲击-切向磨损试验设备[19]上进行,采用管/圆柱接触模式,其中,试样Zr合金以及Cr涂层尺寸为φ 9.5×30mm的管,Zr合金的元素主要为约1.1%的Nb、0.25%的Fe、4.42%的氧元素和其他元素,Cr涂层采用磁控溅射制备,涂层厚度约为12 μm,如图1所示。作为对磨副的圆柱试样为φ 10.5×30mm的Inconel718合金。

  • 研究不同的冲击能量对包壳材料的磨蚀性能的影响。试验基本参数为:切向滑动速度为90mm/s,冲击质量块为600g;冲击速度分别为60、90、120mm/s,对应的单次循环的冲击能量 E i 分别为1.08、2.43、 4.32mJ;每组试验的循环次数为104 次。同时,为了研究材料的损伤演变,考察了冲击能量为2.43mJ时,循环次数分别为103、2×103、5×103、7×103 和104次时的磨蚀情况,每组试验重复3次。

  • 图1 Cr/Zr涂层的截面形貌

  • Fig.1 Cross-section image of Cr/Zr coating.

  • 试验结束后,使用BRUKER 3D白光干涉轮廓仪测量磨痕的三维形貌,由Vision64软件分析磨痕的磨损体积。使用扫描电子显微镜(JSM-6610LV)观测磨痕的微观形貌,电子探针显微分析仪(EPMA,8050G) 测量磨痕表面的元素分布。

  • 2 试验结果

  • 2.1 冲击能量对材料损伤的影响

  • 试验研究了不同的冲击能量对锆合金包壳材料及其铬涂层的冲击-滑动磨蚀损伤机理的影响。如图1所示,为循环次数 N=50次,冲击能量 E i分别为1.08、 2.43、4.32mJ时,Zr合金及Cr/Zr涂层冲击过程中的速度响应曲线。可以看到在不同的 E i作用下,Zr合金的回弹速度始终略大于Cr/Zr涂层的回弹速度。图2显示了在磨蚀试验过程中的接触力-时间响应曲线,可见,同一种材料在不同的冲击能量下,冲击能量越大,接触时间越长,接触力越大。说明铬涂层提高了材料在冲击时的接触正压力值,并且减少了冲击过程中的接触时间。

  • 图2 不同冲击能量下的速度响应曲线,N=50

  • Fig.2 Speed curve at different E i, N=50

  • 图3 显示了不同冲击能量作用下,Zr合金及Cr/Zr涂层在不同循环次数时的冲击力峰值曲线。可见,随着冲击能量的增加,材料的冲击力峰值增加。初始接触力峰值与最后趋于稳定时的接触力峰值差别不大。通过对图4a和4b的比较,可见铬涂层的冲击力峰值均略大于锆合金基体材料。其原因是较硬的涂层材料提高了弹性模量,改变了冲击接触状况。

  • 图3 不同循环次数下的冲击力峰值

  • Fig.3 Peak impact force with different cycles

  • 图4 冲击界面行为响应曲线,N=50

  • Fig.4 Impact interface response curve, N=50

  • 图5 所示为不同冲击能量作用下两种材料的摩擦因数随循环次数变化的曲线图。在滑动速度为90mm/s的情况下,Zr合金的摩擦因数初始值相较于Cr/Zr涂层的高。由图5a可以得出,Zr合金在冲击能量为2.43mJ时,摩擦因数为三组试验中最大的,摩擦因数在2×103 次循环之后达到0.23左右,最后趋于稳定。而在冲击能量为1.08mJ和4.32mJ时,摩擦因数均相对较低,最后稳定于0.19左右。而Cr/Zr涂层的初始摩擦因数比Zr合金的低。从图5b中可以看到,冲击能量为1.08mJ时,摩擦因数在7×103 次循环之后达到0.2左右,之后趋于稳定;冲击能量为2.43mJ时,摩擦因数在5×103 次循环之后,增至0.21后趋于稳定;而最后一组试验摩擦因数在103 次循环之后就逐渐达到稳定阶段,摩擦因数值约为0.18。可见,冲击能量越大,摩擦因数达到最大值时所需的循环次数越低,Cr涂层可以延缓包壳材料摩擦因数达到最大值所需的循环次数,起到减小磨损的作用。

  • 图6 所示在不同的E i作用下冲击104 次下磨痕的三维形貌。可见,当冲击能量为1.08mJ时,磨痕呈长椭圆形,而随着能量的增加,磨痕趋于圆形。从图中可以看出,Zr合金基体的磨痕较深,而Cr涂层的磨痕较浅。图7显示了磨痕的体积和面积,可以看到Zr合金和Cr/Zr涂层表现出了不同的磨损规律。锆合金基体在磨蚀试验过程中磨损得较为严重,而且磨损体积和磨损面积随着冲击能量的增加而减小。一个有意思的现象是,冲击能量的增加一般情况下会使得材料表面的破坏加剧,从而使得磨痕的面积或者体积呈上升趋势,但是在本研究却发现随着冲击能量的增加,Zr和Cr/Zr的磨损体积和面积均有所降低。

  • 图5 不同冲击能量作用下的摩擦系曲线

  • Fig.5 Friction factors at different E i

  • 由图6和图7可以得出,铬涂层大大提升了锆合金基体的磨蚀性能,极大程度上降低了锆合金材料的磨损。其中,当冲击能量为2.43mJ时,镀铬涂层的锆合金包壳材料磨蚀量最小,磨损体积仅为锆合金基体的7.4%,磨损面积的18.7%。

  • 图6 Zr合金和Cr/Zr涂层在不同 E i 作用下磨痕形貌(N=104)

  • Fig.6 Three-dimensional topography of the wear scar at different E i (N=104)

  • 针对以上结果不难发现,铬涂层对保护锆合金基体、提高材料的磨蚀性能方面有很好的表现。尤其是当冲击能量为2.43mJ时,Cr涂层耐磨损性能最优。故而研究了在冲击能量为2.43mJ的条件下,锆合金及铬涂层的摩擦磨损情况。

  • 图7 不同冲击动能作用下Zr及Cr/Zr涂层磨痕的体积和面积

  • Fig.7 Wear scar volume and area of Zralloy and Cr coating cladding at different E i

  • 图8 所示为不同能量下的冲击-滑动试验中Cr/Zr涂层磨痕的微观扫描电镜图。从图中可以看到,当冲击能量输入为1.08mJ(速度为60mm/s) 时,即滑动速度远大于冲击速度,磨痕显示出狭长的形状,滑动速度方向的长度达到1 617 μm,此时磨痕表面出现大量的摩擦氧化,并出现犁沟、分层等现象。从图8e可以看出,磨痕较浅,磨痕表面分布有部分氧化物质,此时磨损机制主要是氧化反应。在图8i中可以观察到磨痕边缘出现了分层和剥落现象,磨痕中心部分发现有犁沟。图9为Cr/Zr涂层在冲击能量为1.08mJ时磨痕表面的元素分布情况。 EPMA结果显示磨痕中心的Cr元素含量最高,而Zr元素少见,说明此时的铬涂层未在冲击-滑动运动中被完全磨损掉,仍然对基体起着保护作用。同时,氧元素的大量分布,说明磨痕区域发生了严重的氧化反应,与图8得到的结果一致。少量的Fe元素说明摩擦过程中对磨副Inconel718合金和试样磨损与区域发生了材料的转移。

  • 图8 磨痕的形貌(a)~(c) 1.08mJ,(d)~(f) 2.43mJ,(g)~(i) 4.32mJ

  • Fig.8 Wear scar micrographs under different E i: (a)-(c) 1.08mJ,(d)-(f) 2.43mJ,(g)-(i) 4.32mJ

  • 图9 Cr/Zr涂层磨痕的元素分布(E i=2.43mJ)

  • Fig.9 Elemental distribution of Cr/Zr alloy wear scar (E i=2.43mJ)

  • 2.2 不同循环次数下的损伤演变

  • 通过研究不同循环次数下材料的磨损体积和磨损面积,如图10所示,发现锆合金基体磨损严重,并且随着试验循环次数的增加,磨损体积和磨损面积一直处于线性上升趋势。而镀铬的锆合金则很好地保护了锆合金基体,表现出了极好的减磨特性。其磨损体积和磨损面积一直较低,而且在循环次数达到5×103 到104 次时处于相对稳定阶段。

  • 图10 不同循环次数磨痕体积

  • Fig.10 Wear volume and area with different cycles.

  • Cr/Zr涂层在冲击能量为2.43mJ时,磨痕随循环次数变化的形貌图如图11所示,可以看到冲击-滑动循环次数为103 次时,磨痕较浅,随着循环次数的增加,磨痕深度也随之增加,由三维形貌可以得到磨痕的二维轮廓图,如图12所示。与图11相对应的,可以看到循环次数为103 次时,Cr/Zr涂层磨痕较浅,而Zr合金则相对来说磨痕较为明显。而且可见由于受到滑动速度产生的切向力,磨痕一边产生了严重的材料堆积现象。随着循环次数的增加,Cr/Zr涂层磨痕深度也不到3 μm,而Zr合金的磨痕深度达到了9 μm。

  • 图11 磨痕随循环次数变化形貌图

  • Fig.11 Three-dimensional topography of the wear scar with varied cycles.

  • 图12 不同循环次数下磨痕轮廓

  • Fig.12 Section profiles of the wear scar of Zr alloy and Cr/Zr coating with varied cycles.

  • 3 讨论

  • 锆合金包壳材料的磨损过程有三个连续的阶段,分别为预磨损、氧化膜磨损以及锆合金磨损阶段,而且一旦氧化层以下的锆合金暴露出来,磨损率可能会进一步加速[20]。有研究发现,材料的硬度不同,与材料的耐冲击性能也有一定的关联[21],这可能由于镀铬涂层改变了锆合金基体的力学性能,使得锆合金在冲击-滑动过程中,能够更迅速地反弹,减少接触时间和压入深度。从图3和图4可以得出,相比于Zr合金,Cr/Zr涂层在冲击-滑动试验的每个循环内,接触力值增加,而接触时间相对减少。

  • 如图7所示,随着冲击能量的增加,锆合金基体磨损体积和磨损面积均大幅度的降低。通过图6可知,Zr合金磨痕的一端出现严重的材料堆积现象,在测量磨痕面积和体积时会影响结果,而Cr/Zr涂层则没有材料的堆积。排除磨痕材料堆积对试验结果的影响,理论上磨痕的面积、体积会随着冲击能量的增大而增大,但是在冲击能量为1.08mJ时,磨痕的面积、体积均为最大,这一反常现象是由于冲击频率的不同造成的。GARCIA等[22]发现冲击-滑动磨损试验中,磨损率是随频率而下降的。

  • 本文所运用的冲击-滑动摩擦磨损试验机,在设计时固定了行程范围,所以将对磨副试样加速到不同的冲击速度之后,自由撞击的行程有所不同,造成了以不同的冲击速度进行试验,实际作用频率会有差别的。例如本文中,冲击速度为60、90、120mm/s时,试验频率分别为3.4、5.2和5.2Hz。在相同的循环次数下,由于低冲击能量试验频率较低,故而体现出出输入能量越低磨损越严重的趋势。

  • 4 结论

  • (1)开发了新型可控能量冲击-滑动磨损试验机,设备输出稳定、数据精确,可较好地用来研究材料的冲击-滑动磨损性能。

  • (2)制备了厚度为12 μm的致密Cr涂层,显著增强了锆合金基体的耐磨损性能。试验结果显示材料磨损随着循环次数的增加而增大,但随着冲击能量的增加而减小,这是由于冲击能量影响了试验频率与接触时间,导致了磨损量的变化。

  • (3)从冲击能量与循环次数两方面研究了锆合金Cr涂层的抗磨损性能,特别是涂层在冲击-滑动复合工况下的耐磨性能。特别关注锆合金Cr涂层在低速高频模式下的耐磨损性能,可为材料的工程应用提供数据支持。

  • 参考文献

    • [1] 岳雅楠,陈寰,余施佳,等.锆合金Cr涂层包壳管在环向压缩作用下的裂纹行为[J].中国表面工程,2021,34(6):102-110.YUE Yanan,CHEN Huan,YU Shijia,et al.Crack behavior of Cr coating zircaloy cladding tubes under ring compression[J].China Surface Engineering,2021,34(6):102-110.(in Chinese)

    • [2] 宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/CrN and Cr/CrN/CrAlN coating[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)

    • [3] DRYEPONDT S,UNOCIC K A,HOELZER D T,et al.Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J].Journal of Nuclear Materials,2018,501:59-71.

    • [4] ZHANG S H,UKAI S,NISHIKAWA T,et al.Development and characterization of γ/α transformable FeCrAl-ODS alloys by cobalt addition[J].Journal of Alloys and Compounds,2019,797:390-398.

    • [5] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:1-16.

    • [6] LAI P,ZHANG H,ZHANG L F,et al.Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J].Wear,2019,424-425:53-61.

    • [7] KIM J S,PARK S M,LEE Y Z.The effects of wear debris under fluid flow environment on fretting wear mechanism of nuclear fuel cladding tube supported by supporting grid[J].Tribology Transactions,2010,53(3):452-462.

    • [8] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):10-18.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of Cr-Al coating on zirconium alloy[J].China Surface Engineering,2019,32(2):10-18.(in Chinese)

    • [9] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [10] LU W,THOULESS M D,HU Z,et al.CASL structural mechanics modeling of grid-to-rod fretting[J].JOM,2016,68(11):2922-2929.

    • [11] 高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90 GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)

    • [12] HU Z.Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J].Progress in Nuclear Energy,2018,106:293-299.

    • [13] 齐欢欢,冯志鹏,吴万军,等.压水堆燃料棒包壳微振磨损计算方法[J].核动力工程,2017,38(5):54-57.QI Huanhuan,FENG Zhipeng,WU Wanjun,et al.Method for calculation of fretting wear of PWR fuel rod cladding[J].Nuclear Power Engineering,2017,38(5):54-57.(in Chinese)

    • [14] HERPEN A V,REYNIER B,PHALIPPOU C.Effect of test duration on impact/sliding wear damage of 304L stainless steel at room temperature:Metallurgical and micromechanical investigations[J].Wear,2001,249(1-2):37-49.

    • [15] YI Meigui,WANG Wenjian,HE Weifeng,et al.Impact-sliding tribology behavior of TC17 alloy treated by laser shock peening[J].Materials,2018,11(7):1229-1245.

    • [16] ZINKLE S J,TERRANI K A,GEHIN J C,et al.Accident tolerant fuels for LWRs:A perspective[J].Journal of Nuclear Materials,2014,448(1-3):374-379.

    • [17] YU Yanqing,ZHOU Liucheng,CAI Zhenbing,et al.Research on the mechanism of DD6 single crystal superalloy wear resistance improvement by femto second laser modification[J].Applied Surface Science,2021:151691.

    • [18] LORENZO-MARTIN C,AJAYI O O,HARTMAN K.Effect of Al2O3 coating on fretting wear performance of Zr alloy[J].Wear,2019,426-427:219-227.

    • [19] CAI Z B,CHEN Z Q,SUN Y.Development of a novel cycling impact-sliding wear rig to investigate the complex friction motion[J].Friction,2019,7(1):32-43.

    • [20] BLAU P J.A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods[J].Wear,2014,313(1-2):89-96.

    • [21] CAI Z B,CHEN Z Q,QIAN H.Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity[J].Tribology International,2017,105:219-228.

    • [22] GARCIA A I,RAMIL A,CELIS J P.A mild oxidation model valid for discontinuous contacts in sliding wear tests:role of contact frequency[J].Wear,2003,254(5-6):429-440.

  • 参考文献

    • [1] 岳雅楠,陈寰,余施佳,等.锆合金Cr涂层包壳管在环向压缩作用下的裂纹行为[J].中国表面工程,2021,34(6):102-110.YUE Yanan,CHEN Huan,YU Shijia,et al.Crack behavior of Cr coating zircaloy cladding tubes under ring compression[J].China Surface Engineering,2021,34(6):102-110.(in Chinese)

    • [2] 宋肖肖,李柯,赵婕宇,等.磁控溅射 Cr/CrN 和 Cr/CrN/CrAlN 涂层的抗高温氧化性能[J].中国表面工程,2020,33(1):63-72.SONG Xiaoxiao,LI Ke,ZHAO Jieyu,et al.High temperature oxidation resistance of magnetron sputtered Cr/CrN and Cr/CrN/CrAlN coating[J].China Surface Engineering,2020,33(1):63-72.(in Chinese)

    • [3] DRYEPONDT S,UNOCIC K A,HOELZER D T,et al.Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J].Journal of Nuclear Materials,2018,501:59-71.

    • [4] ZHANG S H,UKAI S,NISHIKAWA T,et al.Development and characterization of γ/α transformable FeCrAl-ODS alloys by cobalt addition[J].Journal of Alloys and Compounds,2019,797:390-398.

    • [5] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:1-16.

    • [6] LAI P,ZHANG H,ZHANG L F,et al.Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J].Wear,2019,424-425:53-61.

    • [7] KIM J S,PARK S M,LEE Y Z.The effects of wear debris under fluid flow environment on fretting wear mechanism of nuclear fuel cladding tube supported by supporting grid[J].Tribology Transactions,2010,53(3):452-462.

    • [8] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):10-18.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of Cr-Al coating on zirconium alloy[J].China Surface Engineering,2019,32(2):10-18.(in Chinese)

    • [9] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [10] LU W,THOULESS M D,HU Z,et al.CASL structural mechanics modeling of grid-to-rod fretting[J].JOM,2016,68(11):2922-2929.

    • [11] 高雯.锆合金包壳和GH4169镍基合金的微动摩擦磨损性能研究[J].核动力工程,2020,41(4):85-90 GAO Wen.Fretting friction wear behavior of zircaloy and Ni-based GH4169 alloy[J].Nuclear Power Engineering,2020,41(4):85-90.(in Chinese)

    • [12] HU Z.Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J].Progress in Nuclear Energy,2018,106:293-299.

    • [13] 齐欢欢,冯志鹏,吴万军,等.压水堆燃料棒包壳微振磨损计算方法[J].核动力工程,2017,38(5):54-57.QI Huanhuan,FENG Zhipeng,WU Wanjun,et al.Method for calculation of fretting wear of PWR fuel rod cladding[J].Nuclear Power Engineering,2017,38(5):54-57.(in Chinese)

    • [14] HERPEN A V,REYNIER B,PHALIPPOU C.Effect of test duration on impact/sliding wear damage of 304L stainless steel at room temperature:Metallurgical and micromechanical investigations[J].Wear,2001,249(1-2):37-49.

    • [15] YI Meigui,WANG Wenjian,HE Weifeng,et al.Impact-sliding tribology behavior of TC17 alloy treated by laser shock peening[J].Materials,2018,11(7):1229-1245.

    • [16] ZINKLE S J,TERRANI K A,GEHIN J C,et al.Accident tolerant fuels for LWRs:A perspective[J].Journal of Nuclear Materials,2014,448(1-3):374-379.

    • [17] YU Yanqing,ZHOU Liucheng,CAI Zhenbing,et al.Research on the mechanism of DD6 single crystal superalloy wear resistance improvement by femto second laser modification[J].Applied Surface Science,2021:151691.

    • [18] LORENZO-MARTIN C,AJAYI O O,HARTMAN K.Effect of Al2O3 coating on fretting wear performance of Zr alloy[J].Wear,2019,426-427:219-227.

    • [19] CAI Z B,CHEN Z Q,SUN Y.Development of a novel cycling impact-sliding wear rig to investigate the complex friction motion[J].Friction,2019,7(1):32-43.

    • [20] BLAU P J.A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods[J].Wear,2014,313(1-2):89-96.

    • [21] CAI Z B,CHEN Z Q,QIAN H.Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity[J].Tribology International,2017,105:219-228.

    • [22] GARCIA A I,RAMIL A,CELIS J P.A mild oxidation model valid for discontinuous contacts in sliding wear tests:role of contact frequency[J].Wear,2003,254(5-6):429-440.

  • 手机扫一扫看