en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

岳雅楠,女,1996年出生,硕士研究生。主要研究方向为表面工程和材料服役行为。E-mail:1175865842@qq.com;

蔡振兵(通信作者),男,1981年出生,博士,研究员,博士研究生导师。主要研究方向为摩擦学、表面工程和材料服役行为。E-mail:caizb@swjtu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210729001

参考文献 1
TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.
参考文献 2
LEE Y,LEE J I,NO H C.Mechanical analysis of surface-coated zircaloy cladding[J].Nuclear Engineering and Technology,2017,49(5):1031-1043.
参考文献 3
YOUNKER I,FRATONI M.Neutronic evaluation of coating and cladding materials for accident tolerant fuels[J].Progress in Nuclear Energy,2016,88:10-18.
参考文献 4
KAM D H,LEE J H,LEE T,et al.Critical heat flux for SiC-and Cr-coated plates under atmospheric condition[J].Annals of Nuclear Energy,2015,76:335-342.
参考文献 5
TERRAIN K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.
参考文献 6
CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.
参考文献 7
刘慧君,胡春,刘喆人,等.Zr 和Cr掺杂TiAlN涂层结构、力学和高温性能研究[J].中南大学学报(自然科学版),2020,1(11):3178-3186.KIU Huijun,HU Chun,LIU Zeren,et al.Research on structure,mechanical and high-temperature properties of Zr and Cr doped TiAlN coatings[J].Journal of Central South University(Science and Technology),2020,51(11):3178-3186.(in Chinese)
参考文献 8
胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)
参考文献 9
UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.
参考文献 10
KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.
参考文献 11
KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.
参考文献 12
BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.
参考文献 13
BRACHET J C,DUMERVAI M,CHAILIOUX L V,et al.Behavior of chromium coated M5TM claddings under LOCA conditions [C]//WRFPM(Water Reactor Fuel Performance Meeting)2017,10-14 Sept.2017,Jeju Island,Korea,2017
参考文献 14
位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)
参考文献 15
JIANG J S,ZHAI H L,GONG P F,et al.In-situ study on the tensile behavior of Cr-coated zircaloy for accident tolerant fuel claddings[J].Surface and Coatings Technology,2020,394:12547.
参考文献 16
JIANG J S,ZHAN D K,LV J N,et al.Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings[J].Surface and Coatings Technology,2021,409:126812.
参考文献 17
王昱,陈乐,陈寰,等.锆合金管表面Cr涂层的室温与高温拉伸性能研究[J].材料保护,2020,53(7):61-66.WANG Yu,CHEN Le,CHEN Huan,et al.Room and high temperature tensile properties of Cr coating on Zircaloy Tubes[J].Material Protection,2020,53(7):61-66.(in Chinese)
参考文献 18
CHEN H,WANG X M,ZHANG R Q,et al.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.selection,preparation,and characteristics of coating materials[J].Coatings,2020,10(9):808-808.
参考文献 19
BRACHET J C,SAUX M L,BISCHOFF J.et al.Evaluation of equivalent cladding reacted parameters of Cr-coated claddings oxidized in steam at 1 200 ℃ in relation with oxygen diffusion/partitioning and post-quench ductility[J].Journal of Nuclear Materials,2020,533:152106.
参考文献 20
ODETTE R,ZINKLE S.Structural alloys for nuclear energy applications[M].New York:Elsevier Science Publishing Co Inc,2019.
参考文献 21
LI Z C,WANG Y X,CHENG X Y,et al.Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property[J].ACS Applied Materials & Interfaces,2018,10(3):2965-2975.
参考文献 22
黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)
参考文献 23
PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.
参考文献 24
YANG B Q,ZHANG K,CHEN G N,et al.Measurement of fracture toughness and interfacial shear strength of hard and brittle Cr coating on ductile steel substrate[J].Surface Engineering,2008,24(5):332-336.
参考文献 25
楼小玲.涂层/基体系统裂纹应力强度因子的数值研究[D].杭州:浙江工业大学,2007.LOU Xiaoling.Numerical study on stress intensity factor of cracks in coating/substrate system[D].Hangzhou:Zhejiang University,2007.(in Chinese)
参考文献 26
唐文秋.应力集中、尺寸和表面对金属疲劳强度影响的研究[D].沈阳:东北大学,2008.TANG Wenqiu.Research on stress concentration,size and surface impacting onmetal fatigue[D].Shenyang:Northeastern University,2008.(in Chinese)
参考文献 27
JIANG C,ZHAO G F,KHALILI N.On crack propagation in brittle material using the distinct lattice spring model[J].International Journal of Solids and Structures,2017,118-119:41-57.
目录contents

    摘要

    金属 Cr 涂层是事故容错燃料(ATF)包壳候选涂层之一,在各方面具有优异的性能。在实际工况下,包壳管会受到环向外压力的作用而导致涂层破裂,研究锆合金 Cr 涂层膜基界面裂纹萌生和扩展行为很有意义。使用多弧离子镀技术在锆合金基体表面制备 Cr 涂层,利用电子力学试验机对锆合金 Cr 涂层包壳管进行不同变形量的环向压缩试验。采用扫描电子显微镜(SEM)、 能谱仪(EDX)、XRD 和纳米压痕仪等测试设备对锆合金 Cr 涂层试样的微观组织进行表征,研究并分析 Cr 涂层表截面裂纹的微观行为。结果表明,试样的变形分为弹性变形-裂纹萌生阶段和塑性变形-裂纹扩展阶段两个阶段,发现锆合金 Cr 试样界面裂纹的产生有两种形式:① 裂纹从膜基界面处萌生,原因是 Cr 涂层和锆合金基体材料的不同使得膜基界面发生涂层应力集中;② 表面萌生裂纹,由于 Cr 涂层存在微缺陷。没有发现涂层的剥落现象,说明其界面结合性能较佳。采用多个变形量研究锆合金 Cr 涂层包壳管膜基界面裂纹的萌生与扩展过程,为 ATF 包壳涂层结构完整性和稳定性提供试验依据。

    Abstract

    Metal Cr coating is one of the candidate coatings for accident tolerant fuel (ATF) cladding, with excellent performance in all aspects. Under actual working conditions, the cladding tube will be subjected to the outward pressure of the ring to cause the coating to rupture. Therefore, it is necessary to study the crack initiation and propagation behavior of the zirconium alloy Cr coating film-based interface. Cr coating is prepared on the surface of the zirconium alloy substrate using multi-arc ion plating technology. The ring compression tests of zirconium alloy Cr coating cladding tubes with different deformations are carried out by using electronic mechanics testing machine. Scanning electron microscopy (SEM), Energy-dispersion x-ray spectroscopy (EDX), XRD and nanoindentation, and other testing equipment are used to characterize the microstructure of Cr coating samples. The microstructure behavior of the Cr coating surface and cross-section crack is studied and analyzed. The results show that the deformation of the specimen is divided into two stages: elastic deformation-crack initiation stage and plastic deformation-crack propagation stage. It is found that there are two forms of cracks at the interface of the zirconium alloy Cr coating samples: 1) Cracks originate from the coating-substrate interface because the difference between the Cr coating and the zirconium alloy base material causes stress concentration at the coating-substrate interface; 2) Cracks initiation on the surface due to micro-defects in the Cr coating. No peeling of the coating is found in this experiment, indicating that its interface bonding performance is better. Using multiple deformations to study the initiation and propagation of cracks at the membrane base of the zirconium alloy Cr coating cladding tube provides an experimental basis for the structural integrity and stability of the ATF cladding coating.

  • 0 前言

  • 2011年福岛第一核电站发生核事故引发全球对核电安全的极大关注,推动了核技术的发展。在国内外研究的事故容错燃料(ATF)概念中,实现向ATF包壳转变的最直接且渐进的方法是在锆合金包壳管表面采用保护性涂层[1]。涂层技术的主要优点是经济性和渐进性,一方面是现有商业Zr合金和制造设施可以继续利用,另一方面体现在薄的涂层对轻水反应堆(LWR)锆合金包壳中子吸收性能没有明显的影响,同时还有可能增强包壳传热特性[2-4]

  • 迄今为止,Cr及含Cr涂层是在锆基合金上研究最广泛的涂层,具有优异的耐蚀性、耐磨性、高熔点、高强度和高硬度[5-7]。核事故发生时,包壳材料可能会面临机械形变情况[8-9],目前国内外对包壳管的变形试验已经有了一些研究。KIM等[10-11]采用电弧离子镀和三维激光技术分别在锆合金管表面制备了Cr涂层,然后进行室温环压和拉伸试验,发现涂层均表现出良好的界面结合性能。BRACHET等[12-13]通过力学试验,对比了Cr涂层材料与未镀Cr涂层材料的力学性能。结果表明Cr涂层锆合金基体体系具有较高的抗拉强度和界面附着力。此外,还有对涂层锆合金基体体系进行室温和高温下的板材拉伸[14-16]和单轴拉伸[17]等基础力学试验,并对涂层表界面出现的裂纹进行了深入的研究,综合评价了涂层的界面结合性能。在反应堆运行环境下,包壳管外侧一回路冷却水有15~18MPa的压强,涂层的开裂行为可能导致包壳管的局部氧化,并由于氢化物脆化[18-20]导致涂层力学性能显著下降,因此涂层包壳管的环压性能值得关注。本文以锆合金Cr涂层包壳管为研究对象,对其进行微观组织分析和不同变形量下环向压缩性能测试,探究了其膜基界面裂纹的萌生与扩展行为。

  • 1 试验准备

  • 1.1 试验材料

  • 试样由中国核动力研究设计院提供。N36锆合金包壳管为基体,其外径、壁厚分别为9.5mm和0.57mm。其化学成分(质量分数)为1.0%Nb、1.0%Sn、0.3%Fe和Zr。通过真空电弧离子镀膜设备在长度为800mm的N36锆合金管材表面制备了Cr涂层。镀膜时Cr靶材纯度为99.9%,基体温度250℃,弧电流90A,工作气压1.6Pa,负偏压为160V。

  • 1.2 结构表征及力学性能测试

  • 1.2.1 涂层微观结构表征

  • 采用扫描电子显微镜(SEM, JSM 7800F)观察Cr涂层的表面形貌和截面形貌,并结合能谱仪 (EDX, OXFROD X-Max 80)测定Cr涂层的元素成分。用X射线衍射仪(XRD, DX-2700B)对Cr涂层和基体的晶体结构进行表征。扫描角度为30°~90°,扫描速度为8(°)/min。

  • 1.2.2 硬度弹性模量测试

  • 将涂层和基体抛光至表面粗糙度小于50nm,以消除粗糙度对表面的影响,然后采用纳米压痕仪 (Hysitron TI 750)测量Cr涂层和基体的弹性模量和硬度。压痕深度为200nm,在每个样品的不同区域进行6次压痕得到硬度、弹性模量的数值,计算硬度和弹性模量的平均值。

  • 1.2.3 环向压缩试验

  • 使用线切割设备从锆合金Cr涂层包壳管上切取长度为5.5mm的等宽圆环试样,然后对包壳管两端进行打磨抛光处理至5mm。环向压缩试验采用ETM104B型电子力学试验机。环压试验的示意图如图1a所示,变形量 δ 的计算公式如下:

  • δ=D-HD100%

  • 式中,D 为包壳管外径,H 为试验后游标卡尺测量试样外径最短距离。对锆合金Cr涂层包壳管分别进行了1%、3%、5%、10%、20%和50%变形量的环压试验,下压速率为0.5mm/min。锆合金Cr涂层包壳管的赤道位置(θ=0º)和极坐标(θ=90º)定义如图1b所示,以便对试验结果进行描述。环压试验完成后,采用光学显微镜(OM, VXH-7000)对裂纹数量和裂纹宽度进行统计,由于圆环的对称性,分别以 θ=0º、10º、20º、30º、40º、50º、60º、70º、80º、 90º为中心,统计该角度附近4.75 π/18mm(10º 对应的弧长)的范围内裂纹数量和裂纹宽度的最大值,即完成了一个样品的裂纹数量统计和最大裂纹宽度统计。采用SEM观察涂层截面裂纹的微观形貌。

  • 图1 环向压缩试验示意图及试样位置的定义

  • Fig.1 Schematic diagram of ring compression test and definition of sample position

  • 2 结果与讨论

  • 2.1 涂层的表截面形貌和微观结构

  • 图2a为Cr涂层表面的扫描电镜图,可见涂层表面有许多大小不一的凹坑和球形颗粒,这是多弧离子镀工艺制备涂层的典型特征[21-22]。Cr涂层的截面形貌及截面元素分布如图2b所示,涂层的平均厚度约为26.0 μm,从图中可以观察到Cr涂层与锆合金基体之间有明显的界限且涂层致密性较好,无明显的微孔和缺陷。元素分布是Cr涂层截面的EDX面扫描结果。从EDX面扫描结果可以看到,涂层中主要含有Cr元素,基体中主要含有Zr元素。

  • N36锆合金基体和Cr涂层试样的XRD衍射图谱如图3所示。N36锆合金基体的所有衍射峰都对应于具有六方封闭堆积(HCP)晶体结构的 α-Zr相[9]。对于Cr涂层试样中识别出的峰都是具有体心立方 (BCC)结构的纯Cr,它们分别对应于Cr (110)、Cr (200)和Cr(211)相[9, 23]。从涂层样品的XRD衍射峰中并未发现锆合金基体的峰说明X射线无法穿透涂层到达基体,整个试样被Cr涂层覆盖。

  • 图2 Cr/Zr涂层的表面和截面形貌

  • Fig.2 Surface and cross-sectional morphologies of the Cr/Zr coating

  • 图3 锆合金基体及Cr涂层XRD衍射图谱

  • Fig.3 XRD patterns of the Zirconium alloy substrate and Cr coating

  • 2.2 纳米压痕测试

  • 表1统计了锆合金基体和Cr涂层的硬度和弹性模量的平均值,可以看出Cr涂层相对于基体具有较高的硬度和弹性模量。

  • 表1 基体和涂层材料的硬度和弹性模量

  • Table1 Hardness and modulus of elasticity of substrate and coating materials

  • 2.3 不同变形量下Cr涂层环向压缩性能

  • 图4 所示为锆合金基体及Cr涂层试样在变形量为50%时的载荷-位移曲线。可以看出两种材料的载荷-位移曲线比较相似,但是Cr涂层试样屈服点的载荷比锆合金基体高出约13%,说明到Cr涂层试样的抗压性能高于基体试样。Cr涂层试样在变形量为5%时到达屈服点附近。图5为Cr涂层试样在不同变形量下的宏观形貌图,观察到试样逐渐被压扁。当变形量为50%时,试样的形状与“花生”相似。

  • 图4 50%变形量下的无涂层和Cr涂层包壳管的载荷-位移曲线

  • Fig.4 Load-displacement curves of uncoated and Cr coating cladding tubes at 50%deformation

  • 图6 所示为不同变形量环向压缩试验后Cr涂层试样的截面微观形貌,分别对应于如图5中红点部位。在1%、3%、5%、10%、20%、50%递增变形量的环向压扁试验后,涂层与基体始终结合良好,无涂层脱落现象,然而在严重变形区域的Cr涂层均出现裂纹。Cr涂层的裂纹形成是由于Cr元素的脆性特性所导致的[24]。当变形量为1%时,赤道位置涂层截面刚刚出现两条较小的裂纹,随着变形量增加到3%时,裂纹数量大量增加,如图6a、6b所示。当变形量进一步增加到10%时,裂纹数量并没有出现较大的变化 (仅在膜基界面处萌发出少量新的小裂纹),而裂纹开裂宽度出现逐渐增大的趋势,如图6d所示。当变形量最终增加到50%时,从膜基界面处萌发出较多的新裂纹,裂纹宽度也进一步增大,且膜基界面之间的裂纹呈“W”型,如图6f所示。值得注意的是,大多数裂纹是从涂层和基体之间的界面而不是从涂层表面开始的,这是由于涂层与基体材料的不同,界面处产生较大的局部应力集中,在拉力的作用下导致裂纹从膜基界面产生[25],并向涂层表面扩展,最终沿裂纹边缘向基体内部扩展形成“W”型裂纹。在一些区域,新裂纹也会靠近另一个裂纹从涂层表面开始,随着变形量增大,最终形成一条裂纹(如图6b、6e曲线框所示),这是由于涂层表面微缺陷导致周围的局部应力集中引起的[26]

  • 图5 不同变形量下的Cr涂层包壳管宏观形貌

  • Fig.5 Macroscopic morphology of Cr coating cladding tubes at different deformations

  • 图6 不同变形量的Cr涂层包壳管截面在赤道位置(θ=0 º)附近的裂纹微观形貌

  • Fig.6 Crack micro-morphology of the section of Cr coating cladding tube with different deformations near the equator

  • 为了进一步研究不同区域裂纹的萌生和扩展,对不同变形量的Cr涂层包壳管0º~90º的范围进行观察,发现裂纹的产生集中在赤道附近35º 内,35º~90º 不再有裂纹出现。图7是变形量为5%、20%和50%的Cr涂层包壳管在0º、10º、20º 和30º 附近的微观形貌。变形量为5%的试样仍保持管状结构,没有发生较大变形。观察截面裂纹的微观形貌,从赤道位置(θ=0º) 到 θ=35º 裂纹宽度逐渐减小。这是由于试样从赤道位置(θ=0º)到极坐标(θ=90º)位置受到的拉力越来越小。变形量为20%和50%的Cr涂层包壳管已经发生较大变形,裂纹出现了较大的开裂。界面裂纹的形成反映了涂层的结合性能,在严重开裂的裂纹附近也没有出现涂层的剥落,说明Cr涂层与锆合金基体之间具有良好的界面结合性能。

  • 图7 不同变形量的Cr涂层包壳管在0º、10º、20º、30º 附近的裂纹微观形貌图

  • Fig.7 Micro-morphology of cracks near 0º, 10º, 20º, and 30º of Cr coating cladding tubes with different deformations

  • 由于每个试样在 θ=35º 之后没有再发现裂纹,故只统计Cr涂层试样以 θ=0º、10º、20º、30º 为中心,该角度附近4.75 π/18mm(10º 对应的弧长) 的范围内裂纹数据。不同变形量的Cr涂层试样表面裂纹密度和最大裂纹宽度的变化如图8所示。从图8a中可以看出,赤道位置(θ=0º)裂纹密度随着变形量的增加先迅速增加,然后增加缓慢。而从图8b发现,赤道位置(θ=0º)最大裂纹宽度随着变形量的增加先缓慢增加,然后迅速增加。Cr涂层试样的变形量在5%前随着变形量的增加裂纹总密度增长较快,而裂纹宽度变化不大,说明变形量在5%之前力加载的能量主要被新裂纹的产生所消耗,变形量在5%之后力加载的能量主要被裂纹的扩展所消耗。

  • 图9所示为不同变形量环向压缩试验后Cr涂层包壳管在不同变形量下赤道位置(θ=0º)的表面微观形貌,观察方向为试样的轴向,裂纹沿轴向开裂。图中整体呈现两种类型的裂纹,“直线型”裂纹, “分叉型”裂纹。从图中可以看出,包壳管赤道位置的表面裂纹基本呈现“直线型”,随着变形量的增加,有的裂纹开始分叉,出现了“分叉型”裂纹。 “直线型“裂纹并不是完全呈直线,而是发生了一定程度的弯曲和偏移,这与多弧离子镀Cr涂层表面存在较多微孔和液滴有关。在试验过程中,Cr涂层表面微孔处产生了较大的局部应力,裂纹扩展时会向应力较大的部位靠近[27];液滴对裂纹的扩展产生了一定的阻力,当裂纹扩展遇到液滴时,则会发生偏移绕开液滴继续扩展。

  • 图8 不同变形量的Cr涂层包壳管截面从 θ=0º 到 θ=30º 裂纹数据分析

  • Fig.8 Crack data analysis from θ=0ºto θ=30ºof the Cr coating cladding tube section with different deformations

  • 图9 不同变形量的Cr涂层包壳管赤道位置(θ=0º)的表面裂纹微观形貌

  • Fig.9 Micromorphology of surface cracks at the equatorial position (θ=0º) of Cr coating cladding tubes with different deformations

  • 图10 所示为不同变形量的Cr涂层包壳管赤道位置和 θ=15º 位置附近的表面裂纹密度统计。从图中看出,表面裂纹密度曲线与力位移曲线相似,变形量为5%之前表面裂纹密度迅速增加,随后增加缓慢,与截面裂纹密度变化趋势相近。结合截面裂纹密度及宽度的变化趋势,将变形量为5%之前的区域定义为裂纹萌生区,变形量为5%之后的区域定义为裂纹扩展区。

  • 通过上述研究和分析,包壳管Cr涂层试样截面裂纹萌生和扩展机理如图11所示。锆合金Cr涂层试样界面裂纹的产生有两种形式:① Ⅰ型独生裂纹产生于膜基界面处,膜基界面两种材料的晶格不匹配会导致能量变大引起局部应力,在力加载过程中裂纹从膜基界面萌发并向涂层表面扩展,裂纹逐渐变宽;② II型共生裂纹是由于Ⅰ型裂纹产生引起周围应力场增加,且多弧离子镀Cr涂层表面微缺陷导致局部应力集中,两者共同作用下引起表面开裂,随着变形量的增大两条裂纹逐渐靠近生长成为一条大裂纹。裂纹边缘与基体随着裂纹宽度的增加应力逐渐变大导致裂纹边缘向基体内部扩展最终膜基界面的裂纹形貌呈“W”型。

  • 图10 不同变形量的Cr涂层包壳管的表面裂纹密度统计

  • Fig.10 Statistics of surface crack density of Cr coating cladding tubes with different deformations

  • 图11 Cr涂层包壳管裂纹萌生和扩展机理图

  • Fig.11 Diagram of crack initiation and propagation mechanism of Cr coating cladding tube section

  • 3 结论

  • 研究了多弧离子镀锆合金Cr涂层包壳管在不同变形量下的环向压缩行为,以及膜基界面裂纹的萌生与扩展机制,结论如下:

  • (1)环向压缩分为弹性和塑性变形两个阶段,分别对应界面裂纹的萌生和扩展阶段。

  • (2)裂纹最先从膜基界面处萌生并向涂层表面扩展。同时,界面裂纹附近的涂层表面也是裂纹萌生的多发区。

  • (3)裂纹扩展一般呈直线型,但Cr涂层中的微孔以及液滴会改变裂纹扩展方向。随着变形量的增加,裂纹会向基体内部扩展,呈现出“W”型裂纹。

  • 本文研究重点是揭示常温下膜基界面裂纹的萌生和扩展机制,为ATF包壳涂层结构完整性和稳定性的研究提供了数据支撑。但是包壳管在正常运行工况下的温度为300~400℃,故在高温下ATF包壳涂层膜基界面裂纹的萌生与扩展行为值得进一步研究。

  • 参考文献

    • [1] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [2] LEE Y,LEE J I,NO H C.Mechanical analysis of surface-coated zircaloy cladding[J].Nuclear Engineering and Technology,2017,49(5):1031-1043.

    • [3] YOUNKER I,FRATONI M.Neutronic evaluation of coating and cladding materials for accident tolerant fuels[J].Progress in Nuclear Energy,2016,88:10-18.

    • [4] KAM D H,LEE J H,LEE T,et al.Critical heat flux for SiC-and Cr-coated plates under atmospheric condition[J].Annals of Nuclear Energy,2015,76:335-342.

    • [5] TERRAIN K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.

    • [6] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.

    • [7] 刘慧君,胡春,刘喆人,等.Zr 和Cr掺杂TiAlN涂层结构、力学和高温性能研究[J].中南大学学报(自然科学版),2020,1(11):3178-3186.KIU Huijun,HU Chun,LIU Zeren,et al.Research on structure,mechanical and high-temperature properties of Zr and Cr doped TiAlN coatings[J].Journal of Central South University(Science and Technology),2020,51(11):3178-3186.(in Chinese)

    • [8] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [9] UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.

    • [10] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.

    • [11] KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.

    • [12] BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [13] BRACHET J C,DUMERVAI M,CHAILIOUX L V,et al.Behavior of chromium coated M5TM claddings under LOCA conditions [C]//WRFPM(Water Reactor Fuel Performance Meeting)2017,10-14 Sept.2017,Jeju Island,Korea,2017

    • [14] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [15] JIANG J S,ZHAI H L,GONG P F,et al.In-situ study on the tensile behavior of Cr-coated zircaloy for accident tolerant fuel claddings[J].Surface and Coatings Technology,2020,394:12547.

    • [16] JIANG J S,ZHAN D K,LV J N,et al.Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings[J].Surface and Coatings Technology,2021,409:126812.

    • [17] 王昱,陈乐,陈寰,等.锆合金管表面Cr涂层的室温与高温拉伸性能研究[J].材料保护,2020,53(7):61-66.WANG Yu,CHEN Le,CHEN Huan,et al.Room and high temperature tensile properties of Cr coating on Zircaloy Tubes[J].Material Protection,2020,53(7):61-66.(in Chinese)

    • [18] CHEN H,WANG X M,ZHANG R Q,et al.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.selection,preparation,and characteristics of coating materials[J].Coatings,2020,10(9):808-808.

    • [19] BRACHET J C,SAUX M L,BISCHOFF J.et al.Evaluation of equivalent cladding reacted parameters of Cr-coated claddings oxidized in steam at 1 200 ℃ in relation with oxygen diffusion/partitioning and post-quench ductility[J].Journal of Nuclear Materials,2020,533:152106.

    • [20] ODETTE R,ZINKLE S.Structural alloys for nuclear energy applications[M].New York:Elsevier Science Publishing Co Inc,2019.

    • [21] LI Z C,WANG Y X,CHENG X Y,et al.Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property[J].ACS Applied Materials & Interfaces,2018,10(3):2965-2975.

    • [22] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [23] PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.

    • [24] YANG B Q,ZHANG K,CHEN G N,et al.Measurement of fracture toughness and interfacial shear strength of hard and brittle Cr coating on ductile steel substrate[J].Surface Engineering,2008,24(5):332-336.

    • [25] 楼小玲.涂层/基体系统裂纹应力强度因子的数值研究[D].杭州:浙江工业大学,2007.LOU Xiaoling.Numerical study on stress intensity factor of cracks in coating/substrate system[D].Hangzhou:Zhejiang University,2007.(in Chinese)

    • [26] 唐文秋.应力集中、尺寸和表面对金属疲劳强度影响的研究[D].沈阳:东北大学,2008.TANG Wenqiu.Research on stress concentration,size and surface impacting onmetal fatigue[D].Shenyang:Northeastern University,2008.(in Chinese)

    • [27] JIANG C,ZHAO G F,KHALILI N.On crack propagation in brittle material using the distinct lattice spring model[J].International Journal of Solids and Structures,2017,118-119:41-57.

  • 参考文献

    • [1] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [2] LEE Y,LEE J I,NO H C.Mechanical analysis of surface-coated zircaloy cladding[J].Nuclear Engineering and Technology,2017,49(5):1031-1043.

    • [3] YOUNKER I,FRATONI M.Neutronic evaluation of coating and cladding materials for accident tolerant fuels[J].Progress in Nuclear Energy,2016,88:10-18.

    • [4] KAM D H,LEE J H,LEE T,et al.Critical heat flux for SiC-and Cr-coated plates under atmospheric condition[J].Annals of Nuclear Energy,2015,76:335-342.

    • [5] TERRAIN K A.Accident tolerant fuel cladding development:Promise,status,and challenges[J].Journal of Nuclear Materials,2018,501:13-30.

    • [6] CAI Z B,LI Z Y,YIN M G,et al.A review of fretting study on nuclear power equipment[J].Tribology International,2020,144:106095.

    • [7] 刘慧君,胡春,刘喆人,等.Zr 和Cr掺杂TiAlN涂层结构、力学和高温性能研究[J].中南大学学报(自然科学版),2020,1(11):3178-3186.KIU Huijun,HU Chun,LIU Zeren,et al.Research on structure,mechanical and high-temperature properties of Zr and Cr doped TiAlN coatings[J].Journal of Central South University(Science and Technology),2020,51(11):3178-3186.(in Chinese)

    • [8] 胡小刚,董闯,陈宝清,等.电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J].表面技术,2019,48(2):207-219.HU Xiaogang,DONG Chuang,CHEN Baoqing,et al.Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings[J].Surface Technology,2019,48(2):207-219.(in Chinese)

    • [9] UMRETIYA R V,ELWARD B,LEE D,et al.Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4[J].Journal of Nuclear Materials,2020,541:152420.

    • [10] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.

    • [11] KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.

    • [12] BRACHET J C,TRUJILLO I I,FLEM M L,et al.Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [13] BRACHET J C,DUMERVAI M,CHAILIOUX L V,et al.Behavior of chromium coated M5TM claddings under LOCA conditions [C]//WRFPM(Water Reactor Fuel Performance Meeting)2017,10-14 Sept.2017,Jeju Island,Korea,2017

    • [14] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAl coating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [15] JIANG J S,ZHAI H L,GONG P F,et al.In-situ study on the tensile behavior of Cr-coated zircaloy for accident tolerant fuel claddings[J].Surface and Coatings Technology,2020,394:12547.

    • [16] JIANG J S,ZHAN D K,LV J N,et al.Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings[J].Surface and Coatings Technology,2021,409:126812.

    • [17] 王昱,陈乐,陈寰,等.锆合金管表面Cr涂层的室温与高温拉伸性能研究[J].材料保护,2020,53(7):61-66.WANG Yu,CHEN Le,CHEN Huan,et al.Room and high temperature tensile properties of Cr coating on Zircaloy Tubes[J].Material Protection,2020,53(7):61-66.(in Chinese)

    • [18] CHEN H,WANG X M,ZHANG R Q,et al.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.selection,preparation,and characteristics of coating materials[J].Coatings,2020,10(9):808-808.

    • [19] BRACHET J C,SAUX M L,BISCHOFF J.et al.Evaluation of equivalent cladding reacted parameters of Cr-coated claddings oxidized in steam at 1 200 ℃ in relation with oxygen diffusion/partitioning and post-quench ductility[J].Journal of Nuclear Materials,2020,533:152106.

    • [20] ODETTE R,ZINKLE S.Structural alloys for nuclear energy applications[M].New York:Elsevier Science Publishing Co Inc,2019.

    • [21] LI Z C,WANG Y X,CHENG X Y,et al.Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property[J].ACS Applied Materials & Interfaces,2018,10(3):2965-2975.

    • [22] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [23] PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.

    • [24] YANG B Q,ZHANG K,CHEN G N,et al.Measurement of fracture toughness and interfacial shear strength of hard and brittle Cr coating on ductile steel substrate[J].Surface Engineering,2008,24(5):332-336.

    • [25] 楼小玲.涂层/基体系统裂纹应力强度因子的数值研究[D].杭州:浙江工业大学,2007.LOU Xiaoling.Numerical study on stress intensity factor of cracks in coating/substrate system[D].Hangzhou:Zhejiang University,2007.(in Chinese)

    • [26] 唐文秋.应力集中、尺寸和表面对金属疲劳强度影响的研究[D].沈阳:东北大学,2008.TANG Wenqiu.Research on stress concentration,size and surface impacting onmetal fatigue[D].Shenyang:Northeastern University,2008.(in Chinese)

    • [27] JIANG C,ZHAO G F,KHALILI N.On crack propagation in brittle material using the distinct lattice spring model[J].International Journal of Solids and Structures,2017,118-119:41-57.

  • 手机扫一扫看