en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周正难(通信作者),女,1989年出生,博士后。主要研究方向为电活性医用生物材料。E-mail:z0810411329@126.com

中图分类号:O635;TQ465

DOI:10.11933/j.issn.1007−9289.20210427004

参考文献 1
TROLIER-MCKINSTRY S,ZHANG SJ,BELL A J,et al.High-performance piezoelectric crystals,ceramics,and films[J].Annual Review of Materials Research,2018,48(1):191-217.
参考文献 2
CHORSI M T,CURRY E J,CHORSI H T,et al.Piezoelectric biomaterials for sensors and actuators[J].Advanced Materials,2019,31(1):1802084-1802099.
参考文献 3
徐佳楠,陈焕铭,潘凤春,等.氧化锌掺钡的电子结构及其铁电性能研究[J].物理学报,2018,67(10):107701.XU Jianan,CHEN Huanming,PAN Fengchun,et al.Electronic structures and ferroelectric properties of Ba-doped ZnO[J].Acta Phys.Sin.,2018,67(10):107701.(in Chinese)
参考文献 4
宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):21030094.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.research progress of doping modification of potassium sodium niobate-based lead-free piezoelectric ceramics[J].Materials Reports,2022,36(5):21030094.(in Chinese)
参考文献 5
PANG S M,HE Y,ZHONG R,et al.Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity,cytocom-patibility and piezoelectricity[J].Ceramics International,2019,45(10):12663-12671.
参考文献 6
景奇,李晓娟.多孔钛酸钡陶瓷制备及其增强的压电灵敏性[J].物理学报,2019,68(5):057701.JING Qi,LI Xiaojuan.Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity[J].Acta Phys.Sin.,2019,68(5):057701.(in Chinese)
参考文献 7
周正难,代聪,张凤苗,等.聚吡咯改性聚偏氟乙烯膜的电学特性及生物相容性[J].中国表面工程,2019,32(5):37-44.ZHOU Zhengnan,DAI Cong,ZHANG Fengmiao,et al.Electrical property and biocompatibility of polyvinylidene fluoride films modified by polypyrrole[J].China Surface Engineering,2019,32(5):37-44.(in Chinese)
参考文献 8
ANDO M,TAMAKURA D,INOUE T,et al.Electric antibacterial effect of piezoelectric poly(lactic acid)fabric[J].Japanese Journal of Applied Physics,2019,58(SL):SLDDO9.
参考文献 9
WANG Z L.Nanostructures of zinc oxide[J].Materials Today,2004,7(6):26-33.
参考文献 10
ZHAI J X,ZHOU Y H,WANG Z G,et al.Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria[J].Science China Materials,2020,63(9):1831-1841.
参考文献 11
LI Y,SUN L L,WEBSTER T J.The investigation of ZnO/Poly(vinylidene fluoride)nanocomposites with improved mechanical,piezoelectric,and antimicrobial prop-erties for ortho-pedic applications[J].Journal of Biomedical Nan-otechnology,2018,14(3):536-745.
参考文献 12
CHI H J,QIAO Y,WANG B,et al.Swelling,thermal stability,antibacterial properties enhancement on composite hydrogel synthesized by chitosan-acrylic acid and ZnO nanowires[J].Polymer-Plastics Technology and Materials,2019,58(15):1649-1661.
参考文献 13
WAHID F,YIN J J,XUE D D,et al.Synthesis andcharacterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels[J].Int J Biol Macromol,2016,88:273-279.
参考文献 14
YUN S,SONG Q Q,ZHAO D M,et al.Study on the inorganic-organic surface modification of po-tassium titanate whisker[J].Applied Surface Science,2012,258(10):4444-4448.
参考文献 15
ZHOU L,TAN G X,TAN Y,et al.Biomimetic mineralization of anionic gelatin hydrogels:effect of degree of methacrylation[J].RSC Adv,2014,4(42):21997-2008.
参考文献 16
JANA S,GARAIN S,SEN S,et al.The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films[J].Physical Chemistry Chemical Physics,2015,17(26):17429-17436.
参考文献 17
GAGRAI A A,MUNDLAPATI V R,SAHOO D K,et al.The role of molecular polarizability in designing organic piezoelectric materials[J].ChemistrySelect,2016,1(14):4326-4331.
参考文献 18
PREMADASA U I,ADHIKARI N M,CIMATU K L A,et al.Molecular insights into the role of electronic substituents on the chemical environment of the −CH3 and >C═O groups of neat liquid monomers using sum frequency generation spectroscopy[J].The Journal of Physical Chemistry C,2019,123(46):28201-28209.
参考文献 19
WANG J Y,CARLOS C,ZHANG Z Y,et al.Piezoelectric nanocellulose thin film with large-scale vertical crystal alignment[J].ACS Applied Materials & Interfaces,2020,12(23):26399-26404.
参考文献 20
WANG G M,FENG H Q,HU L S,et al.An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging[J].Nature Communications,2018,9(1):2055-2067.
参考文献 21
JAIN S,SHARMA A,BASU B.Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes[J].Carbon,2015,81:193-202.
参考文献 22
SHUAI C J,LIU G F,YANG Y W,et al.A strawberry-like Ag-decorated barium titanate enhances pie-zoelectric and antibacterial activities of polymer scaffold[J].Nano Energy,2020,74:104825-104838.
参考文献 23
ZHENG K,LU M,RUTKOWSKI B,et al.ZnO quantum dots modified bioactive glass nanoparticles with pHsensitive release of Zn ions,fluorescence,antibacterial and osteogenic properties[J].J Mater Chem B,2016,4(48):7936-7949.
目录contents

    摘要

    氧化锌纳米颗粒(ZnO NPs)因其优异的压电特性在生物医学领域中得到广泛应用。通过对 ZnO 进行硅烷化改性使其表面接枝氨基,并将其掺杂在甲基丙烯酸酐化明胶、N, N-二甲基丙烯酰胺和 α-甲基丙烯酸共聚交联的水凝胶中,通过傅里叶红外光谱(FTIR)、核磁共振氢谱(1 HNMR)、扫描电镜(SEM)、流变学试验、电学表征、电感耦合等离子体质谱(ICP-MS)及抗菌试验,对水凝胶的成分、形貌、力学性能、压电性能、Zn2+释放量和抗菌性能进行分析。研究结果表明,掺杂不同浓度的改性氧化锌(KH550-ZnO)后,水凝胶储存模量均高于损耗模量且维持在 1.8~2.5 kPa;在 5 N 动态压力作用下,随着 KH550-ZnO 掺杂量的增加,材料产生的电压从 1.7 mV 上升到 30.5 mV。此外,对压电水凝胶的抗菌机理进行初步探讨,当 KH550-ZnO 的掺杂量大于 0.1% g / mL 时,水凝胶对大肠杆菌的抗菌率达到 98%以上,并证实了压电材料的压电性能可增强其抗菌性能。

    Abstract

    ZnO nanoparticles (ZnO NPs) have been widely used in biomedical fields due to their excellent piezoelectric properties. Zinc oxide is modified by silanylation to graft amino on its surface, and doped in the hydrogel of methacrylate anhydride gelatin, N, N-dimethylacrylamide and α-methacrylate copolymerization. The composition, morphology, mechanical properties, piezoelectric properties, releasing amount of Zn2+ and antibacterial properties of hydrogels are analyzed by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance spectroscopy (1 HNMR), scanning electron microscopy (SEM), rheological experiments, electrical characterization, inductively coupled plasma massspectrometry(ICP-MS) and antibacterial experiments. After doping with different concentration of modified zinc oxide (KH550-ZnO), the results show that the storage modulus of the hydrogel is higher than the loss modulus and remains in the range of 1.8~2.5 kPa. Under the dynamic pressure of 5 N, the voltage generated by the material increases from 1.7 mV to 30.5 mV with the increase of the doping amount of KH550-ZnO. In addition, the antibacterial mechanism of the piezoelectric hydrogel has been preliminarily-discussed. When the doping amount of KH550-ZnO is greater than 0.1% g / mL, the antibacterial rate of the hydrogel to E.coli has reached more than 98%, and it has been confirmed that the piezoelectric properties of the piezoelectric material can enhance its antibacterial performance.

    关键词

    水凝胶氧化锌表面改性压电性抗菌性

  • 0 前言

  • 压电材料[1-2]是一种能将机械能与电能相互转换的电介质材料,其压电原理是由于电介质材料内存在不对称中心,经过外部应力作用后材料产生自发极化现象,从而在材料表面产生电信号。压电材料分为无机压电材料(如氧化锌[3]、铌酸钾钠[4]、二氧化钛[5]、钛酸钡[6]等)和高分子压电材料(如聚偏氟乙烯[7]、聚乳酸[8]等)。

  • 具备纤锌矿晶体结构的ZnO NPs拥有优异的压电性能[9],可作为一种无机抗菌剂,由于其成本低且Zn2+ 具有作为人体必需微量元素的特性,因此ZnO NPs在无机抗菌剂中越来越受到研究人员关注。ZHAI等[10] 通过固相反应法将Cu2+掺入具有压电性的铌酸钾钠中并发现通过调节内电电场能实现抗菌离子向细菌定向迁移,从而减少细菌生长。LI等[11]通过静电纺丝的方法制备掺杂ZnO NPs的聚偏氟乙烯支架,并研究材料的压电特性对细胞相容性和抗菌性能的影响,发现压电性能可促进成骨细胞增长并减少细菌生长。

  • 水凝胶作为一种三维网状结构材料,具有在水中溶胀而不溶解的性能,而将ZnO掺杂进水凝胶中,可增加ZnO的稳定性,提高其抗菌活性。CHI等[12] 通过一步合成法制备ZnO纳米线/壳聚糖-CO-丙烯酸复合水凝胶并发现其在孵育12h后对大肠杆菌有100%的抗菌率。WAHID等[13]通过将ZnO纳米棒掺入羧甲基壳聚糖水凝胶中,发现经过4h的孵育后金黄色葡萄球菌的菌落数减少了99%。

  • 本文通过制备甲基丙烯酸酐化明胶(GelMA)、 N, N-二甲基丙烯酰胺(DMAA)和 α-甲基丙烯酸 (MAA)水凝胶,并在水凝胶中掺杂入经3-氨丙基三乙氧基硅烷(KH550)改性的ZnO,从而获得具有压电性的抗菌水凝胶,研究了ZnO的掺杂对水凝胶压电性和抗菌性能的影响,进一步探究ZnO NPs抗菌机理。通过表面硅烷化处理的方式将其与水凝胶结合,拓宽ZnO NPs在生物医学领域方面的潜在应用。

  • 1 试验准备

  • 1.1 试剂

  • 纳米氧化锌(99.9%,200nm,上海阿拉丁生化科技股份有限公司),明胶(CP,上海阿拉丁生化科技股份有限公司),甲基丙烯酸酐(94%,上海麦克林生化科技有限公司),N,N-二甲基丙烯酰胺 (AR,98%,上海麦克林生化科技有限公司),α-甲基丙烯酸(AR,上海麦克林生化科技有限公司), 3-氨丙基三乙氧基硅烷(KH550)(99%,上海麦克林生化科技有限公司),过硫酸铵(AR,上海阿拉丁生化科技股份有限公司)。

  • 1.1.1 改性氧化锌的制备

  • 在250mL烧瓶中依次加入50mL去离子水、 50mL无水乙醇和5mL KH550;加入5.0g ZnO NPs后将烧瓶置于60℃的水浴锅中搅拌反应30min,然后将悬浮液高速离心,倒出上清液,并分别用无水乙醇和去离子水清洗沉淀三次;将沉淀加入容器中并于70℃真空干燥12h,即可得到3-氨丙基三乙氧基硅烷改性氧化锌(KH550-ZnO)。

  • 1.1.2 甲基丙烯酸酐化明胶的制备

  • 称量5.0g明胶加入装有50mL PBS溶液的烧瓶中,然后将其置于60℃水浴锅中磁力搅拌至明胶完全溶解;移取5mL的甲基丙烯酸酐(MA),并以0.5mL/min的速度缓慢滴加于上述溶液中,滴加完成后在50℃水浴中反应3h;然后将反应液倒入200mL PBS溶液中终止反应,并不断搅拌至均匀混合;将上述混合液在40℃纯水中透析6d;将透析完的溶液进行离心,取上层清液置于冻干机中冻干6或7d,便可得到甲基丙烯酸酐化明胶(GelMA)。

  • 1.1.3 改性氧化锌掺杂水凝胶的制备

  • 分别往3个装有2mL去离子水的反应容器中加入0.1%、0.5%和1%g/mL的KH550-ZnO,振荡使其均匀分散在溶液中;然后依次加入13.8%g/mL的DMAA、16.3%g/mL的MAA和10%g/mL GelMA,置于70℃水浴锅中加热溶解;再加入2%g/mL过硫酸铵(APS)并轻微振荡使其完全溶解;将预聚液转移至模具中,并将其置于70℃ 烘箱中反应2h,便可得到不同浓度KH550-ZnO掺杂的ZnO@GDM水凝胶。

  • 1.2 结构表征及力学性能测试

  • 利用傅里叶变换红外光谱(扫描范围为4 000~400cm−1,扫描次数为16次)对KH550-ZnO样品进行成分分析;利用D8ADVANCE型X射线衍射仪(扫描范围为5°~50°,扫描速度为5 (°)/min,工作电压为50kV,电流为50mA)和Mastersizer 3000型激光衍射粒度分析仪对KH550-ZnO样品的晶型和粒径进行分析;利用AVANCE III HD 400型布鲁克400MHz超导核磁共振仪对甲基丙烯酸酐化明胶进行成分分析;使用Merlin型高分辨率发射扫描电子显微镜 (分辨率为0.8nm,加速电压为15kV)对水凝胶样品进行形貌分析;利用MCR301型旋转流变仪(应变为2%,角速度动态扫描速度为0.1~100rad/s)对水凝胶样品进行流变性能测试;使用DMM7510型高精度通用数字仪表和电子万能试验机联用装置(恒定力为5N,频率为1次/s)对水凝胶样品进行电学性能测试; 使用ICAP RQ型电感耦合等离子体质谱对与大肠杆菌共培养过程中水凝胶的Zn2+释放量进行测试。

  • 使用革兰氏阴性大肠杆菌评价ZnO@GDM样品的抗菌性能。抗菌试验分为:0%ZnO@GDM、0.1%ZnO@GDM、0.5%ZnO@GDM和1%ZnO@GDM四组,试验中每个样品平行三次并计算平均值。将大肠杆菌接种于LB培养基(1%g/mL胰蛋白胨、0.3%g/mL酵母提取物和0.5%g/mL NaCl)上于37℃及200r/min振荡12h。然后使用磷酸盐缓冲液(PBS) 调节细菌悬液内细菌浓度为1×106 CFU/mL。对样品进行压电刺激后与0.5mL细菌悬液在37℃细菌培养箱中孵育24h。将所有样品在装有1mL PBS的EP管中振荡脱附细菌,从每个管中吸取100 μL的细菌洗脱悬液均匀地涂布在琼脂平板上,在37℃细菌培养箱中孵育12h后,根据形成的菌落数计算杀菌率。

  • 2 结果与讨论

  • 2.1 表面硅烷化改性氧化锌的结构

  • ZnO NPs粒径较小,在水中易发生团聚和沉淀现象,从而影响其在水中的分散性,在交联过程中不能形成均匀稳定的水凝胶,对ZnO进行表面改性能有效提高其在水凝胶中的分散性。如图1所示,本文通过3-氨丙基三乙氧基硅烷偶联剂(KH550)对ZnO进行硅烷化处理,即KH550水解后产生的硅氧负离子可对带有羟基的ZnO进行亲核进攻,使氨基接枝在ZnO表面,从而获得产物KH550-ZnO。

  • 图2a为改性前后ZnO NPs的红外谱图,在3 350到3 550cm−1 之间出现的吸收峰为ZnO NPs表面-OH基团的伸缩振动峰。在2 800到3 000cm−1 之间和1 293cm−1 出现的吸收峰,分别为硅烷偶联剂上的-CH2 键和KH550的氨基的伸缩振动峰。比较ZnO和KH550-ZnO的红外谱图,发现改性后ZnO羟基的伸缩振动峰强度减弱,说明经过KH550改性后,ZnO表面羟基数目有所减少。在1 293cm−1 处出现的伸缩振动峰说明氨基成功接枝在ZnO表面。对比图2b中的XRD图可见,(100)、(002)、(101)、 (110)等晶面对应的衍射峰在改性前后均没有发生变化,与ZnO的标准卡片(JCPDF No.79-2205)的X射线衍射图一致,在2θ=31.6°、34.3°、36.2°和56.5°处的峰位均一一对应,且无其他杂峰出现,表明改性后的ZnO的晶型没有变化,均为具有压电效应的六方纤锌矿结构[9]

  • 图1 KH550改性ZnO、GelMA和ZnO@GDM水凝胶合成示意图

  • Fig.1 Synthetic diagram of zinc oxide modified by KH550, GelMA and ZnO@GDM hydrogel

  • 图2 氧化锌及改性氧化锌的结构表征

  • Fig.2 Structure characterization of zinc oxide and modified zinc oxide

  • ZnO和KH550-ZnO在水溶液中的分散性通过动态光散射(DLS)进行表征,如图3a和3b所示,平均粒径分别为856.5nm和468.5nm,这可能是因为ZnO在水溶液中出现了团聚现象。由图3c中可以发现,经过30min的超声震荡后,ZnO和KH550-ZnO能均匀分散在水溶液中,当将ZnO分散液静置4h后,ZnO已有部分沉淀到玻璃瓶底,而KH550-ZnO仍然均匀地分散在水溶液中;随着静置时间的延长,ZnO已全部沉淀到玻璃瓶底,溶液澄清透明,而KH550-ZnO仅有少部分沉淀到瓶底,表明改性后ZnO的分散性明显得到改善。这主要是因为经过硅烷化处理后,ZnO表面羟基基团减少,而氨基基团增多,提高了ZnO的疏水性,进而阻碍ZnO纳米粒子发生团聚[14]

  • 图3 表面改性前后ZnO的分散性分析

  • Fig.3 Dispersion analysis of ZnO before and after surface modification

  • 2.2 GelMA的成分及水凝胶形貌

  • GelMA是一种具有优异生物相容性的水凝胶基体材料[15],如图1所示,GelMA可在50℃和pH=7.4的环境下通过引入交联剂甲基丙烯酸酐取代明胶侧链上的氨基而获得。如图4所示,在化学位移 δ 为4.7和0.7处的特征峰分别属于D2O和氨基(-NH2)上质子的化学位移,图4a和4b中,在化学位移 δ 为5.3和5.6处观察到的两个特征峰,分别对应着甲基丙烯酰胺上碳碳双键上的Ha 和Hb。将GelMA和ZnO@GDM水凝胶冻干后,使用扫描电子显微镜分析横截面状态,如图4c和4d所示, GelMA和ZnO@GDM水凝胶冻干后内部出现与典型水凝胶三维网状结构相类似的多孔结构[15],而且ZnO@GDM水凝胶表面被微球形颗粒覆盖。

  • 图4 GelMA结构分析及其与ZnO@GDM截面SEM形貌

  • Fig.4 Structure analysis of GelMA and SEM image of cross section of GelMA and ZnO@GDM

  • 2.3 氧化锌掺杂压电水凝胶的流变学性能

  • 通过在交联过程中加入强氢键受体的DMAA和强氢键供体的MAA,可在水凝胶中引入大量氢键,从而提高其力学性能。如图5所示,在整个频率范围内,所有水凝胶样品的储存模量 G'均高于损耗模量 G",这说明这些水凝胶都是稳定的,均表现为粘弹性材料。随着角频率的增加,掺杂KH550-ZnO的水凝胶的储存模量和损耗模量不断增加,其中,1%ZnO@GDM水凝胶的损耗模量 G" 由12.9 ± 1.3Pa增加到954 ± 24Pa。这主要是因为水凝胶网络中分布着KH550-ZnO,随着KH550-ZnO浓度增加,聚合物网络间的摩擦力不断增加,使得水凝胶的损耗模量不断上升。储存模量反应了水凝胶的弹性,随着角频率的增加,不同浓度KH550-ZnO水凝胶的动态储存模量均保持不变,即水凝胶的弹性变化小,在小应力作用下可保持稳定。力学性能的变化可能是KH550-ZnO含量提高,为水凝胶网络提供了更多的氢键,使得水凝胶的交联密度发生改变。

  • 图5 掺杂不同浓度KH550-ZnO水凝胶的流变性能

  • Fig.5 Rheological properties of doped zinc oxide hydrogels with different concentrations

  • 2.4 氧化锌掺杂压电水凝胶的电学性能

  • 为了研究掺杂KH550-ZnO对水凝胶的压电性能影响,探讨了掺杂不同浓度KH550-ZnO的水凝胶的电学特性。如图6所示,样品受压产生的电压随着KH550-ZnO掺杂含量的增加而升高。当没有掺杂KH550-ZnO的水凝胶受到5N的压缩力时,水凝胶能产生1.7mV的微弱电压,这可能是由于0%ZnO@GDM水凝胶内部网络存在氢键[16-17]的相互作用,并且拥有氨基、羰基[18]等具有弱偶极矩的基团,在外力的作用下通过改变其偶极子取向使得水凝胶网络内偶极矩发生变化,从而产生比较弱的电压[19]。当掺杂KH550-ZnO后,水凝胶的压电性能被大大提升,当掺杂1%KH550-ZnO后,产生的电压高达30.5mV,是原来的17.6倍。当用5N的反复循环力挤压掺杂KH550-ZnO的水凝胶时,其产生的电压相差不大,结果表明KH550-ZnO已成功进入水凝胶中并均匀分散于其中,使水凝胶有稳定的压电性能。这主要是因为进行动态机械刺激时,ZnO NPs内的Zn2+和O2− 的电荷中心发生相对位移形成偶极矩,从而使得其在应力方向上产生压电势[3]

  • 图6 掺杂不同浓度KH550-ZnO水凝胶的压电性能

  • Fig.6 Piezoelectric properties of doped zinc oxide hydrogels with different concentrations

  • 2.5 氧化锌掺杂压电水凝胶的抗菌性能及其机理

  • 以大肠杆菌为试验细菌模型,通过常见的菌落计数法探究掺杂KH550-ZnO后水凝胶的抗菌性能。从图7a和7c可知,在与大肠杆菌经过24h的共培养后,加入未掺杂ZnO的水凝胶时,菌落数目增多,表明纯水凝胶利于大肠杆菌繁殖。如图7b,当加入掺有KH550-ZnO的水凝胶时,菌落数目明显降低,表明掺杂KH550-ZnO的水凝胶具备一定的抗菌性能且杀菌率在30%~70%。如图7d所示,当受到压电刺激后,水凝胶的抗菌率有明显的增强,当KH550-ZnO的掺杂量大于0.1%g/mL时,杀菌率达98%以上,是未受到压电刺激水凝胶抗菌率的3倍。分析试验结果可以发现,压电水凝胶的抗菌效果随着ZnO@GDM水凝胶产生的电压的增加而增强。已有文献报道[20-22],带电材料表面会抑制细菌的生长:带正电荷的材料表面能与负电荷的细菌膜相互作用,使得细菌膜失去电子,从而改变细菌膜的通透性。如图7e所示,ZnO NPs在溶液体系中不断地释放游离的Zn2+,随着时间和掺杂量的增加而增加,当共培养时间达到12h后,Zn2+释放量增长缓慢并达到平衡。如图7f,库仑引力作用使得Zn2+能牢固地吸附在细胞细胞膜表面。当受到压电刺激后,水凝胶会产生内电电场,在内电电场的作用下,能够使Zn2+加速穿透细菌膜进入细菌体内,与细菌内部的-SH基团反应,破坏细菌分裂增长能力,从而达到抗菌效果[23]

  • 图7 掺杂不同浓度KH550-ZnO水凝胶的抗菌性能分析及机理探讨

  • Fig.7 Analysis of antibacterial properties and mechanism of doped Kh550-ZnO hydrogels with different concentrations

  • 3 结论

  • (1)使用3-氨丙基三乙氧基硅烷对ZnO NPs进行硅烷化处理,使得ZnO表面成功接枝上氨基。通过热引发溶液聚合的方法成功制备出具有良好力学性能和压电性能的ZnO@GDM水凝胶。

  • (2)ZnO@GDM压电水凝胶具有优异的抗菌性能。以大肠杆菌作为试验细菌模型,经过压电刺激后,ZnO@GDM水凝胶对大肠杆菌的杀菌率可达98%以上。

  • (3)外力作用下,ZnO@GDM水凝胶的压电性能和ZnO NPs具有协同抗菌作用,水凝胶产生的内电电场能使细菌膜失去电子,改变细菌膜的通透性,加速Zn2+进入细菌体内,从而破坏细菌的活性。

  • 参考文献

    • [1] TROLIER-MCKINSTRY S,ZHANG SJ,BELL A J,et al.High-performance piezoelectric crystals,ceramics,and films[J].Annual Review of Materials Research,2018,48(1):191-217.

    • [2] CHORSI M T,CURRY E J,CHORSI H T,et al.Piezoelectric biomaterials for sensors and actuators[J].Advanced Materials,2019,31(1):1802084-1802099.

    • [3] 徐佳楠,陈焕铭,潘凤春,等.氧化锌掺钡的电子结构及其铁电性能研究[J].物理学报,2018,67(10):107701.XU Jianan,CHEN Huanming,PAN Fengchun,et al.Electronic structures and ferroelectric properties of Ba-doped ZnO[J].Acta Phys.Sin.,2018,67(10):107701.(in Chinese)

    • [4] 宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):21030094.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.research progress of doping modification of potassium sodium niobate-based lead-free piezoelectric ceramics[J].Materials Reports,2022,36(5):21030094.(in Chinese)

    • [5] PANG S M,HE Y,ZHONG R,et al.Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity,cytocom-patibility and piezoelectricity[J].Ceramics International,2019,45(10):12663-12671.

    • [6] 景奇,李晓娟.多孔钛酸钡陶瓷制备及其增强的压电灵敏性[J].物理学报,2019,68(5):057701.JING Qi,LI Xiaojuan.Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity[J].Acta Phys.Sin.,2019,68(5):057701.(in Chinese)

    • [7] 周正难,代聪,张凤苗,等.聚吡咯改性聚偏氟乙烯膜的电学特性及生物相容性[J].中国表面工程,2019,32(5):37-44.ZHOU Zhengnan,DAI Cong,ZHANG Fengmiao,et al.Electrical property and biocompatibility of polyvinylidene fluoride films modified by polypyrrole[J].China Surface Engineering,2019,32(5):37-44.(in Chinese)

    • [8] ANDO M,TAMAKURA D,INOUE T,et al.Electric antibacterial effect of piezoelectric poly(lactic acid)fabric[J].Japanese Journal of Applied Physics,2019,58(SL):SLDDO9.

    • [9] WANG Z L.Nanostructures of zinc oxide[J].Materials Today,2004,7(6):26-33.

    • [10] ZHAI J X,ZHOU Y H,WANG Z G,et al.Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria[J].Science China Materials,2020,63(9):1831-1841.

    • [11] LI Y,SUN L L,WEBSTER T J.The investigation of ZnO/Poly(vinylidene fluoride)nanocomposites with improved mechanical,piezoelectric,and antimicrobial prop-erties for ortho-pedic applications[J].Journal of Biomedical Nan-otechnology,2018,14(3):536-745.

    • [12] CHI H J,QIAO Y,WANG B,et al.Swelling,thermal stability,antibacterial properties enhancement on composite hydrogel synthesized by chitosan-acrylic acid and ZnO nanowires[J].Polymer-Plastics Technology and Materials,2019,58(15):1649-1661.

    • [13] WAHID F,YIN J J,XUE D D,et al.Synthesis andcharacterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels[J].Int J Biol Macromol,2016,88:273-279.

    • [14] YUN S,SONG Q Q,ZHAO D M,et al.Study on the inorganic-organic surface modification of po-tassium titanate whisker[J].Applied Surface Science,2012,258(10):4444-4448.

    • [15] ZHOU L,TAN G X,TAN Y,et al.Biomimetic mineralization of anionic gelatin hydrogels:effect of degree of methacrylation[J].RSC Adv,2014,4(42):21997-2008.

    • [16] JANA S,GARAIN S,SEN S,et al.The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films[J].Physical Chemistry Chemical Physics,2015,17(26):17429-17436.

    • [17] GAGRAI A A,MUNDLAPATI V R,SAHOO D K,et al.The role of molecular polarizability in designing organic piezoelectric materials[J].ChemistrySelect,2016,1(14):4326-4331.

    • [18] PREMADASA U I,ADHIKARI N M,CIMATU K L A,et al.Molecular insights into the role of electronic substituents on the chemical environment of the −CH3 and >C═O groups of neat liquid monomers using sum frequency generation spectroscopy[J].The Journal of Physical Chemistry C,2019,123(46):28201-28209.

    • [19] WANG J Y,CARLOS C,ZHANG Z Y,et al.Piezoelectric nanocellulose thin film with large-scale vertical crystal alignment[J].ACS Applied Materials & Interfaces,2020,12(23):26399-26404.

    • [20] WANG G M,FENG H Q,HU L S,et al.An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging[J].Nature Communications,2018,9(1):2055-2067.

    • [21] JAIN S,SHARMA A,BASU B.Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes[J].Carbon,2015,81:193-202.

    • [22] SHUAI C J,LIU G F,YANG Y W,et al.A strawberry-like Ag-decorated barium titanate enhances pie-zoelectric and antibacterial activities of polymer scaffold[J].Nano Energy,2020,74:104825-104838.

    • [23] ZHENG K,LU M,RUTKOWSKI B,et al.ZnO quantum dots modified bioactive glass nanoparticles with pHsensitive release of Zn ions,fluorescence,antibacterial and osteogenic properties[J].J Mater Chem B,2016,4(48):7936-7949.

  • 参考文献

    • [1] TROLIER-MCKINSTRY S,ZHANG SJ,BELL A J,et al.High-performance piezoelectric crystals,ceramics,and films[J].Annual Review of Materials Research,2018,48(1):191-217.

    • [2] CHORSI M T,CURRY E J,CHORSI H T,et al.Piezoelectric biomaterials for sensors and actuators[J].Advanced Materials,2019,31(1):1802084-1802099.

    • [3] 徐佳楠,陈焕铭,潘凤春,等.氧化锌掺钡的电子结构及其铁电性能研究[J].物理学报,2018,67(10):107701.XU Jianan,CHEN Huanming,PAN Fengchun,et al.Electronic structures and ferroelectric properties of Ba-doped ZnO[J].Acta Phys.Sin.,2018,67(10):107701.(in Chinese)

    • [4] 宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):21030094.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.research progress of doping modification of potassium sodium niobate-based lead-free piezoelectric ceramics[J].Materials Reports,2022,36(5):21030094.(in Chinese)

    • [5] PANG S M,HE Y,ZHONG R,et al.Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity,cytocom-patibility and piezoelectricity[J].Ceramics International,2019,45(10):12663-12671.

    • [6] 景奇,李晓娟.多孔钛酸钡陶瓷制备及其增强的压电灵敏性[J].物理学报,2019,68(5):057701.JING Qi,LI Xiaojuan.Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity[J].Acta Phys.Sin.,2019,68(5):057701.(in Chinese)

    • [7] 周正难,代聪,张凤苗,等.聚吡咯改性聚偏氟乙烯膜的电学特性及生物相容性[J].中国表面工程,2019,32(5):37-44.ZHOU Zhengnan,DAI Cong,ZHANG Fengmiao,et al.Electrical property and biocompatibility of polyvinylidene fluoride films modified by polypyrrole[J].China Surface Engineering,2019,32(5):37-44.(in Chinese)

    • [8] ANDO M,TAMAKURA D,INOUE T,et al.Electric antibacterial effect of piezoelectric poly(lactic acid)fabric[J].Japanese Journal of Applied Physics,2019,58(SL):SLDDO9.

    • [9] WANG Z L.Nanostructures of zinc oxide[J].Materials Today,2004,7(6):26-33.

    • [10] ZHAI J X,ZHOU Y H,WANG Z G,et al.Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria[J].Science China Materials,2020,63(9):1831-1841.

    • [11] LI Y,SUN L L,WEBSTER T J.The investigation of ZnO/Poly(vinylidene fluoride)nanocomposites with improved mechanical,piezoelectric,and antimicrobial prop-erties for ortho-pedic applications[J].Journal of Biomedical Nan-otechnology,2018,14(3):536-745.

    • [12] CHI H J,QIAO Y,WANG B,et al.Swelling,thermal stability,antibacterial properties enhancement on composite hydrogel synthesized by chitosan-acrylic acid and ZnO nanowires[J].Polymer-Plastics Technology and Materials,2019,58(15):1649-1661.

    • [13] WAHID F,YIN J J,XUE D D,et al.Synthesis andcharacterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels[J].Int J Biol Macromol,2016,88:273-279.

    • [14] YUN S,SONG Q Q,ZHAO D M,et al.Study on the inorganic-organic surface modification of po-tassium titanate whisker[J].Applied Surface Science,2012,258(10):4444-4448.

    • [15] ZHOU L,TAN G X,TAN Y,et al.Biomimetic mineralization of anionic gelatin hydrogels:effect of degree of methacrylation[J].RSC Adv,2014,4(42):21997-2008.

    • [16] JANA S,GARAIN S,SEN S,et al.The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films[J].Physical Chemistry Chemical Physics,2015,17(26):17429-17436.

    • [17] GAGRAI A A,MUNDLAPATI V R,SAHOO D K,et al.The role of molecular polarizability in designing organic piezoelectric materials[J].ChemistrySelect,2016,1(14):4326-4331.

    • [18] PREMADASA U I,ADHIKARI N M,CIMATU K L A,et al.Molecular insights into the role of electronic substituents on the chemical environment of the −CH3 and >C═O groups of neat liquid monomers using sum frequency generation spectroscopy[J].The Journal of Physical Chemistry C,2019,123(46):28201-28209.

    • [19] WANG J Y,CARLOS C,ZHANG Z Y,et al.Piezoelectric nanocellulose thin film with large-scale vertical crystal alignment[J].ACS Applied Materials & Interfaces,2020,12(23):26399-26404.

    • [20] WANG G M,FENG H Q,HU L S,et al.An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating current charging[J].Nature Communications,2018,9(1):2055-2067.

    • [21] JAIN S,SHARMA A,BASU B.Vertical electric field induced bacterial growth inactivation on amorphous carbon electrodes[J].Carbon,2015,81:193-202.

    • [22] SHUAI C J,LIU G F,YANG Y W,et al.A strawberry-like Ag-decorated barium titanate enhances pie-zoelectric and antibacterial activities of polymer scaffold[J].Nano Energy,2020,74:104825-104838.

    • [23] ZHENG K,LU M,RUTKOWSKI B,et al.ZnO quantum dots modified bioactive glass nanoparticles with pHsensitive release of Zn ions,fluorescence,antibacterial and osteogenic properties[J].J Mater Chem B,2016,4(48):7936-7949.

  • 手机扫一扫看