en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张国松,1979生,男,博士,副教授,硕士研究生导师。主要研究方向为材料失效与防护、高能束表面强化和增材制造等。E-mail:zhguosong@sdust.edu.cn;

侯怀志,男,1996生,硕士研究生。主要研究方向为增材制造。E-mail:15564804031@163.com;

崔洪芝(通信作者),女,1965生,博士,教授,博士研究生导师。主要研究方向为耐磨蚀抗热震材料和表面强化等。E-mail:cuihongzhi1965@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211123004

参考文献 1
曹连民,孙云鲁,庞斌,等.液压支架制造工艺技术研究[J].煤炭科学技术,2016,44(4):83-88.CAO Lianmin,SUN Yunlu,PANG Bin,et al.Research on manufacturing technology of hydraulic support[J].Coal Science and Technology,2016,44(4):83-88.(in Chinese)
参考文献 2
韩文静,张培训,汤其建,等.单体液压支柱缸体激光熔覆 Ni60A+20% WC 性能[J].煤炭学报,2012,37(2):340-343.HAN Wenjing,ZHANG Peixun,TANG Qijian,et al.Laser cladding Ni60A+20%WC performance of single hydraulic prop cylinder[J].Journal of China Coal Society,2012,37(2):340-343.(in Chinese)
参考文献 3
刘昊,高强,满家祥,等.激光熔覆 CoCrFeMnNiTix 高熵合金涂层的微观组织及性能研究[J].中国激光,2022,49(8):0802101.LIU Hao,GAO Qiang,MAN Jiaxiang,et al.Microstructure and Properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding[J].Chinese Journal of Lasers,2022,49(8):0802101.(in Chinese)
参考文献 4
XIE D Q,ZHAO J F,QI Y A,et al.Decreasing pores in a laser cladding layer with pulsed current[J].Chinese Optics Letters,2013,11(11):111401.
参考文献 5
ZHANG M,ZHOU X L,YU X N,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface & Coatings Technology,2017,311:321-329.
参考文献 6
XU P,JU H,LIN C X,et al.In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J].Chinese Optics Letters,2014,12(4):041403.
参考文献 7
陈浩,潘春旭,潘邻,等.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002(9):5-10.CHEN Hao,PAN Chunxu,PAN Lin,et al.Development of wear resistant laser cladding[J].Heat Treatment of Metals,2002(9):5-10.(in Chinese)
参考文献 8
HUANG Y L,YANG Y Q,WEI G Q,et al.Boundarycoupled dual-equation numerical simulation on mass transfer in the process of laser cladding[J].Chinese Optics Letters,2008,6(5):356-360.
参考文献 9
YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
参考文献 10
CHOUDHURI D,SHUKLA S,JANNOTTI P A,et al.Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high-entropy alloy[J].Materials Characterization,2019,158:109955.
参考文献 11
SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.
参考文献 12
LIU H,LIU J,CHEN P J,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.
参考文献 13
SHU F Y,ZHANG B L,LIU T,et al.Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J].Surface and Coatings Technology,2019,358:667-675.
参考文献 14
邱星武,刘春阁.激光加工参数对 Al2CoCrCuFeNiTi 高熵合金涂层质量的影响[J].粉末冶金材料科学与工程,2015,20(1):59-64.QIU Xingwu,LIU Chunge.Effect of laser processing parameters on quality of Al2CoCrCuFeNiTi high-entropy alloys coating[J].Materials Science and Engineering of Powder Metallurgy,2015,20(1):59-64.(in Chinese)
参考文献 15
向硕,张雷,刘学,等.激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响[J].材料热处理学报,2018,39(10):29-35.XIANG Shuo,ZHANG Lei,LIU Xue,et al.Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys[J].Transactions of Materials and Heat Treatment,2018,39(10):29-35.(in Chinese)
参考文献 16
TONG Z P,REN X D,JIAO J F,et al.Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:Effectof heat treatment on microstructure,residual stress and mechanical property[J].Journal of Alloys and Compounds,2019,785:1144-1159.
参考文献 17
WANG L L,GAO Z N,WU M Y,et al.Influence of specific energy on microstructure and properties of laser cladded FeCoCrNi high entropy alloy[J].Metals,2020,10(11):1464.
参考文献 18
WANG F,INOUE A,KONG F L,et al.Formation,stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy(Fe0.25 Co0.25Ni0.25Cr0.125Mo0.125)86‒89 B11‒14 amorphous phase[J].Acta Materialia,2019,170:50-61.
参考文献 19
王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Yipeng,CHEN Zhiguo,WANG Li,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surafce Engineering,2020,33(1):117-124.(in Chinese)
参考文献 20
QI Q,LIU Y,ZHANG H,et al.The adjustment of microstructure and properties of TiC/Ni Cr composites by Mo addition applied for intermediate-temperature solid oxide fuel cell interconnects[J].Journal of Alloys and Compounds,2016,678:375-382.
参考文献 21
CHEN J S,YANG J,ZHANG Y Z,et al.Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints[J].Welding in the World,2019,63(3):751-757.
参考文献 22
孙宁,方艳,张家奇,等.WC-12Co 添加量对激光熔覆 Inconel 625 基复合材料微观组织和耐磨性能的影响[J].中国激光,2021,48(6):0602106.SUN Ning,FANG Yan,ZHANG Jiaqi,et al.Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J].Chinese Journal of Lasers,2021,48(6):0602106.(in Chinese)
目录contents

    摘要

    目前激光熔覆缺少对涂层组织、相结构纵向均质性与性能关联的研究。采用激光熔覆技术,选取不同的激光功率,制备(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层;借助电子探针(EPMA)、扫描电子显微镜(SEM)、能谱仪(EDS)和 X 射线衍射仪(XRD)等观察涂层微观组织与物相纵向分布,利用显微硬度计和摩擦磨损试验机测试涂层不同深度部位显微硬度及磨损性能,分析激光功率对熔覆(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 涂层纵向组织、物相分布影响规律及磨损性能。结果表明:三种功率下,涂层均由 BCC+FCC 相、硬质相 Mo2B 组成,Mo2B 在枝晶间富集。随着功率的增加,涂层中底部显微组织由细枝晶向粗大的柱状晶转变。三种涂层硬度均由表及里先增加后降低,摩擦因数先降低后增加;但是当激光功率为 1.6 kW 时,涂层呈现以 BCC 相为主的 FCC+BCC 双相结构,且由表及里 BCC 相含量不断增加、Mo2B 含量逐渐减少,涂层组织均质化最高,摩擦因数变化梯度最小,耐磨损性能最佳。激光功率会影响熔覆高熵合金耐磨涂层均质性,进而影响摩擦性能的稳定性。

    Abstract

    At present laser cladding lacks research on the correlation between the coating structure, longitudinal homogeneity of phase structure and properties. Laser cladding technology is used to prepare (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coatings with different laser powers. The microstructure and longitudinal distribution of the coating are observed by means of electron probe (EPMA), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). The microhardness and wear properties of the coating at different depths are tested by machine, and the influence of laser power on the longitudinal microstructure, phase distribution and wear properties of the cladding (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 coating is analyzed. The results show that under the three powers, the coatings are composed of BCC+FCC phase and hard phase Mo2B, and Mo2B is enriched between dendrites. With the increase of power, the microstructure at the bottom of the coating changes from fine dendrites to coarse columnar crystals. The hardness of the three coatings increases first and then decreases from the outside to the inside, and the friction coefficient first decreases and then increases; however, when the laser power is 1.6 kW, the coating presents a FCC+BCC dual-phase structure dominated by BCC phase, and the content of BCC phase increases from the surface to the inside, and the content of Mo2B gradually decreases. The homogenization of the coating structure is the highest, the gradient of friction coefficient change is the smallest, and the wear resistance is the best. Laser power affects the homogeneity of wear-resistant coating of cladding high entropy alloy, and then affects the stability of friction properties.

  • 0 前言

  • 液压支架立柱用27SiMn钢,具有较高的强度、耐磨性和一定韧性,但煤矿井下复杂潮湿的环境中含有大量腐蚀性介质,磨损腐蚀会造成立柱表面出现点蚀、鼓泡剥落等现象,进而导致液压支架无法正常使用[1-2]。激光熔覆[3]作为一种低成本高效益的技术广泛应用于材料表面强化和材料修复,具有稀释率低[4]、冷却速度快、热变形小等特点[5],通过在基材表面熔覆不同的合金材料,可以减少熔覆层变形[6],提高工件的耐磨性[7-8]和耐蚀性能。高熵合金是2004年由我国台湾学者叶钧蔚等[9]最先报道的,被定义为包含5种及以上等原子比或近等原子比组成的合金系统[10]。不同于传统合金,高熵合金具有高熵效应、迟滞扩散效应、晶格畸变效应和鸡尾酒效应,使其在凝固过程中抑制有序金属间化合物的形成而倾向于形成简单的固溶体结构。高熵合金具有优异的性能,是一种理想的可用于激光熔覆的合金材料。研究表明,通过选择合理的元素配比及制备工艺,可以制备出高硬度[11]和优耐蚀抗磨性能[12] 的高熵合金涂层,在各领域都表现出很大的发展应用潜力。

  • 激光熔覆高熵合金涂层研究的重点主要是合金成分及熔覆工艺对涂层组织、物相及性能的影响。 SHU等[13]在H13钢上制备了CoCrBFeNiSi高熵合金涂层,发现涂层中的非晶含量取决于激光功率,激光功率通过改变热输入影响稀释率和实际冷却速率,随着激光功率的增加,非晶相含量逐渐减少,涂层的硬度和耐磨性变差。邱星武等[14]探索了激光熔覆工艺参数对Al2CoCrCuFeNiTi熔覆层质量的影响,研究表明激光功率对涂层质量有重要影响,激光功率过大时稀释率过高,涂层污染严重。向硕等[15]研究了激光熔覆工艺对CrMnFeCoNi高熵合金微观组织与力学性能的影响,通过控制激光沉积功率,可调控CrMnFeCoNi高熵合金组织结构中柱状晶与等轴晶的比例,从而获得更加均匀的组织以及更为优异的力学性能。TONG等[16]在不锈钢表面成功制备了FeCrCoMnNi高熵合金激光熔覆层,并且研究了激光功率对试样硬度和显微组织的影响,结果表明激光功率的升高会导致熔覆层内部组织粗大,硬度降低。WANG等[17]系统研究能量输入对激光熔覆FeCoCrNi高熵合金涂层的微观结构、相变、硬度和耐磨性的影响,结果发现随着能量输入的增加,从FCC相向BCC相的转变逐渐增强,涂层的显微硬度达到1 098HV,显著提高了耐磨性。研究人员对激光熔覆高熵合金涂层做了大量研究工作,并取得了巨大进步,但较少关注涂层纵向组织、结构分布对其服役性能的影响。材料的性能取决于其物相及微观组织,而微观组织及物相又源于成分和制备工艺。激光熔覆涂层不同于冶炼制备材料,其技术的特殊性决定了涂层组织物相表里存在差异,从而导致其性能表里不一,如何控制涂层表里物相、组织的这种差异,对于保证其性能表里如一至关重要。

  • 英国剑桥大学的GREER和我国天津大学的INOUE等[18],通过熔炼加热诱导高熵(HE) (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86 89B11 14 非晶(am)合金结晶,开发出了低B含量的块状新结构材料,具有很高的硬度及良好的耐蚀性能,但其由于结构和尺寸限制,难以在工业应用。激光熔覆涂层组织表里一致对其性能稳定性及服役安全性具有重要影响,本文研究了27SiMn钢激光熔覆(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层组织均质性及磨损性能,并分析了不同激光功率对涂层组织均质性、物相演化规律及磨损性能的影响和机理。

  • 1 试验材料与方法

  • 采用预置粉末法,选用不同的功率在27SiMn钢基体上激光熔覆(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层,基体尺寸为150mm×50mm×14mm。按照规定摩尔比,原料采用纯度均高于99.9%的Co、 Cr、Fe、Ni、Mo和硼铁合金粉,粉末粒度为50~120 μm,其中硼铁粉各元素的质量分数为:20%B, 4.0%Si,0.5%C,0.2%P,0.5%Al,余量Fe,高熵合金粉末材料组成如表1所示。烘干后利用立式行星式球磨机(DECO-PBM-V-2L)将原材料粉末混合均匀,球磨机转速设置为400r/min,球料比为10∶1,球磨时间为4h。将混合均匀后的粉末通过模具涂覆在27SiMn钢表面,预置涂层厚度约为1mm。采用光纤半导体激光器(LSJG-BGQ-2000)进行激光熔覆,熔覆过程用氩气进行保护,保护气流量为25L/min,激光扫描速度为600mm/min,光斑直径为3mm,搭接率为50%,激光功率分别为1.6、 1.8和2.0kW。如图1所示,激光熔覆装置示意图包括工作箱、激光发生器、27SiMn基体、预置熔覆层和氩气保护装置。

  • 表1 高熵合金粉末材料的组成 (at.%)

  • Table1 The composition of high-entropy alloy powder materials (at.%)

  • 图1 激光熔覆装置示意图

  • Fig.1 Schematic diagram of laser cladding device

  • 利用线切割将制备的熔覆层加工成8mm× 8mm×10mm规格的样品,使用金相试样镶嵌机 (XQ-1)将样品固定成型,剩余工作面积为8mm× 8mm。样品表面用60目至4000目砂纸和金相试样磨抛机(YMP-2B)进行打磨抛光至0.5 μm的表面粗糙度,以此作为待测的第一层剖面,随后每次打磨抛光0.2mm厚的熔覆层,最后打磨至第三层剖面。采用X射线衍射仪(XRD)对激光熔覆的高熵合金涂层进行物相分析(Kα 靶为Cu靶,管压40kV,管流40mA,扫描角度为20°~100°,扫描速度为4 (º)/min)。使用显微维氏硬度计(TMVS-1,北京) 从涂层到基材的抛光横截面上进行维氏硬度测试,间距为0.2mm,施加载荷为1.96N,加载保持时间为15s,垂直于截面方向,在同一深度取6个不同点测量显微硬度,并计算平均值。用王水(HCl∶ HNO3=3∶1,体积比)蚀刻样品,通过配备能谱仪 (EDS)的电子探针(EPMA,JEOL JXA-8230)进一步表征微观结构。使用多功能摩擦磨损试验机 (MFT-5000,RTEC USA)在室温下进行往复滑动磨损试验,摩擦副为Si3N4 陶瓷球(中国上海联合科技有限公司),直径为10mm,显微硬度为1 700HV,频率和行程长度分别为1Hz和5mm,载荷为30N,摩擦时间为30min。通过SEM(NANO FEI-450) 和三维形貌仪(Contour GT-K)表征磨痕的表面形貌和磨损体积。

  • 2 分析与讨论

  • 2.1 物相结构与显微组织

  • 研究激光功率对熔覆层的影响,本质上是探究能量输入对其微观结构和性能的影响。根据激光比能[19]公式:

  • Es=P/VsD
    (1)
  • 式中, E s 为比能; P 为激光功率;V s 为扫描速度; D 为光斑尺寸。

  • 在扫描速度和光斑尺寸一定时,随着激光功率的增大,激光比能 E s 随之增加,光束与熔池交互作用强度增大,熔池的宽度和深度都会增加,同时增加激光比能 E s,使熔体对流强度增强,使熔覆层表面形貌发生改变。激光比能 E s 较低时,熔覆层表面粗糙;反之激光比能 E s 较高时,熔覆层表面平整。

  • 图2a~2c分别为上表面经过打磨处理后的不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层横截面的SEM图。可见,涂层和热影响区的分界线比较清楚,三种涂层结构致密均匀,无残余气孔和裂纹,但由于混合材料含有大量易氧化成分,因此在激光熔覆过程中会产生大量焊接飞溅[20-21]。本研究涂层纵向深度(表层、中间层、近底层)如图2所示,激光功率较低时,涂层的最表层微观组织近似等轴晶,向底层延伸,逐渐转变为无方向性的枝晶状组织;随着功率的提高,涂层顶部组织由等轴晶向枝晶转变,涂层中底部呈现择优的柱状枝晶组织。随着功率的增加,能量输入增加,涂层温度梯度变化减缓,过冷度降低,沿着过冷度方向形成粗大的柱状晶组织区(图2c)。

  • 图3a~3c分别为激光熔覆(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 涂层在不同功率条件下获得的涂层不同位置(表层、中间层和近底层)的X射线衍射图谱。由图中可以看出,合金涂层生成相主要包含FCC相、BCC相和硬质相Mo2B。从图3a~3c中可以看出,当激光功率为1.6和1.8kW时,涂层物相组成为FCC相+BCC相,以BCC相为主,且由表及里BCC相含量逐渐增加,硬质相Mo2B含量逐渐减少。当激光功率为2.0kW时,最表层物相组成为FCC相,由表及里出现BCC相并且含量先增加后减少。不同位置微观组织的成份变化说明了随着功率的增加,能量输入增加,有利于FCC相的析出;涂层底部接触基体,顶部存在热对流及热辐射,使其过冷度较大,而涂层的中部过冷度相对较小,有利于BCC相和Mo2B的析出。

  • 图2 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层不同功率下的横截面SEM

  • Fig.2 SEM cross section and microstructure of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high entropy alloy coating under different power

  • 图3 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层的XRD衍射图谱

  • Fig.3 XRD pattern of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coating

  • 图4a~4c分别为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层三层剖面的平面组织图,黄色方框标注区域分别为对应组织所在位置。可见,相同功率下,三层剖面的平面组织都不相同。在激光功率为1.6kW时,涂层组织均得到了细化,熔池中各个元素之间扩散均匀,细小枝晶大量出现,晶粒细化效果优异;此外,在此激光功率下涂层的温度梯度大,过冷度大,这使得熔池的形核速率以及晶粒的生长速度比较快,组织更为致密无缺陷。当激光功率继续增大至1.8kW和2.0kW时,涂层组织不同部位均呈现为等轴晶组织,基于涂层截面组织,可以判断,随着功率的增加,涂层组织由无方向的树枝晶向沿着过冷度方向的柱状晶转变,能量输入增加,过冷度持续降低,柱状晶组织变得更加粗大。

  • 图5 为不同激光功率下 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层横截面局部区域EDS元素分析图,不同深度涂层元素分布具有相似性,枝晶间富集Mo和B元素,Mo2B硬质相在枝晶间分布。不同激光功率下,涂层中的Mo2B含量由表及里是先增加后降低,主要原因是涂层底部接触基体,顶部存在热对流及热辐射,使其过冷度较大,而涂层的中部过冷度相对较小,有利于Mo2B的析出。

  • 图4 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层不同功率下的不同剖面局部微观组织图和对应A-I区域放大图

  • Fig.4 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high entropy alloy coating local microstructure of different sections and enlarged view of corresponding A-I region under different power

  • 图5 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层不同功率下的不同剖面局部区域EDS元素分析

  • Fig.5 EDS element analysis of local areas of different cross sections of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high entropy alloy coating under different power

  • 2.2 显微硬度

  • 图6 为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层横截面的显微硬度分布。三种激光功率下,涂层硬度均呈现自表至里先增加后降低的趋势。激光功率为1.6kW和1.8kW时,涂层表层为FCC+BCC相,以BCC相为主,向基体延伸BCC相含量逐渐增加,硬度也随之增加;但是随着Mo2B含量逐渐减少,第二相强化作用降低,涂层硬度降低。激光功率为2.0kW时,涂层表层为FCC单相结构,硬度最低;向基体延伸,涂层结构由FCC相转变为FCC+BCC相,BCC相含量和Mo2B析出相先增加后降低,同时组织变为粗大的柱状晶,导致涂层硬度低且下降快。

  • 图6 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层横截面显微硬度

  • Fig.6 Microhardness of cross section of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high entropy alloy coating

  • 2.3 磨损性能

  • 图7 为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层的摩擦因数曲线和平均摩擦因数变化情况。可以发现,摩擦因数曲线均可以分为两个阶段:初始磨合阶段和稳定磨损阶段。在摩擦磨损开始初期,摩擦接触面相对光滑,表面粗糙度比较低,接触方式为点接触[22],摩擦副实际接触面积小,接触应力大,摩擦因数迅速上升。经过一段时间的磨合,摩擦副之间的黏着力逐渐减小,接触方式变为面接触,接触状态得以改善,摩擦因数趋于稳定,进入稳定磨损阶段。由图可见,三种激光功率制备的涂层第一层剖面摩擦因数分别为0.458 6、0.546 8和0.622 5,第二层剖面摩擦因数分别为0.396 3、0.434 4和0.478 1,第三层剖面摩擦因数分别为0.410 8、0.449 1和0.539 8。不同涂层相同层剖面的摩擦因数随着功率的增加逐渐增加,相同涂层由表及里不同剖层的摩擦因数先减小后增大。这一变化规律与涂层结构变化规律相符,当涂层BCC相含量增加时,其硬度提高,摩擦因数降低。随着激光输入功率增加,涂层以FCC相为主,硬度低;而太低的激光功率(低于1.4kW) 会出现粉末未全熔现象。激光功率为1.6kW时,涂层形成以BCC相为主的BCC+FCC双相结构,硬度高且具有一定的韧性,此外涂层由表及里物相变化梯度缓慢,摩擦因数变化最小,涂层整体耐磨性优异。

  • 图7 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层不同剖面的摩擦因数

  • Fig.7 Friction coefficients of different sections of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high entropy alloy coating

  • 图8 为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层磨损形貌。激光功率为2.0kW时,功率最大,涂层表层磨损严重,存在着较宽的犁沟和较大的剥落坑,如图8g所示,主要原因是涂层表层以FCC相为主,硬度低,少量的BCC相易脱落,以第三体的形式造成严重的磨粒磨损; 纵向向下,涂层BCC含量增加,硬度提高,出现了犁沟较细较深的磨粒磨损(图8h-8i)。激光功率为1.8kW时,涂层变为BCC相占优的BCC+FCC双相结构,硬度增加,涂层磨损变为典型的中轻度磨粒磨损(图8d-8f)。激光功率最低为1.6kW时,三层剖面的磨损平面比较平坦,观察到较浅的犁沟和一些轻微的剥落、分层,为轻微磨粒磨损(图8a~8c);主要原因是涂层BCC相占主导,少量FCC相保障了韧性,强韧性使其具备了良好的抗磨性能,另外在此激光功率下涂层纵向物相、组织及硬度分布变化梯度小,保证了涂层由表及里性能的一致性。

  • 图8 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层磨痕形貌

  • Fig.8 Wear scar morphology of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coatings

  • 图9 为不同激光功率下 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层磨痕局部三维图。从图中可以看出,随着功率增加,不同涂层同一层剖面的宽度和深度逐渐扩大,同时磨痕表面的平整度不断减弱,并伴有不同程度堆积状的磨屑和塑性变形,与图8所示的磨损表面一致。

  • 图9 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层磨痕局部三维图

  • Fig.9 Wear scar partial three-dimensional maps of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coatings

  • 图10 为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层磨痕截面曲线。随着功率升高,涂层每一剖层的截面曲线的宽度和深度不断增加,磨损情况不断加重。当激光功率为2.0kW时,涂层截面曲线宽度和深度最大,且存在最大的塑性变形;由表及里截面曲线宽度和深度先减小后增大,但幅度不大。激光功率降至1.8kW时,磨损减轻,由表及里截面曲线宽度和深度变化幅度较大。而激光功率降至1.6kW时,磨损最轻,塑性变形最小,且由表及里截面曲线宽度和深度变化幅度小。激光功率为2.0kW时,涂层以FCC相为主,由表及里BCC相含量先增加后减少,硬度低,抗磨性能差,随着激光功率的降低,涂层变为以BCC相为主,由表及里虽然硬质相Mo2B含量减少,但BCC相含量增加,硬度提高,耐磨性提高。

  • 图10 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层磨痕截面曲线

  • Fig.10 Wear scar cross-section curve of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coatings

  • 图11 为不同激光功率下(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层磨损体积的变化情况。随着激光功率的增加,涂层同一层剖面的磨损量均在增加;而同一涂层由表及里剖面的磨损量先减少后增加,与涂层磨痕的截面曲线变化规律一致。通过以上分析,当激光功率为1.6kW时,(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层具有最好的耐磨性,且表里具有一致性。

  • 图11 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14高熵合金涂层磨损量

  • Fig.11 Near rates of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 high-entropy alloy coatings

  • 3 结论

  • 利用激光熔覆技术在27SiMn钢表面制备了 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层,研究了不同激光功率下涂层纵向组织、物相分布规律及磨损性能,主要结论如下:

  • (1)三种激光功率下,(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层主要是由BCC相、FCC相和硬质相Mo2B组成,Mo元素和B元素在枝晶间富集形成Mo2B析出相,Mo2B析出相含量由表及里先增加后降低。

  • (2)低激光功率下,涂层最表面为等轴状晶,向基体延伸为无方向性的枝晶组织;涂层为BCC相为主的FCC+BCC双相结构,且由表及里BCC相含量不断增加;功率增加至1.8kW时,涂层相结构变化不明显,但是微观组织由枝晶向柱状晶转变;功率为2kW时,涂层表层为FCC单相结构,向基体延伸为FCC+BCC双相结构,BCC相含量先增加后减少,微观组织变为粗大的柱状晶。

  • (3)三种激光功率下,涂层由表及里硬度均为先提高后降低,摩擦因数先降低后增加。当激光功率为1.6kW时,涂层各部位硬度均最高,且涂层由表及里组织、物相、硬度变化梯度小,涂层摩擦因数由表至里相对稳定,磨损量最低,涂层均质化最好,抗磨性能最优。

  • 激光功率不仅会影响 (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86B14 高熵合金涂层成型性等宏观形貌,还会影响涂层物相、组织分布,进而对其磨损性能整体稳定性产生影响。

  • 参考文献

    • [1] 曹连民,孙云鲁,庞斌,等.液压支架制造工艺技术研究[J].煤炭科学技术,2016,44(4):83-88.CAO Lianmin,SUN Yunlu,PANG Bin,et al.Research on manufacturing technology of hydraulic support[J].Coal Science and Technology,2016,44(4):83-88.(in Chinese)

    • [2] 韩文静,张培训,汤其建,等.单体液压支柱缸体激光熔覆 Ni60A+20% WC 性能[J].煤炭学报,2012,37(2):340-343.HAN Wenjing,ZHANG Peixun,TANG Qijian,et al.Laser cladding Ni60A+20%WC performance of single hydraulic prop cylinder[J].Journal of China Coal Society,2012,37(2):340-343.(in Chinese)

    • [3] 刘昊,高强,满家祥,等.激光熔覆 CoCrFeMnNiTix 高熵合金涂层的微观组织及性能研究[J].中国激光,2022,49(8):0802101.LIU Hao,GAO Qiang,MAN Jiaxiang,et al.Microstructure and Properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding[J].Chinese Journal of Lasers,2022,49(8):0802101.(in Chinese)

    • [4] XIE D Q,ZHAO J F,QI Y A,et al.Decreasing pores in a laser cladding layer with pulsed current[J].Chinese Optics Letters,2013,11(11):111401.

    • [5] ZHANG M,ZHOU X L,YU X N,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface & Coatings Technology,2017,311:321-329.

    • [6] XU P,JU H,LIN C X,et al.In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J].Chinese Optics Letters,2014,12(4):041403.

    • [7] 陈浩,潘春旭,潘邻,等.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002(9):5-10.CHEN Hao,PAN Chunxu,PAN Lin,et al.Development of wear resistant laser cladding[J].Heat Treatment of Metals,2002(9):5-10.(in Chinese)

    • [8] HUANG Y L,YANG Y Q,WEI G Q,et al.Boundarycoupled dual-equation numerical simulation on mass transfer in the process of laser cladding[J].Chinese Optics Letters,2008,6(5):356-360.

    • [9] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [10] CHOUDHURI D,SHUKLA S,JANNOTTI P A,et al.Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high-entropy alloy[J].Materials Characterization,2019,158:109955.

    • [11] SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.

    • [12] LIU H,LIU J,CHEN P J,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.

    • [13] SHU F Y,ZHANG B L,LIU T,et al.Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J].Surface and Coatings Technology,2019,358:667-675.

    • [14] 邱星武,刘春阁.激光加工参数对 Al2CoCrCuFeNiTi 高熵合金涂层质量的影响[J].粉末冶金材料科学与工程,2015,20(1):59-64.QIU Xingwu,LIU Chunge.Effect of laser processing parameters on quality of Al2CoCrCuFeNiTi high-entropy alloys coating[J].Materials Science and Engineering of Powder Metallurgy,2015,20(1):59-64.(in Chinese)

    • [15] 向硕,张雷,刘学,等.激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响[J].材料热处理学报,2018,39(10):29-35.XIANG Shuo,ZHANG Lei,LIU Xue,et al.Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys[J].Transactions of Materials and Heat Treatment,2018,39(10):29-35.(in Chinese)

    • [16] TONG Z P,REN X D,JIAO J F,et al.Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:Effectof heat treatment on microstructure,residual stress and mechanical property[J].Journal of Alloys and Compounds,2019,785:1144-1159.

    • [17] WANG L L,GAO Z N,WU M Y,et al.Influence of specific energy on microstructure and properties of laser cladded FeCoCrNi high entropy alloy[J].Metals,2020,10(11):1464.

    • [18] WANG F,INOUE A,KONG F L,et al.Formation,stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy(Fe0.25 Co0.25Ni0.25Cr0.125Mo0.125)86‒89 B11‒14 amorphous phase[J].Acta Materialia,2019,170:50-61.

    • [19] 王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Yipeng,CHEN Zhiguo,WANG Li,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surafce Engineering,2020,33(1):117-124.(in Chinese)

    • [20] QI Q,LIU Y,ZHANG H,et al.The adjustment of microstructure and properties of TiC/Ni Cr composites by Mo addition applied for intermediate-temperature solid oxide fuel cell interconnects[J].Journal of Alloys and Compounds,2016,678:375-382.

    • [21] CHEN J S,YANG J,ZHANG Y Z,et al.Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints[J].Welding in the World,2019,63(3):751-757.

    • [22] 孙宁,方艳,张家奇,等.WC-12Co 添加量对激光熔覆 Inconel 625 基复合材料微观组织和耐磨性能的影响[J].中国激光,2021,48(6):0602106.SUN Ning,FANG Yan,ZHANG Jiaqi,et al.Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J].Chinese Journal of Lasers,2021,48(6):0602106.(in Chinese)

  • 参考文献

    • [1] 曹连民,孙云鲁,庞斌,等.液压支架制造工艺技术研究[J].煤炭科学技术,2016,44(4):83-88.CAO Lianmin,SUN Yunlu,PANG Bin,et al.Research on manufacturing technology of hydraulic support[J].Coal Science and Technology,2016,44(4):83-88.(in Chinese)

    • [2] 韩文静,张培训,汤其建,等.单体液压支柱缸体激光熔覆 Ni60A+20% WC 性能[J].煤炭学报,2012,37(2):340-343.HAN Wenjing,ZHANG Peixun,TANG Qijian,et al.Laser cladding Ni60A+20%WC performance of single hydraulic prop cylinder[J].Journal of China Coal Society,2012,37(2):340-343.(in Chinese)

    • [3] 刘昊,高强,满家祥,等.激光熔覆 CoCrFeMnNiTix 高熵合金涂层的微观组织及性能研究[J].中国激光,2022,49(8):0802101.LIU Hao,GAO Qiang,MAN Jiaxiang,et al.Microstructure and Properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding[J].Chinese Journal of Lasers,2022,49(8):0802101.(in Chinese)

    • [4] XIE D Q,ZHAO J F,QI Y A,et al.Decreasing pores in a laser cladding layer with pulsed current[J].Chinese Optics Letters,2013,11(11):111401.

    • [5] ZHANG M,ZHOU X L,YU X N,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface & Coatings Technology,2017,311:321-329.

    • [6] XU P,JU H,LIN C X,et al.In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J].Chinese Optics Letters,2014,12(4):041403.

    • [7] 陈浩,潘春旭,潘邻,等.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002(9):5-10.CHEN Hao,PAN Chunxu,PAN Lin,et al.Development of wear resistant laser cladding[J].Heat Treatment of Metals,2002(9):5-10.(in Chinese)

    • [8] HUANG Y L,YANG Y Q,WEI G Q,et al.Boundarycoupled dual-equation numerical simulation on mass transfer in the process of laser cladding[J].Chinese Optics Letters,2008,6(5):356-360.

    • [9] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.

    • [10] CHOUDHURI D,SHUKLA S,JANNOTTI P A,et al.Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high-entropy alloy[J].Materials Characterization,2019,158:109955.

    • [11] SENKOV O N,WILKS G B,SCOTT J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19(5):698-706.

    • [12] LIU H,LIU J,CHEN P J,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.

    • [13] SHU F Y,ZHANG B L,LIU T,et al.Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J].Surface and Coatings Technology,2019,358:667-675.

    • [14] 邱星武,刘春阁.激光加工参数对 Al2CoCrCuFeNiTi 高熵合金涂层质量的影响[J].粉末冶金材料科学与工程,2015,20(1):59-64.QIU Xingwu,LIU Chunge.Effect of laser processing parameters on quality of Al2CoCrCuFeNiTi high-entropy alloys coating[J].Materials Science and Engineering of Powder Metallurgy,2015,20(1):59-64.(in Chinese)

    • [15] 向硕,张雷,刘学,等.激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响[J].材料热处理学报,2018,39(10):29-35.XIANG Shuo,ZHANG Lei,LIU Xue,et al.Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys[J].Transactions of Materials and Heat Treatment,2018,39(10):29-35.(in Chinese)

    • [16] TONG Z P,REN X D,JIAO J F,et al.Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:Effectof heat treatment on microstructure,residual stress and mechanical property[J].Journal of Alloys and Compounds,2019,785:1144-1159.

    • [17] WANG L L,GAO Z N,WU M Y,et al.Influence of specific energy on microstructure and properties of laser cladded FeCoCrNi high entropy alloy[J].Metals,2020,10(11):1464.

    • [18] WANG F,INOUE A,KONG F L,et al.Formation,stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy(Fe0.25 Co0.25Ni0.25Cr0.125Mo0.125)86‒89 B11‒14 amorphous phase[J].Acta Materialia,2019,170:50-61.

    • [19] 王一澎,陈志国,汪力,等.激光比能对 Fe2B 激光熔覆涂层微观组织与性能的影响[J].中国表面工程,2020,33(1):117-124.WANG Yipeng,CHEN Zhiguo,WANG Li,et al.Effects of laser specific energy on microstructure and properties of Fe2B laser cladding coating[J].China Surafce Engineering,2020,33(1):117-124.(in Chinese)

    • [20] QI Q,LIU Y,ZHANG H,et al.The adjustment of microstructure and properties of TiC/Ni Cr composites by Mo addition applied for intermediate-temperature solid oxide fuel cell interconnects[J].Journal of Alloys and Compounds,2016,678:375-382.

    • [21] CHEN J S,YANG J,ZHANG Y Z,et al.Effect of substrates on the formation of Kirkendall voids in Sn/Cu joints[J].Welding in the World,2019,63(3):751-757.

    • [22] 孙宁,方艳,张家奇,等.WC-12Co 添加量对激光熔覆 Inconel 625 基复合材料微观组织和耐磨性能的影响[J].中国激光,2021,48(6):0602106.SUN Ning,FANG Yan,ZHANG Jiaqi,et al.Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J].Chinese Journal of Lasers,2021,48(6):0602106.(in Chinese)

  • 手机扫一扫看