en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

付田力,女,1996年出生,硕士研究生。主要研究方向为三元MAX润滑涂层制备。E-mail:xaut_futianli@126.com;

马国政(通信作者),男,1984年出生,博士,副研究员,硕士研究生导师。主要研究方向为表面工程与极端工况摩擦学。E-mail:magz0929@163.com

中图分类号:TB33

DOI:10.11933/j.issn.1007−9289.20211025002

参考文献 1
袁秦鲁,胡锐,李金山,等.梯度复合材料制备技术研究进展[J].兵器材料科学与工程,2003,26(6):4.YUAN Qinlu,HU Rui,LI Jinshan,et al.Research progress on preparation technology of gradient composites[J].Ordnance Materials Science and Engineering,2003,26(6):4.(in Chinese)
参考文献 2
李长久.超音速火焰喷涂及涂层性能简介[J].中国表面工程,1996,9(4):29-33.LI Changjiu.Brief introduction of supersonic flame spraying and coating properties[J].China Surface Engineering,1996,9(4):29-33.(in Chinese)
参考文献 3
BAI Y L,HE X D,WANG R G,et al.High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the European Ceramic Society,2013,33(13-14):2435-2445.
参考文献 4
FARBER L,BARSOUM M W,ZAVALIANGOS A,et al.Dislocations and stacking faults in Ti3SiC2[J].Journal of the American Ceramic Society,2010,81(6):1677-1681.
参考文献 5
BARSOUM M W.Mechanical properties:ambient temperature[M].New Jersey:John Wiley & Sons,2013:307-361.
参考文献 6
REN S F,MENG J H,WANG J B,et al.Tribocorrosion behavior of Ti3SiC2 in the dilute and concentrated sulfuric acid solutions[J].Wear,2010,269(1-2):50-59.
参考文献 7
任书芳,孟军虎,吕晋军,等.MN+1AXN 相及其复合材料的摩擦学性能研究进展[J].材料导报,2009,23(1):12-15.RENG Shufang,MENG Junhu,LÜ Jinjun,et al.Research progress on tribological properties of MN+1AXN phase and its composites[J].Material Review,2009,23(1):12-15.(in Chinese)
参考文献 8
JAMSHIDI R,BAYAT O,HEIDAROUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(10):1-10.
参考文献 9
田莉,付超,李月明,等.MAX 相陶瓷的结构、制备及物理性能研究[J].物理学进展,2021,41(1):23.TIAN Li,FU Chao,LI Yueming,et al.Study on the structure,preparation and physical properties of MAX-phase ceramics[J].Physical Advances,2021,41(1):23.(in Chinese)
参考文献 10
BARSOUM M W.The MN+1AXN phases:A new class of solids;thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28:28-201.
参考文献 11
郑丽雅,周延春,冯志海.MAX 相陶瓷的制备、结构、 性能及发展趋势[J].宇航材料工艺,2013,43(6):1-23.ZHENG Liya,ZHOU Yanchun,FEN Zhihai.Preparation,structure,performance and development trend of MAX-phase ceramics[J].Aerospace Materials & Technology,2013,43(6):1-23.(in Chinese)
参考文献 12
BAI Y L,NARASIMALU S,CHUA K Z,et al.Density functional theory study of Mn+1AXn phases:A review[J].Critical Reviews in Solid State and Material Sciences,2019,44(1):56-107.
参考文献 13
LIAO T,WANG J Y,ZHOU Y C.Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J].Physical.Review B,2006,73(21):214109.
参考文献 14
柏跃磊,尹航,宋广平,等.高韧性三元层状陶瓷:从MAX相到MAB相[J].材料工程,2021,49(5):1-23.BAI Yuelei,YIN Hang,SONG Guangping,et al.High toughness ternary layered ceramic:From max phase to mab phase[J].Journal of Materials Engineering,2021,49(5):1-23.(in Chinese)
参考文献 15
XU L D,ZHU D G,GRASSO S,et al.Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J].Journal of Advanced Ceramics,2017,6(2):1-9.
参考文献 16
薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.XUE Qunji.Introduction to the thermodynamics of frictional systems[M].Beijing:National Defense Industry Press,2002.(in Chinese)
参考文献 17
ERDEMIR A.A crystal-chemical approach to lubrication by solid oxides[J].Tribology Letters,2000,8(2-3):97-102.
参考文献 18
WU Y X,WANG F X,CHENG Y Q,et al.A study of the optimization mechanism of solid lubricant concentration in self-lubricating composite[J].Wear,1997,205(1-2):64-70.
参考文献 19
李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI Boya,CAO Zhiqiang.Progress in metal-based solid and its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)
参考文献 20
SUN Y.Tribological rutile-TiO2 coating on aluminium alloy[J].Applied Surface Science,2004,233(1-4):328-335.
参考文献 21
GARDOS M N.Magnéli phases of anion-deficient rutile as lubricious oxides.Part II.Tribological behavior of Cu-doped polycrystalline rutile(TinO2n-1)[J].Tribology Letters,2000,8(2):79-96.
参考文献 22
KRÓL S,ZALISZ Z,HEPNER M.Comparison of the friction and wear properties of titanium and oxidised titanium in dry sliding against sintered high speed steel HS18-0-1 and against C45 carbon steel[J].Journal of Materials Processing Technology,2005,164-165(2):868-875.
参考文献 23
郑乙,党文涛,任书芳.放电等离子烧结 Ti3SiC2-金属复合材料摩擦学性能研究[J].材料开发与应用,2016,31(3):86-93.ZHENG Yi,DANG Wentao,REN Shufang.Study on Fricological properties of Ti3SiC2-metal composite[J].Development and Application of Material,2016,31(3):86-93.(in Chinese)
参考文献 24
黄振莺,翟洪祥,刘新,等.Ti3SiC2系材料的载流磨损特性及机理[J].稀有金属材料与工程,2007,36(A02):4.HUANG Zhenying,ZHAI Hongxiang,LIU Xin,et al.Current wear characteristics and mechanism of Ti3SiC2 system materials[J].Rare Metal Materials and Engineering,2007,36(A02):4.(in Chinese)
参考文献 25
FILIMONOV D,GUPTA S,PALANISAMY T,et al.Effect of applied load and surface roughness on the tribological properties of Ni-Based superalloys versus Ta2AlC/Ag or Cr2AlC/Ag composites[J].Tribology Letters,2009,33(1):9-20.
参考文献 26
GUPTA S,FILIMONOV D,ZAITSEV V,et al.Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3[J].Wear,2009,267(9-10):1490-1500.
参考文献 27
SHI X L,WANG M,ZHAI W Z,et al.Friction and wear behavior of NiAl–10 wt%Ti3SiC2 composites[J].Wear,2013,303(1-2):9-20.
参考文献 28
WANG Y,LIU,X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding-ScienceDirect[J].Ceramics International,2020,46(18):28996-29010.
参考文献 29
WANG X H,ZHOU Y C.High-temperature oxidation behavior of Ti2AlC in air[J].Oxidation of Metals,2003,59(3):303-320.
参考文献 30
DARIN J T,ELIZABETH N H,EľAD N C,et al.Effect of neutron irradiation on select MAX phases[J].Acta Materialia,2015,85(1):132-143.
参考文献 31
WANG C X,YANG T F,XIAO J R,et al.Irradiation-induced structural transitions in Ti2AlC[J].Acta Materialia,2015.98(7):197-205.
参考文献 32
GARKAS W,LEYENS C,FLORES A.Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater[J].Advanced Materials Research,2010,89-91(1):208-213.
参考文献 33
LI J J,QIAN Y H,NIU D,et al.Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J].Applied Surface Science,2012,263(1):457-464.
参考文献 34
YANG Y,KEUNECKE M,STEIN C,et al.Formation of Ti2AlN phase after post-heat treatment of Ti-Al-N films deposited by pulsed magnetron sputtering[J].Surface & Coatings Technology,2012,206(10):2661-2666.
参考文献 35
AHMED A A,TETSUYA T A,DENIS M A,et al.MAX phase formation by intercalation upon annealing of TiCx/Al(0.4 ≤ x ≤ 1)bilayer thin films[J].Acta Materialia,2011,59(15):6168-6175.
参考文献 36
KELLY P J,ARNELL R D.Magnetron sputtering:a review of recent developments and applications[J].Vacuum,2000,56(3):159-172.
参考文献 37
FENG Z J,KE P L,WANG A Y.Preparation of Ti2AlC MAX phase coating by DC magnetron sputtering deposition and vacuum heat treatment[J].Journal of Materials Science & Technology,2015,31(12):1193-1197.
参考文献 38
RICHARDSON P,CUSKELLY D,BRANDT M,et al.Effects of furnace annealing on in situ reacted Ti2AlC MAX phase composite coatings deposited by laser cladding[J].Surface and Coatings Technology,2020,405(1):126597.
参考文献 39
LIU F C,LIN X,ZHAO W W,et al.Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy[J].Rare Metal Materials & Engineering,2010,39(9):1519-1524.
参考文献 40
WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 ℃[J].Materials Letters,2019,261(1):127160.
参考文献 41
ZHANG Z,LIM S H,CHAI J W,et al.Plasma spray of Ti2AlC MAX phase powders:effects of process parameters on coatings’ properties[J].Surface and Coatings Technology,2017,325(7):429-436.
参考文献 42
SOKOL M,YANG J,KESHAVAN H,et al.Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based Superalloy[J].Journal of the European Ceramic Society,2018,39(4):878-882.
参考文献 43
WANG Z Y,SUN J,XU B B,et al.Reducing the self-healing temperature of Ti2AlC MAX phase coating by substituting Al with Sn[J].Journal of the European Ceramic Society,2019,40(1):197-201.
参考文献 44
NAVEED M,RENTERIA A F,NEBEL D,et al.Study of high velocity solid particle erosion behaviour of Ti2AlC MAX phase coatings[J].Wear,2015,10(342-343):391-397.
参考文献 45
GUO L,YAN Z,WANG X H,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.
参考文献 46
LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi scales tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface & Coatings Technology,2018,331(1):384-393.
参考文献 47
TIAN W,WANG P,KAN Y,et al.Oxidation behavior of Cr2AlC ceramics at 1 100 and 1 250 ℃[J].Journal of Materials Science,2008,43(8):2785-2791.
参考文献 48
LEE D B,NGUYEN T D.Cyclic oxidation of Cr2AlC between 1 000 and 1 300 ℃ in air[J].Journal of Alloys & Compounds,2008,464(1-2):434-439.
参考文献 49
WANG Q M,RENTERIA A F,SCHROETER O,et al.Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy[J].Surface & Coatings Technology,2010,204(15):2343-2352.
参考文献 50
SMIALEK,JAMES L,GARG,et al.Interfacial reactions of a MAX phase/superalloy hybrid[J].Interfaces and Thin Films,2015,47(8):844-853.
参考文献 51
NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings[J].Metals-Open Access Metallurgy Journal,2016,6(11):265.
参考文献 52
QURESHI M W,MA X X,TANG G Z,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.
参考文献 53
GHASEMI S,FARHADIZADEH A R,GHOMI H.Effect of frequency and pulse-on time of high power impulse magnetron sputtering on deposition rate and morphology of titanium nitride using response surface methodology[J].Transactions of Nonferrous Metals Society of China,2019,29(12):2577-2590.
参考文献 54
EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vakuum in Forschung und Praxis,2017,29(2):40-44.
参考文献 55
BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings [J].Surface and Coatings Technology,2018,336(8):84-91.
参考文献 56
周香林,张济山,巫湘坤.先进冷喷涂技术与应用[M].北京:机械工业出版社,2011.ZHOU Xianglin,ZHANG Jishan,WU Xiangkun.Advanced cold spray technology and application[M].Beijing:China Machine Press,2011.(in Chinese)
参考文献 57
GO T,SOHN Y J,MAUER G,et al.Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coatlayers[J].Journal of the European Ceramic Society,2018,39(4):860-867.
参考文献 58
DAVIS D,SRIVASTAVA M,MALATHI M,et al.Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring:Tribological and twist-fatigue life assessment[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2018,449(Aug.15):295-303.
参考文献 59
高荣发.热喷涂[M].北京:化学工业出版社,1992.GAO Rongfa.Thermal spray[M].Beijing:Chemical Industry Press,1992.(in Chinese)
参考文献 60
RAHMAN M A,RAHAMAN M Z.Study on structural electronic,optical and mechanical properties of MAX phase compounds and applications review article[J],American Journal of Modern Physics,2015,4(2):75-91.
参考文献 61
GALVIN T,HYATT N C,RAINFORTH W M,et al.Laser sintering of electrophoretically deposited(EPD)Ti3SiC2 MAX phase coatings on titanium[J].Surface and Coatings Technology,2019,366(1):199-203.
参考文献 62
梁佳敏.磁控溅射制备 Zr2Al3C4 涂层及其抗高温水蒸气氧化性能的研究[D].天津:天津大学.LIANG Jiamin.Study on Zr2Al3C4 coating prepared by magnetron sputtering and its resistance to high temperature water vapor oxidation[D].Tianjin:Tianjin University.(in Chinese)
参考文献 63
GARKAS W,FRŐHLICH M,WELTMANN KD,et al.Oxidation and decomposition of Ti2AlN MAX phase coating deposited on nickel-based super alloy IN718[J].Materials Science Forum,2015,825/826(Pt.2):628-635.
参考文献 64
赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Influence of bombardment ion energy on the structure and mechanical properties of V2AlC MAX phase coatings[J] China Surface Engineering,2019,32(3):80-87.(in Chinese)
参考文献 65
RAVINDRAN P,MANISEKAR K,NARAYANASAMY P,et al.Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J].Materials & Design,2012,39(Aug.):42-54.
参考文献 66
唐中杰,郭铁明,付迎,等.镍基高温合金的研究现状与发展前景[J].航空材料,2014,67(1):36-40.TANG Zhongjie,GUO Tieming,FU Ying,et al.Research present situation and the development prospect of Nickel-based superalloy[J].Aeronautical Materials,2014,67(1):36-40.(in Chinese)
参考文献 67
JAMSHIDI R,BAYAT O,HEIDARPOUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(1):1-10.
参考文献 68
李伟,周伟,赵宇光.Ti-6Al-4V 合金表面原位内生(Ti3SiC2+TiB2)p/Al 基复合材料涂层制备[J].特种铸造及有色合金,2019,39(11):1235-1239.LI Wei,ZHOU Wei,ZHAO Yuguang.Preparation of Ti-6Al-4V alloy surface in situ(Ti3SiC2 + TiB2)p/Al based composite coating[J].Special Casting & Nonferrous Alloys,2019,39(11):1235-1239.(in Chinese)
参考文献 69
LI Q L,YUAN X H,XU H,et al.Microstructure and fracture toughness of in-situ nanocomposite coating by thermal spraying of Ti3AlC2/Cu powder[J].Ceramics International,2019,45(10):13119-13126.
参考文献 70
LI Q L,SONG P,HUANG W L,et al.Improvement in the mechanical properties of plasma spray ceramicCu/Ti3AlC2 gradient coatings by heat treatment[J].Ceramics International,2019,45(17):22452-22463.
参考文献 71
YU W B,ZHAO H B,HUANG Z Y,et al.Microstructure evolution and bonding mechanism of Ti2SnC-Ti6Al4V joint by using Cu pure foil interlayer[J].Materials Characterization,2017,127(2):53-59.
参考文献 72
MURUGESAN S,MONTEIRO O,KHABASHESKU V N.Extending the lifetime of oil and gas equipment with corrosion and erosion-resistant Ni-B-nanodiamond metal-matrix-nanocomposite coatings[C]//Offshore Technology Conference,Houston,2016.
参考文献 73
RASHID A,CAMPBELL J.Oxide defects in a vacuum investment-cast Ni-based turbine blade[J].Metallurgical & Materials Transactions.Part A,2004,35(7):2063-2071.
参考文献 74
KONG D,ZHAO B.Effects of loads on friction-wear properties of HVOF sprayed NiCrBSi alloy coatings by laser remelting[J].Journal of Alloys & Compounds,2017,705(2):700-707.
参考文献 75
DEVOJNO O G,FELDSHTEIN E,KARDAPOLAVA M A,et al.On the formation features,microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy[J].Optics& Lasers in Engineering,2018,106(July):32-38.
参考文献 76
孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007(1):7-10.SUN Ronglu,NIU Wei,WANG Chengyang.Microstructure and wear properties of laser cladding TiN-Ni-based alloy composite coatings on titanium alloys[J].Rare Metal Materials and Engineering,2007(1):7-10.(in Chinese)
参考文献 77
BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39(2):99-114.
参考文献 78
WANG Y,LIU X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding[J].Ceramics International,2020,46(18):28996-29010.
参考文献 79
LIANG Y,LIU M Y,CHEN J X,et al.Electrodeposition and characterization of Ni/Ti3Si(Al)C2 composite coatings[J].Journal of Materials Science & Technology,2011(11):1016-1024.
参考文献 80
秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40.QIN Yang,YAN Hua,GAO Qiushi,et al.Organization and wear resistance of Ti3SiC2/Ni base coating synthesized with TC4 surface laser melting recovery position[J].Nonferrous Metal Engineering,2019,9(4):34-40.(in Chinese)
参考文献 81
欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,49(8):11.OUYANG Chunsheng,LIU Xiubo,LUO Yingshe,et al.High temperature fricological properties of Ti3SiC2-Ni based self-lubricate composite coating with 304 stainless steel surface laser[J].Surface Technology,49(8):11.(in Chinese)
参考文献 82
张天刚,张倩,庄怀风,等.TC4 表面 Ti2SC-Ti2Ni 复合结构相的自润滑激光熔覆层组织与性能[J].光学学报,2020,40(11):11.ZHANG Tiangang,ZHANG Qian,ZHUANG Huaifeng,et al.Self-lubricating laser fusion complex layer tissue and performance of TC4 surface Ti2SC-Ti2Ni composite structure phase[J].Acta Optica Sinica,2020,40(11):11.(in Chinese)
参考文献 83
YAN H,LIU K W,ZHANG P L,et al.Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J].Optics & Laser Technology,2020,126(3):106077.
参考文献 84
WANG J Y,ZHANG B S,YU Y Q,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high–entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384(1):125337.
参考文献 85
WANG H B,QIU Q F,GEE M,et al.Wear resistance enhancement of HVOF–sprayed WC–Co coating by complete densification of starting powder[J].Materials & Design,2020,191(1):108586.
参考文献 86
DING L,HU S S,QUAN X M,et al.Effect of Ti on the microstructure evolution and wear behavior of VN alloy/Co–based composite coatings by laser cladding[J].Journal of Materials Processing Technology,2018,252(1):711-719.
参考文献 87
WALL M T,PANTAWANE M V,JOSHI S,et al.Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head[J].Surface and Coatings Technology,2020,387(1):125473.
参考文献 88
LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J].Optics & Laser Technology,2019,114(2):209-215.
参考文献 89
CHEN H F,DU Y X,WANG D J,et al.TiC/Ti3AlC2–Co plasma-sprayed coatings with excellent high-temperature tribological properties[J].Ceramics International,2018,44(18):S0272884218324891-.
参考文献 90
ZHOU J L,KONG D J.Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding[J].Surface and Coatings Technology,2021,408(25):126816.
参考文献 91
王其平.电器电弧理论[M].北京:机械工业出版社,1982.WANG Qiping.Electrical arc theory[M].Beijing:China Machine Press,1982.(in Chinese)
参考文献 92
李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42.LI Xingeng,FU Min.Development status and prospect of vacuum electric contact material technology[J].Electric Power,2001,34(8):39-42.(in Chinese)
参考文献 93
GRIESELER R,CAMARGO M K,HOPFELD M,et al.Copper-MAX-phase composite coatings obtained by electro-co-deposition:a promising material for electrical contacts[J].Surface & Coatings Technology,2017,321(4):219-228.
参考文献 94
SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143–166.
参考文献 95
BRANDES A E,BROOK G B.Smithells metals reference book[M].Oxford:Butterworth Heinemann,1983.
参考文献 96
刘永康,王博,赖小明,等.密封舱结构材料5B70铝合金高温压缩实验与晶体塑性模拟研究[J].载人航天,2021,27(2):8.LIU Yongkang,WANG Bo,LAI Xiaoming,et al.Study on high temperature compression experiment and crystal plastic simulation of 5B70 aluminum alloy[J].Manned Space Flight,2021,27(2):8.(in Chinese)
参考文献 97
杨玲玲,任毅如,宁克焱,等.干片式制动器典型结构材料高温性能研究[J].热加工工艺,2021,50(6):62-66.YANG Lingling,REN Yiru,NING Keyan,et al.Study on high temperature performance of typical structural material of dry plate brake[J].Hot Working Technology,2021,50(6):62-66.(in Chinese)
参考文献 98
BARSOUM M W.The Mn+1AXn phases:A new class of solids[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.
参考文献 99
EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.
参考文献 100
ARSLAN E,TOTIK Y,BAYRAK O,et al.High temperature friction and wear behavior of MoS2/Nb coating in ambient air[J].Journal of Coatings Technology & Research,2010,7(1):131-137.
参考文献 101
CLAUSS F J.Solid lubricants and self-lubricating solids[J].New York:Academic Press,1972:164-194.
参考文献 102
SHI X L,ZHAI W Z,XU Z S,et al.Synergetic lubricating effect of MoS2 and Ti3iC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range[J].Materials & Design,2014,55(3):93-103.
目录contents

    摘要

    MAX / 金属基自润滑复合涂层具有优异的力学性能和摩擦学性能,MAX 相的加入拓宽了金属基复合涂层的研究和应用范围。首先分析 MAX / 金属基复合涂层在摩擦磨损过程中自润滑特性是如何起作用的,分别从 MAX 相的本质结构说明自润滑性能的存在,摩擦过程中润滑膜的生成说明提高减摩润滑性能的原因。随后阐述近年常见几种 MAX 相涂层以及 MAX / 金属基复合涂层的制备和特性,包括 Ti2AlC、Cr2AlC 涂层、高低温金属基体下的 MAX 复合涂层。最后归纳总结 MAX / 金属基复合涂层常见应用领域和表面防护效果,并对 MAX / 金属基复合涂层目前存在的问题和涂层质量的提升进行展望,为 MAX / 金属基自润滑复合涂层的推广应用提供参考。

    Abstract

    The MAX / metal-based self-lubricate composite coatings have excellent mechanical and tribological properties, and the addition of the MAX phase broadens the research and application scope of the metal-based composite coatings. Firstly, this paper analyzes how the self-lubrication properties of the MAX / metal-based composite coating act during friction wear. The essential structure of the MAX phase illustrates the existence of self-lubrication properties, and the generation of the lubrication film during friction explains the reasons for improving the friction lubrication performance. Subsequently, the preparation and properties of several common MAX phase coatings and MAX / metal matrix composite coatings in recent years are described, including Ti2AlC, Cr2AlC coatings, and MAX composite coatings under high and low temperature metal substrates. Finally, the common application fields and surface protection effects of MAX / metal-based composite coatings are summarized, and the current problems of MAX/metal matrix composite coatings and the improvement of coatings quality are prospected, the promotion and application of the coating provides a reference.

    关键词

    MAX 相涂层制备技术润滑机理应用

  • 0 前言

  • 随着机械零部件服役环境的恶劣化发展,常规金属合金零部件由于低硬度和高温易氧化等缺陷,无法满足机件表面对耐摩、耐腐蚀以及抗氧化等性能的要求。金属陶瓷复合涂层既具有金属材料良好的韧性、导电性与导热性,又具有陶瓷材料耐磨、耐高温、抗热震以及耐腐蚀等优点,二者可弥补基体材料性能上的缺点与不足,针对性地有效提高零部件表面所需性能,该复合涂层目前已广泛应用于航空航天、水电化工等领域[1-2]

  • 三元MAX陶瓷材料具有优异的高温抗氧化性和摩擦磨损性能,其纳米层状结构在一定载荷作用下可通过位错滑移产生塑性变形,使其具有较高的损伤容限与断裂韧度,还具有自润滑特性[3-6]。高温摩擦表面三元MAX相的挤出与氧化膜的产生可使摩擦性能相比室温更占优势[7-8]。将MAX相加入到金属基自润滑复合涂层中,不仅可提高涂层整体耐磨性,润滑减摩方面也有很大的优势。

  • 近年来,根据三元MAX相优异的各项性能,研究人员已制备出大量MAX相和含MAX相的复合涂层。本文主要阐述近几年MAX相涂层与复合涂层的发展概况,结合MAX相自身结构特点、摩擦磨损特性,分析总结MAX相自润滑复合涂层的润滑机理,最后归纳整理MAX相涂层目前的典型应用,并对MAX相涂层未来发展趋势进行展望。

  • 1 MAX相自润滑复合涂层

  • 1.1 MAX相结构及其润滑机理

  • 三元MAX相中元素分布如图1 [9]所示:M代表过渡金属元素,A代表主族元素,X是碳或氮元素[10]。 MAX相晶体结构如图2所示[11],随 n 值增大,A原子层之间的M原子层数目增多。MAX相的价键组合可理解为:M-X原子之间以强共价键连接,而M-A原子之间以弱键结合;或A原子层弱键连接着M-X原子层[12]。强共价键的存在使MAX相具有高模量陶瓷特性,弱键使其具有低剪切、易加工等金属特性[13]。弱键连接的A原子层极易脱离M6X原子层的束缚,片层状结构使MAX相具有自润滑性能[11]。柏跃磊等[14]用键刚度(k)定量表征化学键在静水压力下的的变形抗力,当 k min /k max≤1/2时,A原子层与M-X原子层之间是以“足够弱”的状态结合的,此时MAX相表现出高损伤容限和断裂韧性,这与传统陶瓷的高脆性有极大的区别。

  • 图1 MAX相中M、A、X对应元素在元素周期表中的位置[9]

  • Fig.1 Position of the M, A, X corresponding element in the element periodic table in the MAX phase[9]

  • 图2 典型Mn+1AXn 相的晶体结构[11]

  • Fig.2 Crystal structure of the typical Mn+1AXn phase[11]

  • MAX相的层状结构使力学性能具有各向异性,材料磨损行为依赖于结晶取向。保持陶瓷材料原有传统特性,通过微观调控可提高其特定方向上的性能。XU等[15]通过强磁场排列法加火花等离子烧结法制备了三种不同织构下的Ti3AlC2 陶瓷材料,如图3所示。试验结果表明晶体织构对材料摩擦性能有很大影响,在TTS(000l)平面上摩擦因数最低,摩擦过程中TTS和TTS-1面由于基材易剪切分层,晶粒的拔出和破碎使材料磨损率较高,TTS-2面在较高载荷下并没有出现剥落区域,只观察到犁沟切削痕迹,磨损率相对前两者较低。陶瓷材料断口表面晶粒的有序堆叠呈现出鲜明的各向异性特点(如图4)。此试验有力地证明了Ti3AlC2 中优先织构对耐磨性能有较大的影响。

  • 图3 不同织构方向的磨损试验示意图[15]

  • Fig.3 Schematic diagram of wear test in different fabric directions [15]

  • 图4 Ti3AlC2陶瓷断口SEM图[15]

  • Fig.4 SEM images of Ti3AlC2 ceramic fracture [15]

  • 1.2 成膜润滑理论

  • 润滑理论有耗散结构论[16]、类比法[17]和协同理论[16]。其润滑机理为:摩擦过程中润滑粒子拔出挤压形成润滑膜,通过损耗润滑膜保护基体不受摩擦损耗失效;或利用同类结构性质相似原则添加氧化物或固体润滑剂达到减摩作用;还可通过多种固体润滑剂之间相互协同,达到稳定状态后提升耐磨减摩性。借鉴以往润滑理论,在复合涂层中加入具有自润滑特性的三元MAX陶瓷相,摩擦磨损过程中可综合发挥以上几种润滑作用。其润滑过程如图5所示[18-19],未发生摩擦运动时(如图5a),MAX相均匀分布在金属基体中,涂层表面与涂层内部基本无区别。摩擦初始阶段摩擦力较大(如图5b),基体材料磨擦消耗大,涂层表面挤压发生塑性变形,MAX相颗粒凸起被挤出在涂层表面,此时MAX相参与到摩擦过程中,并且温度升高。随着涂层表面MAX相颗粒越来越多,高温下分解的硬质相和氧化物增多,在载荷和摩擦作用下摊开形成低剪切特性的润滑膜(如图5c),润滑膜可改善涂层摩擦表面,涂层耐磨减摩性能上升。

  • 图5 MAX/金属基自润滑复合涂层自润滑原理[18-19]

  • Fig.5 Self lubrication principle of Max/metal base self-lubricating composite coating[18-19]

  • 三元MAX相在摩擦过程中出现的自生氧化物具有低剪切强度特性,可持续向摩擦表面提供润滑补偿作用,同时MAX相分解产生的MX硬质相颗粒在涂层中具有钉扎作用,可提升涂层表面磨损性能[20-23]。润滑膜的生成受到滑动速率、载荷、温度以及对偶等多种因素影响,当润滑膜的生成能够持续补给摩擦过程中的损耗时,润滑膜得以保持稳定并发挥稳定减摩作用[24-25]。三元MAX相在高温下摩擦性能表现更为突出,涂层表面润滑膜通常由三元MAX相、氧化膜和硬质碳化物组成[26-28]

  • 2 常见MAX相涂层及其制备方法

  • 2.1 三元MAX相陶瓷涂层

  • MAX相的结构特性决定其极易在高温环境下分解失效,故早期三元MAX相涂层的制备更多趋向于提高涂层中的MAX含量,选择不同的沉积方式或不同的粉末沉积体系均会影响到三元相的纯度高低,高纯度MAX相涂层的成功制备可为后续研究涂层独特“自润滑”特性方面埋下重要的铺垫。

  • 2.1.1 Ti2AlC陶瓷涂层

  • Ti2AlC是MAX相中研究较多的材料,密度为4.11g/cm3,具有金属陶瓷双重特性[29]。在高温防护涂层[29]、热障涂层、耐辐射包层材料[30-31]以及抗侵蚀涂层方面具有极大的发展潜力。早期研究主要以制备高纯Ti2AlC涂层为主要目标,采用合适沉积方式制备含M、A、X三元素的涂层,通过真空热处理提高涂层中三元相含量[32-35]。直流磁控溅射技术是制备薄膜的常用方法之一,具有沉积效率高、靶材选择范围广和沉积温度低等优势,基片上沉积的薄膜通常为非晶无定形态,需配合退火处理制备所需涂层[36]。 FENG等[37]使用直流磁控溅射法分别制备了不同沉积时间下Ti2AlC、Ti3AlC2 和TiC相的复合涂层,通过800℃真空退火得到厚约13 μm的纯Ti2AlC相涂层。热处理在提高涂层中三元相含量之外,也可改善涂层内部缺陷,RICHARDSON等[38]采用激光熔覆法在纯钛板上沉积了低纯度Ti2AlC涂层,在流动氩气氛下分别退火1h、2h和3h,以提高涂层中Ti2AlC相的含量,如图6所示。退火处理消除了涂层中残余应力裂纹,涂层由薄氧化层、纯Ti2AlC相两层组成,表面氧化层起到抵抗外部侵蚀、保护内部涂层的作用。激光熔覆技术是利用激光束将粉末熔化形成表面涂层的方法,具有能量密度高、加热与冷却速度快等特性,三元相陶瓷材料作为目标粉末极易出现大量分解而降低其在涂层中的含量,沉积后需要通过退火处理二次加工提高三元相纯度[39]。除上述退火处理提高三元相含量之外,还可通过延长非晶涂层退火时间、调节工艺参数等方法来获得高纯度Ti2AlC相[40-41]

  • 图6 涂层横截面BSE图像与EDS分析确定的元素分布[38]

  • Fig.6 Coated cross-section BSE images and the element distribution determined by EDS analysis[38]

  • Ti2AlC相的热稳定性和抗氧化性已被研究过。 Ti2AlC相中Al原子层与Ti-C键之间为弱键结合,高温下Al原子易脱键扩散和蒸发,造成Ti2AlC相的分解。据文献[32],Ti2AlC相经800℃退火处理得到纯Ti2AlC相涂层,在1 000℃时开始分解, 1 200℃下Ti2AlC相完全分解成TiC相,Al元素全部蒸发,为缓解铝元素的大量损失,可通过添加与Al元素结合较强的M元素延缓Al原子的扩散损失,也可在涂层表面通过生成氧化铝氧化层的方式减缓Al原子的扩散损失。Ti2AlC相的抗氧化性与其基体之间的热膨胀系数有关,在热循环过程中热膨胀系数过大会造成涂层与基体界面出现分层裂纹及裂纹内部氧化的现象[42]。高温下分层裂纹具有自愈合特性,WANG等[43]发现Ti2AlC涂层在700℃具有自愈合特性,用低熔点Sn原子替代部分Al原子后, 700℃下形成的氧化物SnO2 和rutile-TiO2逐渐填充满维氏压痕裂纹(如图7所示),该温度目前是铝基MAX相中最低的自愈合温度。除此之外,Ti2AlC陶瓷的抗冲蚀性[44]、抗侵蚀性[45]以及耐磨减摩性能[46]也被大量研究。

  • 图7 涂层表面裂纹SEM图[43]

  • Fig.7 SEM images of coating surface cracks[43]

  • 2.1.2 Cr2AlC陶瓷涂层

  • Cr2AlC陶瓷相具有优异的高温抗氧化性和抗腐蚀性,其力学性能和弹性模量因制备方式不同具有较大的差别[47-50]。采用直流磁控溅射法(DCMS) 制备的Cr2AlC涂层,在溅射功率为4.5kW时涂层硬度(13.9±4.6GPa)和弹性模量(289.2±111GPa) 最高[51]。而采用高功率脉冲磁控溅射技术(HiPIMS) 制备的非晶Cr2AlC涂层,通过650℃恒温1h炉内退火结晶形成的Cr2AlC相涂层,涂层硬度可达到19.29GPa,弹性模量为285GPa[52]。相比传统DCMS,HiPIMS有更多操作模式和可控沉积参数,溅射材料具有更高的等离子体密度和电离度,能够形成更加致密、表面更加光滑及高硬度的耐磨耐蚀涂层,若以提高涂层性能为主,HiPIMS有更明显的优势[53-55]

  • Cr2AlC相也可应用于冷喷涂技术,相比热喷涂类的方法,冷喷涂无须将喷涂粉末熔化,粉末粒子高速撞击于基体表面时仍为固态,所形成涂层不仅结合强度高,其氧化与相变程度也极低[56]。GO等[57] 在不锈钢基底上用沉积温度较低(<950℃)的冷喷涂技术合成纯度高达98%的Cr2AlC涂层,涂层表面无裂纹缺陷,在无任何预防措施下夹紧切割,涂层并未出现剥落现象,涂层内部具有良好的黏附性。

  • 金属合金涂层中加入Cr2AlC陶瓷相可改善涂层表面耐磨耐蚀性能。DAVIS等[58]用Cr2AlC陶瓷相去提高Ni-Mo-Al合金涂层性能,采用空气等离子喷涂方法(APS)使Cr2AlC相发生大量分解和氧化,生成的Al2O3 氧化物与Cr7C3 碳化物提高了涂层整体硬度,涂层耐磨性大幅提高,其热循环寿命也提高了近2倍。大气等离子喷涂技术由于热源温度极高,等离子弧中心温度最高可达3.2×104 K,此种状况下三元MAX陶瓷相虽发生大量分解氧化,但分解产生的硬质陶瓷相和氧化物均有助于提高涂层的耐磨性能[59]。Cr2AlC(7.2×10−6~13.3×10−6/℃[60])与高温合金的热膨胀系数较接近,可作为高温合金的增强相或钢基材的保护层候选材料。除此之外,Cr2AlC涂层还是高温合金表面优秀的氧化阻挡层,从室温到1 000℃的20次热循环并未观察到任何裂纹、分层和表面退化[42]

  • 2.1.3 其他三元MAX相陶瓷涂层

  • 除以上研究较多的三元MAX相涂层之外, Ti2AlN、 V2AlC、 Ti3SiC2 [61] 以及非常规形式的Zr2Al3C4 涂层[62]都已被制备研究。研究表明,Ti2AlN涂层在1 200℃下完全分解为TiNx,700℃大气环境下具有良好的氧化行为,氧化层主要由TiO2 和Al2O3 组成,涂层以Ti2AlN相转换为Ti3NiAl2N相最终失效[32, 63]。回顾以上三元MAX相涂层的制备方式,高纯致密MAX相涂层往往是通过多种涂层沉积技术和热处理两种工艺方法结合制备。除此之外通过改变沉积工艺参数也可提高涂层性能,如赵公澍等[64]通过改变磁控溅射沉积技术中的轰击离子能量参数,制备出高密度的V2AlC涂层,并发现规律:随轰击离子能量增高,涂层愈加致密,硬度增至21GPa,弹性模量达到362.6GPa。

  • 2.2 金属基MAX陶瓷自润滑复合涂层

  • 金属基复合涂层中金属基材可划分为:以W、 Mo为代表的难熔金属基体,以Ni、Cr、Co为代表的高温金属基体,以Cu、Al、Fe为代表的低温金属基体,以及以Ag为代表的软金属基体四大类。目前MAX/金属基复合涂层中基体主要以低熔点金属基体和高熔点金属基体为研究对象。低熔点金属易剪切、低塑性等特点赋予复合涂层自润滑性,在减摩耐磨上有显著优势,MAX陶瓷相的加入可提升涂层总体硬度与耐磨性;高熔点金属在高温环境下具有优异的抗高温氧化性能和力学性能,而MAX相可充当高温下的润滑材料,由于自身结构与氧化物的产生都将提供不同程度的减摩耐磨性,这样可延长设备的使用寿命[65-66]

  • 2.2.1 低熔点金属/MAX陶瓷复合涂层

  • 铝及铝合金熔点较低,有良好的耐蚀性,广泛应用于热喷涂。JAMSHIDI等[67]在纯Al涂层中加入10wt.%Ti3SiC2 陶瓷相,摩擦力随外加载荷增加而增加,摩擦局部温度增加导致部分Ti3SiC2 相部分分解为TiC相和Si原子,30N载荷下复合涂层摩擦因数和磨损率分别降低了32%和94%,Ti3SiC2 相的加入提高了纯铝涂层的耐磨性。涂层中金属元素在合成三元相时起到辅助作用,李伟等[68]采用低氧压熔结技术将Al-Si-TiC粉末体系涂覆在TC4合金表面上生成Ti3SiC2/Al基复合涂层,Al原子在Ti3SiC2相合成过程中起到稀释剂、催化剂、辅助剂、除氧剂和填充剂的作用。

  • 铜具有良好的导电、导热性能,硬度较低。三元MAX相的加入能够提高材料整体硬度,断裂韧性和结合强度均有所改善。MAX相中弱键结合的A原子在高温下易脱出,空位形成的脱链通道为其他原子的进入提供了机会,研究者抓住这一特性研究铜原子进入A原子位置之后涂层的性能变化。LI等[69]用等离子喷涂法制备了原位纳米Ti3AlC2/Cu复合涂层,Ti3AlC2 陶瓷相中Al原子在高温下脱出,Cu原子通过脱链通道进入空位处,分散在陶瓷颗粒间的纳米铜粒子组成的铜带形成空间铜网络结构(如图8),铜网结构与Cu (Al)固溶体可提高复合涂层的断裂韧性,比较相同试验条件下陶瓷-NiCr合金梯度过渡涂层、陶瓷-金属玻璃梯度过渡涂层的三点弯曲试验,如图9所示,原位纳米复合涂层在达到最大载荷之前有明显的塑性变形,断裂过程中具有明显的阻力,表现出良好的断裂韧性和抗裂纹扩展能力。与此同时,作者探究了这一复合涂层作为黏结层与陶瓷涂层之间的界面耐久性,用等离子喷涂技术制备了 (Al2O3-40wt%TiO2)-Cu/Ti3AlC2复合涂层,经热处理后Cu/Ti3AlC2 中间层可作为黏结层使用,涂层与基体连接模式为:陶瓷顶层与黏结层、黏结层中铜网与纳米粒子以梯度互穿模式连接起来,陶瓷涂层与基体之间通过铜网钉扎提高了界面耐久性[70]。相类似,Ti2SnC陶瓷相与TC4基材依靠Cu中间层实现了机械焊接,这一过程也是由Sn原子与Cu原子之间的相互扩散实现的[71]

  • 图8 纳米涂层截面SEM图[69]

  • Fig.8 SEM diagram of nano-coating cross-section[69]

  • 图9 原位纳米复合涂层、陶瓷-镍铬合金梯度过渡涂层和陶瓷-金属玻璃梯度过渡涂层的3PB测试载荷-位移曲线[69]

  • Fig.9 3PB test load-displacement curve of in situ nanocomposite coating, ceramic-nickel-chromium alloy gradient transition coating and ceramic-metal glass gradient transition coating[69]

  • 2.2.2 高熔点金属/MAX陶瓷复合涂层

  • Ni是一种重要的高温工程材料,刚度低、抗氧化性和耐磨性差,广泛应用于石油天然气、涡轮叶片等各个工业领域[72-73]。Ni基自熔性合金粉末含有B、Cr和C等元素,具有优异的抗氧化、耐腐蚀以及耐磨损等特性[74-75]。Ni基耐磨复合涂层通常以Ni基合金和陶瓷相 (如TiN、SiC、TiB2[76])作为喷涂材料制备而成,目前常用激光熔覆技术制备偏多,激光熔覆通过高能激光束将熔覆材料熔化,能量密度高,稀释率较低,加热速度和冷却速度极快[77]。真空高温环境下润滑油和固体润滑剂由于失效无法发挥润滑作用,向熔覆层中加入具有自润滑特性的陶瓷材料可极大提高涂层高温摩擦润滑性能。具有层状易剪切结构特点的三元MAX相可提高复合涂层的减摩性,扩大Ni基复合涂层在高温下的潜在应用。WANG等[78]采用激光熔覆技术制备了Ti3SiC2-Ni基复合涂层,涂层硬度比TC4合金基体(350HV0.5)高达2.6~3.2倍,如图10所示,不同温度段下的涂层相比基材具有显著的低摩擦因数和磨损率,优异的耐磨性可归因于 γ-Ni基的固溶强化效应、硬质相的均匀分布以及Ti3SiC2 陶瓷相的自润滑特性。截至目前研究者已探索制备出多种MAX/镍基复合涂层,均不同程度上提高了涂层的硬度和减摩耐磨性[79-83]

  • Co基合金涂层作为高温涂层也具有优异的耐磨性[84-87]。添加MAX相可进一步提高涂层的耐磨减摩性, LI等 [88] 采用激光熔覆技术制备了Ti3SiC2/Co基复合涂层,涂层中MAX相与分解生成的硬质相使涂层显微硬度提高2.3倍,γ-Co和TiC相的存在提高了涂层的耐磨性,其最低磨损率为5.2×106 μm 3,相比35CrMo钢基材磨损率降低84%。三元相与其同元素硬质相结合不仅抑制MAX相的分解,也可提高涂层耐磨性,CHEN等[89]制备了TiC/Ti3AlC2-Co基复合涂层,相比Ti3AlC2/Co基复合涂层[90],Ti3AlC2 高温分解后生成的氧化物和大量硬质相TiC可大范围填充涂层中孔隙,极大提高涂层致密性和耐磨性,复合涂层摩擦因数更低[11]

  • 图10 不同试验温度下Ti6Al4V合金和陶瓷涂层的摩擦因数、磨损率数值[76]

  • Fig.10 Friction coefficient and wear rate values of Ti6Al4V alloy and ceramic coatings at different experimental temperatures [76]

  • 3 MAX/金属基自润滑复合涂层的应用

  • MAX/金属基自润滑复合涂层既提高了基体表面耐磨性,也增加了涂层表面的润滑效果。根据其导电、耐磨和耐腐蚀等特性,重点介绍其在电接触材料、耐磨耐腐蚀材料和高温结构材料方面的表面防护作用和应用。

  • 3.1 电接触材料表面防护

  • 触头材料在电接触材料中直接影响设备运行过程中的可靠性和使用寿命[91]。纯铜作为优良的导电导热材料,其抗熔焊性差[92]。目前铜合金、铜基复合材料以及铜-陶瓷复合材料是最常用的新型电接触材料,广泛应用于受电弓滑板、高压开关触头以及导电滑环等领域。MAX陶瓷相具有良好的导电性和较高硬度,在金属基复合涂层中作为增强相可提高耐磨减摩性,该增强相的加入并不会大幅降低材料的导电性能。GRIESELER等[93]将3wt.%微米级的MAX相(Ti2AlC、Ti3AlC2)掺入到酸性CuSO4 镀液中,采用直流电电沉积法制备厚约50 μm的涂层,MAX陶瓷相比纯铜,热容量高而热导率低,涂层中弥散分布的MAX相,其周身热量既分散于涂层中又不会扩散太远。如图11所示,在电弧作用下纯铜涂层出现明显的熔化和再结晶,而复合镀层几乎不受电弧影响,仅出现微小熔化和再结晶现象,证明Cu-MAX镀层能够成为电器开关等此类电接触材料触头表面的防护材料[94-95]

  • 图11 垂直设置中电弧放电后的SEM电镜显微照片[93]

  • Fig.11 SEM microscope photo after arc discharge in vertical setting [93]

  • 3.2 耐磨耐腐蚀材料表面防护

  • 类似石墨层状结构的MAX陶瓷相也具有自润滑特性,其导热性和高温抗氧化性能都优于石墨,可用作苛刻环境下(如强酸、强碱以及高温)的摩擦润滑部件。ZHOU等[90]探索了不同含量下Ti3AlC2相在Co基合金涂层中高温600℃的摩擦磨损性能。研究结果表明,MAX相含量增多可提高复合涂层减摩性能, Co based-5%Ti3AlC2 复合涂层的摩擦因数相比Co based涂层(0.84)降低到0.52,高温下涂层表面生成的Al2O3 氧化膜不仅提高表面减摩性,也提高了涂层耐高温氧化性能。三元MAX相的耐蚀性也是极其优异的,Al+10wt%Ti3SiC2复合涂层要比纯铝涂层有更高的腐蚀电位和较低的腐蚀电流密度,如图12所示,纯铝表面出现大而深的凹坑,复合涂层表面的凹坑变小变浅,这与MAX第二相的加入阻止凹坑的扩散有关, MAX相加入的复合涂层表现出良好的耐腐蚀性和有效保护[67]。MAX相与滑动摩擦生成的致密氧化膜在提高涂层表面减摩性能之外,在一些高温极端环境下可防止外界物质的侵蚀,极大扩展了该类复合涂层的应用范围和服役环境[45, 27]

  • 图12 电势极化测试涂层SEM图[67]

  • Fig.12 SEM micrograph of coatings after potentiodynamic polarization test[67]

  • 3.3 高温结构材料表面防护

  • 高温结构材料具有优异的高温力学性能、抗氧化性能以及抗热腐蚀性能。目前高温结构材料以金属合金居多,最为典型的Co基、Ni基以及Fe基高温合金已广泛应用于航空发动机涡轮叶片、火箭发动机喷管以及高温热交换器等[96-97]。三元MAX相具有优异的力学性能、低膨胀系数和低密度等优点,加入高温金属合金基体中可大幅提高磨损性能,高温下具有好的塑性和高的损伤容限[98-99]。MAX相可作为高温环境下起减摩作用的润滑材料,弥补常温、低温润滑材料在高温下因氧化失去润滑作用这一短板,可配合常规低温固体润滑剂实现宽温域范围内的协同润滑效果[100-101]。例如:MoS2+ Ti3SiC2/NiAl基复合润滑材料[102]实现了从室温到800℃宽温域不同温度范围下的良好协同润滑作用,如图13所示,含有MAX相的磨损表面相对光滑,其400℃下摩擦因数仅为0.13,润滑作用由氧化膜组成的摩擦膜支撑,中低温下MoS2 其主要润滑作用,而高温下由MAX相提供润滑作用,此类型复合材料的减摩耐磨性能有望在连续升温环境中发挥出色的结果,是一种有前途的耐磨减摩高温应用材料。

  • 图13 磨损表面形貌[102]

  • Fig.13 SEM micrograph of worn surface [102]

  • 4 结论与展望

  • 目前研究者制备的MAX/金属基复合涂层体现出较优异的性能,并且涂层的种类发展极快,涂层的应用面也非常广泛,加之更多的MAX相也在不断地被发现并制备出来,含MAX相的复合涂层会更加完善。根据MAX/金属基复合涂层的研究情况可得出以下结论:

  • (1)三元MAX相涂层研究初期主要集中于制备和提高涂层中MAX相含量。MAX相在高温下容易分解,导致涂层中MAX相含量降低,而分解物偏多,通过退火处理可明显提升MAX相含量。热喷涂下保证MAX相不被分解难度较大,可通过多种工艺搭配、冷喷涂或低温条件下的沉积方式减少分解程度。

  • (2)MAX/金属基复合涂层能够有效改善基体表面性能,机械结合的界面结合强度较少表征,可通过喷涂打底黏结层的方式提高界面结合强度。 MAX/金属基复合涂层作为中间层也被证实可提高陶瓷与基体之间的界面结合强度。

  • 涂层质量是涂层应用于工业生产的第一关,涂层质量与粉末体系、造粒处理方式、沉积技术以及后处理类型等每一环节息息相关。为了得到质量良好的涂层,可以从以下方面入手:

  • (1)挖掘更加新颖的粉末体系,从粉末自身特性和喷涂时涂层成形特点选择合适的设备。

  • (2)粉末造粒方式和涂层结构设计上有更多的创新,喷涂技术以及设备有更多的探索和改进。

  • 参考文献

    • [1] 袁秦鲁,胡锐,李金山,等.梯度复合材料制备技术研究进展[J].兵器材料科学与工程,2003,26(6):4.YUAN Qinlu,HU Rui,LI Jinshan,et al.Research progress on preparation technology of gradient composites[J].Ordnance Materials Science and Engineering,2003,26(6):4.(in Chinese)

    • [2] 李长久.超音速火焰喷涂及涂层性能简介[J].中国表面工程,1996,9(4):29-33.LI Changjiu.Brief introduction of supersonic flame spraying and coating properties[J].China Surface Engineering,1996,9(4):29-33.(in Chinese)

    • [3] BAI Y L,HE X D,WANG R G,et al.High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the European Ceramic Society,2013,33(13-14):2435-2445.

    • [4] FARBER L,BARSOUM M W,ZAVALIANGOS A,et al.Dislocations and stacking faults in Ti3SiC2[J].Journal of the American Ceramic Society,2010,81(6):1677-1681.

    • [5] BARSOUM M W.Mechanical properties:ambient temperature[M].New Jersey:John Wiley & Sons,2013:307-361.

    • [6] REN S F,MENG J H,WANG J B,et al.Tribocorrosion behavior of Ti3SiC2 in the dilute and concentrated sulfuric acid solutions[J].Wear,2010,269(1-2):50-59.

    • [7] 任书芳,孟军虎,吕晋军,等.MN+1AXN 相及其复合材料的摩擦学性能研究进展[J].材料导报,2009,23(1):12-15.RENG Shufang,MENG Junhu,LÜ Jinjun,et al.Research progress on tribological properties of MN+1AXN phase and its composites[J].Material Review,2009,23(1):12-15.(in Chinese)

    • [8] JAMSHIDI R,BAYAT O,HEIDAROUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(10):1-10.

    • [9] 田莉,付超,李月明,等.MAX 相陶瓷的结构、制备及物理性能研究[J].物理学进展,2021,41(1):23.TIAN Li,FU Chao,LI Yueming,et al.Study on the structure,preparation and physical properties of MAX-phase ceramics[J].Physical Advances,2021,41(1):23.(in Chinese)

    • [10] BARSOUM M W.The MN+1AXN phases:A new class of solids;thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28:28-201.

    • [11] 郑丽雅,周延春,冯志海.MAX 相陶瓷的制备、结构、 性能及发展趋势[J].宇航材料工艺,2013,43(6):1-23.ZHENG Liya,ZHOU Yanchun,FEN Zhihai.Preparation,structure,performance and development trend of MAX-phase ceramics[J].Aerospace Materials & Technology,2013,43(6):1-23.(in Chinese)

    • [12] BAI Y L,NARASIMALU S,CHUA K Z,et al.Density functional theory study of Mn+1AXn phases:A review[J].Critical Reviews in Solid State and Material Sciences,2019,44(1):56-107.

    • [13] LIAO T,WANG J Y,ZHOU Y C.Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J].Physical.Review B,2006,73(21):214109.

    • [14] 柏跃磊,尹航,宋广平,等.高韧性三元层状陶瓷:从MAX相到MAB相[J].材料工程,2021,49(5):1-23.BAI Yuelei,YIN Hang,SONG Guangping,et al.High toughness ternary layered ceramic:From max phase to mab phase[J].Journal of Materials Engineering,2021,49(5):1-23.(in Chinese)

    • [15] XU L D,ZHU D G,GRASSO S,et al.Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J].Journal of Advanced Ceramics,2017,6(2):1-9.

    • [16] 薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.XUE Qunji.Introduction to the thermodynamics of frictional systems[M].Beijing:National Defense Industry Press,2002.(in Chinese)

    • [17] ERDEMIR A.A crystal-chemical approach to lubrication by solid oxides[J].Tribology Letters,2000,8(2-3):97-102.

    • [18] WU Y X,WANG F X,CHENG Y Q,et al.A study of the optimization mechanism of solid lubricant concentration in self-lubricating composite[J].Wear,1997,205(1-2):64-70.

    • [19] 李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI Boya,CAO Zhiqiang.Progress in metal-based solid and its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)

    • [20] SUN Y.Tribological rutile-TiO2 coating on aluminium alloy[J].Applied Surface Science,2004,233(1-4):328-335.

    • [21] GARDOS M N.Magnéli phases of anion-deficient rutile as lubricious oxides.Part II.Tribological behavior of Cu-doped polycrystalline rutile(TinO2n-1)[J].Tribology Letters,2000,8(2):79-96.

    • [22] KRÓL S,ZALISZ Z,HEPNER M.Comparison of the friction and wear properties of titanium and oxidised titanium in dry sliding against sintered high speed steel HS18-0-1 and against C45 carbon steel[J].Journal of Materials Processing Technology,2005,164-165(2):868-875.

    • [23] 郑乙,党文涛,任书芳.放电等离子烧结 Ti3SiC2-金属复合材料摩擦学性能研究[J].材料开发与应用,2016,31(3):86-93.ZHENG Yi,DANG Wentao,REN Shufang.Study on Fricological properties of Ti3SiC2-metal composite[J].Development and Application of Material,2016,31(3):86-93.(in Chinese)

    • [24] 黄振莺,翟洪祥,刘新,等.Ti3SiC2系材料的载流磨损特性及机理[J].稀有金属材料与工程,2007,36(A02):4.HUANG Zhenying,ZHAI Hongxiang,LIU Xin,et al.Current wear characteristics and mechanism of Ti3SiC2 system materials[J].Rare Metal Materials and Engineering,2007,36(A02):4.(in Chinese)

    • [25] FILIMONOV D,GUPTA S,PALANISAMY T,et al.Effect of applied load and surface roughness on the tribological properties of Ni-Based superalloys versus Ta2AlC/Ag or Cr2AlC/Ag composites[J].Tribology Letters,2009,33(1):9-20.

    • [26] GUPTA S,FILIMONOV D,ZAITSEV V,et al.Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3[J].Wear,2009,267(9-10):1490-1500.

    • [27] SHI X L,WANG M,ZHAI W Z,et al.Friction and wear behavior of NiAl–10 wt%Ti3SiC2 composites[J].Wear,2013,303(1-2):9-20.

    • [28] WANG Y,LIU,X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding-ScienceDirect[J].Ceramics International,2020,46(18):28996-29010.

    • [29] WANG X H,ZHOU Y C.High-temperature oxidation behavior of Ti2AlC in air[J].Oxidation of Metals,2003,59(3):303-320.

    • [30] DARIN J T,ELIZABETH N H,EľAD N C,et al.Effect of neutron irradiation on select MAX phases[J].Acta Materialia,2015,85(1):132-143.

    • [31] WANG C X,YANG T F,XIAO J R,et al.Irradiation-induced structural transitions in Ti2AlC[J].Acta Materialia,2015.98(7):197-205.

    • [32] GARKAS W,LEYENS C,FLORES A.Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater[J].Advanced Materials Research,2010,89-91(1):208-213.

    • [33] LI J J,QIAN Y H,NIU D,et al.Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J].Applied Surface Science,2012,263(1):457-464.

    • [34] YANG Y,KEUNECKE M,STEIN C,et al.Formation of Ti2AlN phase after post-heat treatment of Ti-Al-N films deposited by pulsed magnetron sputtering[J].Surface & Coatings Technology,2012,206(10):2661-2666.

    • [35] AHMED A A,TETSUYA T A,DENIS M A,et al.MAX phase formation by intercalation upon annealing of TiCx/Al(0.4 ≤ x ≤ 1)bilayer thin films[J].Acta Materialia,2011,59(15):6168-6175.

    • [36] KELLY P J,ARNELL R D.Magnetron sputtering:a review of recent developments and applications[J].Vacuum,2000,56(3):159-172.

    • [37] FENG Z J,KE P L,WANG A Y.Preparation of Ti2AlC MAX phase coating by DC magnetron sputtering deposition and vacuum heat treatment[J].Journal of Materials Science & Technology,2015,31(12):1193-1197.

    • [38] RICHARDSON P,CUSKELLY D,BRANDT M,et al.Effects of furnace annealing on in situ reacted Ti2AlC MAX phase composite coatings deposited by laser cladding[J].Surface and Coatings Technology,2020,405(1):126597.

    • [39] LIU F C,LIN X,ZHAO W W,et al.Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy[J].Rare Metal Materials & Engineering,2010,39(9):1519-1524.

    • [40] WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 ℃[J].Materials Letters,2019,261(1):127160.

    • [41] ZHANG Z,LIM S H,CHAI J W,et al.Plasma spray of Ti2AlC MAX phase powders:effects of process parameters on coatings’ properties[J].Surface and Coatings Technology,2017,325(7):429-436.

    • [42] SOKOL M,YANG J,KESHAVAN H,et al.Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based Superalloy[J].Journal of the European Ceramic Society,2018,39(4):878-882.

    • [43] WANG Z Y,SUN J,XU B B,et al.Reducing the self-healing temperature of Ti2AlC MAX phase coating by substituting Al with Sn[J].Journal of the European Ceramic Society,2019,40(1):197-201.

    • [44] NAVEED M,RENTERIA A F,NEBEL D,et al.Study of high velocity solid particle erosion behaviour of Ti2AlC MAX phase coatings[J].Wear,2015,10(342-343):391-397.

    • [45] GUO L,YAN Z,WANG X H,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.

    • [46] LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi scales tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface & Coatings Technology,2018,331(1):384-393.

    • [47] TIAN W,WANG P,KAN Y,et al.Oxidation behavior of Cr2AlC ceramics at 1 100 and 1 250 ℃[J].Journal of Materials Science,2008,43(8):2785-2791.

    • [48] LEE D B,NGUYEN T D.Cyclic oxidation of Cr2AlC between 1 000 and 1 300 ℃ in air[J].Journal of Alloys & Compounds,2008,464(1-2):434-439.

    • [49] WANG Q M,RENTERIA A F,SCHROETER O,et al.Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy[J].Surface & Coatings Technology,2010,204(15):2343-2352.

    • [50] SMIALEK,JAMES L,GARG,et al.Interfacial reactions of a MAX phase/superalloy hybrid[J].Interfaces and Thin Films,2015,47(8):844-853.

    • [51] NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings[J].Metals-Open Access Metallurgy Journal,2016,6(11):265.

    • [52] QURESHI M W,MA X X,TANG G Z,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.

    • [53] GHASEMI S,FARHADIZADEH A R,GHOMI H.Effect of frequency and pulse-on time of high power impulse magnetron sputtering on deposition rate and morphology of titanium nitride using response surface methodology[J].Transactions of Nonferrous Metals Society of China,2019,29(12):2577-2590.

    • [54] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vakuum in Forschung und Praxis,2017,29(2):40-44.

    • [55] BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings [J].Surface and Coatings Technology,2018,336(8):84-91.

    • [56] 周香林,张济山,巫湘坤.先进冷喷涂技术与应用[M].北京:机械工业出版社,2011.ZHOU Xianglin,ZHANG Jishan,WU Xiangkun.Advanced cold spray technology and application[M].Beijing:China Machine Press,2011.(in Chinese)

    • [57] GO T,SOHN Y J,MAUER G,et al.Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coatlayers[J].Journal of the European Ceramic Society,2018,39(4):860-867.

    • [58] DAVIS D,SRIVASTAVA M,MALATHI M,et al.Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring:Tribological and twist-fatigue life assessment[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2018,449(Aug.15):295-303.

    • [59] 高荣发.热喷涂[M].北京:化学工业出版社,1992.GAO Rongfa.Thermal spray[M].Beijing:Chemical Industry Press,1992.(in Chinese)

    • [60] RAHMAN M A,RAHAMAN M Z.Study on structural electronic,optical and mechanical properties of MAX phase compounds and applications review article[J],American Journal of Modern Physics,2015,4(2):75-91.

    • [61] GALVIN T,HYATT N C,RAINFORTH W M,et al.Laser sintering of electrophoretically deposited(EPD)Ti3SiC2 MAX phase coatings on titanium[J].Surface and Coatings Technology,2019,366(1):199-203.

    • [62] 梁佳敏.磁控溅射制备 Zr2Al3C4 涂层及其抗高温水蒸气氧化性能的研究[D].天津:天津大学.LIANG Jiamin.Study on Zr2Al3C4 coating prepared by magnetron sputtering and its resistance to high temperature water vapor oxidation[D].Tianjin:Tianjin University.(in Chinese)

    • [63] GARKAS W,FRŐHLICH M,WELTMANN KD,et al.Oxidation and decomposition of Ti2AlN MAX phase coating deposited on nickel-based super alloy IN718[J].Materials Science Forum,2015,825/826(Pt.2):628-635.

    • [64] 赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Influence of bombardment ion energy on the structure and mechanical properties of V2AlC MAX phase coatings[J] China Surface Engineering,2019,32(3):80-87.(in Chinese)

    • [65] RAVINDRAN P,MANISEKAR K,NARAYANASAMY P,et al.Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J].Materials & Design,2012,39(Aug.):42-54.

    • [66] 唐中杰,郭铁明,付迎,等.镍基高温合金的研究现状与发展前景[J].航空材料,2014,67(1):36-40.TANG Zhongjie,GUO Tieming,FU Ying,et al.Research present situation and the development prospect of Nickel-based superalloy[J].Aeronautical Materials,2014,67(1):36-40.(in Chinese)

    • [67] JAMSHIDI R,BAYAT O,HEIDARPOUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(1):1-10.

    • [68] 李伟,周伟,赵宇光.Ti-6Al-4V 合金表面原位内生(Ti3SiC2+TiB2)p/Al 基复合材料涂层制备[J].特种铸造及有色合金,2019,39(11):1235-1239.LI Wei,ZHOU Wei,ZHAO Yuguang.Preparation of Ti-6Al-4V alloy surface in situ(Ti3SiC2 + TiB2)p/Al based composite coating[J].Special Casting & Nonferrous Alloys,2019,39(11):1235-1239.(in Chinese)

    • [69] LI Q L,YUAN X H,XU H,et al.Microstructure and fracture toughness of in-situ nanocomposite coating by thermal spraying of Ti3AlC2/Cu powder[J].Ceramics International,2019,45(10):13119-13126.

    • [70] LI Q L,SONG P,HUANG W L,et al.Improvement in the mechanical properties of plasma spray ceramicCu/Ti3AlC2 gradient coatings by heat treatment[J].Ceramics International,2019,45(17):22452-22463.

    • [71] YU W B,ZHAO H B,HUANG Z Y,et al.Microstructure evolution and bonding mechanism of Ti2SnC-Ti6Al4V joint by using Cu pure foil interlayer[J].Materials Characterization,2017,127(2):53-59.

    • [72] MURUGESAN S,MONTEIRO O,KHABASHESKU V N.Extending the lifetime of oil and gas equipment with corrosion and erosion-resistant Ni-B-nanodiamond metal-matrix-nanocomposite coatings[C]//Offshore Technology Conference,Houston,2016.

    • [73] RASHID A,CAMPBELL J.Oxide defects in a vacuum investment-cast Ni-based turbine blade[J].Metallurgical & Materials Transactions.Part A,2004,35(7):2063-2071.

    • [74] KONG D,ZHAO B.Effects of loads on friction-wear properties of HVOF sprayed NiCrBSi alloy coatings by laser remelting[J].Journal of Alloys & Compounds,2017,705(2):700-707.

    • [75] DEVOJNO O G,FELDSHTEIN E,KARDAPOLAVA M A,et al.On the formation features,microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy[J].Optics& Lasers in Engineering,2018,106(July):32-38.

    • [76] 孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007(1):7-10.SUN Ronglu,NIU Wei,WANG Chengyang.Microstructure and wear properties of laser cladding TiN-Ni-based alloy composite coatings on titanium alloys[J].Rare Metal Materials and Engineering,2007(1):7-10.(in Chinese)

    • [77] BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39(2):99-114.

    • [78] WANG Y,LIU X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding[J].Ceramics International,2020,46(18):28996-29010.

    • [79] LIANG Y,LIU M Y,CHEN J X,et al.Electrodeposition and characterization of Ni/Ti3Si(Al)C2 composite coatings[J].Journal of Materials Science & Technology,2011(11):1016-1024.

    • [80] 秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40.QIN Yang,YAN Hua,GAO Qiushi,et al.Organization and wear resistance of Ti3SiC2/Ni base coating synthesized with TC4 surface laser melting recovery position[J].Nonferrous Metal Engineering,2019,9(4):34-40.(in Chinese)

    • [81] 欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,49(8):11.OUYANG Chunsheng,LIU Xiubo,LUO Yingshe,et al.High temperature fricological properties of Ti3SiC2-Ni based self-lubricate composite coating with 304 stainless steel surface laser[J].Surface Technology,49(8):11.(in Chinese)

    • [82] 张天刚,张倩,庄怀风,等.TC4 表面 Ti2SC-Ti2Ni 复合结构相的自润滑激光熔覆层组织与性能[J].光学学报,2020,40(11):11.ZHANG Tiangang,ZHANG Qian,ZHUANG Huaifeng,et al.Self-lubricating laser fusion complex layer tissue and performance of TC4 surface Ti2SC-Ti2Ni composite structure phase[J].Acta Optica Sinica,2020,40(11):11.(in Chinese)

    • [83] YAN H,LIU K W,ZHANG P L,et al.Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J].Optics & Laser Technology,2020,126(3):106077.

    • [84] WANG J Y,ZHANG B S,YU Y Q,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high–entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384(1):125337.

    • [85] WANG H B,QIU Q F,GEE M,et al.Wear resistance enhancement of HVOF–sprayed WC–Co coating by complete densification of starting powder[J].Materials & Design,2020,191(1):108586.

    • [86] DING L,HU S S,QUAN X M,et al.Effect of Ti on the microstructure evolution and wear behavior of VN alloy/Co–based composite coatings by laser cladding[J].Journal of Materials Processing Technology,2018,252(1):711-719.

    • [87] WALL M T,PANTAWANE M V,JOSHI S,et al.Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head[J].Surface and Coatings Technology,2020,387(1):125473.

    • [88] LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J].Optics & Laser Technology,2019,114(2):209-215.

    • [89] CHEN H F,DU Y X,WANG D J,et al.TiC/Ti3AlC2–Co plasma-sprayed coatings with excellent high-temperature tribological properties[J].Ceramics International,2018,44(18):S0272884218324891-.

    • [90] ZHOU J L,KONG D J.Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding[J].Surface and Coatings Technology,2021,408(25):126816.

    • [91] 王其平.电器电弧理论[M].北京:机械工业出版社,1982.WANG Qiping.Electrical arc theory[M].Beijing:China Machine Press,1982.(in Chinese)

    • [92] 李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42.LI Xingeng,FU Min.Development status and prospect of vacuum electric contact material technology[J].Electric Power,2001,34(8):39-42.(in Chinese)

    • [93] GRIESELER R,CAMARGO M K,HOPFELD M,et al.Copper-MAX-phase composite coatings obtained by electro-co-deposition:a promising material for electrical contacts[J].Surface & Coatings Technology,2017,321(4):219-228.

    • [94] SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143–166.

    • [95] BRANDES A E,BROOK G B.Smithells metals reference book[M].Oxford:Butterworth Heinemann,1983.

    • [96] 刘永康,王博,赖小明,等.密封舱结构材料5B70铝合金高温压缩实验与晶体塑性模拟研究[J].载人航天,2021,27(2):8.LIU Yongkang,WANG Bo,LAI Xiaoming,et al.Study on high temperature compression experiment and crystal plastic simulation of 5B70 aluminum alloy[J].Manned Space Flight,2021,27(2):8.(in Chinese)

    • [97] 杨玲玲,任毅如,宁克焱,等.干片式制动器典型结构材料高温性能研究[J].热加工工艺,2021,50(6):62-66.YANG Lingling,REN Yiru,NING Keyan,et al.Study on high temperature performance of typical structural material of dry plate brake[J].Hot Working Technology,2021,50(6):62-66.(in Chinese)

    • [98] BARSOUM M W.The Mn+1AXn phases:A new class of solids[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.

    • [99] EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.

    • [100] ARSLAN E,TOTIK Y,BAYRAK O,et al.High temperature friction and wear behavior of MoS2/Nb coating in ambient air[J].Journal of Coatings Technology & Research,2010,7(1):131-137.

    • [101] CLAUSS F J.Solid lubricants and self-lubricating solids[J].New York:Academic Press,1972:164-194.

    • [102] SHI X L,ZHAI W Z,XU Z S,et al.Synergetic lubricating effect of MoS2 and Ti3iC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range[J].Materials & Design,2014,55(3):93-103.

  • 参考文献

    • [1] 袁秦鲁,胡锐,李金山,等.梯度复合材料制备技术研究进展[J].兵器材料科学与工程,2003,26(6):4.YUAN Qinlu,HU Rui,LI Jinshan,et al.Research progress on preparation technology of gradient composites[J].Ordnance Materials Science and Engineering,2003,26(6):4.(in Chinese)

    • [2] 李长久.超音速火焰喷涂及涂层性能简介[J].中国表面工程,1996,9(4):29-33.LI Changjiu.Brief introduction of supersonic flame spraying and coating properties[J].China Surface Engineering,1996,9(4):29-33.(in Chinese)

    • [3] BAI Y L,HE X D,WANG R G,et al.High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J].Journal of the European Ceramic Society,2013,33(13-14):2435-2445.

    • [4] FARBER L,BARSOUM M W,ZAVALIANGOS A,et al.Dislocations and stacking faults in Ti3SiC2[J].Journal of the American Ceramic Society,2010,81(6):1677-1681.

    • [5] BARSOUM M W.Mechanical properties:ambient temperature[M].New Jersey:John Wiley & Sons,2013:307-361.

    • [6] REN S F,MENG J H,WANG J B,et al.Tribocorrosion behavior of Ti3SiC2 in the dilute and concentrated sulfuric acid solutions[J].Wear,2010,269(1-2):50-59.

    • [7] 任书芳,孟军虎,吕晋军,等.MN+1AXN 相及其复合材料的摩擦学性能研究进展[J].材料导报,2009,23(1):12-15.RENG Shufang,MENG Junhu,LÜ Jinjun,et al.Research progress on tribological properties of MN+1AXN phase and its composites[J].Material Review,2009,23(1):12-15.(in Chinese)

    • [8] JAMSHIDI R,BAYAT O,HEIDAROUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(10):1-10.

    • [9] 田莉,付超,李月明,等.MAX 相陶瓷的结构、制备及物理性能研究[J].物理学进展,2021,41(1):23.TIAN Li,FU Chao,LI Yueming,et al.Study on the structure,preparation and physical properties of MAX-phase ceramics[J].Physical Advances,2021,41(1):23.(in Chinese)

    • [10] BARSOUM M W.The MN+1AXN phases:A new class of solids;thermodynamically stable nanolaminates[J].Progress in Solid State Chemistry,2000,28:28-201.

    • [11] 郑丽雅,周延春,冯志海.MAX 相陶瓷的制备、结构、 性能及发展趋势[J].宇航材料工艺,2013,43(6):1-23.ZHENG Liya,ZHOU Yanchun,FEN Zhihai.Preparation,structure,performance and development trend of MAX-phase ceramics[J].Aerospace Materials & Technology,2013,43(6):1-23.(in Chinese)

    • [12] BAI Y L,NARASIMALU S,CHUA K Z,et al.Density functional theory study of Mn+1AXn phases:A review[J].Critical Reviews in Solid State and Material Sciences,2019,44(1):56-107.

    • [13] LIAO T,WANG J Y,ZHOU Y C.Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J].Physical.Review B,2006,73(21):214109.

    • [14] 柏跃磊,尹航,宋广平,等.高韧性三元层状陶瓷:从MAX相到MAB相[J].材料工程,2021,49(5):1-23.BAI Yuelei,YIN Hang,SONG Guangping,et al.High toughness ternary layered ceramic:From max phase to mab phase[J].Journal of Materials Engineering,2021,49(5):1-23.(in Chinese)

    • [15] XU L D,ZHU D G,GRASSO S,et al.Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J].Journal of Advanced Ceramics,2017,6(2):1-9.

    • [16] 薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.XUE Qunji.Introduction to the thermodynamics of frictional systems[M].Beijing:National Defense Industry Press,2002.(in Chinese)

    • [17] ERDEMIR A.A crystal-chemical approach to lubrication by solid oxides[J].Tribology Letters,2000,8(2-3):97-102.

    • [18] WU Y X,WANG F X,CHENG Y Q,et al.A study of the optimization mechanism of solid lubricant concentration in self-lubricating composite[J].Wear,1997,205(1-2):64-70.

    • [19] 李博雅,曹志强.金属基固体自润滑复合涂层及其制备技术研究进展[J].表面技术,2017,46(9):32-38.LI Boya,CAO Zhiqiang.Progress in metal-based solid and its preparation technology[J].Surface Technology,2017,46(9):32-38.(in Chinese)

    • [20] SUN Y.Tribological rutile-TiO2 coating on aluminium alloy[J].Applied Surface Science,2004,233(1-4):328-335.

    • [21] GARDOS M N.Magnéli phases of anion-deficient rutile as lubricious oxides.Part II.Tribological behavior of Cu-doped polycrystalline rutile(TinO2n-1)[J].Tribology Letters,2000,8(2):79-96.

    • [22] KRÓL S,ZALISZ Z,HEPNER M.Comparison of the friction and wear properties of titanium and oxidised titanium in dry sliding against sintered high speed steel HS18-0-1 and against C45 carbon steel[J].Journal of Materials Processing Technology,2005,164-165(2):868-875.

    • [23] 郑乙,党文涛,任书芳.放电等离子烧结 Ti3SiC2-金属复合材料摩擦学性能研究[J].材料开发与应用,2016,31(3):86-93.ZHENG Yi,DANG Wentao,REN Shufang.Study on Fricological properties of Ti3SiC2-metal composite[J].Development and Application of Material,2016,31(3):86-93.(in Chinese)

    • [24] 黄振莺,翟洪祥,刘新,等.Ti3SiC2系材料的载流磨损特性及机理[J].稀有金属材料与工程,2007,36(A02):4.HUANG Zhenying,ZHAI Hongxiang,LIU Xin,et al.Current wear characteristics and mechanism of Ti3SiC2 system materials[J].Rare Metal Materials and Engineering,2007,36(A02):4.(in Chinese)

    • [25] FILIMONOV D,GUPTA S,PALANISAMY T,et al.Effect of applied load and surface roughness on the tribological properties of Ni-Based superalloys versus Ta2AlC/Ag or Cr2AlC/Ag composites[J].Tribology Letters,2009,33(1):9-20.

    • [26] GUPTA S,FILIMONOV D,ZAITSEV V,et al.Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3[J].Wear,2009,267(9-10):1490-1500.

    • [27] SHI X L,WANG M,ZHAI W Z,et al.Friction and wear behavior of NiAl–10 wt%Ti3SiC2 composites[J].Wear,2013,303(1-2):9-20.

    • [28] WANG Y,LIU,X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding-ScienceDirect[J].Ceramics International,2020,46(18):28996-29010.

    • [29] WANG X H,ZHOU Y C.High-temperature oxidation behavior of Ti2AlC in air[J].Oxidation of Metals,2003,59(3):303-320.

    • [30] DARIN J T,ELIZABETH N H,EľAD N C,et al.Effect of neutron irradiation on select MAX phases[J].Acta Materialia,2015,85(1):132-143.

    • [31] WANG C X,YANG T F,XIAO J R,et al.Irradiation-induced structural transitions in Ti2AlC[J].Acta Materialia,2015.98(7):197-205.

    • [32] GARKAS W,LEYENS C,FLORES A.Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater[J].Advanced Materials Research,2010,89-91(1):208-213.

    • [33] LI J J,QIAN Y H,NIU D,et al.Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J].Applied Surface Science,2012,263(1):457-464.

    • [34] YANG Y,KEUNECKE M,STEIN C,et al.Formation of Ti2AlN phase after post-heat treatment of Ti-Al-N films deposited by pulsed magnetron sputtering[J].Surface & Coatings Technology,2012,206(10):2661-2666.

    • [35] AHMED A A,TETSUYA T A,DENIS M A,et al.MAX phase formation by intercalation upon annealing of TiCx/Al(0.4 ≤ x ≤ 1)bilayer thin films[J].Acta Materialia,2011,59(15):6168-6175.

    • [36] KELLY P J,ARNELL R D.Magnetron sputtering:a review of recent developments and applications[J].Vacuum,2000,56(3):159-172.

    • [37] FENG Z J,KE P L,WANG A Y.Preparation of Ti2AlC MAX phase coating by DC magnetron sputtering deposition and vacuum heat treatment[J].Journal of Materials Science & Technology,2015,31(12):1193-1197.

    • [38] RICHARDSON P,CUSKELLY D,BRANDT M,et al.Effects of furnace annealing on in situ reacted Ti2AlC MAX phase composite coatings deposited by laser cladding[J].Surface and Coatings Technology,2020,405(1):126597.

    • [39] LIU F C,LIN X,ZHAO W W,et al.Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy[J].Rare Metal Materials & Engineering,2010,39(9):1519-1524.

    • [40] WANG Z Y,LI W T,WANG C C,et al.Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 ℃[J].Materials Letters,2019,261(1):127160.

    • [41] ZHANG Z,LIM S H,CHAI J W,et al.Plasma spray of Ti2AlC MAX phase powders:effects of process parameters on coatings’ properties[J].Surface and Coatings Technology,2017,325(7):429-436.

    • [42] SOKOL M,YANG J,KESHAVAN H,et al.Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based Superalloy[J].Journal of the European Ceramic Society,2018,39(4):878-882.

    • [43] WANG Z Y,SUN J,XU B B,et al.Reducing the self-healing temperature of Ti2AlC MAX phase coating by substituting Al with Sn[J].Journal of the European Ceramic Society,2019,40(1):197-201.

    • [44] NAVEED M,RENTERIA A F,NEBEL D,et al.Study of high velocity solid particle erosion behaviour of Ti2AlC MAX phase coatings[J].Wear,2015,10(342-343):391-397.

    • [45] GUO L,YAN Z,WANG X H,et al.Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings[J].Ceramics International,2019,45(6):7627-7634.

    • [46] LOGANATHAN A,SAHU A,RUDOLF C,et al.Multi scales tribological and nanomechanical behavior of cold sprayed Ti2AlC MAX phase coating[J].Surface & Coatings Technology,2018,331(1):384-393.

    • [47] TIAN W,WANG P,KAN Y,et al.Oxidation behavior of Cr2AlC ceramics at 1 100 and 1 250 ℃[J].Journal of Materials Science,2008,43(8):2785-2791.

    • [48] LEE D B,NGUYEN T D.Cyclic oxidation of Cr2AlC between 1 000 and 1 300 ℃ in air[J].Journal of Alloys & Compounds,2008,464(1-2):434-439.

    • [49] WANG Q M,RENTERIA A F,SCHROETER O,et al.Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy[J].Surface & Coatings Technology,2010,204(15):2343-2352.

    • [50] SMIALEK,JAMES L,GARG,et al.Interfacial reactions of a MAX phase/superalloy hybrid[J].Interfaces and Thin Films,2015,47(8):844-853.

    • [51] NAVEED M,OBROSOV A,ZAK A,et al.Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings[J].Metals-Open Access Metallurgy Journal,2016,6(11):265.

    • [52] QURESHI M W,MA X X,TANG G Z,et al.Fabrication and mechanical properties of Cr2AlC MAX phase coatings on TiBw/Ti6Al4V composite prepared by HiPIMS[J].Materials,2021,14(4):826.

    • [53] GHASEMI S,FARHADIZADEH A R,GHOMI H.Effect of frequency and pulse-on time of high power impulse magnetron sputtering on deposition rate and morphology of titanium nitride using response surface methodology[J].Transactions of Nonferrous Metals Society of China,2019,29(12):2577-2590.

    • [54] EICHENHOFER G,FERNANDEZ I,WENNBERG A.Industrial use of HiPIMS and the hiP-V hiPlus technology[J].Vakuum in Forschung und Praxis,2017,29(2):40-44.

    • [55] BISWAS B,PURANDARE Y,SUGUMARAN A,et al.Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings [J].Surface and Coatings Technology,2018,336(8):84-91.

    • [56] 周香林,张济山,巫湘坤.先进冷喷涂技术与应用[M].北京:机械工业出版社,2011.ZHOU Xianglin,ZHANG Jishan,WU Xiangkun.Advanced cold spray technology and application[M].Beijing:China Machine Press,2011.(in Chinese)

    • [57] GO T,SOHN Y J,MAUER G,et al.Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coatlayers[J].Journal of the European Ceramic Society,2018,39(4):860-867.

    • [58] DAVIS D,SRIVASTAVA M,MALATHI M,et al.Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring:Tribological and twist-fatigue life assessment[J].Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2018,449(Aug.15):295-303.

    • [59] 高荣发.热喷涂[M].北京:化学工业出版社,1992.GAO Rongfa.Thermal spray[M].Beijing:Chemical Industry Press,1992.(in Chinese)

    • [60] RAHMAN M A,RAHAMAN M Z.Study on structural electronic,optical and mechanical properties of MAX phase compounds and applications review article[J],American Journal of Modern Physics,2015,4(2):75-91.

    • [61] GALVIN T,HYATT N C,RAINFORTH W M,et al.Laser sintering of electrophoretically deposited(EPD)Ti3SiC2 MAX phase coatings on titanium[J].Surface and Coatings Technology,2019,366(1):199-203.

    • [62] 梁佳敏.磁控溅射制备 Zr2Al3C4 涂层及其抗高温水蒸气氧化性能的研究[D].天津:天津大学.LIANG Jiamin.Study on Zr2Al3C4 coating prepared by magnetron sputtering and its resistance to high temperature water vapor oxidation[D].Tianjin:Tianjin University.(in Chinese)

    • [63] GARKAS W,FRŐHLICH M,WELTMANN KD,et al.Oxidation and decomposition of Ti2AlN MAX phase coating deposited on nickel-based super alloy IN718[J].Materials Science Forum,2015,825/826(Pt.2):628-635.

    • [64] 赵公澍,葛芳芳,程晓英,等.轰击离子能量对 V2AlC MAX 相涂层结构及力学性能的影响[J].中国表面工程,2019,32(3):80-87.ZHAO Gongshu,GE Fangfang,CHENG Xiaoying,et al.Influence of bombardment ion energy on the structure and mechanical properties of V2AlC MAX phase coatings[J] China Surface Engineering,2019,32(3):80-87.(in Chinese)

    • [65] RAVINDRAN P,MANISEKAR K,NARAYANASAMY P,et al.Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J].Materials & Design,2012,39(Aug.):42-54.

    • [66] 唐中杰,郭铁明,付迎,等.镍基高温合金的研究现状与发展前景[J].航空材料,2014,67(1):36-40.TANG Zhongjie,GUO Tieming,FU Ying,et al.Research present situation and the development prospect of Nickel-based superalloy[J].Aeronautical Materials,2014,67(1):36-40.(in Chinese)

    • [67] JAMSHIDI R,BAYAT O,HEIDARPOUR A.Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel[J].Surface & Coatings Technology,2018,358(1):1-10.

    • [68] 李伟,周伟,赵宇光.Ti-6Al-4V 合金表面原位内生(Ti3SiC2+TiB2)p/Al 基复合材料涂层制备[J].特种铸造及有色合金,2019,39(11):1235-1239.LI Wei,ZHOU Wei,ZHAO Yuguang.Preparation of Ti-6Al-4V alloy surface in situ(Ti3SiC2 + TiB2)p/Al based composite coating[J].Special Casting & Nonferrous Alloys,2019,39(11):1235-1239.(in Chinese)

    • [69] LI Q L,YUAN X H,XU H,et al.Microstructure and fracture toughness of in-situ nanocomposite coating by thermal spraying of Ti3AlC2/Cu powder[J].Ceramics International,2019,45(10):13119-13126.

    • [70] LI Q L,SONG P,HUANG W L,et al.Improvement in the mechanical properties of plasma spray ceramicCu/Ti3AlC2 gradient coatings by heat treatment[J].Ceramics International,2019,45(17):22452-22463.

    • [71] YU W B,ZHAO H B,HUANG Z Y,et al.Microstructure evolution and bonding mechanism of Ti2SnC-Ti6Al4V joint by using Cu pure foil interlayer[J].Materials Characterization,2017,127(2):53-59.

    • [72] MURUGESAN S,MONTEIRO O,KHABASHESKU V N.Extending the lifetime of oil and gas equipment with corrosion and erosion-resistant Ni-B-nanodiamond metal-matrix-nanocomposite coatings[C]//Offshore Technology Conference,Houston,2016.

    • [73] RASHID A,CAMPBELL J.Oxide defects in a vacuum investment-cast Ni-based turbine blade[J].Metallurgical & Materials Transactions.Part A,2004,35(7):2063-2071.

    • [74] KONG D,ZHAO B.Effects of loads on friction-wear properties of HVOF sprayed NiCrBSi alloy coatings by laser remelting[J].Journal of Alloys & Compounds,2017,705(2):700-707.

    • [75] DEVOJNO O G,FELDSHTEIN E,KARDAPOLAVA M A,et al.On the formation features,microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy[J].Optics& Lasers in Engineering,2018,106(July):32-38.

    • [76] 孙荣禄,牛伟,王成扬.钛合金表面激光熔覆 TiN-Ni 基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007(1):7-10.SUN Ronglu,NIU Wei,WANG Chengyang.Microstructure and wear properties of laser cladding TiN-Ni-based alloy composite coatings on titanium alloys[J].Rare Metal Materials and Engineering,2007(1):7-10.(in Chinese)

    • [77] BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39(2):99-114.

    • [78] WANG Y,LIU X B,LIU Y F,et al.Microstructure and tribological performance of Ni60-based composite coatings on Ti6Al4V alloy with different Ti3SiC2 ceramic additions by laser cladding[J].Ceramics International,2020,46(18):28996-29010.

    • [79] LIANG Y,LIU M Y,CHEN J X,et al.Electrodeposition and characterization of Ni/Ti3Si(Al)C2 composite coatings[J].Journal of Materials Science & Technology,2011(11):1016-1024.

    • [80] 秦阳,闫华,高秋实,等.TC4 表面激光熔覆原位合成 Ti3SiC2/Ni 基涂层的组织与耐磨性能[J].有色金属工程,2019,9(4):34-40.QIN Yang,YAN Hua,GAO Qiushi,et al.Organization and wear resistance of Ti3SiC2/Ni base coating synthesized with TC4 surface laser melting recovery position[J].Nonferrous Metal Engineering,2019,9(4):34-40.(in Chinese)

    • [81] 欧阳春生,刘秀波,罗迎社,等.304 不锈钢表面激光制备 Ti3SiC2-Ni 基自润滑复合涂层的高温摩擦学性能[J].表面技术,49(8):11.OUYANG Chunsheng,LIU Xiubo,LUO Yingshe,et al.High temperature fricological properties of Ti3SiC2-Ni based self-lubricate composite coating with 304 stainless steel surface laser[J].Surface Technology,49(8):11.(in Chinese)

    • [82] 张天刚,张倩,庄怀风,等.TC4 表面 Ti2SC-Ti2Ni 复合结构相的自润滑激光熔覆层组织与性能[J].光学学报,2020,40(11):11.ZHANG Tiangang,ZHANG Qian,ZHUANG Huaifeng,et al.Self-lubricating laser fusion complex layer tissue and performance of TC4 surface Ti2SC-Ti2Ni composite structure phase[J].Acta Optica Sinica,2020,40(11):11.(in Chinese)

    • [83] YAN H,LIU K W,ZHANG P L,et al.Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J].Optics & Laser Technology,2020,126(3):106077.

    • [84] WANG J Y,ZHANG B S,YU Y Q,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high–entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384(1):125337.

    • [85] WANG H B,QIU Q F,GEE M,et al.Wear resistance enhancement of HVOF–sprayed WC–Co coating by complete densification of starting powder[J].Materials & Design,2020,191(1):108586.

    • [86] DING L,HU S S,QUAN X M,et al.Effect of Ti on the microstructure evolution and wear behavior of VN alloy/Co–based composite coatings by laser cladding[J].Journal of Materials Processing Technology,2018,252(1):711-719.

    • [87] WALL M T,PANTAWANE M V,JOSHI S,et al.Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head[J].Surface and Coatings Technology,2020,387(1):125473.

    • [88] LI X,ZHANG C H,ZHANG S,et al.Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J].Optics & Laser Technology,2019,114(2):209-215.

    • [89] CHEN H F,DU Y X,WANG D J,et al.TiC/Ti3AlC2–Co plasma-sprayed coatings with excellent high-temperature tribological properties[J].Ceramics International,2018,44(18):S0272884218324891-.

    • [90] ZHOU J L,KONG D J.Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding[J].Surface and Coatings Technology,2021,408(25):126816.

    • [91] 王其平.电器电弧理论[M].北京:机械工业出版社,1982.WANG Qiping.Electrical arc theory[M].Beijing:China Machine Press,1982.(in Chinese)

    • [92] 李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42.LI Xingeng,FU Min.Development status and prospect of vacuum electric contact material technology[J].Electric Power,2001,34(8):39-42.(in Chinese)

    • [93] GRIESELER R,CAMARGO M K,HOPFELD M,et al.Copper-MAX-phase composite coatings obtained by electro-co-deposition:a promising material for electrical contacts[J].Surface & Coatings Technology,2017,321(4):219-228.

    • [94] SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143–166.

    • [95] BRANDES A E,BROOK G B.Smithells metals reference book[M].Oxford:Butterworth Heinemann,1983.

    • [96] 刘永康,王博,赖小明,等.密封舱结构材料5B70铝合金高温压缩实验与晶体塑性模拟研究[J].载人航天,2021,27(2):8.LIU Yongkang,WANG Bo,LAI Xiaoming,et al.Study on high temperature compression experiment and crystal plastic simulation of 5B70 aluminum alloy[J].Manned Space Flight,2021,27(2):8.(in Chinese)

    • [97] 杨玲玲,任毅如,宁克焱,等.干片式制动器典型结构材料高温性能研究[J].热加工工艺,2021,50(6):62-66.YANG Lingling,REN Yiru,NING Keyan,et al.Study on high temperature performance of typical structural material of dry plate brake[J].Hot Working Technology,2021,50(6):62-66.(in Chinese)

    • [98] BARSOUM M W.The Mn+1AXn phases:A new class of solids[J].Progress in Solid State Chemistry,2000,28(1-4):201-281.

    • [99] EKLUND P,BECKERS M,JANSSON U,et al.The Mn+1AXn phases:Materials science and thin-film processing[J].Thin Solid Films,2010,518(8):1851-1878.

    • [100] ARSLAN E,TOTIK Y,BAYRAK O,et al.High temperature friction and wear behavior of MoS2/Nb coating in ambient air[J].Journal of Coatings Technology & Research,2010,7(1):131-137.

    • [101] CLAUSS F J.Solid lubricants and self-lubricating solids[J].New York:Academic Press,1972:164-194.

    • [102] SHI X L,ZHAI W Z,XU Z S,et al.Synergetic lubricating effect of MoS2 and Ti3iC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range[J].Materials & Design,2014,55(3):93-103.

  • 手机扫一扫看