en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周杰,男,1998年出生,硕士研究生。主要研究方向为摩擦学和表面工程。E-mail:156945760@QQ.com;

邢志国,男,1979年出生,博士,助理研究员,硕士研究生导师。主要研究方向为表面摩擦学。E-mail:xingzg2011@163.com;

蔡振兵,男,1981年出生,博士,研究员,博士研究生导师。主要研究方向为材料摩擦学及表面工程。E-mail:czb-jiaoda@126.com;

黄艳斐(通信作者),女,1986年出生,硕士,助理研究员。主要研究方向为表面工程。E-mail:huangyanfei123@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211025001

参考文献 1
DEY C,KUNDU T,BISWAL B P,et al.Crystalline metal-organic frameworks(MOFs):synthesis,structure and function[J].Acta Crystallographica Section B:Structural Science,Crystal Engineering and Materials,2014,70(1):3-10.
参考文献 2
WANG Q,YU Y,LIU J.Preparations,characteristics and applications of the functional liquid metal materials[J].Advanced Engineering Materials,2018,20(5):1700781.
参考文献 3
雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2021,33(4):68-81.LUO Xiaotao,XIE Tian,LI Chanjiu,et al.Microstructure and property control of cold sprayed metal[J].China Surface Engineering,2021,33(4):68-81.(in Chinese)
参考文献 4
曹召勋,王军,刘辰,等.铸态 Mg-2Y-0.8Mn-0.6Ca0.5Zn 镁合金热变形行为研究[J].材料导报,2022,36(1):1-9 CAO Zhaoxun,WANG Jun,LIU Chen,et al.Research on hot deformation behavior of as-cast Mg-2Y-0.8Mn-0.6Ca0.5Zn Magnesium alloy[J].Materials Reports,2022,36(1):1-9.
参考文献 5
周平安.金属磨损自修复材料的功能特点和应用前景[J].中国表面工程,2004,17(1):39-46.ZHOU Pingan.Functional characteristics and application prospects of metal wear self-healing materials[J].China Surface Engineering,2004,17(1):4.(in Chinese)
参考文献 6
翟启杰,龚永勇,李仁兴.金属凝固过程与细晶技术[J].材料与冶金学报,2015,14(2):81-82.ZHAI Qijie,GONG Yongyong,LI Yongxing.Metal solidification process and fine grain technology[J].Journal of materials and metallurgy,2015,14(2):81-82.(in Chinese)
参考文献 7
罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high-entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):14.(in Chinese)
参考文献 8
宋肖肖,崔子凡,何鹏,等.磁控溅射银镀层和电镀银镀层硬度及结合性对比研究[J].中国表面工程,2021,34(1):104-111.SONG Xiaoxiao,CUI Zifan,HE Peng,et al.Comparative study on hardness and bonding of magnetron sputtering silver coating and electroplating silver coating[J].China Surface Engineering,2021,34(1):8.(in Chinese)
参考文献 9
贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.JIA Guanglin,PANG Weicheng.Principle and technology of electromagnetic metallurgy[M].Shenyang:Northeast University Press,2003.
参考文献 10
LEHMANN P,MOREAU R,CAMEL D,et al.Modification of interdendritic convection in directional solidification by a uniform magnetic field[J].Acta Materialia,1998,46(11):4067-4079.
参考文献 11
GOLOVASHCHENKO S F.Material formability and coil design in electromagnetic forming[J].Journal of Materials Engineering and Performance,2007,16(3):314-320.
参考文献 12
PSYK V,RISCH D,KINSEY B L,et al.Electromagnetic forming—A review[J].Journal of Materials Processing Technology,2011,211(5):787-829.
参考文献 13
SIMPSON T K.Maxwell on the electromagnetic field:A guided study[J].Engineering Science & Education Journal,1998,7(6):272-272.
参考文献 14
DAVIDSON P A.Magnetohydrodynamics in materials processing[J].Annual Review of Fluid Mechanics,1999,31(1):273-300.
参考文献 15
SHERCLIFF J A.Thermoelectric magnetohydrodynamics[J].Journal of Fluid Mechanics,1979,91(2):231-251.
参考文献 16
RUI S.Application of electromagnetic stirring technology in metallurgy[J].Mechanical Res Appl,2012,2:5.
参考文献 17
WUNG Y C.Present developing status of high performance steel in Korea(HIPERS-21 Project)[J].Chinese Society for Metals,2001:16-26.
参考文献 18
SUN Z,GUO M,VLEUGELS J,et al.Strong static magnetic field processing of metallic materials:A review[J].Current Opinion in Solid State and Materials Science,2012,16(5):254-267.
参考文献 19
AGRAWAL S,GHOSE A K,CHAKRABARTY I.Effect of rotary electromagnetic stirring during solidification of In-situ Al-TiB2 composites[J].Materials & Design,2017,113:195-206.
参考文献 20
VDOVIN K N,DUBSKI G A,EGOROVA L G.Influence of the magnetic field on the crystallization of aluminum melts[J].Russian Journal of Non-Ferrous Metals,2018,59(3):269-275.
参考文献 21
MA Y,XIAO L,YAN L.Application of high magnetic fields in advanced materials processing[J].Chinese Science Bulletin,2006,51(24):2944-2950.
参考文献 22
WANG J X,LI J S,WANG J,et al.Effect of solidification on microstructure and properties of FeCoNi(AlSi)0.2 high-entropy alloy under strong static magnetic field[J].Entropy,2018,20(4):275.
参考文献 23
LI P,REN S,JIANG D,et al.Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification[J].Journal of Crystal Growth,2016,437:14-19.
参考文献 24
FREUND H J,BAUER S H.Homogeneous nucleation in metal vapors.2.Dependence of the heat of condensation on cluster size[J].Journal of Physical Chemistry,2002,81(10):994-1000.
参考文献 25
ZHANG H,TAO H B,LI F,et al.Research on mechanism of nucleation in liquid metal excited by vibration[J].Iron and Steel,2008,43(8):20-24.
参考文献 26
田马,刘昊.相变动力学[J].国外科技新书评介,2015(3):24-37.TIAN Ma,LIU Hao.Phase transition dynamics[J].Review of Foreign Scientific and Technological New Books,2015(3):24
参考文献 27
戎易,王德,陈益平,等.直流磁场辅助铜-钢TIG焊接头组织和性能[J].材料,2021,35(22):137-140.RONG Yi,WANG De,CHEN Yiping.et al.Microstructure and properties of copper-steel tig welding joint assisted by DC magnetic field.[J].Materials Reports,2021,35(22):137-140
参考文献 28
TOM K.Phase-transition dynamics in the lab and the universe[J].Physics Today,2007,60(9):47-52.
参考文献 29
XU Y,CASARI D,MATHIESEN R H,et al.Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification[J].Acta Materialia,2018,149:312-325.
参考文献 30
DAS S,AIN W Q,AZHARI A,et al.Temperature gradient field theory of nucleation[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2016,114(1):012099.
参考文献 31
GREER A L.Overview:Application of heterogeneous nucleation in grain-refining of metals[J].Journal of Chemical Physics,2016,145(21):211704.
参考文献 32
SHIBUTA Y,SAKANE S,MIYOSHI E,et al.Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J].Nature Communications,2017,8(1):1-9.
参考文献 33
熊朝,李克,周耐根.Mg-Al 合金熔体中固液界面结构的分子动力学研究[J].原子与分子物理学报,2019,36(1):123-128.XIONG Zhao,LI Ke,ZHOU Naigen.Molecular dynamics study of solid-liquid interface structure in Mg-Al alloy melt[J].Journal of Atomic and Molecular Physics,2019,36(1):123-128.
参考文献 34
YI X,LIU R,ZHONG Q,et al.Nucleation and growth of crystals and evolution properties of nano-clusters during solidification processes of liquid metal Cu[J].Scientia Sinica,2013,43(6):739.
参考文献 35
HOU H,LIY,XU X,et al.Non-equilibrium effects on solid transition of solidification microstructure of deeply undercooled alloys[J].Materials Science and Technology,2018,34(4):402-407.
参考文献 36
XU Y J,SU Y J,LUO L S,et al.Application research status of magnetic field in materials solidification[J].Rare Metal Materials & Engineering,2012,41(3):548-553.
参考文献 37
GERGELY G,GACSI Z,BANHIDI O,et al.The effect of a rotating magnetic field on the solidification of A356 alloy modified by strontium[J].Materials Science Forum,2008,589:305-310.
参考文献 38
ZIMMERMANN G,PICKMANN C,SCHABERGERZIMMERMANN E,et al.Do rotating magnetic fields unconditionally lead to grain refinement?A case study for directionally solidified Al-10wt% Cu alloys[J].Materialia,2018,3:326-337.
参考文献 39
刘峰,周全,黄曼青,等.脉冲磁场对 Mg-Y-Cu-Zr-Sr 合金凝固组织的影响[J].特种铸造及有色合金,2016,36(4):442-446.LIU Feng,ZHOU Quan,HUANG Manqing.et al.Effect of pulsed magnetic field on solidification structure of Mg-Y-Cu-Zr-Sr alloy[J].Special casting and nonferrous alloy,2016,363(4):442-446.
参考文献 40
LI Y Z,MANGELINCK-NOEL N,ZIMMERMANN G,et al.Modification of the microstructure by rotating magnetic field during the solidification of Al-7 wt.% Si alloy under microgravity[J].Journal of Alloys and Compounds,2020,836:155458.
参考文献 41
HUANG M Q,ZHOU Q,LIU F,et al.Effect of DC magnetic field on crystal orientation and mechanical properties of remelting Mg-Y-Cu-Zr Alloy[C]//4th 2016 International Conference on Material Science and Engineering(ICMSE 2016).Atlantis Press,2016:278-284.
参考文献 42
LIU C,ZHONG Y,SHEN Z,et al.Effect of an axial highstatic magnetic field on the crystal orientation and magnetic property of Fe-4.5 wt% Si alloy during bulk solidification[J].Materials Letters,2019,247(Jul.15):189-192.
参考文献 43
LI L,BAN C,SHI X,et al.Influence of a high magnetic field on the solidification structures of ternary Al–Fe–Zr alloy[J].Journal of Materials Research,2017,32(11):2035-2044.
参考文献 44
LI L,YUAN T.Alignments and orientations of MnSn2 phase during the solidification process of Sn–Mn alloy under a high magnetic field[J].Materials Transactions,2019,60(6):939-943.
参考文献 45
ZHONG Y B,QING L,FANG Y P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660(Apr.13):118-126.
参考文献 46
WANG J,FAUTRELLE Y,NGUYEN-THI H,et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J].Metallurgical and Materials Transactions A,2016,47(3):1169-1179.
参考文献 47
LONG Z,WANG J,FAUTRELLE Y,et al.Repeated nucleation behaviors of pure bismuth under a high magnetic field[J].Journal of Alloys and Compounds,2020,831:154746.
参考文献 48
BU F,XUE X,WANG J,et al.Effect of strong static magnetic field on the microstructure and transformation temperature of Co–Ni–Al ferromagnetic shape memory alloy[J].Journal of Materials Science:Materials in Electronics,2018,29(22):19491-19498.
参考文献 49
WU M,LIU T,DONG M,et al.Directional solidification of Al–8wt.% Fe alloy under high magnetic field gradient[J].Journal of Applied Physics,2017,121(6):064901.
参考文献 50
DONG Y,SHUAI S,YU J,et al.Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024[J].Journal of Alloys and Compounds,2018,749:978-989.
参考文献 51
BOJAREVICS A,BARANOVSKIS R,KALDRE I,et al.Two cylinder permanent magnet stirrer for liquid metals[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2017,228(1):012022.
参考文献 52
ZENG J,CHEN W,YAN W,et al.Effect of permanent magnet stirring on solidification of Sn-Pb alloy[J].Materials & Design,2016,2016(108):364-373.
参考文献 53
EL-TAHER A M,ABD EL AZEEM S E,IBRAHIEM A A.Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field[J].Journal of Materials Science:Materials in Electronics,2021,32(5):6199-6213.
参考文献 54
STEINBACH S,RATKE L.The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys[J].Materials Science and Engineering:A,2005,413:200-204.
参考文献 55
ZOU Q C,JIE J C,SUN J L,et al.Effect of Si content on separation and purification of the primary Si phase from hypereutectic Al–Si alloy using rotating magnetic field[J].Separation and Purification Technology,2015,142:101-107.
参考文献 56
BAN B,ZHANG T,LI J,et al.Solidification refining of MG-Si by Al-Si alloy under rotating electromagnetic field with varying frequencies[J].Separation and Purification Technology,2018,202:266-274.
参考文献 57
JI H M,LUO T J,WANG C,et al.Direct chill casting of magnesium alloy under pulsed magnetic field[J].Materials Science and Technology,2017,33(1):33-39.
参考文献 58
KIM S W,SLAZHNIEV M A,Kim K H,et al.MHD-physical modification effect on microstructure control of the 7xxx high-strength Alalloys[J].IOP Conference Series Materials Science and Engineering,2018,424(1):012021.
参考文献 59
JIA Y,HOU J,WANG H,et al.Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy[J].Journal of Materials Processing Technology,2020,278:116542.
参考文献 60
DUAN W,BAO J,LIU W,et al.Simulation on DC casting of magnesium alloy under out-of-phase pulsed magnetic field with different coil connection strategies[J].International Journal of Heat and Mass Transfer,2020,162:120353.
参考文献 61
FENG Z,HONG Y,WANG G,et al.Effects of external magnetic field on the solidification process in Nd–Fe–B alloy:Phase-field simulation[J].Modelling and Simulation in Materials Science and Engineering,2018,26(2):025012.
参考文献 62
LIU C,ZHONG Y,SHEN Z,et al.Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy during solidification[J].Journal of Materials Research,2019,34(24):4076-4084.
参考文献 63
XUAN W,LIU H,LI C,et al.Effect of a high magnetic field on microstructures of Ni-Based single crystal superalloy during seed melt-back[J].Metallurgical and Materials Transactions B,2016,47(2):828-833.
参考文献 64
CHEN W,WANG J,HE Y,et al.Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu–Co immiscible alloy[J].Journal of Alloys and Compounds,2020:155502.
参考文献 65
CHEN W,WANG J,HE Y,et al.The effect of high magnetic field on the microstructure evolution of a Cu-Co alloy during non-equilibrium solidification[J].Journal of Crystal Growth,2019,515:78-82.
参考文献 66
HE Y,LI J,LI L,et al.Magnetic-field-induced chain-like assemblies of the primary phase during non-equilibrium solidification of a Co-B eutectic alloy:Experiments and modeling[J].Journal of Alloys and Compounds,2020,815:152446.
参考文献 67
LI H,LIU S,JIE J,et al.Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J].The International Journal of Advanced Manufacturing Technology,2017,93(9):3033-3042.
参考文献 68
HU S,GAGNOUD A,FAUTRELLE Y,et al.Fabrication of aluminum alloy functionally graded material using directional solidification under an axial static magnetic field[J].Scientific Reports,2018,8(1):1-13.
参考文献 69
HE C,LI Y,LI J,et al.Effect of electromagnetic fields on microstructure and mechanical properties of sub-rapid solidification-processed Al–Mg–Si alloy during twin-roll casting[J].Materials Science and Engineering:A,2019,766:138328.
参考文献 70
XIAO Y,LIU T,TONG Y,et al.Microstructure evolution of peritectic Al–18 at.% Ni alloy directionally solidified in high magnetic fields[J].Journal of Materials Science & Technology,2021,76:51-59.
参考文献 71
ZHOU Y,XIONG J,YAN F.The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D[J].Surface and Coatings Technology,2017,328:335-343.
参考文献 72
ZHOU Y,ZHANG P,YAN F.Corrosion resistance of a nano-Mg modified silane conversion coating with cathodic protection on magnesium alloy AZ91D[J].Materials Letters,2021,284:128930.
参考文献 73
LI M,TAMURA T,OMURA N,et al.Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique[J].Journal of Alloys and Compounds,2009,487(1-2):187-193.
参考文献 74
DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.
参考文献 75
LIAO X L,GONG Y Y,LI R X,et al.Effect of pulse magnetic field on solidification structure and properties of pure copper[J].Research & Development,2007,4(2):116-119.
参考文献 76
YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.
参考文献 77
FENG X H,LI Y J,LUO T J,et al.Influence of temperature conditions on grain refinement of pure Cu solidified with low-voltage pulsed magnetic field[J].International Journal of Cast Metals Research,2017,30(1):1-5.
参考文献 78
ZUO X,HAN K,ZHAO C,et al.Microstructure and properties of nanostructured Cu 28wt% Ag microcomposite deformed after solidifying under a high magnetic field[J].Materials Science and Engineering:A,2014,619:319-327.
参考文献 79
ZUO X,ZHAO C,NIU R,et al.Microstructural dependence of magnetoresistance in CuAg alloy solidified with high magnetic field[J].Journal of Materials Processing Technology,2015,224:208-212.
参考文献 80
HIROTA N,HARA S,SAKKA Y.In situ microscopic observations of magnetic field effects on the growth of silver dendrites[J].Materials transactions,2007,48(11):2888-2892.
参考文献 81
ZHANG Y,SUN S,ZHANG X,et al.Magnetic field controlled particle-mediated growth inducing icker-like silver architectures[J].Chemical Engineering Journal,2014,240:494-502.
目录contents

    摘要

    利用磁场辅助金属凝固,不仅可以细化晶粒、改善凝固组织的力学性能,同时由于磁场和熔融态金属是非直接接触, 还可以避免缺陷的引入,进而已成为研究热点。针对磁场作用下的金属熔体形核和晶核生长特点,对金属凝固过程进行深入分析,从磁场对金属凝固的影响原理和仪器设备两个方面进行总结,综述磁场作用下金属凝固的研究进展;分别从铁磁性、 顺磁性、抗磁性三种磁性金属在磁场作用下试验研究进行梳理分析。结果表明:磁场引发的洛伦兹力、热电磁力、磁转矩及磁取向等作用通过影响金属熔体的形核和晶核生长,最终改善凝固组织性能;磁场设备利用永磁铁或者电磁铁产生磁场环境; 三种磁性金属在磁场环境下凝固后的性能改善体现在力学性能、导电性能、磁性能等方面。最后归纳磁场辅助金属凝固过程中所存在的问题,并展望未来的发展趋势。

    Abstract

    The use of magnetic field to assist metal solidification can not only refine the grains and improve the mechanical properties of the solidified structure, but also avoid the introduction of defects due to the non-direct contact between the magnetic field and the molten metal, which has become a research hotspot. Aiming at the characteristics of metal melt nucleation and crystal nucleation growth under the action of a magnetic field, an in-depth analysis of the metal solidification process is carried out. At the same time, combing and analyzing the experimental studies of ferromagnetic, paramagnetic and diamagnetic metals under the action of a magnetic field are carried out respectively. The results show that the Lorentz force, thermo-electromagnetic force, magnetic torque and magnetic orientation induced by the magnetic field affect the nucleation and nucleation growth of the metal melt, and finally improve the solidified microstructure and properties; the magnetic field equipment uses permanent magnets or electromagnets to generate Magnetic field environment; the performance improvement of the three magnetic metals after solidification in the magnetic field environment is reflected in mechanical properties, electrical conductivity, magnetic properties and so on. Finally, the problems existing in the magnetic field-assisted metal solidification process are summarized and the future development trend is prospected.

  • 0 前言

  • 科学技术的飞速发展对金属材料性能提出了越来越高的要求[1-2],尤其是能源化工、信息通信、交通运输等行业的发展离不开金属材料的支撑[3-4]。材料的性能决定了金属零件在实际工况下的服役状态,材料的微观组织最终决定性能,控制金属凝固过程就是精确地控制材料微观组织的形成过程[5-7]。因此,控制金属凝固过程已经成为一种改善其性能的重要手段[8-9]。研究表明,通过磁场影响金属凝固过程中的形核和晶核生长两个阶段,凝固组织变得更加均匀、晶粒更加细小。另外,由于磁场与金属材料是非直接接触,避免了缺陷的引入[10-12]。经过几十年的发展,材料的电磁加工技术已经变得十分成熟。麦克斯韦的电磁场理论为材料的电磁加工奠定了基础[13];20世纪40年代,磁流体力学学科的建立为材料的电磁加工扩充了理论依据[14-15];20世纪80年代后,各国学者开始对磁场作用下的金属凝固进行试验研究,日本率先成立了 “材料电磁加工技术研究会”,并与1995年启动材料电磁加工新扩展等重大项目[16]。韩国设立了1998— 2007年“HIPER-21”国家重大规划项目[17]。比利时秘鲁大学[18]系统地研究了强静磁场对金属材料凝固的影响,指出了强静磁场对金属凝固组织性能提升的影响。俄罗斯马格尼托哥尔斯克国立技术大学[19-20]对脉冲磁场下铝合金凝固组织进行了系统研究,从原理和性能提升两个方面对脉冲磁场的作用进行了探索。中科院电气工程研究所[21]综述了利用强磁场加工超导、磁性、金属和纳米级材料所取得的成果。研究发现,强磁场下加工的材料性能得到显著提升,同时从理论上对其机理进行了讨论。其他高校陆续开始了对磁场作用下的金属凝固进行了研究[22-23]。结果表明,磁场的引入极大地改善了金属材料的性能,使金属零件在实际工况下具有更加优秀的服役性能。基于此,本文综述了磁场作用下的金属凝固原理、磁场设备的研究进展,不同磁性金属材料在磁场环境下的凝固性能研究现状,提出了需要进一步关注的问题,并展望了磁场作用下金属凝固未来可能的发展趋势。

  • 1 磁场作用下的金属凝固原理

  • 金属的凝固过程分为形核和晶核生长两个阶段[24-25]。磁场通过影响熔融态金属的凝固过程,控制形核和晶核生长两个阶段的温度梯度、冷却速率、熔体成分、过冷度等诸多因素,从而实现金属材料性能的改善。对于磁场作用下的金属凝固原理的掌握有助于研究人员更好地设计试验,更加有效地提高金属材料的性能,最终提高其服役性能。

  • 1.1 熔融态金属凝固原理

  • 熔融态金属凝固过程包括从熔融态金属中形成晶核和形核后晶体生长两个阶段,如图1所示。

  • 图1 熔融态金属凝固过程[9]

  • Fig.1 Solidification process of molten metal[9]

  • 在形核阶段,根据经典的相变动力学原理[26-28], 液相原子在凝固驱动力ΔG m 作用下,从高自由能 ΔG L 的液态结构转变为低自由能GS 固态晶体结构过程中,必须越过一个势垒ΔG d,如图2所示。熔融态金属内部的温度起伏可以获得势垒。在凝固过程中,所有液相原子在相变驱动力ΔG m 的驱使下, 不断借助能量起伏以克服势垒ΔG d,并通过形核和长大的方式而实现转变。

  • 图2 金属凝固的Gibbs自由能变化[26]

  • Fig.2 Gibbs free energy variation of metal solidification[26]

  • 形核分为自发形核(均质形核)和非自发形核 (非均质形核),绝大部分金属的形核过程是非均质形核。研究表明,温度梯度、过冷度、冷却速率等外部影响因素对熔体形核有着显著影响。XU等[29] 在研究温度梯度和冷却速率对Al-Cu合金非均质形核的影响时发现,在相同的冷却速率下,形核率随着温度梯度的增大而减小,同时,温度梯度对形核的影响又随着冷却速率的增加而减小。印度理工学院[30] 对金属形核的温度梯度场理论进行了探究,研究发现,熔融金属中的陶瓷颗粒在冷却过程中的散热速度比金属液体慢。这种情况导致在每个粒子周围形成球形热梯度场(TGF)。这种低温空隙首先达到成核温度,这是由于比液体-颗粒界面低的能垒。TGF空隙处的成核速率高于液-颗粒界面处的成核速率。这种TGF网络导致整个系统同时成核,导致晶粒细化。由此可知,温度梯度和过冷度的增加有利于晶体形核,冷却速率影响温度梯度,进而影响形核。

  • 此外,熔体中的合金元素、成核催化剂等内部影响因素直接影响形核率的大小。GREER等[31]研究发现在铝合金凝固过程中加入中间合金和固体晶粒成核剂,可以提高形核率以达到晶粒细化的效果。小部分熔体均匀的纯金属凝固时,会发生均质形核。研究表明,即使在熔体均匀的均质形核过程中,非均质形核也会发生。在用分子动力学模拟研究了过冷铁熔体中的自发形核过程时发现,在起始均匀形成的大晶粒附近会产生分布不均的小晶粒,不均匀性是由于熔体内二十面体结构在原先晶粒附近局部堆积造成的[32]。由此可知,非均质形核是金属及其合金形核的主要方式,其形核要求低、细化晶粒效果好。在熔体均匀的金属中加入形核催化剂后,形核过程由均质形核变为非均质形核,同时形核率得到提高。目前国内外对金属形核的研究主要集中在非均质形核,形核催化剂和中间合金的种类也越来越丰富。

  • 晶核形成后,就需要原子不断有序地堆积到晶核上以使晶核得以持续生长。因此,熔体中原子的扩散、固液界面在原子尺度上的结构等是晶体生长过程中的重要影响因素。熊朝等[33]在用分子动力学研究Mg-Al合金熔体中固液界面结构及界面附近原子的扩散时,发现该二元合金的固液界面是粗糙界面,其附近的原子由长程有序向短程有序转变,增进了对Mg-Al合金的晶体生长过程中固液界面结构的了解。运用分子动力学模拟研究液态金属Cu在凝固过程中晶体形核和生长规律,发现在晶体生长过程中,固液界面结构是以面心立方和六角密集原子团为主的晶体结构[34]。另外,探究温度变化引起的过冷度、过冷时间和熔体成分等因素对晶体生长的影响也显得十分必要,HOU等[35]研究了过冷时间和溶质阻力对镍基合金再结晶过程的影响,发现随着过冷时间的增加,再结晶驱动力增大,溶质阻力减小,晶粒等到细化。此外,由固液界面自由能决定的固化动力学决定了所形成晶体的结构与形貌; 但是由于试验中直接测定固液界面自由能较为困难且误差较大,因此本节不对固液界面自由能进行探讨和研究。

  • 综上所述,温度梯度、过冷度、冷却速率、熔体成分等因素始终影响着形核和晶核长大两个阶段,对于金属凝固后的性能优劣具有决定性作用,因此,研究人员应该重点考虑对温度梯度、过冷度、冷却速率、熔体成分的控制;此外,在形核时,催化剂明显增加了熔体的形核率,但是作为添加物,需要考虑是否会引入缺陷等缺点;最后,晶核长大时会受到原子扩散、固液界面结构等因素的影响,研究人员可以控制这些因素,从而实现对晶核长大的控制。

  • 1.2 磁场对熔融态金属凝固的影响原理

  • 经过几十年的发展,磁场控制熔融态金属凝固过程技术已经广泛应用。在熔融态金属凝固过程中加入磁场,不仅可以细化晶粒、改善凝固组织的力学性能,同时,由于磁场和熔融态金属是非直接接触,还可以避免缺陷的引入[36-37]。磁场对熔融态金属的影响分为洛伦兹(Lorentz)力和热电磁力作用、磁化力作用、磁化能作用、磁转矩及磁取向作用、焦耳热作用五种作用。如表1所示。

  • 表1 磁场对金属材料的作用

  • Table1 Effect of magnetic field on metal materials

  • 1.2.1 洛伦兹力和热电磁力作用

  • 熔融态金属在磁场下感生或者外加电场产生的洛伦兹力会控制(驱动或制动)熔体的流动。研究表明,旋转磁场、交变磁场以及脉冲磁场在熔融态金属凝固过程中产生的洛伦兹力对熔体有驱动作用,产生电磁搅拌,细化凝固组织,减小宏观偏析、避免裂纹的产生和杂质的引入,提高凝固组织的力学性能。另外,熔体中如果存在一个温度梯度的界面,那么就会在塞贝克效应的闭环中产生热电流,从而通过电流与施加的磁场相互作用产生热电磁力。ZIMMERMANN等[38]研究了Al-Cu合金在旋转磁场下的定向凝固,研究发现在磁场强度 B=10mT时,熔体被洛伦兹力驱动形成强制对流,生成的枝晶被流动的熔体破碎并随着熔体流动,并作为新晶粒的核,形核率增加,晶粒也得到细化。刘峰等[39]研究了脉冲磁场对Mg-Y-Cu-Zr-Sr合金凝固组织的影响,结果发现脉冲磁场主要是通过影响合金的形核率来细化凝固组织,脉冲磁场对熔体有电磁振动和电磁搅拌双重作用,一方面增加了过冷度,另一方面强迫对流使得晶核进入熔体内部形成新的形核质点,导致形核率的提高,进而晶粒得到细化。LI等[40] 研究旋转磁场和微重力环境下Al-Si合金的凝固,发现磁场诱发的洛伦兹力驱动熔体的流动,导致凝固组织的Si元素分布更加均匀,同时,由于熔体对流和热电磁力的综合作用,晶体生长方向会发生变化,这一优点在金属材料的电磁凝固过程中得到了广泛应用。另外,直流磁场引发的Lorentz力会抑制熔体流动,形成磁阻尼效应,造成凝固组织的粗大。HUANG等[41]研究了不同强度直流磁场对重熔Mg-Y-Cu-Zr合金晶体取向的影响,发现随着磁场强度的增加,凝固组织晶粒呈现先减小后粗化的现象,分析认为,熔体内部存在两种机制,一种是直流磁场在熔体产生的洛伦兹力抑制对流产生磁阻尼效应,另外一种是熔体内部自然对流产生的电磁搅拌,二者存在竞争关系,且凝固组织取决于二者之间竞争的胜者。在起始磁场强度较小时,电磁搅拌占主导地位,晶粒得到细化,随着磁场强度增加,磁阻尼效应占主导地位,抑制了熔体的流动,柱状晶长大,使得晶粒粗化。由此可知,洛伦兹力产生的电磁搅拌效应有细化凝固组织晶粒的作用,磁阻尼效应则会粗化凝固组织晶粒,研究人员可以根据这两种特性,合理地选择磁场类型进行凝固试验。

  • 1.2.2 磁转矩及磁取向作用

  • 磁场中的金属材料被磁化的方向与其磁性相关,由于磁性的差异,金属材料的磁化方向与磁场方向不一致,磁转矩的作用是使晶体的磁化方向与磁场方向平行,磁转矩与磁取向作用常见于强磁场下的铁磁性金属的凝固实验中,同时,由于磁各向异性,材料会朝着磁化能最低的方向发生磁取向,即影响金属材料的结晶取向。LIU等[42]在研究强静磁场对Fe-Si合金的晶体取向时,发现随着磁场强度的增加,α-Fe晶体取向逐渐靠近易磁化轴,这是由于 α-Fe晶体的磁各向异性引起的磁转矩和磁取向的作用。与此相似,强磁场通过影响三元铝-铁锆合金结晶取向,进而影响凝固组织的性能[43]。在强磁场作用下,由于磁转矩及磁取向和磁晶各向异性,初生Al3Fe晶体分布均匀,初生Al3Zr基体呈针尖状悬浮。晶体学分析表明,初生相Al3Fe和Al3Zr晶体优选轴方向生长。在此基础上,对二元锡锰合金在强磁场下进行凝固[44]。结果表明,在强磁场引发的磁转矩和磁取向作用下,初生二硫化锰晶体在纵向和横向截面上呈块状或棒状。在纵向截面上,强磁场倾向于将棒状晶体与垂直于磁场的长轴对齐。晶体学研究表明,二硫化锰晶体优先平行于磁场方向的易磁化轴。由此可知,强磁场引起的磁转矩及磁取向作用对金属晶体的取向具有显著的影响。

  • 1.2.3 磁化能、磁化力及焦耳热作用

  • 主流研究集中于洛伦兹力、磁转矩及磁取向等作用,因此本节将简述磁化能、磁化力及焦耳热作用。磁化能指的是熔体在磁场中受到磁化所具有的自由能,当熔体和凝固组织在磁场中的磁自由能差别较大时,反应由高自由能状态向低自由能状态转变。研究表明,铁磁性金属材料在强磁场环境下磁化能变化特别大,从而直接影响相变的驱动力。而当熔体置于梯度磁场时,由于每个部位的磁通密度不同,被磁化后受到的磁化力也不同,进而产生一个净磁化力。磁化力的大小取决于材料的磁化率和磁感应强度大小,因此磁化力可以将熔体中磁性不同的组分进行分离,以达到去除杂质的效果。熔体在旋转磁场及交变磁场下感生的涡流,不仅有搅拌熔体的作用,还会对熔体进行加热,降低凝固前沿的成分过冷和冷却速率,使熔体内部的温度场更加均匀。但是温度的提升对形核和晶体生长不利,目前对于磁场引起的焦耳热对金属凝固影响的研究也比较少,它主要应用在材料的高频加热。

  • 综上所述,磁场对熔融态金属凝固的影响中,洛伦兹力占主导地位。洛伦兹力和热电磁力具有控制熔体流动的作用。值得注意的是,洛伦兹力对熔体流动具有双重作用,单一直流磁场引发的洛伦兹力对熔体流动具有抑制作用,交变磁场引发的洛伦兹力具有促进熔体流动的作用。因此,选择合适的磁场类型来控制熔体流动显得十分重要;而热电磁力具有促进熔体流动的作用,洛伦兹力和热电磁力的竞争机制是值得探索研究的重点。磁转矩和磁取向作用常见于强磁场下。目前主流研究集中在洛伦兹力、热电磁力、磁转矩及磁取向作用,鲜有对磁化力、磁化能及焦耳热对于金属凝固影响的研究,仍需要研究人员扩展对磁化力、磁化能及焦耳热作用的研究。

  • 2 磁场设备研究现状

  • 仪器设备是试验的基础,通常是根据磁场作用下的金属凝固原理设计相应的仪器设备来影响金属凝固过程,进而提高材料性能。基本设备由磁场发生装置、凝固装置、加热装置、冷却系统等组成,如图3所示。磁场发生装置一般由电磁线圈通电产生,根据所需磁场的类型和场强大小,施加相应的电流电压,从而产生磁场环境。凝固装置是熔炼炉或者坩埚,提供熔融态金属凝固的场所。加热装置是电加热器,另外配有热电偶来随时检测反应温度。冷却系统利用流动的冷却液带走热量,降低反应温度。此外,电磁线圈和加热冷却系统外接于电磁控制系统,可以实现对磁场环境、温度的精确控制。凝固试验的设备根据磁场的类型会有改动,本文将从静磁场、梯度磁场、旋转磁场、脉冲磁场等几种磁场入手,叙述仪器设备的设计及发展。

  • 图3 磁场设备示意图

  • Fig.3 Schematic diagram of magnetic field equipment

  • 2.1 静磁场及梯度磁场设备

  • 静磁场的磁场发生装置根据磁场产生原理不同分为两类,一类是利用永磁体产生静磁场环境,另一类是给直流电磁铁通入直流电来实现磁场环境。研究人员分别利用两种原理设计了静磁场发生装置。对于永磁体实现静磁场环境的研究,ZHONG等[45]采用如图4a所示的凝固设备研究横向静磁场对电渣连铸GCr15轴承钢组织和性能的影响,其中静磁场发生装置由永磁体组成,永磁体产生50mT的横向静磁场。利用永磁体产生静磁场环境的优点是简单方便,无需电源,缺点是产生的静磁场的场强大小并不能根据试验要求而变化,即在试验中不能实现场强可调。

  • 因此,为了实现在凝固试验中场强可调的静磁场,研究人员采用给直流电磁铁通电产生静磁场且通过调节直流电压控制场强大小。随着场强大小的变化,同时也实现了梯度磁场。对于直流电磁铁实现静磁场和梯度磁场环境的研究, WANG等[46]采用如图4b所示的试验设备研究静磁场辅助定向凝固中的金属固液界面变化,磁场发生装置是利用给直流电磁铁通电产生的静磁场,通过调节直流电源可以实现场强范围为0~0.7T的梯度磁场,并且可以实现在0.5T的场强下稳定运行,磁场方向为横向。更多研究人员设计了磁场方向为竖直方向的磁场发生装置, LONG等[47]采用了如图4c所示的装置研究了纯铋在强磁场下的反复成核行为。磁场发生装置由超导磁体组成,通过调节电源电压,可以实现场强为6T和12T、方向竖直向上的静磁场;BU等[48]研究了强静磁场对Co-Ni-Al合金凝固组织和相变温度的影响,采用的试验设备如图4d所示。超导磁体可以施加不同强度的静磁场,磁场方向为竖直向上。WU等[49]采用自制的试验设备研究了强梯度磁场下Al-Fe合金的定向凝固,试验设备如图4e所示,超导磁体可以提供0~6T的静磁场,磁场方向为竖直方向。DONG等[50] 设计专门的试验设备研究强静磁场对2024合金凝固组织的影响,凝固试验设备如图4f所示。磁场发生装置由超导磁体组成,超导磁体可以实现场强为2T和5T且方向竖直向上的静磁场。

  • 综上所述,在静磁场及梯度磁场环境下金属凝固的试验设备中,磁场发生装置大多数采用电磁铁或者超导磁体,其优点是可以实现磁场强度和方向的调节,满足凝固试验的磁场环境需求;而基于永磁体产生的静磁场,虽然比较容易实现,但是存在磁场强度较小、场强不可调节等缺陷。

  • 图4 静磁场和梯度磁场辅助金属凝固设备

  • Fig.4 Static and gradient magnetic field assisted metal solidification equipment

  • 2.2 旋转磁场设备

  • 旋转磁场下金属凝固试验装置的磁场发生装置根据磁场产生原理分为两类:一类是基于旋转永磁体产生的旋转磁场,即将永磁体安装到电机上,通过电机带动永磁体旋转,从而产生旋转磁场;另一类是通过给电磁铁接入三相交流电,从而实现旋转磁场环境。基于旋转永磁体产生的旋转磁场,研究人员特别设计了电动机转速和永磁体的安装位置。 BOJAREVICS等[51]在研究双圆柱永磁搅拌熔融态金属时,使用如图5a所示的试验设备。永磁体通过皮带安装到电机上,电机带动永磁体旋转,产生磁通密度为1.4T的旋转磁场,同时,由于两个永磁体在坩埚的两侧,极大降低了两个永磁体间的相互作用。 ZENG等[52]采用图5b所示的设备研究永磁搅拌对锡铅合金凝固的影响。该设备的磁场发生装置设计得比较精确,永磁体连接在电机上,电机上的转速表可以随时显示永磁体的转速大小,通过计算机中的电机控制系统来随时调节电机的转速,同时电源系统与转速控制器耦合,可以精确控制电机在0~200r/min转速内旋转。此试验设备中的转速控制系统精确地实现了旋转磁场的变化。与之相似,EL-TAHER等[53]在研究旋转磁场对Sn-Ag-Cu-Sb-Al合金凝固影响时,采用如图5c的设备,电磁控制程序和速度控制器精确地控制电机转速,进而实现对旋转磁场的精确控制。

  • 基于三相交流电的旋转磁场发生装置,研究人员需要考虑输入电压的大小和频率。STEINBACH等[54]采用如图5d所示的设备研究旋转磁场对Al-Si-Mg合金凝固的影响,磁场发生装置由三对环绕样品的亥姆霍兹线圈组成,由三相电流驱动,产生旋转磁场的磁感应强度为3mT和6mT,频率固定在50Hz。ZOU等[55]采用如图5e所示的设备研究旋转磁场对铝硅合金凝固的影响,三相三极的磁发生器可以产生50Hz,磁通密度为12mT、17mT、 25mT的旋转磁场。BAN等[56]研究旋转磁场对铝硅合金凝固的影响时,采用如图5f所示的试验设备。三组电磁铁连接到由变压器控制的三相交流电源,可实现电压0~380V、频率5~50Hz变化,产生磁通密度为15mT、频率为5Hz、15Hz、25Hz、 50Hz的旋转磁场。

  • 综上所述,基于旋转永磁体的旋转磁场产生的磁通密度比较高,可以达到几特,使用时需要考虑外接转速控制系统的设计,未来对此研究可以从优化转速控制系统和减小热量对永磁体的影响两个方面出发。而基于三相交流电的旋转磁场发生装置,可以实现的磁通密度通常在几十毫特级别,提高旋转磁场的磁通密度可以作为未来研究的一个方向。

  • 图5 旋转磁场辅助金属凝固设备

  • Fig.5 Rotating magnetic field assisted metal solidification equipment

  • 2.3 脉冲磁场设备

  • 脉冲磁场下的凝固试验设备的磁场发生装置,利用给电磁线圈通以脉冲电流来实现脉冲磁场环境。 JI等[57]在设计了脉冲磁场环境下的凝固试验装置,并利用该装置研究磁场下的镁合金铸造。如图6a所示,该装置的磁场发生装置利用给电磁线圈通入5Hz、200V的脉冲电流来实现脉冲磁场。KIM等[58] 在研究脉冲磁场对铝合金凝固的影响时,设计了一种带有感应通道的电磁泵,电磁泵将熔体抽入坩埚或者铸模内,如图6b所示。电磁线圈通入脉冲交流电产生脉冲磁场。此设备可以是熔体在通道内循环流动,适合工业化生产。JIA等[59]在研究脉冲磁场对镁合金冷铸造时的晶粒细化和相形成影响时,设计了专门的凝固试验设备。电磁控制系统控制电磁线圈中的脉冲电流的大小来实现脉冲磁场环境,如图6c所示。DUAN等[60]为了研究脉冲磁场环境下的镁合金的冷铸造模拟,设计了专门的试验装置,如图6d所示。脉冲磁场环境由四组电磁线圈通入脉冲电流实现,通过调整四组线圈的连接和加载电流顺序可以实现不同脉冲磁场条件。

  • 图6 脉冲磁场辅助金属凝固实验设备

  • Fig.6 Pulse magnetic field assisted metal solidification experimental equipment

  • 综上所述,脉冲磁场下的凝固试验设备与其他类型磁场下的凝固试验设备不同的是通入的电流和电磁线圈。研究人员可以从通入的脉冲电流和电磁线圈两个方面出发,研究设计更加实用的凝固设备。

  • 3 不同磁性金属在磁场环境下的凝固性能

  • 金属材料根据磁性的不同,可以分为铁磁性材料、顺磁性材料、抗磁性材料三种。在外加磁场环境下,铁磁性金属表现出被磁场强烈吸引,顺磁性金属表现出被磁场微弱吸引,而抗磁性金属表现出不被磁场吸引。各种磁性金属在磁场环境下的凝固过程各不相同。

  • 3.1 铁磁性金属在磁场环境下的凝固性能

  • 铁磁性材料主要包括铁、镍、钴及其合金。铁磁性金属由于内部原子的整齐排列的磁矩,在宏观上,整体表现为一个磁场。铁磁性金属由于其磁性,在工业生产和日常生活中得到了广泛应用。因此,提高铁磁性金属的磁性能是一个研究重点;另外,由于铁磁性金属的微观组织对磁性能的影响较大,研究人员在铁磁性金属凝固过程中引入磁场环境来改善微观组织,进而提高其磁性能。

  • 3.1.1 铁合金

  • 钕铁硼合金是制造永磁体的主要材料,提高其磁性能对制造出磁性优良的永磁体至关重要,α-Fe相决定了钕铁硼合金的磁性能,因此,α-Fe相结构质量的好坏直接决定钕铁硼合金磁性能的优劣。 FENG等[61]研究了外加磁场对Nd-Fe-B合金凝固组织和磁性能的影响。结果表明,磁场引起的电动势可以同时降低形核能和活化能来增加形核率,进而细化 α-Fe相的晶粒;另外,在电动势的影响下,晶粒发生择优取向,从而增强凝固后的钕铁硼合金的磁性。此外,具有高磁导率、低铁芯损耗等优良磁性能的硅钢广泛应用于变压器、电机、发电机等领域。晶体取向直接影响着硅钢的软磁性能,而强磁场是一种有效的调节晶体取向的方法。LIU等[62]研究了1T和2T轴向静磁场对Fe-6.5Si-0.05B合金凝固过程中铁磁晶体的织构和磁性能的影响,并与未施加磁场的基体就行对比。在强磁场下,合金受到洛伦兹力和磁力的作用,由于合金具有显著的磁晶各向异性,晶体倾向于以最低的磁化能向有利的晶体方向排列,即沿着易磁化轴方向排列;另外,当熔体中出现 α-Fe结晶时,由于磁晶各向异性引起的磁转矩作用于晶体,如图7所示,铁晶体被旋转, 晶体受到的磁转矩T可以用式(1)表示:

  • 图7 α-Fe晶体在磁场作用下的排列示意图[62]

  • Fig.7 Schematic diagram of the arrangement of α-Fe crystals under magnetic field[62]

  • T=Δχ2μ0B2Vsinθ
    (1)
  • 式中, Δχ 是两个晶体方向之间的差值, μ0 是真空磁导率,B 是磁场强度,V 是晶体体积,θ 是磁场方向与磁化率最大晶体取向之间的夹角。磁取向和磁转矩共同作用,提升硅钢的软磁性能。

  • 3.1.2 镍合金

  • 镍基高温合金是航天发动机涡轮叶片的主要材料,高温、重载、振动等实际服役工况要求其具有优良的力学性能,而高温合金的微观组织影响其力学性能,因此,通过磁场影响镍基高温合金的微观组织进而改善力学性能成为一个研究热点。XUAN等[63]利用轴向静磁场来改善镍基高温合金凝固组织的力学性能。结果表明,在强磁场下,凝固组织受到洛伦兹力和热电磁力的作用,其中洛伦兹力抑制熔体的对流,而热电磁力驱动熔体流动。热电磁力 F TEMF可以用式(2)式表示:

  • FTEMF=-σLσSfLσLfL+σSfSSS-SLTB
    (2)
  • 式中,σ Lσ S 分别表示液体和固体的电导率,fLfS 分别表示液体和固体馏分, S SS L 分别代表液体和固体的热电功率,∇T 代表过冷度,B 代表磁场强度。由此可见,固体中的热电磁力随着磁场强度的增加呈线性增加,当磁场强度足够大时,热电磁力将破坏枝晶,从而细化晶粒;同时,破碎的枝晶作为形核质点,增加了形核率,进而改善了镍基高温合金的力学性能。

  • 3.1.3 钴合金

  • 钴基合金用于制备优良的巨磁电阻材料。其中铜钴合金作为一种典型的亚稳态液相分离合金,一旦铜钴熔体过冷至双峰温度以下,均质熔体就会分离成富铜相和富钴相两种液相;然而,液相分离后凝固组织的不均匀性限制了其工业应用。许多研究者发现磁场是调节相分离二元铜钴合金凝固组织分布的有力工具。CHEN等[64-65]研究了强静磁场对铜钴二元合金液相分离和凝固组织的影响并且与无磁场作用时对比。结果表明,在无磁场时,富Co相呈现球形微结构,如图8a所示;施加10T磁场后,与磁场平行方向上,富Co相呈长棒状,沿磁场方向拉长,如图8b所示;与磁场垂直方向上,富Co相变得不规则,如图8c所示。在与磁场平行方向上,富Co相在静磁能(E m)的作用下沿磁场方向伸长,富Co相单个液滴的表面E s和静磁能E m可分别用式 (3)、(4)式表示:

  • ES=σS
    (3)
  • Em=12μ0χHex2V
    (4)
  • 式中,σ 是表面张力,S 是液滴的表面积, μ0 是真空磁导率,χ 是富Co液滴体积磁化率,H ex 为外加磁场。表面能和静磁能随液滴半径变化的关系如图8b所示,当液滴半径大于临界半径时,静磁能大于表面能,富Co相被拉长。在与磁场垂直方向上,液滴在洛伦兹力F和热电磁力F TEMF的作用下变形,如图8c所示。HE等[66]研究了强静磁场对Co-B合金凝固组织的影响。结果表明,在强磁场的作用下,铁磁性的 α-Co相沿着易磁化轴的方向呈现链状排列,这是由于其磁晶各向异性和强磁场的共同作用; 同时,为了在能量上达到最有利的粒子分布,具有最小的去磁能量,α-Co以链状堆积的方式自组织,增加了组织均匀性。

  • 图8 不同磁场下的铜钴合金的微观结构[65]

  • Fig.8 Microstructure of Cu-Co alloy under different magnetic fields[65]

  • 3.2 顺磁性金属在磁场环境下的凝固性能

  • 顺磁性金属包括铝、镁及其合金,由于其具有低密度、耐腐蚀等优良性能,因此被应用于工业生产中;但是在实际中,铝、镁及其合金的力学性能存在缺陷,极大地缩短了铝、镁及其合金产品的使用寿命;而在铝、镁及其合金凝固过程中通入磁场,可以显著提高凝固组织的力学性能,研究人员对此开展了广泛研究。

  • 3.2.1 铝合金

  • 目前大部分铝合金是通过直流铸造完成的,铝合金的铸造组织由于粗大晶粒和成分偏析导致较差的力学性能,磁场已成功应用于改善铝合金凝固组织,能够有效提高铝合金的力学性能。研究人员设计了不同的磁场类型来研究对铝合金凝固组织和力学性能的影响。LI等[67]研究了脉冲磁场对6063铝合金凝固组织和力学性能的影响,熔体在脉冲磁场下受到的洛伦兹力 F 可以用(5)式表示:

  • F=J×B=1μ(B)-12μB2
    (5)
  • 式中,J 是熔体中产生的感应电流密度,Bμ 分别代表磁通密度和磁导率,∇ 是哈密顿算子。洛伦兹力导致熔体的强烈对流,在强制对流作用下,器壁上生成的晶粒被剥离并流入熔体中,从而提供大量的成核位点。此外,产生的流动极大降低了熔体内的温度梯度,进而细化了凝固组织的晶粒,提高了6063铝合金的力学性能;同时,强制对流加强了溶质流体与熔体的混合,加速溶质元素在糊状区的迁移,从而导致合金元素的宏观偏析明显降低,使得凝固组织更加均匀。HU等[68]研究了轴向静磁场下定向凝固制备铝合金功能梯度材料,发现在定向凝固过程中,重质元素Zn、Ni、Cu在重力作用下向下迁移,导致样品底部重质元素的富集。进而形成了组分梯度,并发生了初生相的梯度组成。另外,在磁场的作用下,块状熔体向下流动,同时由于轴向温度梯度的存在,形成了初生相的梯度组成。HE等[69]研究了静磁场下对Al-Mg-Si合金熔体施加脉冲电流时对其凝固组织和力学性能的影响,其中通过对激励线圈施加不同大小的直流电流来调节静磁场的场强大小,脉冲电流则由脉冲电源的频率和大小来控制。结果表明,洛伦兹力引起的电磁振荡增加了溶质在基体中的溶解度,减小了偏析缺陷;同时洛伦兹力对熔体的搅拌作用使熔体过热度降低,合金元素在熔体中分布均匀,提高了Al-Mg-Si合金的力学性能。强磁场下的铝合金不仅受到洛伦兹力和热电磁力的作用,还受到磁力的作用。XIAO等[70] 研究了强磁场对Al-Ni包晶合金凝固组织的微观结构的影响。在强磁场的作用下,熔体受到洛伦兹力、热电磁力和磁力作用,在三个力的耦合作用下,促进了Al3Ni2共晶体的形成,并且使得Al3Ni2 沿磁场方向呈长条状生长。

  • 3.2.2 镁合金

  • 镁合金具有密度低、导电性能好、强度高、耐腐蚀等优点,广泛应用于飞机、汽车制造等工业领域[71-72],但其屈服强度较低,通过磁场提高其力学性能成为近年来的研究热点。日本名古屋材料研究所的LI等[73]研究了电磁振荡对AZ91D镁合金凝固的影响,提出了一种新的理论解释晶粒细化的机理。 LI认为在镁合金的凝固过程中,凝固的固相和液相的电阻率不同,固相的电阻率是液相的一半,两相受到的洛伦兹力 Fi可用式(6)表示:

  • Fi=B0×J(i)
    (6)
  • 式中,B 0 为磁通密度,J 为电流密度,下标 i 为样品的状态。由此可知,固相受到的洛伦兹力是液相的两倍,两相的运动不耦合,诱导了熔体流动,诱导的熔体流动通过枝晶破碎促进晶粒细化;试验结果也表明磁场引起的熔体流动导致晶粒细化,提高了镁合金的力学性能。DUAN等[74]研究了异相脉冲磁场对AZ80镁合金凝固的影响,同时对凝固过程进行了模拟研究。他们认为在凝固时,异相脉冲磁场引起吉布斯自由能(∆G)的变化,吉布斯自由能∆G 可用式(7)表示:

  • ΔG=ΔGV+ΔGm
    (7)
  • 式中,ΔGV 为固相和液相之间每单位体积自由能的差值,ΔGm 为磁自由能,磁场自由能 ΔGm 又可用式 (8)表示:

  • ΔGm=-χLSB22μ0-B22μ0
    (8)
  • 式中,χLS是液-固转变期间的磁化速率,B 是场强, μ0 是真空磁导率。吉布斯自由能的增加使得液相越过形核势垒,熔体大量形核;此外,磁场引起的熔体流动使得枝晶破碎,最终导致AZ80镁合金晶粒得到细化,力学性能得到提升。

  • 综上所述,针对顺磁性材料零件的服役工况需求,磁场显著地提高了其力学性能。但是针对实际服役工况,对零件的性能要求往往是多方面的,例如对耐腐蚀、耐磨损等性能是否有影响,仍需研究探索。

  • 3.3 抗磁性金属在磁场环境下的凝固性能

  • 抗磁性金属包括铜、银及其合金等,由于具有优良的导电性,因此广泛用于电子、汽车、冶金等行业。铜银合金由于其弱磁性,在强磁场下受到的洛伦兹力较其他合金小;另外,由于其高导电性,常用于导电材料,因此铜银合金是强磁场发生装置中导电器件的理想材料。其中用于强磁场发生装置中的电磁线圈等导电器件在强磁场环境下会受到强洛伦兹力和焦耳热的作用,这就要求导电材料具有高强度。提高铜银合金导电率和强度对于设计新型强磁场至关重要。因此,利用磁场控制铜银合金的凝固过程,进而改善其力学性能已成为实际需求和研究热点。

  • 3.3.1 铜合金

  • 铜及其合金是电容器的关键材料,随着电力工业的快速发展,其结构和性能难以满足实际应用需求。如何同步提高其电导率和力学性能是一个重要的研究领域。传统的添加稀土法和微合金化法虽然能改善铜凝固组织,但是不能同时提高铜的导电性能和力学性能。磁场在铜凝固过程中的应用是一项新的先进技术,使用它可以显著细化凝固组织而不使组织受到污染。上海大学率先对此开展了研究, LIAO等[75]认为在高频脉冲磁场下,熔体存在趋肤效应,感应电流主要集中在熔体的外表层,趋肤深度 δ 可以用式(9)表示:

  • δ=(σπμf)-12
    (9)
  • 式中,μ 是磁导率,σ 是电导率,f 是脉冲磁场的频率。外表层中的感应电流在磁场作用下产生洛伦兹力,洛伦兹力使得熔体对流,增加形核率和抑制枝晶生长,进而导致细化晶粒,最终提高凝固组织的力学性能。另外,样品电导率的提高可归结为两种相互竞争的机制:一是起始阶段,晶粒在脉冲磁场的作用下发生有利于导电的晶体取向,从而导致电导率的提高;二是随着晶粒密度的增加,晶界成为主导因素,而晶界增加了样品的电阻率,从而导致电导率的下降。

  • 另外,研究人员在研究磁场对铜合金凝固影响的同时考虑了铸造参数对铜合金凝固的影响,综合了多种参数对凝固组织的影响。大连理工大学的YAN等[76]在研究交变磁场对铜合金凝固的影响时,把铸造参数考虑在内,研究交变磁场和铸造速度、铸造温度等对铜凝固组织的影响。结果表明,交变磁场可以细化凝固组织晶粒,使其组织成分均匀,同时,铸造速度和铸造温度等条件对交变磁场的作用影响很大。中国科学院金属研究所的FENG等[77] 将低压脉冲磁场和温度条件作为试验变量,研究在低压脉冲磁场环境下的不同温度对铜凝固组织的影响。D、E两组(A、B、C组对凝固组织影响不大,不予介绍)为两种温度条件。结果表明,在低压脉冲磁场和两组温度条件下的凝固组织中的柱状晶比例减小,柱状晶和等轴晶的晶粒尺寸也变小,如图9a所示,有磁场时,熔体对流加速了传热,相比于无磁场时,冷却速率增加,如图9b所示,两者共同作用,导致晶粒细化。

  • 图9 纯铜凝固等轴晶覆盖面积分数统计图及冷却曲线[77]

  • Fig.9 Statistical chart and cooling curve of pure copper solidified equiaxed grain coverage area fraction [77]

  • 3.3.2 银合金

  • 金属银由于具有高导电性,常用作导电材料,但由于其价格昂贵,往往与性能相似的铜混合成铜银合金。铜银合金同样具有高导电性,常用于导电材料,在实际使用中,需要其具有高强度,通过磁场影响铜银合金的凝固过程,进而提高铜银合金的力学性能和导电性能已成为研究热点。东北大学的ZUO等[78-79]在研究高磁场对铜银合金凝固组织影响时发现,强静磁场的电磁阻尼效应抑制了熔体的对流,导致先共析铜的枝晶臂间距增加约18%;然而,由于熔体流动减弱,增加了银的溶质浓度和在先共析铜中的溶解度,同时减小了银在先共析铜中的析出间距,从而增加了局部显微硬度。基于磁场对银凝固的影响机理,有研究人员在银的沉积反应中施加强静磁场,以研究磁场环境对银沉积组织的影响。日本国家材料科学研究所的HIIROTA等[80] 在银的沉积反应过程中施加12T的强静磁场,结果发现,凝固组织的银枝晶具有弯曲和低密度的特点,笔者认为,在银沉积时,磁场引起的洛伦兹力造成了银枝晶的快速弯曲,同时,由银枝晶的快速弯曲造成静态晶体生长的干扰而形成低密度结构。西安交通大学的ZHANG等[81]通过在银的沉积反应过程中施加静磁场,成功诱导银icker链状结构的形成,如图10所示。在银的沉积反应中,硝酸银溶液的流动将在锌界面上沿相对均匀的方向扩散,因此越来越多的纳米粒子将连接到主干的头部,在那里由于足够的反应物,纳米粒子沿与硝酸银溶液的扩散流动相反的方向自组装。然后,一些形成的主干将被延伸,并且随后感应到的朝向衬底的磁力可能促使主干平行于衬底。同时,为了获得最小的总表面自由能,一些纳米粒子可能附着在树干的侧面,形成分枝,分枝可能垂直于树干,磁场效应最终主导了银icker链状结构的生长。

  • 图10 磁场环境下银icker链状结构形成机制示意图[81]

  • Fig.10 Schematic diagram of the formation mechanism of silver icker chain structure under magnetic field [81]

  • 综上所述,针对抗磁性材料零件的实际服役工况和较差的力学性能,磁场显著提高了其力学性能和导电性能,极大地扩展了铜、银合金的应用,同时,值得注意的是,通入磁场时,铸造参数对金属凝固组织性能具有较大的影响。

  • 由此可知,磁场通过影响金属的凝固过程来改善凝固组织的金属性能,基于此,磁场作用下三种磁性金属改善的性能及应用如表2所示。

  • 表2 磁场对不同磁性金属的性能改善及应用

  • Table2 Improvement and application of magnetic field to different magnetic metals

  • 4 结论与展望

  • 磁场通过影响金属凝固过程中的形核和晶核生长来改善凝固组织的性能,进而使金属零件具有优异的服役表现。针对磁场影响金属凝固原理的研究可以有效地指导试验方案的设计,进而保证试验方案的最优化;针对磁场设备的研究可以选择更多类型的磁场装置,减小试验设备带来的误差对试验的影响;针对三种磁性金属在磁场环境下的凝固性能的研究,可以设计制造出性能优越,满足实际服役工况要求的金属零件。虽然磁场对金属材料的性能提升具有显著的影响,但是仍存在以下问题亟待解决:

  • (1)磁场对金属凝固的影响存在多种机理耦合和竞争的现象,目前的研究不能定量说明多种机理耦合和竞争的关系,仍需要研究人员进行深入研究,定量给出磁场对金属凝固影响机理的耦合和竞争之间的关系。

  • (2)目前的研究中,磁场环境由永磁铁或电磁铁通电两种方法实现,由于永磁铁存在高温退磁现象,对基于永磁铁实现的静磁场、梯度磁场及旋转磁场来说,场强和磁通密度在高温环境下存在随时间减弱的现象,需要精确控制实现磁场环境的时间,减小场强和磁通密度的误差对试验的影响。

  • (3)目前磁场作用下金属凝固组织性能改善集中于力学性能、磁性能、导电性能,但是实际服役工况对金属零件性能的要求往往是多方面的,仍需研究人员对耐腐蚀、耐磨损等性能的改善进行扩展。

  • 磁场辅助金属凝固过程受到温度场、磁场、流场等复杂的多场耦合因素影响。近年来,为了准确掌握磁场辅助金属凝固过程,研究人员进行了大量的模拟研究,然而不同类型磁场所对应的数学模型选择、边界条件设定还没有统一的标准,研究人员可以以此为契机,对磁场辅助金属凝固过程进行深度理论研究,为后续研究提出统一标准,进而推动磁场辅助金属凝固的实际应用。

  • 参考文献

    • [1] DEY C,KUNDU T,BISWAL B P,et al.Crystalline metal-organic frameworks(MOFs):synthesis,structure and function[J].Acta Crystallographica Section B:Structural Science,Crystal Engineering and Materials,2014,70(1):3-10.

    • [2] WANG Q,YU Y,LIU J.Preparations,characteristics and applications of the functional liquid metal materials[J].Advanced Engineering Materials,2018,20(5):1700781.

    • [3] 雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2021,33(4):68-81.LUO Xiaotao,XIE Tian,LI Chanjiu,et al.Microstructure and property control of cold sprayed metal[J].China Surface Engineering,2021,33(4):68-81.(in Chinese)

    • [4] 曹召勋,王军,刘辰,等.铸态 Mg-2Y-0.8Mn-0.6Ca0.5Zn 镁合金热变形行为研究[J].材料导报,2022,36(1):1-9 CAO Zhaoxun,WANG Jun,LIU Chen,et al.Research on hot deformation behavior of as-cast Mg-2Y-0.8Mn-0.6Ca0.5Zn Magnesium alloy[J].Materials Reports,2022,36(1):1-9.

    • [5] 周平安.金属磨损自修复材料的功能特点和应用前景[J].中国表面工程,2004,17(1):39-46.ZHOU Pingan.Functional characteristics and application prospects of metal wear self-healing materials[J].China Surface Engineering,2004,17(1):4.(in Chinese)

    • [6] 翟启杰,龚永勇,李仁兴.金属凝固过程与细晶技术[J].材料与冶金学报,2015,14(2):81-82.ZHAI Qijie,GONG Yongyong,LI Yongxing.Metal solidification process and fine grain technology[J].Journal of materials and metallurgy,2015,14(2):81-82.(in Chinese)

    • [7] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high-entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):14.(in Chinese)

    • [8] 宋肖肖,崔子凡,何鹏,等.磁控溅射银镀层和电镀银镀层硬度及结合性对比研究[J].中国表面工程,2021,34(1):104-111.SONG Xiaoxiao,CUI Zifan,HE Peng,et al.Comparative study on hardness and bonding of magnetron sputtering silver coating and electroplating silver coating[J].China Surface Engineering,2021,34(1):8.(in Chinese)

    • [9] 贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.JIA Guanglin,PANG Weicheng.Principle and technology of electromagnetic metallurgy[M].Shenyang:Northeast University Press,2003.

    • [10] LEHMANN P,MOREAU R,CAMEL D,et al.Modification of interdendritic convection in directional solidification by a uniform magnetic field[J].Acta Materialia,1998,46(11):4067-4079.

    • [11] GOLOVASHCHENKO S F.Material formability and coil design in electromagnetic forming[J].Journal of Materials Engineering and Performance,2007,16(3):314-320.

    • [12] PSYK V,RISCH D,KINSEY B L,et al.Electromagnetic forming—A review[J].Journal of Materials Processing Technology,2011,211(5):787-829.

    • [13] SIMPSON T K.Maxwell on the electromagnetic field:A guided study[J].Engineering Science & Education Journal,1998,7(6):272-272.

    • [14] DAVIDSON P A.Magnetohydrodynamics in materials processing[J].Annual Review of Fluid Mechanics,1999,31(1):273-300.

    • [15] SHERCLIFF J A.Thermoelectric magnetohydrodynamics[J].Journal of Fluid Mechanics,1979,91(2):231-251.

    • [16] RUI S.Application of electromagnetic stirring technology in metallurgy[J].Mechanical Res Appl,2012,2:5.

    • [17] WUNG Y C.Present developing status of high performance steel in Korea(HIPERS-21 Project)[J].Chinese Society for Metals,2001:16-26.

    • [18] SUN Z,GUO M,VLEUGELS J,et al.Strong static magnetic field processing of metallic materials:A review[J].Current Opinion in Solid State and Materials Science,2012,16(5):254-267.

    • [19] AGRAWAL S,GHOSE A K,CHAKRABARTY I.Effect of rotary electromagnetic stirring during solidification of In-situ Al-TiB2 composites[J].Materials & Design,2017,113:195-206.

    • [20] VDOVIN K N,DUBSKI G A,EGOROVA L G.Influence of the magnetic field on the crystallization of aluminum melts[J].Russian Journal of Non-Ferrous Metals,2018,59(3):269-275.

    • [21] MA Y,XIAO L,YAN L.Application of high magnetic fields in advanced materials processing[J].Chinese Science Bulletin,2006,51(24):2944-2950.

    • [22] WANG J X,LI J S,WANG J,et al.Effect of solidification on microstructure and properties of FeCoNi(AlSi)0.2 high-entropy alloy under strong static magnetic field[J].Entropy,2018,20(4):275.

    • [23] LI P,REN S,JIANG D,et al.Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification[J].Journal of Crystal Growth,2016,437:14-19.

    • [24] FREUND H J,BAUER S H.Homogeneous nucleation in metal vapors.2.Dependence of the heat of condensation on cluster size[J].Journal of Physical Chemistry,2002,81(10):994-1000.

    • [25] ZHANG H,TAO H B,LI F,et al.Research on mechanism of nucleation in liquid metal excited by vibration[J].Iron and Steel,2008,43(8):20-24.

    • [26] 田马,刘昊.相变动力学[J].国外科技新书评介,2015(3):24-37.TIAN Ma,LIU Hao.Phase transition dynamics[J].Review of Foreign Scientific and Technological New Books,2015(3):24

    • [27] 戎易,王德,陈益平,等.直流磁场辅助铜-钢TIG焊接头组织和性能[J].材料,2021,35(22):137-140.RONG Yi,WANG De,CHEN Yiping.et al.Microstructure and properties of copper-steel tig welding joint assisted by DC magnetic field.[J].Materials Reports,2021,35(22):137-140

    • [28] TOM K.Phase-transition dynamics in the lab and the universe[J].Physics Today,2007,60(9):47-52.

    • [29] XU Y,CASARI D,MATHIESEN R H,et al.Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification[J].Acta Materialia,2018,149:312-325.

    • [30] DAS S,AIN W Q,AZHARI A,et al.Temperature gradient field theory of nucleation[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2016,114(1):012099.

    • [31] GREER A L.Overview:Application of heterogeneous nucleation in grain-refining of metals[J].Journal of Chemical Physics,2016,145(21):211704.

    • [32] SHIBUTA Y,SAKANE S,MIYOSHI E,et al.Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J].Nature Communications,2017,8(1):1-9.

    • [33] 熊朝,李克,周耐根.Mg-Al 合金熔体中固液界面结构的分子动力学研究[J].原子与分子物理学报,2019,36(1):123-128.XIONG Zhao,LI Ke,ZHOU Naigen.Molecular dynamics study of solid-liquid interface structure in Mg-Al alloy melt[J].Journal of Atomic and Molecular Physics,2019,36(1):123-128.

    • [34] YI X,LIU R,ZHONG Q,et al.Nucleation and growth of crystals and evolution properties of nano-clusters during solidification processes of liquid metal Cu[J].Scientia Sinica,2013,43(6):739.

    • [35] HOU H,LIY,XU X,et al.Non-equilibrium effects on solid transition of solidification microstructure of deeply undercooled alloys[J].Materials Science and Technology,2018,34(4):402-407.

    • [36] XU Y J,SU Y J,LUO L S,et al.Application research status of magnetic field in materials solidification[J].Rare Metal Materials & Engineering,2012,41(3):548-553.

    • [37] GERGELY G,GACSI Z,BANHIDI O,et al.The effect of a rotating magnetic field on the solidification of A356 alloy modified by strontium[J].Materials Science Forum,2008,589:305-310.

    • [38] ZIMMERMANN G,PICKMANN C,SCHABERGERZIMMERMANN E,et al.Do rotating magnetic fields unconditionally lead to grain refinement?A case study for directionally solidified Al-10wt% Cu alloys[J].Materialia,2018,3:326-337.

    • [39] 刘峰,周全,黄曼青,等.脉冲磁场对 Mg-Y-Cu-Zr-Sr 合金凝固组织的影响[J].特种铸造及有色合金,2016,36(4):442-446.LIU Feng,ZHOU Quan,HUANG Manqing.et al.Effect of pulsed magnetic field on solidification structure of Mg-Y-Cu-Zr-Sr alloy[J].Special casting and nonferrous alloy,2016,363(4):442-446.

    • [40] LI Y Z,MANGELINCK-NOEL N,ZIMMERMANN G,et al.Modification of the microstructure by rotating magnetic field during the solidification of Al-7 wt.% Si alloy under microgravity[J].Journal of Alloys and Compounds,2020,836:155458.

    • [41] HUANG M Q,ZHOU Q,LIU F,et al.Effect of DC magnetic field on crystal orientation and mechanical properties of remelting Mg-Y-Cu-Zr Alloy[C]//4th 2016 International Conference on Material Science and Engineering(ICMSE 2016).Atlantis Press,2016:278-284.

    • [42] LIU C,ZHONG Y,SHEN Z,et al.Effect of an axial highstatic magnetic field on the crystal orientation and magnetic property of Fe-4.5 wt% Si alloy during bulk solidification[J].Materials Letters,2019,247(Jul.15):189-192.

    • [43] LI L,BAN C,SHI X,et al.Influence of a high magnetic field on the solidification structures of ternary Al–Fe–Zr alloy[J].Journal of Materials Research,2017,32(11):2035-2044.

    • [44] LI L,YUAN T.Alignments and orientations of MnSn2 phase during the solidification process of Sn–Mn alloy under a high magnetic field[J].Materials Transactions,2019,60(6):939-943.

    • [45] ZHONG Y B,QING L,FANG Y P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660(Apr.13):118-126.

    • [46] WANG J,FAUTRELLE Y,NGUYEN-THI H,et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J].Metallurgical and Materials Transactions A,2016,47(3):1169-1179.

    • [47] LONG Z,WANG J,FAUTRELLE Y,et al.Repeated nucleation behaviors of pure bismuth under a high magnetic field[J].Journal of Alloys and Compounds,2020,831:154746.

    • [48] BU F,XUE X,WANG J,et al.Effect of strong static magnetic field on the microstructure and transformation temperature of Co–Ni–Al ferromagnetic shape memory alloy[J].Journal of Materials Science:Materials in Electronics,2018,29(22):19491-19498.

    • [49] WU M,LIU T,DONG M,et al.Directional solidification of Al–8wt.% Fe alloy under high magnetic field gradient[J].Journal of Applied Physics,2017,121(6):064901.

    • [50] DONG Y,SHUAI S,YU J,et al.Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024[J].Journal of Alloys and Compounds,2018,749:978-989.

    • [51] BOJAREVICS A,BARANOVSKIS R,KALDRE I,et al.Two cylinder permanent magnet stirrer for liquid metals[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2017,228(1):012022.

    • [52] ZENG J,CHEN W,YAN W,et al.Effect of permanent magnet stirring on solidification of Sn-Pb alloy[J].Materials & Design,2016,2016(108):364-373.

    • [53] EL-TAHER A M,ABD EL AZEEM S E,IBRAHIEM A A.Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field[J].Journal of Materials Science:Materials in Electronics,2021,32(5):6199-6213.

    • [54] STEINBACH S,RATKE L.The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys[J].Materials Science and Engineering:A,2005,413:200-204.

    • [55] ZOU Q C,JIE J C,SUN J L,et al.Effect of Si content on separation and purification of the primary Si phase from hypereutectic Al–Si alloy using rotating magnetic field[J].Separation and Purification Technology,2015,142:101-107.

    • [56] BAN B,ZHANG T,LI J,et al.Solidification refining of MG-Si by Al-Si alloy under rotating electromagnetic field with varying frequencies[J].Separation and Purification Technology,2018,202:266-274.

    • [57] JI H M,LUO T J,WANG C,et al.Direct chill casting of magnesium alloy under pulsed magnetic field[J].Materials Science and Technology,2017,33(1):33-39.

    • [58] KIM S W,SLAZHNIEV M A,Kim K H,et al.MHD-physical modification effect on microstructure control of the 7xxx high-strength Alalloys[J].IOP Conference Series Materials Science and Engineering,2018,424(1):012021.

    • [59] JIA Y,HOU J,WANG H,et al.Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy[J].Journal of Materials Processing Technology,2020,278:116542.

    • [60] DUAN W,BAO J,LIU W,et al.Simulation on DC casting of magnesium alloy under out-of-phase pulsed magnetic field with different coil connection strategies[J].International Journal of Heat and Mass Transfer,2020,162:120353.

    • [61] FENG Z,HONG Y,WANG G,et al.Effects of external magnetic field on the solidification process in Nd–Fe–B alloy:Phase-field simulation[J].Modelling and Simulation in Materials Science and Engineering,2018,26(2):025012.

    • [62] LIU C,ZHONG Y,SHEN Z,et al.Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy during solidification[J].Journal of Materials Research,2019,34(24):4076-4084.

    • [63] XUAN W,LIU H,LI C,et al.Effect of a high magnetic field on microstructures of Ni-Based single crystal superalloy during seed melt-back[J].Metallurgical and Materials Transactions B,2016,47(2):828-833.

    • [64] CHEN W,WANG J,HE Y,et al.Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu–Co immiscible alloy[J].Journal of Alloys and Compounds,2020:155502.

    • [65] CHEN W,WANG J,HE Y,et al.The effect of high magnetic field on the microstructure evolution of a Cu-Co alloy during non-equilibrium solidification[J].Journal of Crystal Growth,2019,515:78-82.

    • [66] HE Y,LI J,LI L,et al.Magnetic-field-induced chain-like assemblies of the primary phase during non-equilibrium solidification of a Co-B eutectic alloy:Experiments and modeling[J].Journal of Alloys and Compounds,2020,815:152446.

    • [67] LI H,LIU S,JIE J,et al.Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J].The International Journal of Advanced Manufacturing Technology,2017,93(9):3033-3042.

    • [68] HU S,GAGNOUD A,FAUTRELLE Y,et al.Fabrication of aluminum alloy functionally graded material using directional solidification under an axial static magnetic field[J].Scientific Reports,2018,8(1):1-13.

    • [69] HE C,LI Y,LI J,et al.Effect of electromagnetic fields on microstructure and mechanical properties of sub-rapid solidification-processed Al–Mg–Si alloy during twin-roll casting[J].Materials Science and Engineering:A,2019,766:138328.

    • [70] XIAO Y,LIU T,TONG Y,et al.Microstructure evolution of peritectic Al–18 at.% Ni alloy directionally solidified in high magnetic fields[J].Journal of Materials Science & Technology,2021,76:51-59.

    • [71] ZHOU Y,XIONG J,YAN F.The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D[J].Surface and Coatings Technology,2017,328:335-343.

    • [72] ZHOU Y,ZHANG P,YAN F.Corrosion resistance of a nano-Mg modified silane conversion coating with cathodic protection on magnesium alloy AZ91D[J].Materials Letters,2021,284:128930.

    • [73] LI M,TAMURA T,OMURA N,et al.Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique[J].Journal of Alloys and Compounds,2009,487(1-2):187-193.

    • [74] DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.

    • [75] LIAO X L,GONG Y Y,LI R X,et al.Effect of pulse magnetic field on solidification structure and properties of pure copper[J].Research & Development,2007,4(2):116-119.

    • [76] YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.

    • [77] FENG X H,LI Y J,LUO T J,et al.Influence of temperature conditions on grain refinement of pure Cu solidified with low-voltage pulsed magnetic field[J].International Journal of Cast Metals Research,2017,30(1):1-5.

    • [78] ZUO X,HAN K,ZHAO C,et al.Microstructure and properties of nanostructured Cu 28wt% Ag microcomposite deformed after solidifying under a high magnetic field[J].Materials Science and Engineering:A,2014,619:319-327.

    • [79] ZUO X,ZHAO C,NIU R,et al.Microstructural dependence of magnetoresistance in CuAg alloy solidified with high magnetic field[J].Journal of Materials Processing Technology,2015,224:208-212.

    • [80] HIROTA N,HARA S,SAKKA Y.In situ microscopic observations of magnetic field effects on the growth of silver dendrites[J].Materials transactions,2007,48(11):2888-2892.

    • [81] ZHANG Y,SUN S,ZHANG X,et al.Magnetic field controlled particle-mediated growth inducing icker-like silver architectures[J].Chemical Engineering Journal,2014,240:494-502.

  • 参考文献

    • [1] DEY C,KUNDU T,BISWAL B P,et al.Crystalline metal-organic frameworks(MOFs):synthesis,structure and function[J].Acta Crystallographica Section B:Structural Science,Crystal Engineering and Materials,2014,70(1):3-10.

    • [2] WANG Q,YU Y,LIU J.Preparations,characteristics and applications of the functional liquid metal materials[J].Advanced Engineering Materials,2018,20(5):1700781.

    • [3] 雒晓涛,谢天,李长久,等.冷喷涂金属的组织与性能调控[J].中国表面工程,2021,33(4):68-81.LUO Xiaotao,XIE Tian,LI Chanjiu,et al.Microstructure and property control of cold sprayed metal[J].China Surface Engineering,2021,33(4):68-81.(in Chinese)

    • [4] 曹召勋,王军,刘辰,等.铸态 Mg-2Y-0.8Mn-0.6Ca0.5Zn 镁合金热变形行为研究[J].材料导报,2022,36(1):1-9 CAO Zhaoxun,WANG Jun,LIU Chen,et al.Research on hot deformation behavior of as-cast Mg-2Y-0.8Mn-0.6Ca0.5Zn Magnesium alloy[J].Materials Reports,2022,36(1):1-9.

    • [5] 周平安.金属磨损自修复材料的功能特点和应用前景[J].中国表面工程,2004,17(1):39-46.ZHOU Pingan.Functional characteristics and application prospects of metal wear self-healing materials[J].China Surface Engineering,2004,17(1):4.(in Chinese)

    • [6] 翟启杰,龚永勇,李仁兴.金属凝固过程与细晶技术[J].材料与冶金学报,2015,14(2):81-82.ZHAI Qijie,GONG Yongyong,LI Yongxing.Metal solidification process and fine grain technology[J].Journal of materials and metallurgy,2015,14(2):81-82.(in Chinese)

    • [7] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high-entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):14.(in Chinese)

    • [8] 宋肖肖,崔子凡,何鹏,等.磁控溅射银镀层和电镀银镀层硬度及结合性对比研究[J].中国表面工程,2021,34(1):104-111.SONG Xiaoxiao,CUI Zifan,HE Peng,et al.Comparative study on hardness and bonding of magnetron sputtering silver coating and electroplating silver coating[J].China Surface Engineering,2021,34(1):8.(in Chinese)

    • [9] 贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.JIA Guanglin,PANG Weicheng.Principle and technology of electromagnetic metallurgy[M].Shenyang:Northeast University Press,2003.

    • [10] LEHMANN P,MOREAU R,CAMEL D,et al.Modification of interdendritic convection in directional solidification by a uniform magnetic field[J].Acta Materialia,1998,46(11):4067-4079.

    • [11] GOLOVASHCHENKO S F.Material formability and coil design in electromagnetic forming[J].Journal of Materials Engineering and Performance,2007,16(3):314-320.

    • [12] PSYK V,RISCH D,KINSEY B L,et al.Electromagnetic forming—A review[J].Journal of Materials Processing Technology,2011,211(5):787-829.

    • [13] SIMPSON T K.Maxwell on the electromagnetic field:A guided study[J].Engineering Science & Education Journal,1998,7(6):272-272.

    • [14] DAVIDSON P A.Magnetohydrodynamics in materials processing[J].Annual Review of Fluid Mechanics,1999,31(1):273-300.

    • [15] SHERCLIFF J A.Thermoelectric magnetohydrodynamics[J].Journal of Fluid Mechanics,1979,91(2):231-251.

    • [16] RUI S.Application of electromagnetic stirring technology in metallurgy[J].Mechanical Res Appl,2012,2:5.

    • [17] WUNG Y C.Present developing status of high performance steel in Korea(HIPERS-21 Project)[J].Chinese Society for Metals,2001:16-26.

    • [18] SUN Z,GUO M,VLEUGELS J,et al.Strong static magnetic field processing of metallic materials:A review[J].Current Opinion in Solid State and Materials Science,2012,16(5):254-267.

    • [19] AGRAWAL S,GHOSE A K,CHAKRABARTY I.Effect of rotary electromagnetic stirring during solidification of In-situ Al-TiB2 composites[J].Materials & Design,2017,113:195-206.

    • [20] VDOVIN K N,DUBSKI G A,EGOROVA L G.Influence of the magnetic field on the crystallization of aluminum melts[J].Russian Journal of Non-Ferrous Metals,2018,59(3):269-275.

    • [21] MA Y,XIAO L,YAN L.Application of high magnetic fields in advanced materials processing[J].Chinese Science Bulletin,2006,51(24):2944-2950.

    • [22] WANG J X,LI J S,WANG J,et al.Effect of solidification on microstructure and properties of FeCoNi(AlSi)0.2 high-entropy alloy under strong static magnetic field[J].Entropy,2018,20(4):275.

    • [23] LI P,REN S,JIANG D,et al.Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification[J].Journal of Crystal Growth,2016,437:14-19.

    • [24] FREUND H J,BAUER S H.Homogeneous nucleation in metal vapors.2.Dependence of the heat of condensation on cluster size[J].Journal of Physical Chemistry,2002,81(10):994-1000.

    • [25] ZHANG H,TAO H B,LI F,et al.Research on mechanism of nucleation in liquid metal excited by vibration[J].Iron and Steel,2008,43(8):20-24.

    • [26] 田马,刘昊.相变动力学[J].国外科技新书评介,2015(3):24-37.TIAN Ma,LIU Hao.Phase transition dynamics[J].Review of Foreign Scientific and Technological New Books,2015(3):24

    • [27] 戎易,王德,陈益平,等.直流磁场辅助铜-钢TIG焊接头组织和性能[J].材料,2021,35(22):137-140.RONG Yi,WANG De,CHEN Yiping.et al.Microstructure and properties of copper-steel tig welding joint assisted by DC magnetic field.[J].Materials Reports,2021,35(22):137-140

    • [28] TOM K.Phase-transition dynamics in the lab and the universe[J].Physics Today,2007,60(9):47-52.

    • [29] XU Y,CASARI D,MATHIESEN R H,et al.Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification[J].Acta Materialia,2018,149:312-325.

    • [30] DAS S,AIN W Q,AZHARI A,et al.Temperature gradient field theory of nucleation[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2016,114(1):012099.

    • [31] GREER A L.Overview:Application of heterogeneous nucleation in grain-refining of metals[J].Journal of Chemical Physics,2016,145(21):211704.

    • [32] SHIBUTA Y,SAKANE S,MIYOSHI E,et al.Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal[J].Nature Communications,2017,8(1):1-9.

    • [33] 熊朝,李克,周耐根.Mg-Al 合金熔体中固液界面结构的分子动力学研究[J].原子与分子物理学报,2019,36(1):123-128.XIONG Zhao,LI Ke,ZHOU Naigen.Molecular dynamics study of solid-liquid interface structure in Mg-Al alloy melt[J].Journal of Atomic and Molecular Physics,2019,36(1):123-128.

    • [34] YI X,LIU R,ZHONG Q,et al.Nucleation and growth of crystals and evolution properties of nano-clusters during solidification processes of liquid metal Cu[J].Scientia Sinica,2013,43(6):739.

    • [35] HOU H,LIY,XU X,et al.Non-equilibrium effects on solid transition of solidification microstructure of deeply undercooled alloys[J].Materials Science and Technology,2018,34(4):402-407.

    • [36] XU Y J,SU Y J,LUO L S,et al.Application research status of magnetic field in materials solidification[J].Rare Metal Materials & Engineering,2012,41(3):548-553.

    • [37] GERGELY G,GACSI Z,BANHIDI O,et al.The effect of a rotating magnetic field on the solidification of A356 alloy modified by strontium[J].Materials Science Forum,2008,589:305-310.

    • [38] ZIMMERMANN G,PICKMANN C,SCHABERGERZIMMERMANN E,et al.Do rotating magnetic fields unconditionally lead to grain refinement?A case study for directionally solidified Al-10wt% Cu alloys[J].Materialia,2018,3:326-337.

    • [39] 刘峰,周全,黄曼青,等.脉冲磁场对 Mg-Y-Cu-Zr-Sr 合金凝固组织的影响[J].特种铸造及有色合金,2016,36(4):442-446.LIU Feng,ZHOU Quan,HUANG Manqing.et al.Effect of pulsed magnetic field on solidification structure of Mg-Y-Cu-Zr-Sr alloy[J].Special casting and nonferrous alloy,2016,363(4):442-446.

    • [40] LI Y Z,MANGELINCK-NOEL N,ZIMMERMANN G,et al.Modification of the microstructure by rotating magnetic field during the solidification of Al-7 wt.% Si alloy under microgravity[J].Journal of Alloys and Compounds,2020,836:155458.

    • [41] HUANG M Q,ZHOU Q,LIU F,et al.Effect of DC magnetic field on crystal orientation and mechanical properties of remelting Mg-Y-Cu-Zr Alloy[C]//4th 2016 International Conference on Material Science and Engineering(ICMSE 2016).Atlantis Press,2016:278-284.

    • [42] LIU C,ZHONG Y,SHEN Z,et al.Effect of an axial highstatic magnetic field on the crystal orientation and magnetic property of Fe-4.5 wt% Si alloy during bulk solidification[J].Materials Letters,2019,247(Jul.15):189-192.

    • [43] LI L,BAN C,SHI X,et al.Influence of a high magnetic field on the solidification structures of ternary Al–Fe–Zr alloy[J].Journal of Materials Research,2017,32(11):2035-2044.

    • [44] LI L,YUAN T.Alignments and orientations of MnSn2 phase during the solidification process of Sn–Mn alloy under a high magnetic field[J].Materials Transactions,2019,60(6):939-943.

    • [45] ZHONG Y B,QING L,FANG Y P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660(Apr.13):118-126.

    • [46] WANG J,FAUTRELLE Y,NGUYEN-THI H,et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J].Metallurgical and Materials Transactions A,2016,47(3):1169-1179.

    • [47] LONG Z,WANG J,FAUTRELLE Y,et al.Repeated nucleation behaviors of pure bismuth under a high magnetic field[J].Journal of Alloys and Compounds,2020,831:154746.

    • [48] BU F,XUE X,WANG J,et al.Effect of strong static magnetic field on the microstructure and transformation temperature of Co–Ni–Al ferromagnetic shape memory alloy[J].Journal of Materials Science:Materials in Electronics,2018,29(22):19491-19498.

    • [49] WU M,LIU T,DONG M,et al.Directional solidification of Al–8wt.% Fe alloy under high magnetic field gradient[J].Journal of Applied Physics,2017,121(6):064901.

    • [50] DONG Y,SHUAI S,YU J,et al.Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024[J].Journal of Alloys and Compounds,2018,749:978-989.

    • [51] BOJAREVICS A,BARANOVSKIS R,KALDRE I,et al.Two cylinder permanent magnet stirrer for liquid metals[C]//IOP Conference Series:Materials Science and Engineering.IOP Publishing,2017,228(1):012022.

    • [52] ZENG J,CHEN W,YAN W,et al.Effect of permanent magnet stirring on solidification of Sn-Pb alloy[J].Materials & Design,2016,2016(108):364-373.

    • [53] EL-TAHER A M,ABD EL AZEEM S E,IBRAHIEM A A.Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field[J].Journal of Materials Science:Materials in Electronics,2021,32(5):6199-6213.

    • [54] STEINBACH S,RATKE L.The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys[J].Materials Science and Engineering:A,2005,413:200-204.

    • [55] ZOU Q C,JIE J C,SUN J L,et al.Effect of Si content on separation and purification of the primary Si phase from hypereutectic Al–Si alloy using rotating magnetic field[J].Separation and Purification Technology,2015,142:101-107.

    • [56] BAN B,ZHANG T,LI J,et al.Solidification refining of MG-Si by Al-Si alloy under rotating electromagnetic field with varying frequencies[J].Separation and Purification Technology,2018,202:266-274.

    • [57] JI H M,LUO T J,WANG C,et al.Direct chill casting of magnesium alloy under pulsed magnetic field[J].Materials Science and Technology,2017,33(1):33-39.

    • [58] KIM S W,SLAZHNIEV M A,Kim K H,et al.MHD-physical modification effect on microstructure control of the 7xxx high-strength Alalloys[J].IOP Conference Series Materials Science and Engineering,2018,424(1):012021.

    • [59] JIA Y,HOU J,WANG H,et al.Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy[J].Journal of Materials Processing Technology,2020,278:116542.

    • [60] DUAN W,BAO J,LIU W,et al.Simulation on DC casting of magnesium alloy under out-of-phase pulsed magnetic field with different coil connection strategies[J].International Journal of Heat and Mass Transfer,2020,162:120353.

    • [61] FENG Z,HONG Y,WANG G,et al.Effects of external magnetic field on the solidification process in Nd–Fe–B alloy:Phase-field simulation[J].Modelling and Simulation in Materials Science and Engineering,2018,26(2):025012.

    • [62] LIU C,ZHONG Y,SHEN Z,et al.Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy during solidification[J].Journal of Materials Research,2019,34(24):4076-4084.

    • [63] XUAN W,LIU H,LI C,et al.Effect of a high magnetic field on microstructures of Ni-Based single crystal superalloy during seed melt-back[J].Metallurgical and Materials Transactions B,2016,47(2):828-833.

    • [64] CHEN W,WANG J,HE Y,et al.Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu–Co immiscible alloy[J].Journal of Alloys and Compounds,2020:155502.

    • [65] CHEN W,WANG J,HE Y,et al.The effect of high magnetic field on the microstructure evolution of a Cu-Co alloy during non-equilibrium solidification[J].Journal of Crystal Growth,2019,515:78-82.

    • [66] HE Y,LI J,LI L,et al.Magnetic-field-induced chain-like assemblies of the primary phase during non-equilibrium solidification of a Co-B eutectic alloy:Experiments and modeling[J].Journal of Alloys and Compounds,2020,815:152446.

    • [67] LI H,LIU S,JIE J,et al.Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J].The International Journal of Advanced Manufacturing Technology,2017,93(9):3033-3042.

    • [68] HU S,GAGNOUD A,FAUTRELLE Y,et al.Fabrication of aluminum alloy functionally graded material using directional solidification under an axial static magnetic field[J].Scientific Reports,2018,8(1):1-13.

    • [69] HE C,LI Y,LI J,et al.Effect of electromagnetic fields on microstructure and mechanical properties of sub-rapid solidification-processed Al–Mg–Si alloy during twin-roll casting[J].Materials Science and Engineering:A,2019,766:138328.

    • [70] XIAO Y,LIU T,TONG Y,et al.Microstructure evolution of peritectic Al–18 at.% Ni alloy directionally solidified in high magnetic fields[J].Journal of Materials Science & Technology,2021,76:51-59.

    • [71] ZHOU Y,XIONG J,YAN F.The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D[J].Surface and Coatings Technology,2017,328:335-343.

    • [72] ZHOU Y,ZHANG P,YAN F.Corrosion resistance of a nano-Mg modified silane conversion coating with cathodic protection on magnesium alloy AZ91D[J].Materials Letters,2021,284:128930.

    • [73] LI M,TAMURA T,OMURA N,et al.Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique[J].Journal of Alloys and Compounds,2009,487(1-2):187-193.

    • [74] DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.

    • [75] LIAO X L,GONG Y Y,LI R X,et al.Effect of pulse magnetic field on solidification structure and properties of pure copper[J].Research & Development,2007,4(2):116-119.

    • [76] YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.

    • [77] FENG X H,LI Y J,LUO T J,et al.Influence of temperature conditions on grain refinement of pure Cu solidified with low-voltage pulsed magnetic field[J].International Journal of Cast Metals Research,2017,30(1):1-5.

    • [78] ZUO X,HAN K,ZHAO C,et al.Microstructure and properties of nanostructured Cu 28wt% Ag microcomposite deformed after solidifying under a high magnetic field[J].Materials Science and Engineering:A,2014,619:319-327.

    • [79] ZUO X,ZHAO C,NIU R,et al.Microstructural dependence of magnetoresistance in CuAg alloy solidified with high magnetic field[J].Journal of Materials Processing Technology,2015,224:208-212.

    • [80] HIROTA N,HARA S,SAKKA Y.In situ microscopic observations of magnetic field effects on the growth of silver dendrites[J].Materials transactions,2007,48(11):2888-2892.

    • [81] ZHANG Y,SUN S,ZHANG X,et al.Magnetic field controlled particle-mediated growth inducing icker-like silver architectures[J].Chemical Engineering Journal,2014,240:494-502.

  • 手机扫一扫看