en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

尹轶川(通信作者),男,1989年出生,博士研究生。主要研究方向为表面工程。E-mail:378107335@qq.com

中图分类号:TF815;TG176

DOI:10.11933/j.issn.1007−9289.20211105001

参考文献 1
CAO X Q,VASSEN R,STOEVER D.Ceramic materials for thermal barrier coating[J].Journal of the European Ceramic Society,2004,24(1):1-10.
参考文献 2
唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)
参考文献 3
李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines[J].China Surface Engineering,2012,25(1):16-21(in Chinese)
参考文献 4
杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):1-10.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):1-10.(in Chinese)
参考文献 5
XU T,FAULHABER S,MERCER C,et al.,Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY[J].Acta Materialia,2004,52(6):1439-1450.
参考文献 6
GHADAMI F,AGHDAM A,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.
参考文献 7
RICHER P,YANDOUZI M,BEAUVAIS L,et al.Oxidation behaviour of CoNiCrAlY bond coats produced by plasma,HVOF and cold gas dynamic spraying[J].Surface & Coatings Technology,2010,204(24):3962-3974.
参考文献 8
CHEN H,SI Y Q,MCCARTNEY D G.An analytical approach to the β-phase coarsening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy[J].Journal of Alloys and Compounds,2017,704:359-365.
参考文献 9
SALDANA J M,SCHULZ U,MONDRAGÓN RODRÍGUEZ G C,et al.Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J].Surface & Coatings Technology,2017,335:41-51.
参考文献 10
LEVERANT G R,KEAR B H,OBLAK J M.The influence of matrix stacking fault energy on creep deformation modes in γ' precipitation-hardened nickel-base alloys[J].Metallurgical and Materials Transactions B,1971,2(8):2305-2306.
参考文献 11
STRUNZ P,GILLES R,MUKHERJI D,et al.Microstructural characterization of single-crystal nickel-base superalloys by small-angle neutron scattering[J].Materials and Structures,1999,6:91-95.
参考文献 12
BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface & Coatings Technology,1997,94-95(97):21-26.
参考文献 13
HU L,SONG X,ZHAO X,et al.A robust,hydrophobic CeO2/NiCoCrAlY composite coating with excellent thermal stability and corrosion resistance prepared by air plasma spray[J].Journal of Alloys and Compounds,2021,861:1-7.
参考文献 14
PEREIRA J C,ZAMBRANO J C,RAYÓN E,et al.Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding:The influence of the Ni,Co and Al content[J].Surface & Coatings Technology,2018,338:22-31.
参考文献 15
CUI S,MIAO Q,LIANG W.et al.Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying[J].Applied Surface Science.2018,428:781-787.
参考文献 16
YUAN K,YU Y,WEN J F.A study on the thermal cyclic behavior of thermal barrier coatings with different MCrAlY roughness[J].Vacuum,2017,137:72-80.
参考文献 17
TEXIER D,ECOCHARD M,GHENO T,et al.Screening for Al2O3 failure in MCrAlY APS coatings using short-term oxidation at high temperature[J].Corrosion Science,2021,184:109334.
参考文献 18
YANG H Z,ZOU J P,SHI Q,et al.Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J].Corrosion Science,2019,153:162-169.
参考文献 19
LI M H,SUN X F,GONG S K,et al.Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating[J].Surface & Coatings Technology,2004,176:209-214.
参考文献 20
HE J,GUO H,PENG H,et al.Microstructural,mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD[J].Applied Surface Science,2013,274(5):144-150.
参考文献 21
ANG A,SANPO N,SESSO M L,et al.Thermal spray maps:material genomics of processing technologies[J].Journal of Thermal Spray Technology,2013,22(7):1170-1183.
参考文献 22
LI W,CAO C,YIN S.Solid-state cold spraying of Ti and its alloys:A literature review[J].Progress in Materials Science,2020,110(May):100633.1-100633.53.
参考文献 23
CAI J,YAO Y,GAO C,et al.Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J].Journal of Alloys andCompounds,2021,881:160651.
参考文献 24
YANG Y,YAO H,BAO Z,et al.Modification of NiCoCrAlY with Pt:Part I.Effect of Pt depositing location and cyclic oxidation performance[J].Journal of Materials Science & Technology,2019,35(3):115-123.
参考文献 25
PUT A V,LAFONT M C,OQUAB D,et al.Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications[J].Surface & Coatings Technology,2010,205(3):717-727.
参考文献 26
JULIO V.Modern cold spray[M].Switzerland:Springer International Publishing Switzerland,2015.
参考文献 27
YANG H Z,ZOU J P,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J].Corrosion Science,2020,175:108889.
参考文献 28
SUN J,JIANG S M,YU H J,et al.Oxidation behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy[J].Corrosion Science,2018,139:172-184.
参考文献 29
GHASEMI R,VALEFI Z,The effect of the Re-Ni diffusion barrier on the adhesion strength and thermal shock resistance of the NiCoCrAlY coating[J].Surface and Coatings Technology,2018,344:359-372.
参考文献 30
BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface and Coatings Technology,1997,94-95:21-26.
参考文献 31
JUAN W,HUI P,GUOZHONG C,et al.Impact of Ru buffer layer on diffusion behavior between NiCoCrAlY and single crystal superalloy DD6[J].Acta Aeronautica et Astronautica Sinica,2011,32(4):758-764.
参考文献 32
吕永超.Mo、Mo-Nb 微合金化对Cr20Ni80合金组织和性能的影响[D].兰州:兰州理工大学,2019.LÜ Yongchao.Effect of Mo,Mo-Nb microalloying on the microstructure and properties of Cr20Ni80 alloy[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)
参考文献 33
段佳林.GH99 高温合金及其 MCrAlY(Ta)(M=Ni,Co)涂层静态高温氧化行为研究[D].哈尔滨:哈尔滨工业大学,2011.DUAN Jialin.Static oxidation behavior of superalloy GH99 and Mcraly(Ta)(M=Ni,Co)coatings at high temperatures[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
参考文献 34
SMEGGIL J G.Some comments on the role of yttrium in protective oxide scale adherence[J].Materials Science & Engineering,1987,87:261-265.
参考文献 35
NIJDAM T J,SLOOF W G.Effect of Y distribution on the oxidation kinetics of NiCoCrAlY bond coat alloys[J].Oxidation of Metals,2008,69(1-2):1-12.
参考文献 36
SU Y J,TRICE R W,FABER K T,et al.Thermal conductivity,phase stability,and oxidation resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ)thermal-barrier coatings[J].Oxidation of Metals,2004,61(3-4):253-271.
参考文献 37
GONG X,CHEN R R,YANG Y H,et al.Effect of Mo on microstructure and oxidation of NiCoCrAlY coatings on high Nb containing TiAl alloys[J].Applied Surface Science,2017,431(15):81-92.
参考文献 38
HAN Y,CHEN H,D GAO,et al.Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS[J].Journal of Thermal Spray Technology,2017,26(8):1-18.
参考文献 39
HAYNES J A,FERBER M K,PORTER W D.Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAlX bond coats[J].Journal of Thermal Spray Technology,2000,9(1):38.
参考文献 40
CHEN H,BARMAN T.Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents[J].Computational Materials Science,2018,147:103-114.
参考文献 41
DAHL K V,HALD J,HORSEWELL A.Interdiffusion between Ni-based superalloy and MCrAlY coating[J].Defect & Diffusion Forum,2006,258-260:73-78.
参考文献 42
CHEN H,RUSHWORTH A,HOU X,et al.Effects of temperature on the β-phase depletion in MCrAlYs:A modelling and experimental study towards designing new bond coat alloys[J].Surface & Coatings Technology,2019(363):400-410.
参考文献 43
MILMAN Y V,LOTSKO D V,BILOUS A M,Quasicrystalline materials.structure and mechanical properties[M].Netherlands:Springer Netherlands,2001.
参考文献 44
CHEN X,GAO D,ZHANG Y,et.al.Evolution of microstructures and compressive properties in Al0.5CrFeNi2.1Mn0.8Tix high entropy alloys[J].Metals and Materials International,2021(27):118-126.
目录contents

    摘要

    MCrAlY 涂层以其优异的高温抗氧化性能和力学性能,成为燃气轮机高温防护部件不可或缺的一部分,但涂层、基体和环境之间的复杂相互作用,使得某些合金元素的单一添加无法满足现有 MCrAlY 涂层的使役要求。采用真空悬浮熔炼法制备块状 NiCoCrAlY 合金,使用 Thermo calc 软件计算掺杂元素后 NiCoCrAlY 合金的相平衡,利用 X 射线衍射仪(XRD)对 NiCoCrAlY 合金进行物相检测,利用扫描电子显微镜(SEM)和电子背散射衍射(EBSD)研究合金的微观结构和晶粒取向, 通过显微硬度、纳米压痕和压缩试验来表征其力学性能。选用优选出的合金成分制备粉体,利用 HVAF 喷涂技术制备涂层试样,与商用 NiCoCrAlY 涂层在相组成、显微组织、力学性能和耐磨性能上做对比研究。结果表明,随着 Hf 含量的增加,合金中晶粒尺寸增大;当 Hf 含量为 1 wt.%时,合金的抗压强度和抗压应力得到提高;Hf 含量为 4 wt.%时,合金具有较高的塑性。 掺杂改性后的 NiCoCrAlYNbMoHfTa 涂层中主相为 β 相;涂层显微硬度显著提高,且有着和商用 NiCoCrAlY 涂层相近的结合强度;相较于商用 NiCoCrAlY 涂层,NiCoCrAlYNbMoHfTa 涂层表现出更加优异的磨损防护性能。对传统的 MCrAlY 材料进行掺杂,探明 Hf 掺杂对 NiCoCrAlY 合金的力学性能影响及强化机制,所制备的涂层具有良好的力学性能和摩擦学性能。

    Abstract

    MCrAlY coating has become an indispensable part of gas turbine high temperature protection components due to its excellent high temperature oxidation resistance and mechanical properties. However, the complex interaction among the coating, the substrate and the environment makes the single addition of some alloying elements unable to meet the service requirements of the existing MCrAlY coatings. The bulk NiCoCrAlY alloys are prepared by vacuum suspension melting. The phase equilibrium of the NiCoCrAlY alloys after doping elements are calculated by thermo Calc software. X-ray diffractometer (XRD) is employed to aid the phase identifications of the NiCoCrAlY alloys. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) utilized to investigate the microstructure and grain orientation of the alloys. The microhardness, nanoindentation and compression tests are conducted to characterize the mechanical properties. In addition, the selected alloy components are selected to prepare powder, and the coating samples are prepared by HVAF spraying technology. The phase composition, microstructure, mechanical properties and wear resistance of commercial NiCoCrAlY coatings are compared and studied. The results show that the increase of Hf content led to the increase of the grain size in the alloy. In addition, when the Hf content is 1 wt.%, the compressive strength and compressive stress of the alloy are improved, and when the Hf content is 4 wt.%, the alloy has higher plasticity. The main phase of the NiCoCrAlYNbMoHfTa coating after doping modification is β phase. The microhardness of the coating is significantly improved, and it has a bonding strength that is very close to that of the commercial NiCoCrAlY coating. In addition, compared to NiCoCrAlY coating, NiCoCrAlYNbMoHfTa coating shows more excellent wear protection. Traditional MCrAlY materials are doped, and the effects of Hf doping on the mechanical properties and strengthening mechanism of NiCoCrAlY alloys are investigated, and the prepared coatings have good mechanical and tribological properties.

  • 0 前言

  • 高温燃气轮机叶片防护涂层研究经历了长期发展,从最初的铝的氧化物扩散层、铂铝复合涂层,发展到MCrAlY(M=Ni、Co或Ni+Co)涂层和热障涂层[1-4],而MCrAlY涂层通常用作燃气轮机叶片的保护层或热障涂层系统中的黏结层。根据成分特点,该涂层主要由 γ 固溶体相和分散的 β 相组成[5-8]。目前,使用最广泛的是四元MCrAlY合金,通过微合金化处理的MCrAlY涂层也逐步应用于燃气轮机叶片和其他高温部件上[9-12]。其中,NiCoCrAlY具有优异的抗氧化性能和较好的塑性,热膨胀系数接近镍基高温合金基体,具有非常大的发展潜力和应用前景[13-17]

  • 常见的NiCoCrAlY涂层制备技术包括气相沉积、喷涂技术和激光熔覆等[18-23]。涂层的相组成、晶粒大小和氧化物含量的多少与沉积过程中的热应力密切相关[24-25]。据报道,微合金化是控制NiCoCrAlY涂层微观结构和提高其高温性能的有效途径之一。在适当条件下获得综合性能良好的NiCoCrAlY掺杂材料尤为重要[26]。NiCoCrAlY涂层中一般含有六七种化学元素,包括Ti、Mo、W、Ta、Hf等。除了五种最基本的合金元素(Ni、Co、Cr、Al、Y)外,各种元素在NiCoCrAlY合金中具有不同的作用和强化方式[27-31]。尽管贵金属元素和稀土元素(稀土、钌、铱等)的加入在微合金化改性NiCoCrAlY涂层中起到了重要作用,但昂贵的价格和稀缺性限制了其应用。由此,低成本的难熔合金逐渐进入人们的视野。Nb在镍合金中能够形成Nb (C, N),起到钉扎作用,从而达到细化晶粒的作用[32]。 Ta元素的添加能够提高镍合金的抗氧化能力,同时还能够降低热导率[33]。SMEGGIL[34]报道,Hf形成的氧化物可以起到钉扎晶界的作用,从而提高Hf氧化物与基体之间的结合强度,增强沉积层的塑性和强度[35-36]。此外,还发现Mo可以抑制涂层与基体之间的互扩散。同时,Mo改善了涂层和基材的黏结性[37]。由于MCrAlY涂层、基体和环境之间的复杂相互作用,涂层往往难以揭示单个元素的作用。此外,某些合金元素的单一添加无法满足涂层的使用要求[38-39]

  • 因此,本文旨在探究不同含量的Hf掺杂对NiCoCrAlY合金中 β 相含量的影响,以期设计出新型的NiCoCrAlY合金,从而制备力学性能更加优异的涂层。利用Thermo-Calc软件对不同掺杂量的合金进行相平衡计算,采用真空悬浮炉制备不同Hf含量掺杂的NiCoCrAlY合金,研究Hf含量对合金组织和力学性能的影响,特别是研究Hf对合金相形成的影响,并探讨Hf优化合金力学性能的机理。从合金中选出最优成分制备成涂层,并与商用NiCoCrAlY涂层的相组成、显微形貌、力学性能和耐磨性能进行对比。

  • 1 试验准备

  • 1.1 相平衡计算程序

  • 通过Thermo Calc进行的相平衡计算,为特定条件下给定合金成分各种相的分数和成分提供有价值的信息。热力学性能计算中使用的CALPHAD方法基于最小化合金系统的总Gibbs自由能,以确定最佳成分与温度的关系。在本文中,研究了掺杂四种不同Hf含量的NiCo CrAlY合金。表1中列出了成分(质量分数),使用TCNi8数据库将其输入到Thermo Calc中[40]。前期的研究证明了热力学数据库对NiCoCrAlY合金的适用性[41]。在计算相平衡时,考虑了液相、γ 相、β 相、γ′相和σ 相。

  • 表1 NiCoCrAlY合金的理论成分(质量分数/%)

  • Table1 Nominal Composition of the NiCoCrAlY Alloy (wt.%)

  • 1.2 材料和样品

  • 熔炼前,将表1规定成分的合金加入真空熔炼炉。然后将熔炉排空,提高温度进行熔炼。熔炉在熔炼过程中翻转数次,以确保成分均匀并减少偏析。最后,获得了质量约为40g、直径约为30mm的铸造合金锭。用砂纸去除合金表面的氧化膜,进行微观结构表征。

  • 喷涂所用的NiCoCrAlYNbMoHfTa粉末和商用NiCoCrAlY粉末(中国安徽盛赛再制造科技有限公司)成分如表2所示。

  • 表2 NiCoCrAlY合金粉末的理论成分(质量分数/%)

  • Table2 Nominal Composition of the NiCoCrAlY powders (wt.%)

  • 两种粉末均由真空气雾化方式制备,粉末粒径均为15~53 μm,在喷涂前将粉末在真空干燥箱内进干燥1h,将干燥好的粉末加入送粉器内待用。

  • 利用HVAF喷涂系统(美国KERMETICO公司) 进行涂层制备,同时采用同种工艺制备商用涂层,喷涂工艺参数如表3所示。

  • 表3 HVAF制备NiCoCrAlY涂层工艺参数

  • Table3 HVAF parameters for spraying the NiCoCrAlY coatings

  • 喷涂所使用的基体材料为Inconel718高温合金。其中Inconel718高温合金主要化学成分如表4所示,基体尺寸为20mm×20mm× 3.5mm的方片; 所有基体在喷涂前均使用装有180#白刚玉的喷砂机进行表面粗糙化处理,喷枪与基体表面角度为90°,预处理之后的基体用压缩空气进行表面清理,以备喷涂。

  • 表4 Inconel718高温合金成分(质量分数/%)

  • Table4 Nominal composition of Inconel718 (wt.%)

  • 1.3 显微结构表征和相组成

  • 利用D/MAX-2500/PC X射线衍射仪(日本日立株式会社)进行合金相鉴定分析。试验中使用了铜靶和石墨单色仪。扫描范围为10~90°,扫描速率为2 (°)/min。

  • 铸态合金锭样品切割为10mm×10mm×1mm的块体,取铸锭的中间部分,组织观察面为线切割截面,涂层样品制备时,组织观察面为垂直于喷涂方向截面。使用配有ISIS-3000能量色散X射线分析(EDX)检测器的FEI XL30扫描电子显微镜(美国)对样品进行微观形貌观察。利用背散射电子 (BSE)成像,利用半定量EDX通过化学显微分析识别物相。使用EDAX Pegasus组合电子背散射衍射系统,在蔡司1530VP场发射枪扫描电子显微镜 (美国卡尔蔡司)上进行基于SEM的EBSD观察。利用BSE图像和EBSD相位分布图测量合金中不同相位的体积分数。通过EBSD分析对合金的晶粒尺寸和取向进行量化。ImageJ和Gimp 2.0软件包用于定量图像分析。

  • 1.4 力学性能测试

  • 合金样品的硬度由HXD-1000TM显微硬度计 (中国上海光学仪器厂)测量,压头载荷为1.96N,停留时间为15s。测量显微硬度时,在合金的对角线方向上选择10个点进行测量,涂层的显微硬度也使用同样的方式进行10次测量。使用纳米微机械探针的纳米压头XP(美国MTS)对样品进行纳米压痕试验,以获得合金中不同相结构的压痕硬度和弹性模量分布,压痕深度为1 μm。两个相邻测试点之间的距离大于压痕长度的10倍,以避免两个测试点之间的干扰。至少进行了10次测量,平均值用于表示合金的力学性能。

  • 采用CMT4305型微机电子万能试验机(中国美特斯工业系统有限公司)在室温下对合金进行静态压缩试验,应变速率为0.001s−1,在相同条件下,每次试验至少重复三次,以保证试验结果的准确性。样品为φ 2.5×6mm的圆柱形样品,在试验前进行了机加工和抛光,以确保样品的上下表面平整且垂直于圆柱体轴线。同时,利用扫描电镜观察样品的压缩断口形貌,分析合金的断裂机理。

  • 利用大载荷划痕仪RST3 (德国Anton Paar)对涂层的结合强度进行测量,采用圆锥头锥角120 °、顶部曲率半径200 μm的金刚石压头。恒力加载,划痕长度为2mm,加载速率为3mm/min。每次试验至少重复三次,以保证试验结果的准确性。

  • 室温干摩擦试验在SRV-IV(德国Optimol)多功能摩擦磨损试验机上进行,试验用摩擦副上试样为 φ 5mm的Si3N4 陶瓷球;下试样为NiCoCrAlYNbMoHfTa和NiCoCrAlY涂层试样。试验载荷为50N,固定频率5Hz,摩擦行程5mm测试摩擦因数曲线。采用MicroXAM-800(美国KLA-Tencor)非接触式光学轮廓仪观察磨痕三维形貌,并测试两种涂层的磨损体积和磨损质量。在环境扫描电镜(SEM)下观察磨痕微观形貌,最终分析材料的耐磨性能和磨损机理。

  • 2 试验结果与讨论

  • 2.1 相含量计算结果

  • 在1 000~1 200℃时,β 相和 γ 相分数随Hf含量(质量分数)的变化如图1所示。在相同温度下,随着Hf含量的增加,β 相分数变化并不明显,而 γ 相分数则呈现降低的趋势。此外,在1 200℃时,γ 相分数随着Hf含量的增多,下降趋势十分明显,同时合金中的液相含量也随着Hf含量的增加而增加。在相同Hf含量下,β 相分数随温度的升高而降低,γ 相分数随温度的升高而升高。直到1 200℃时才形成液相。从图1可以看出,在同一温度下,β 相分数随着Hf含量的增加变化并不明显;而在相同的Hf含量下,温度的升高会使 β 相减少,并导致 γ 相分数增加。

  • 图1 从Thermo calc获得的合金中 β 相和 γ 相分数与Hf含量的关系

  • Fig.1 Relationship between β phase or γ phase fraction and Hf mass fraction obtained from thermo-calc

  • 2.2 合金的相组成

  • 图2 给出了真空悬浮熔融后的块状材料样品的XRD谱图。样品1的XRD图中有明显的 β 相衍射峰,并且在41°和44°处出现 γ/γ'相强度较低的衍射峰。当Hf含量增加到2wt.%时,样品2的 β 衍射峰强度显着增加。当Hf含量增加到3wt.%时,合金中出现 β、γ/γ'和弱 σ 相衍射峰。当Hf含量最大时,44°存在较大的 β 衍射峰,合金中也存在 γ/γ' 和 σ 衍射峰。β 相的衍射峰强度随着Hf含量的增加变化并不明显,同时 γ/γ'相的衍射峰也逐渐增强,说明Hf的加入可以促进 γ/γ'相的形成。

  • 图2 样品1~4的XRD图谱

  • Fig.2 XRD pattern of samples 1-4

  • 2.3 合金的微观形貌

  • 图3 是样品1~4的微观结构特征。样品致密无宏观缺陷,具有清晰的两相结构,由相对较明亮的fcc-γ'(Ni3Al)相和相对较暗的bcc-β(Ni, Co)Al相组成。样品1相对致密,主要是 β-NiAl相和 γ'相(图3a)。样品2的相界清晰可见,在相界边缘可见一些微孔且存在一些铸造缺陷(图3b)。样品3的相界面清晰,γ' 相附近出现微小的 σ 相(图3c)。样品4的微观形貌与其他样品略有不同,伴有块状 β 结构(图3d)。四种合金的EDS能谱如图4所示。Al元素主要集中在 β 相中。Ni和Co元素均匀分布在整个样品中。此外, Cr和Nb元素集中在 γ'相中,Hf积累在 γ 和 β 相边界的边缘,而其他元素未能在图中观察到。

  • 图3 样品1~4合金的显微形貌

  • Fig.3 Microscopic morphologies of samples 1-4

  • 图4 样品1~4合金的EDS能谱

  • Fig.4 EDS spectra of samples 1-4

  • 结合SEM图片和EDS能谱可以发现, NiCoCrAlYNbMoHfTa合金的显微组织主要由 γ'相和 β 相组成,包并含少量 σ 相。所有样品的 γ'相在 β 相周围形成了网状结构,而在 β 相与 γ'相的相界附近可以发现少量的 σ 相。由于Hf的加入使更多的γ'相在合金中析出,但 β 相仍是合金的主相。

  • 样品1~4的EBSD图像及合金的平均晶粒尺寸分布如图5所示,图中显示了NiCoCrAlYNbMoHfTa合金块体的晶体结构、晶粒尺寸和 β 相分数与Hf含量的关系。合金块体致密,晶粒分布均匀。随着Hf含量的变化,合金的晶粒尺寸发生了显著的变化。随着Hf含量的增加,晶粒逐渐呈现出两极化分布。当Hf含量增加到4wt.%时,晶粒尺寸分布只有<200 μm和>450 μm两种分布。合金在图5a、5b、 5c和5d中具有明显的晶粒取向。在图5a中,Hf含量为1wt.%时,晶粒取向主要为(111)和(101)。当Hf含量增加到2wt.%时,(101)取向的晶粒增多,当Hf含量继续增加至4wt.%时,(111)取向的晶粒增多。从图5可以看出,由于Hf含量的增加,富Al的 β 相变化并不明显,含量有减少的趋势。此外,从图6可以发现,随着Hf含的增加,β 相的含量略微减小,这与图1的结果基本一致。说明Hf的添加会导致合金晶粒尺寸增大,同时会改变合金内 β 相和 γ'相的相对含量。

  • 图5 EBSD获得的IPF(001)图及合金的平均晶粒尺寸

  • Fig.5 IPF (001) maps obtained by EBSD and corresponding grain sizes of samples

  • 图6 β 相含量与Hf含量的关系

  • Fig.6 β phase area fraction versus Hf contents

  • 2.4 合金的力学性能

  • 图7 给出了样品1~4的显微硬度。合金的整体显微硬度随着Hf含量的先增加后减少,总体变化并不明显。其中,样品1的显微硬度为709HV,样品3的显微硬度为735HV,这是四种合金中最低和最高的显微硬度。

  • 随着Hf含量的增加,合金中 γ'相衍射峰强度增大,析出更多的 σ 相。此外,Hf的加入还导致合金中 β 相的含量略微增加,由于NiCoCrAlY合金的硬度通常取决于 β 相的分数,预计合金的硬度会随着Hf含量的改变而改变。因此,样品2因其最大的 β 相分数而表现出最高的显微硬度。

  • 图7 样品1~4的显微硬度

  • Fig.7 Microhardness of sample1-4

  • 图8 显示了NiCoCrAlYNbMoHfTa合金中 β 相和 γ′相的纳米压痕硬度和弹性模量。β 相的纳米压痕硬度随Hf含量的增加而波动,但弹性模量增加。γ′ 相的硬度和弹性模量之间没有明确的关系。但是 β 相的纳米压痕硬度大于 γ′相的纳米压痕硬度,这进一步支持了在高Hf含量下可能具有更高的显微硬度。

  • 四种合金的β相和γ′相的纳米压痕载荷-位移曲线如图9所示。在图9a中0~1 μm的纳米压痕深度期间, β 相经历了相近的加载和卸载行为。此前有报道称,即使 β 相分数增加,β 相的晶格结构和组成相近[42]。这表明本文中NiCoCrAlY合金中 β 相的塑性基本相同。因此,产生了类似的加载和卸载行为。

  • 图8 合金的纳米压痕硬度和弹性模量曲线

  • Fig.8 Nanoindentation hardness and elastic modulus curve of alloys

  • 图9 样品1~4的荷载-位移曲线

  • Fig.9 Load-displacement curve of Sample1-4

  • 图10 是四种合金样品的压缩应力-应变曲线。四种合金的总应变率在2%~10%。试样1的断裂强度最高,达到2.580GPa,断裂应变为8%,屈服强度为612MPa。试样2和3的断裂应变率均低于3%。试样3的强度最低,仅为1.065GPa,而应变也较小,为3%,屈服强度为357MPa。据报道,β 相在室温下的固有脆性,与fcc的 γ'-Ni3Al相相比具有更高的强度。这支持了具有较大 β 相分数的样品2和3表现出较高的强度但较低的延展性。

  • 图10 样品1~4的压缩应力-应变曲线.

  • Fig.10 Compressive stress-strain curve of samples 1-4

  • 图11 显示了四种合金的压缩力和压缩强度之间的关系。整体抗压强度随着Hf含量的先减小后增加,而样品3的整体抗压强度最低。试样1的压缩载荷(7.47kN)和抗压强度(2.580GPa)最大。结合图9对合金纳米压痕力学性能的分析,试样中载荷-位移曲线的变化趋势也与压痕硬度和弹性模量的变化趋势相吻合。试样3的弹性模量最低,硬度较低,这归因于 β 相较少。Hf使合金中 γ′相相含量增加,从而会降低合金的纳米压痕硬度和抗压强度[43]

  • 图11 试样1~4的抗压应力和抗压强度之间的关系.

  • Fig.11 Relationship between the compressive stress and compressive strength of samples 1-4

  • 图12 显示了四种NiCoCrAlYNbMoHfTa合金压缩试验后的断口形貌。如图12b和12c所示,可在样品1中发现解理台阶和脊状花样。这些断裂特征表明,样品1中的主要失效模式为韧性撕裂。样品2显示出撕裂和解理的混合模式,如图12f所示。试样2的断口形貌不是很平坦,存在明显的解理台阶。在样品3和样品4中可以找到更多的解理证据。样品3的断裂形态具有清晰的河流图案,如图12i所示,图中还可以看到一些微裂纹。这些断裂特征表明,试样3的主要失效模式为脆性断裂。图12l所示,可以在样品4中找到一些脊状花样。证据表明,试样4中的主要失效模式为解理断裂。

  • 随着Hf含量的增加,试样1~4的最大抗压强度总体呈先下降后上升趋势,试样2和3的最大抗压强度较低,试样1和4的抗压强度较大。试样2和3具有较高的脆性,这与压缩曲线一致。适当的Hf含量可以提高合金的抗压强度。Hf作为溶质原子,可以对位错产生钉扎效应,阻碍位错的运动。此外,外来原子引起的大晶格畸变使得位错难以移动,从而增加了抗压强度并降低了塑性。从图3、5和6中可以发现,合金中具有bcc结构的 β 相的含量随着Hf含量的变化而先增加后减小。由于 β 相在室温下通常是脆性的,其延展性远小于fcc的 γ’相。样品2有更多的 β 相,因此断裂形态相对光滑。此外,一些金属间化合物分布的合金的晶界加剧了脆性变形过程中的局部应力集中,促进了裂纹的萌生和扩展。材料内部的应力集中导致微裂纹的出现,可能沿着相边界,如图所示12i。最后,在试样的断裂面上有许多解理台阶。在样品2的断裂中可以看到剪切滑动面和河流形态。结合合金的SEM和EBSD光谱可知,样品2的 β 相结构较多,γ′相结构较少。当Hf含量为1wt.%时,合金的抗压强度提高,当Hf含量为4wt.%时,合金具有较高的塑性, CHEN等[44]报告了类似的发现。

  • 图12 样品1~4压缩断口的宏观形貌

  • Fig.12 Macroscopic morphologies of the compression fractures of samples 1-4

  • 2.5 涂层的微观形貌及相组成

  • 经过前期的工作,从粉末沉积性能的角度出发,综合考虑粉末的沉积性和材料的特性,最终选定样品1合金的理论成分制备粉末,并采用HVAF工艺制备涂层,同时与采用同种工艺制备的商用NiCoCrAlY涂层进行对比。图13为同一喷涂工艺下NiCoCrAlYNbMoHfTa和商用NiCoCrAlY涂层的截面显微形貌。从图中可以发现,所有涂层并没有呈现出明显的制备涂层粗糙的板条状边界。在图13a和13c中发现涂层均匀而且非常致密。观察涂层的放大图13b和13d可以发现微小的孔洞均匀分布在整个涂层,这可以有效地降低涂层的热导率。涂层内部并无明显缺陷,也未见明显的未熔融颗粒的存在。并且利用ImageJ图像处理软件对涂层截面进行孔隙率统计。NiCoCrAlYNbMoHfTa涂层孔隙率为2.7%,商用NiCoCrAlY涂层的孔隙率为1.6%。证明喷涂工艺较为良好,能够制备出较为致密且缺陷极少的涂层。

  • 图13 NiCoCrAlYNbMoHfTa涂层与商用NiCoCrAlY涂层的截面显微形貌

  • Fig.13 Cross-sectional SEM micrographs of the NiCoCrAl YNbMoHfTa coating and the commercial NiCoCrAlY coating

  • 两种成分的粉末及其涂层的XRD图谱如图14所示。从图中可以发现掺杂样品NiCoCrAlYNbMoHfTa粉末的XRD图谱中有明显的 β 相衍射峰,而且没有其他杂项。商用NiCoCrAlY粉末中,γ/γ′的衍射峰出现在44°和51°附近,并且有较弱的 β 相衍射峰存在。说明掺杂元素的加入极大地促进了 β 相的形成。观察两种成分的涂层XRD图谱可以发现,涂层与粉末的相组成基本一致,只是衍射峰略微宽化,说明涂层并未发生氧化等其他反应,掺杂粉末具有较好的沉积性能。

  • 图14 两种材料的粉末及其涂层的XRD图谱

  • Fig.14 XRD patterns of powders and coatings of the two materials

  • 2.6 涂层的力学性能

  • 涂层的硬度也是衡量涂层性能好坏的重要指标之一。HVAF工艺制备的NiCoCrAlYNbMoHfTa涂层与商用NiCoCrAlY涂层的显微硬度主要与涂层的相组成、显微结构、孔隙率有关。在优化的工艺条件下,金属粉末颗粒沉积到基体上紧密堆积,形成致密区,且堆叠过程中不会存在较大的孔洞和缝隙。

  • 图15 为两种涂层的显微硬度。涂层的显微硬度随掺杂元素的添加而增大。其中,NiCoCrAlYNbMoHfTa涂层的显微硬度为683HV,商用NiCoCrAlY涂层的显微硬度为288HV。随着Hf等元素的添加,合金中的 β 相衍射峰强度增加,如图14所示。这意味着Hf元素的加入促进涂层中 β 相的形成。由于NiCoCrAlY涂层的硬度通常取决于 β 相的分数,因此NiCoCrAlYNbMoHfTa涂层因其主相为 β 相而表现出最高的显微硬度。

  • 图15 NiCoCrAlYNbMoHfTa涂层与NiCoCrAlY涂层的显微硬度

  • Fig.15 Microhardness of the NiCoCrAlYNbMoHfTa coating and the NiCoCrAlY coating

  • 涂层的结合力是衡量涂层质量优劣的标准之一,参考国标ISO 27307,利用划痕法测定了两种涂层的结合力,结果如表5所示。

  • 表5 NiCoCrAlY涂层的结合强度

  • Table5 Bond strength of as-prepared NiCrAlY coating

  • 通过表5可以发现,同种工艺下涂层结合力相差不大,而掺杂后的NiCoCrAlYNbMoHfTa涂层结合力略小于商用的NiCoCrAlY涂层。其原因可能是NiCoCrAlYNbMoHfTa涂层中主相为硬质的 β 相,塑性相对较差,沉积到基体上时具有相对较高的孔隙率,而商用NiCoCrAlY涂层主相为 γ/γ′ 相,塑性相对较好,孔隙率较低,具有较好的沉积性能。

  • 2.7 涂层的耐磨性能

  • 对制备的NiCoCrAlYNbMoHfTa涂层和商用的NiCoCrAlY涂层摩擦学性能开展研究,图16为载荷50N下两种涂层摩擦因数对比图。可以看出, NiCoCrAlYNbMoHfTa涂层的摩因系数随时间增加,相对稳定在0.3左右,只在一定范围内有较小的波动;NiCoCrAlY涂层摩擦因数随摩擦时间增加迅速达到一个峰值,随后进入稳定摩擦阶段,摩擦因数整体保持缓慢上升的趋势。对比两种涂层摩擦因数可发现,NiCoCrAlYNbMoHfTa涂层的摩擦因数明显低于NiCoCrAlY涂层的摩擦因数,表明掺杂涂层比商用涂层具有更有效的减磨作用。

  • 图16 载荷50N下两种涂层摩擦系数对比图

  • Fig.16 Comparison diagram of friction factor of two coatings under load of 50N

  • 利用三维轮廓仪对往复摩擦试验后的NiCoCrAlYNbMoHfTa涂层和商用的NiCoCrAlY涂层进行三维形貌观察,如图17所示。由图中可以看出,NiCoCrAlYNbMoHfTa涂层的磨痕深度和宽度远远小于NiCoCrAlY涂层。NiCoCrAlYNbMoHfTa涂层表现出优异的耐磨性。此外,NiCoCrAlYNbMoHfTa涂层的磨痕中并无明显犁沟,而NiCoCrAlY涂层的磨痕中出现了较为密集的犁沟,也说明了NiCoCrAlY涂层的耐磨性能远低于NiCoCrAlYNbMoHfTa涂层。

  • 图17 50N载荷下涂层磨痕三维形貌

  • Fig.17 3D topographies of coating wear scar under 50N

  • 此外,还对两种涂层的磨损体积和磨损质量进行测定,如图18所示。由图中可以看出, NiCoCrAlYNbMoHfTa涂层的磨损体积远远小于商用的NiCoCrAlY涂层,并且在50N的摩擦载荷下, NiCoCrAlYNbMoHfTa涂层的磨损质量也远远小于商用的NiCoCrAlY涂层的磨损质量。 NiCoCr AlYNbMoHfTa涂层的磨损体积相较于NiCoCrAlY涂层降低了79.2%,磨损质量降低了74.3%。结果表明,NiCoCrAlYNbMoHfTa涂层的磨损防护作用优于NiCoCrAlY涂层。

  • 图18 载荷50N下NiCoCrAlYNbMoHfTa涂层与NiCoCrAlY涂层磨损体积和磨损质量对比图

  • Fig.18 Comparison of wear volume and wear mass between NiCoCrAlYNbMoHfTa coating and NiCoCrAlY coating under load of 50N

  • 3 结论

  • 利用Thermo Calc软件计算NiCoCrAlY合金掺杂后的相组成和相含量,并对选定成分后的合金相组成、微观形貌和力学性能进行综合研究。选出力学性能较优的成分制备涂层,并对涂层的综合性能进行探究。得出主要结论如下:

  • (1)随着Hf含量的增加,合金块体中 β 相含量先增加后减小,γ′相含量呈现上升趋势,合金晶粒尺寸显著增大。

  • (2)Hf含量的改变对合金的显微硬度影响不明显。但是,当Hf含量为较低时,合金的抗压强度和抗压应力得到提高,当Hf含量升高时,合金具的塑性得到明显提升。

  • (3)利用优选出的合金成分,制备的掺杂改性涂层的显微硬度远远高于商用涂层,并且有着和商用涂层相近的结合强度。掺杂改性涂层具有比商用涂层更好的减磨作用。掺杂改性后涂层的磨损体积和磨损质量都大大降低了。

  • (4)Hf的掺杂在改善涂层的力学性能和耐磨性能上发挥了重要作用。Hf掺杂后的相变规律也较好地解释了涂层在力学性能和耐磨性能上的变化,从而为发展掺杂改性NiCoCrAlY涂层提供了参考依据。

  • 参考文献

    • [1] CAO X Q,VASSEN R,STOEVER D.Ceramic materials for thermal barrier coating[J].Journal of the European Ceramic Society,2004,24(1):1-10.

    • [2] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [3] 李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines[J].China Surface Engineering,2012,25(1):16-21(in Chinese)

    • [4] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):1-10.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):1-10.(in Chinese)

    • [5] XU T,FAULHABER S,MERCER C,et al.,Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY[J].Acta Materialia,2004,52(6):1439-1450.

    • [6] GHADAMI F,AGHDAM A,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.

    • [7] RICHER P,YANDOUZI M,BEAUVAIS L,et al.Oxidation behaviour of CoNiCrAlY bond coats produced by plasma,HVOF and cold gas dynamic spraying[J].Surface & Coatings Technology,2010,204(24):3962-3974.

    • [8] CHEN H,SI Y Q,MCCARTNEY D G.An analytical approach to the β-phase coarsening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy[J].Journal of Alloys and Compounds,2017,704:359-365.

    • [9] SALDANA J M,SCHULZ U,MONDRAGÓN RODRÍGUEZ G C,et al.Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J].Surface & Coatings Technology,2017,335:41-51.

    • [10] LEVERANT G R,KEAR B H,OBLAK J M.The influence of matrix stacking fault energy on creep deformation modes in γ' precipitation-hardened nickel-base alloys[J].Metallurgical and Materials Transactions B,1971,2(8):2305-2306.

    • [11] STRUNZ P,GILLES R,MUKHERJI D,et al.Microstructural characterization of single-crystal nickel-base superalloys by small-angle neutron scattering[J].Materials and Structures,1999,6:91-95.

    • [12] BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface & Coatings Technology,1997,94-95(97):21-26.

    • [13] HU L,SONG X,ZHAO X,et al.A robust,hydrophobic CeO2/NiCoCrAlY composite coating with excellent thermal stability and corrosion resistance prepared by air plasma spray[J].Journal of Alloys and Compounds,2021,861:1-7.

    • [14] PEREIRA J C,ZAMBRANO J C,RAYÓN E,et al.Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding:The influence of the Ni,Co and Al content[J].Surface & Coatings Technology,2018,338:22-31.

    • [15] CUI S,MIAO Q,LIANG W.et al.Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying[J].Applied Surface Science.2018,428:781-787.

    • [16] YUAN K,YU Y,WEN J F.A study on the thermal cyclic behavior of thermal barrier coatings with different MCrAlY roughness[J].Vacuum,2017,137:72-80.

    • [17] TEXIER D,ECOCHARD M,GHENO T,et al.Screening for Al2O3 failure in MCrAlY APS coatings using short-term oxidation at high temperature[J].Corrosion Science,2021,184:109334.

    • [18] YANG H Z,ZOU J P,SHI Q,et al.Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J].Corrosion Science,2019,153:162-169.

    • [19] LI M H,SUN X F,GONG S K,et al.Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating[J].Surface & Coatings Technology,2004,176:209-214.

    • [20] HE J,GUO H,PENG H,et al.Microstructural,mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD[J].Applied Surface Science,2013,274(5):144-150.

    • [21] ANG A,SANPO N,SESSO M L,et al.Thermal spray maps:material genomics of processing technologies[J].Journal of Thermal Spray Technology,2013,22(7):1170-1183.

    • [22] LI W,CAO C,YIN S.Solid-state cold spraying of Ti and its alloys:A literature review[J].Progress in Materials Science,2020,110(May):100633.1-100633.53.

    • [23] CAI J,YAO Y,GAO C,et al.Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J].Journal of Alloys andCompounds,2021,881:160651.

    • [24] YANG Y,YAO H,BAO Z,et al.Modification of NiCoCrAlY with Pt:Part I.Effect of Pt depositing location and cyclic oxidation performance[J].Journal of Materials Science & Technology,2019,35(3):115-123.

    • [25] PUT A V,LAFONT M C,OQUAB D,et al.Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications[J].Surface & Coatings Technology,2010,205(3):717-727.

    • [26] JULIO V.Modern cold spray[M].Switzerland:Springer International Publishing Switzerland,2015.

    • [27] YANG H Z,ZOU J P,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J].Corrosion Science,2020,175:108889.

    • [28] SUN J,JIANG S M,YU H J,et al.Oxidation behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy[J].Corrosion Science,2018,139:172-184.

    • [29] GHASEMI R,VALEFI Z,The effect of the Re-Ni diffusion barrier on the adhesion strength and thermal shock resistance of the NiCoCrAlY coating[J].Surface and Coatings Technology,2018,344:359-372.

    • [30] BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface and Coatings Technology,1997,94-95:21-26.

    • [31] JUAN W,HUI P,GUOZHONG C,et al.Impact of Ru buffer layer on diffusion behavior between NiCoCrAlY and single crystal superalloy DD6[J].Acta Aeronautica et Astronautica Sinica,2011,32(4):758-764.

    • [32] 吕永超.Mo、Mo-Nb 微合金化对Cr20Ni80合金组织和性能的影响[D].兰州:兰州理工大学,2019.LÜ Yongchao.Effect of Mo,Mo-Nb microalloying on the microstructure and properties of Cr20Ni80 alloy[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [33] 段佳林.GH99 高温合金及其 MCrAlY(Ta)(M=Ni,Co)涂层静态高温氧化行为研究[D].哈尔滨:哈尔滨工业大学,2011.DUAN Jialin.Static oxidation behavior of superalloy GH99 and Mcraly(Ta)(M=Ni,Co)coatings at high temperatures[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [34] SMEGGIL J G.Some comments on the role of yttrium in protective oxide scale adherence[J].Materials Science & Engineering,1987,87:261-265.

    • [35] NIJDAM T J,SLOOF W G.Effect of Y distribution on the oxidation kinetics of NiCoCrAlY bond coat alloys[J].Oxidation of Metals,2008,69(1-2):1-12.

    • [36] SU Y J,TRICE R W,FABER K T,et al.Thermal conductivity,phase stability,and oxidation resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ)thermal-barrier coatings[J].Oxidation of Metals,2004,61(3-4):253-271.

    • [37] GONG X,CHEN R R,YANG Y H,et al.Effect of Mo on microstructure and oxidation of NiCoCrAlY coatings on high Nb containing TiAl alloys[J].Applied Surface Science,2017,431(15):81-92.

    • [38] HAN Y,CHEN H,D GAO,et al.Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS[J].Journal of Thermal Spray Technology,2017,26(8):1-18.

    • [39] HAYNES J A,FERBER M K,PORTER W D.Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAlX bond coats[J].Journal of Thermal Spray Technology,2000,9(1):38.

    • [40] CHEN H,BARMAN T.Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents[J].Computational Materials Science,2018,147:103-114.

    • [41] DAHL K V,HALD J,HORSEWELL A.Interdiffusion between Ni-based superalloy and MCrAlY coating[J].Defect & Diffusion Forum,2006,258-260:73-78.

    • [42] CHEN H,RUSHWORTH A,HOU X,et al.Effects of temperature on the β-phase depletion in MCrAlYs:A modelling and experimental study towards designing new bond coat alloys[J].Surface & Coatings Technology,2019(363):400-410.

    • [43] MILMAN Y V,LOTSKO D V,BILOUS A M,Quasicrystalline materials.structure and mechanical properties[M].Netherlands:Springer Netherlands,2001.

    • [44] CHEN X,GAO D,ZHANG Y,et.al.Evolution of microstructures and compressive properties in Al0.5CrFeNi2.1Mn0.8Tix high entropy alloys[J].Metals and Materials International,2021(27):118-126.

  • 参考文献

    • [1] CAO X Q,VASSEN R,STOEVER D.Ceramic materials for thermal barrier coating[J].Journal of the European Ceramic Society,2004,24(1):1-10.

    • [2] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Sintering-stiffening behavior of plasma sprayed La2Zr2O7thermal barrier coatings during high temperature exposure[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [3] 李民,程玉贤.航空发动机用高温防护涂层研究进展[J].中国表面工程,2012,25(1):16-21.LI Min,CHENG Yuxian.Progress in research on high temperature protective coatings for aero-engines[J].China Surface Engineering,2012,25(1):16-21(in Chinese)

    • [4] 杨乐馨,李文生,安国升,等.LZO/8YSZ 双陶瓷热障涂层CMAS的腐蚀性能[J].中国表面工程,2020,33(1):1-10.YANG Lexin,LI Wensheng,AN Guosheng,et al.Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings[J].China Surface Engineering,2020,33(1):1-10.(in Chinese)

    • [5] XU T,FAULHABER S,MERCER C,et al.,Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY[J].Acta Materialia,2004,52(6):1439-1450.

    • [6] GHADAMI F,AGHDAM A,ZAKERI A,et al.Synergistic effect of CeO2 and Al2O3 nanoparticle dispersion on the oxidation behavior of MCrAlY coatings deposited by HVOF[J].Ceramics International,2020,46(4):4556-4567.

    • [7] RICHER P,YANDOUZI M,BEAUVAIS L,et al.Oxidation behaviour of CoNiCrAlY bond coats produced by plasma,HVOF and cold gas dynamic spraying[J].Surface & Coatings Technology,2010,204(24):3962-3974.

    • [8] CHEN H,SI Y Q,MCCARTNEY D G.An analytical approach to the β-phase coarsening behaviour in a thermally sprayed CoNiCrAlY bond coat alloy[J].Journal of Alloys and Compounds,2017,704:359-365.

    • [9] SALDANA J M,SCHULZ U,MONDRAGÓN RODRÍGUEZ G C,et al.Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J].Surface & Coatings Technology,2017,335:41-51.

    • [10] LEVERANT G R,KEAR B H,OBLAK J M.The influence of matrix stacking fault energy on creep deformation modes in γ' precipitation-hardened nickel-base alloys[J].Metallurgical and Materials Transactions B,1971,2(8):2305-2306.

    • [11] STRUNZ P,GILLES R,MUKHERJI D,et al.Microstructural characterization of single-crystal nickel-base superalloys by small-angle neutron scattering[J].Materials and Structures,1999,6:91-95.

    • [12] BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface & Coatings Technology,1997,94-95(97):21-26.

    • [13] HU L,SONG X,ZHAO X,et al.A robust,hydrophobic CeO2/NiCoCrAlY composite coating with excellent thermal stability and corrosion resistance prepared by air plasma spray[J].Journal of Alloys and Compounds,2021,861:1-7.

    • [14] PEREIRA J C,ZAMBRANO J C,RAYÓN E,et al.Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding:The influence of the Ni,Co and Al content[J].Surface & Coatings Technology,2018,338:22-31.

    • [15] CUI S,MIAO Q,LIANG W.et al.Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying[J].Applied Surface Science.2018,428:781-787.

    • [16] YUAN K,YU Y,WEN J F.A study on the thermal cyclic behavior of thermal barrier coatings with different MCrAlY roughness[J].Vacuum,2017,137:72-80.

    • [17] TEXIER D,ECOCHARD M,GHENO T,et al.Screening for Al2O3 failure in MCrAlY APS coatings using short-term oxidation at high temperature[J].Corrosion Science,2021,184:109334.

    • [18] YANG H Z,ZOU J P,SHI Q,et al.Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation[J].Corrosion Science,2019,153:162-169.

    • [19] LI M H,SUN X F,GONG S K,et al.Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating[J].Surface & Coatings Technology,2004,176:209-214.

    • [20] HE J,GUO H,PENG H,et al.Microstructural,mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD[J].Applied Surface Science,2013,274(5):144-150.

    • [21] ANG A,SANPO N,SESSO M L,et al.Thermal spray maps:material genomics of processing technologies[J].Journal of Thermal Spray Technology,2013,22(7):1170-1183.

    • [22] LI W,CAO C,YIN S.Solid-state cold spraying of Ti and its alloys:A literature review[J].Progress in Materials Science,2020,110(May):100633.1-100633.53.

    • [23] CAI J,YAO Y,GAO C,et al.Comparison of microstructure and oxidation behavior of NiCoCrAlYSi laser cladding coating before and after high-current pulsed electron beam modification[J].Journal of Alloys andCompounds,2021,881:160651.

    • [24] YANG Y,YAO H,BAO Z,et al.Modification of NiCoCrAlY with Pt:Part I.Effect of Pt depositing location and cyclic oxidation performance[J].Journal of Materials Science & Technology,2019,35(3):115-123.

    • [25] PUT A V,LAFONT M C,OQUAB D,et al.Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications[J].Surface & Coatings Technology,2010,205(3):717-727.

    • [26] JULIO V.Modern cold spray[M].Switzerland:Springer International Publishing Switzerland,2015.

    • [27] YANG H Z,ZOU J P,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at high temperature[J].Corrosion Science,2020,175:108889.

    • [28] SUN J,JIANG S M,YU H J,et al.Oxidation behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy[J].Corrosion Science,2018,139:172-184.

    • [29] GHASEMI R,VALEFI Z,The effect of the Re-Ni diffusion barrier on the adhesion strength and thermal shock resistance of the NiCoCrAlY coating[J].Surface and Coatings Technology,2018,344:359-372.

    • [30] BRANDL W,TOMA D,KRÜGER J,et al.The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings[J].Surface and Coatings Technology,1997,94-95:21-26.

    • [31] JUAN W,HUI P,GUOZHONG C,et al.Impact of Ru buffer layer on diffusion behavior between NiCoCrAlY and single crystal superalloy DD6[J].Acta Aeronautica et Astronautica Sinica,2011,32(4):758-764.

    • [32] 吕永超.Mo、Mo-Nb 微合金化对Cr20Ni80合金组织和性能的影响[D].兰州:兰州理工大学,2019.LÜ Yongchao.Effect of Mo,Mo-Nb microalloying on the microstructure and properties of Cr20Ni80 alloy[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [33] 段佳林.GH99 高温合金及其 MCrAlY(Ta)(M=Ni,Co)涂层静态高温氧化行为研究[D].哈尔滨:哈尔滨工业大学,2011.DUAN Jialin.Static oxidation behavior of superalloy GH99 and Mcraly(Ta)(M=Ni,Co)coatings at high temperatures[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [34] SMEGGIL J G.Some comments on the role of yttrium in protective oxide scale adherence[J].Materials Science & Engineering,1987,87:261-265.

    • [35] NIJDAM T J,SLOOF W G.Effect of Y distribution on the oxidation kinetics of NiCoCrAlY bond coat alloys[J].Oxidation of Metals,2008,69(1-2):1-12.

    • [36] SU Y J,TRICE R W,FABER K T,et al.Thermal conductivity,phase stability,and oxidation resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ)thermal-barrier coatings[J].Oxidation of Metals,2004,61(3-4):253-271.

    • [37] GONG X,CHEN R R,YANG Y H,et al.Effect of Mo on microstructure and oxidation of NiCoCrAlY coatings on high Nb containing TiAl alloys[J].Applied Surface Science,2017,431(15):81-92.

    • [38] HAN Y,CHEN H,D GAO,et al.Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS[J].Journal of Thermal Spray Technology,2017,26(8):1-18.

    • [39] HAYNES J A,FERBER M K,PORTER W D.Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAlX bond coats[J].Journal of Thermal Spray Technology,2000,9(1):38.

    • [40] CHEN H,BARMAN T.Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents[J].Computational Materials Science,2018,147:103-114.

    • [41] DAHL K V,HALD J,HORSEWELL A.Interdiffusion between Ni-based superalloy and MCrAlY coating[J].Defect & Diffusion Forum,2006,258-260:73-78.

    • [42] CHEN H,RUSHWORTH A,HOU X,et al.Effects of temperature on the β-phase depletion in MCrAlYs:A modelling and experimental study towards designing new bond coat alloys[J].Surface & Coatings Technology,2019(363):400-410.

    • [43] MILMAN Y V,LOTSKO D V,BILOUS A M,Quasicrystalline materials.structure and mechanical properties[M].Netherlands:Springer Netherlands,2001.

    • [44] CHEN X,GAO D,ZHANG Y,et.al.Evolution of microstructures and compressive properties in Al0.5CrFeNi2.1Mn0.8Tix high entropy alloys[J].Metals and Materials International,2021(27):118-126.

  • 手机扫一扫看