en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

路世盛,男,1992年出生,博士研究生。主要研究方向为激光表面改性。E-mail:lushisheng@licp.cas.cn;

周健松,男,1969年出生,博士,研究员,博士研究生导师。主要研究方向为材料表面工程。E-mail:jszhou@licp.cas.cn;

王凌倩,女,1986年出生,博士,副研究员。主要研究方向为激光表面改性。E-mail:wanglingqian@licp.cas.cn;

梁军(通信作者),男,1979年出生,博士,研究员,博士研究生导师。主要研究方向为轻金属表面工程。E-mail:jliang@licp.cas.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211029002

参考文献 1
LIU J,LIU H,TIAN X H,et al.Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron[J].Journal of Alloys and Compounds,2020,822:153708.
参考文献 2
LI Y J,DONG S Y,LIU X T,et al.Interface phase evolution during laser cladding of Ni-Cu alloy on nodular cast iron by powder pre-placed method[J].Optics & Laser Technology,2021,135:106684.
参考文献 3
WANG Z Q,ZHANG J L,ZHANG P,et al.Effect of the 75 ferrosilicon on the laser cladding on gray cast iron[J].Optics & Laser Technology,2019,113:64-71.
参考文献 4
LI Y J,DONG S Y,YAN S X,et al.Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings[J].Surface and Coatings Technology,2018,347:20-28.
参考文献 5
LI Y J,DONG S Y,YAN S X,et al.Deep pit repairing of nodular cast iron by laser cladding NiCu/Fe-36Ni low-expansion composite alloy[J].Materials Characterization,2019,151:273-279.
参考文献 6
ZHU L J,LIU Y H,LI Z W,et al.Microstructure and properties of Cu-Ti-Ni composite coatings on gray cast iron fabricated by laser cladding[J].Optics & Laser Technology,2020,122:105879.
参考文献 7
郑江鹏,初铭强,张书彦.铸铁材料激光熔覆修复表面强化技术研究进展[J].热加工工艺,2020,49(17):1-6,10.ZHENG Jiangpeng,CHU Mingqiang,ZHANG Shuyan.Research progress on laser cladding repair surface strengthening technology of cast iron materials[J].Hot Working Technology,2020,49(17):1-6,10.(in Chinese)
参考文献 8
LIU J L,YU H J,CHEN C Z,et al.Research and development status of laser cladding on magnesium alloys:A review[J].Optics & Lasers in Engineering,2017,93:195-210.
参考文献 9
娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].ChinaSurface Engineering,2020,33(2):149-159.(in Chinese)
参考文献 10
LEE H W,JUNG K H,HWANG S K,et al.Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting[J].Materials Science and Engineering A,2019,749:65-73.
参考文献 11
赵子龙.球墨铸铁表面激光熔覆钴基合金组织及性能研究[D].沈阳:沈阳航空航天大学,2017.ZHAO Zilong.The research on the microstructure and properties of the laser cladding layer of Co-base alloy on ductile cast iron[D].Shenyang:Shenyang Aerospace University,2017.(in Chinese)
参考文献 12
闫世兴,董世运,徐滨士,等.预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J].材料工程,2015,43(1):30-36.YAN Shixing,DONG Shiyun,XU Binshi,et al.Effect of preheating temperature on microstructure and property of laser cladding Ni-based alloy coating on gray cast iron substrate[J].Journal of Materials Engineering,2015,43(1):30-36.(in Chinese)
参考文献 13
LIU H,HAO J B,HAN Z T,et al.Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron[J].Journal of Materials Processing Technology,2016,232:153-164.
参考文献 14
OCELIK V,OLIVEIRA U D,BOER M D,et al.Thick Co-based coating on cast iron by side laser cladding:Analysis of processing conditions and coating properties[J].Surface & Coatings Technology,2007,201(12):5875-5883.
参考文献 15
闫世兴,董世运,徐滨士,等.灰铸铁件激光熔覆NiCuFeBSi合金的气孔行为[J].焊接学报,2014,35(6):21-25.YAN Shixing,DONG Shiyun,XU Binshi,et al.Pores distribution during laser cladding NiCuFeBSi alloy on gray cast iron[J].Transactions of the China Welding Institution,2014,35(6):21-25.(in Chinese)
参考文献 16
王荣健,梁金禄,黄小玉,等.油气管道37Mn5钢表面激光熔覆CoCrW涂层的组织及腐蚀性能[J].粉末冶金材料科学与工程,2020,25(6):475-479.WANG Rongjian,LIANG Jinlu,HUANG Xiaoyu,et al.Microstructure and corrosion properties of laser cladding CoCrW coating on 37Mn5 steel surface of oil and gas pipeline[J].Materials Science and Engineering of Powder Metallurgy,2020,25(6):475-479.(in Chinese)
参考文献 17
JELVANIA S,RAZAVIB R S,BAREKATA M,et al.Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy[J].Optics & Laser Technology,2019,120:105761.
参考文献 18
LU S H,WEI X L,ZHAO J,et al.Wear resistance of nickel-based alloy coating formed by multilayer laser cladding[J].Materials Research Express,2018,5(12):126508.
参考文献 19
CHLEBUS E,GRUBER K,KUZNICKA B,et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J].Materials Science and Engineering:A,2015,639:647-655.
参考文献 20
童文辉,赵子龙,王杰,等.球墨铸铁表面激光熔覆钴基合金涂层的组织与性能[J].稀有金属,2017,41(12):1386-1390.TONG Wenhui,ZHAO Zilong,WANG Jie,et al.Microstructure and property of laser cladding cobalt based alloy coatings on ductile cast iron[J].Chinese Journal of Rare Metals,2017,41(12):1386-1390.(in Chinese)
参考文献 21
LI Z Y,YAN H,ZHANG P L,et al.Improving surface resistance to wear and corrosion of nickel-aluminum bronze by laser-clad TaC/Co-based alloy composite coatings[J].Surface and Coatings Technology,2021,405:126592.
参考文献 22
TAO X P,ZHANG S,ZHANG C H,et al.Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding[J].Surface and Coatings Technology,2018,342:76-84.
参考文献 23
陈乃利.球墨铸铁磨损行为及磨损机理的研究[D].镇江:江苏大学,2011.CHEN Naili.Research on wear behavior and wear mechanism of spheroidal graphite iron[D].Zhenjiang,Jiangsu University,2011.(in Chinese)
参考文献 24
ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.
参考文献 25
XIN B B,YU Y J,ZHOU J S,et al.Effect of silver vanadate on the lubricating properties of NiCrAlY laser cladding coating at elevated temperatures[J].Surface and Coatings Technology,2016,307:136-145.
参考文献 26
LV Y H,LI J,TAO Y F,et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J].Applied Surface Science,2017,402:478-494.
参考文献 27
ZHANG P R,LIU Z Q,SU G S,et al.A study oncorrosion behaviors of laser cladded Fe-Cr-Ni coating in as-cladded and machined conditions[J].Materials and Corrosion,2019,70:711-719.
参考文献 28
方振兴,祁文军,李志勤.304 不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J].材料导报,2021,35(12):12123-12129.FANG Zhenxing,QI Wenjun,LI Zhiqin.Effect of laser cladding lap ratio of 304 stainless steel on microstructure,wear resistance and corrosion resistance of CoCrW coating[J].Materials Reports,2021,35(12):12123-12129.(in Chinese)
参考文献 29
张凯奕,韩宏升,杨川,等.铸铁表面激光熔覆哈氏合金C276组织及性能[J].表面技术,2021,50(6):109-115.ZHANG Kaiyi,HAN Hongshen,YANG Chuan,et al.Microstructures and properties of hastelloy C276 on cast iron surface by laser cladding[J].Surface Technology,2021,50(6):109-115.(in Chinese)
目录contents

    摘要

    为降低球墨铸铁激光熔覆过程中白口组织的含量,改善其高温摩擦学性能和耐腐蚀性能,采用激光熔覆技术,通过添加 Ni 基过渡层在球墨铸铁表面制备 Co 基涂层。利用 XRD、SEM、EDS 表征不同熔覆层的物相组成、微观结构。采用高温摩擦磨损试验机测试不同温度下 Co 基涂层与球墨铸铁的摩擦磨损性能,分析 Co 基涂层在不同温度下的磨损机理。利用电化学工作站测试 Co 基涂层与球墨铸铁的耐腐蚀性能。结果表明:Ni 基过渡层的物相为 γ-Ni 固溶体和 Ni3Si 陶瓷相。Co 基涂层主要由 γ-Co 固溶体和 Cr7C3陶瓷相构成。Ni 基过渡层的添加抑制了基材中 C 元素扩散,降低了结合界面处白口化趋势。由于 Cr7C3陶瓷相的强化作用,Co 基涂层的显微硬度为球墨铸铁基材的 2.1 倍。与球墨铸铁基材相比,当温度高于 200 ℃时, Co 基涂层在与 Si3N4配副对磨时表现出较低的平均摩擦因数与磨损率。在中低温条件下 Co 基涂层与 Si3N4 配副对磨时的磨损机制为黏着磨损与磨粒磨损,高温条件下的磨损机制为形成连续光滑的氧化层起到减摩抗磨的作用。Co 基涂层表现出更高的自腐蚀电位(−362.36 mV)和更低的自腐蚀电流密度(13.95 nA·cm2 )。所制备的 Ni-Co 复合涂层能有效提高球墨铸铁表面的高温摩擦学性能和耐腐蚀性能,在发动机领域具有较好的应用前景。

    Abstract

    In order to reduce the content of chilled structure during laser cladding and improve the elevated-temperature tribological properties and corrosion resistance of ductile cast iron, the laser cladded Co-based coating is successfully prepared on the surface of ductile cast iron by adding Ni-based transition layer. The phase composition and microstructures of different layers are characterized by XRD, SEM, EDS. The friction and wear properties of the Co-based coating and ductile cast iron at different temperatures are evaluated utilizing elevated-temperature tribometer and the main wear mechanism of Co-based coating is analyzed. The corrosion resistance of the Co-based coating and ductile cast iron are examined by electrochemical workstation. Results show that the Ni-based transition layer contains γ-Ni solid solution and Ni3Si ceramic phase, Co-based coating is composed of γ-Co solid solution and Cr7C3 ceramic phase. The fabrication of Ni-based transition layer could restrain the diffusion of C element in substrate and control the content of chilled structure at the interface between coating and substrate. Due to the strengthening of Cr7C3 ceramic phase, the microhardness of Co-based coating is 2.1 times higher than that of the ductile cast iron. When the test temperature is higher than 200 ℃, the Co-based coating has lower mean friction factor and wear rate compared with ductile cast iron. When the Co-based coating is rubbed with the Si3N4 counterpart, the wear mechanism of Co-based coating at medium-low temperature is adhesive wear and abrasive wear, and exhibits superior antiwear and friction-reducing behavior due to the formation of the continuous and smooth oxide layer at high temperature. The Co-based coating has higher self-corrosion potential (−362.36 mV) and lower self-corrosion current density (13.95 nA·cm2 ). The results indicate that the laser cladded Ni-Co composite coating can effectively improve the high-temperature tribological properties and corrosion resistance of ductile cast iron, which has a good application prospect in the field of engine.

  • 0 前言

  • 铸铁以其优异的铸造性、减摩性、减震性以及切削加工性,广泛应用于机械制造、冶金、石油化工、汽车、船舶等领域[1-3]。其中,球墨铸铁具有高强度、韧性和塑性,常常代替钢应用于柴油发动机缸盖、缸套、曲轴、活塞环等零件的制造[4-5]。然而,球墨铸铁在高温、磨损以及腐蚀工况下服役经常因表面受损而导致提前失效[6]。解决球墨铸铁在高温、磨损及腐蚀环境下的失效问题,一般是致力于其表面改性的研究[7]。采用适当的表面改性技术能够在保持球磨铸铁本体材料力学性能不变的前提下对其进行表面处理,从而大大降低材料的制造成本,并显著改善球墨铸铁表面耐高温、耐磨、耐腐蚀性能。在众多的表面改性技术中,激光熔覆技术由于具有稀释率低、对基材的热影响小、涂层与基材成冶金结合等技术优势而受到广泛关注[8-9]

  • Co基高温合金主要成分是Co、Cr、W,在高温条件下具有良好的热稳定性和综合力学性能[10]。Co与Cr能形成稳定的 γ-Co固溶体。由于合金中含有部分碳元素,冶金条件下能够与Cr元素和W元素形成碳化物,弥散分布在基体中,导致合金具有更高的红硬性、高温耐磨性和耐腐蚀性能[11]。因此,采用激光熔覆技术在球墨铸铁表面制备Co基高温涂层可以显著改善球墨铸铁的高温耐磨性能与耐腐蚀性能。然而,大部分研究是在球墨铸铁表面直接制备Co基涂层,这极易产生缺陷。其主要原因是球磨铸铁基体中含有大量石墨,碳当量高、可焊性极差,容易导致涂层与基材结合界面处形成白口及淬硬组织,造成涂层开裂[12-13]。此外,当激光照射到球磨铸铁表面时,熔池中会产生CO气体,这很容易造成熔覆层内部出现气孔[14]。因此,如何抑制白口淬硬组织以及气孔的产生是球墨铸铁激光熔覆过程中的关键问题。

  • 闫世兴等的研究表明[15],Ni元素为石墨化元素,在较高的冷却速率条件下可有效阻隔铸铁基体中C元素扩散,降低熔覆层及结合界面处白口淬硬组织的含量,提高涂层界面结合强度和抗开裂性能。因此,本文采用激光熔覆技术通过添加Ni基过渡层在球墨铸铁表面制备Co基涂层,研究涂层的显微组织、显微硬度、耐腐蚀性能以及高温摩擦学性能,分析涂层在不同温度下的磨损机理。

  • 1 试验准备

  • 1.1 样品制备

  • 试验中基体材料选用球墨铸铁QT500-7,主要成分(质量分数:C 3.65%,Si2.75%,Mn<0.6, P<0.08,S<0.025,余量为Fe),采用线切割将基材加工成尺寸为φ80mm × 10mm的圆片,激光熔覆处理前表面经过喷砂处理以提高表面粗糙度。过渡层熔覆材料为高Ni合金粉末,Co基涂层的熔覆材料为CoCrW合金粉末,两种合金粉末的粒径分别为5~50 μm和80~150 μm,具体成分(质量分数) 如表1所示。激光熔覆处理采用4kW光纤激光器 (YLS-4000),Ni基过渡层熔覆参数为:激光功率1.3kW,扫描速度600mm/min,光斑直径4mm,搭接率50%,铺粉厚度2.0mm;Co基涂层熔覆参数为:激光功率1.9kW,扫描速度500mm/min,光斑直径4mm,搭接率50%,铺粉厚度2.5mm。

  • 表1 原始粉末的化学成分(质量分数/%)

  • Table1 Chemical composition of raw powders(wt.%)

  • 1.2 结构表征及性能测试

  • 激光熔覆后采用线切割机沿垂直于激光扫描方向切割获得金相试样和摩擦试样。将试样打磨抛光。利用盐酸、丙三醇和硝酸(体积比为3∶2∶1)的混合溶液在室温下对试样截面进行腐蚀,通过JEOL-JSM-5600LV扫描电子显微镜结合能谱仪 (EDS)对涂层截面进行显微组织观察和元素分析。利用D/MAX-2400Rigaku X射线衍射仪(XRD) 测定涂层的物相组成,扫描范围2θ 为20°~100°,扫描速度为2 (°)/min。利采用MH-5-VM型显微硬度计,在200g载荷和5s保压时间下,沿截面深度方向每隔200 μm测量涂层显微硬度分布。通过电化学工作站(Metrohm Autolab PGSTAT302N)对Co基涂层和球墨铸铁基材进行电化学测试,采用三电极体系,涂层(或球墨铸铁)为工作电极,Pt片为对电极,Ag/AgCl为参比电极,电解质为3.5%NaCl溶液。通过Rtec-3000F高温摩擦磨损试验机对Co基涂层和球墨铸铁基材进行高温摩擦学性能测试,测试温度分别为30℃、200℃、400℃、600℃ 和800℃。试样尺寸为31mm×16mm×4mm,摩擦配副是直径为6.35mm的Si3N4 球,硬度为1 700±20HV。摩擦磨损试验条件:载荷为20N、时间60min、单次行程5mm、频率5Hz、摩擦形式为往复式。为了确保试验结果的可重复性,每个试样在相同条件下进行3次重复试验。利用JEOL-JSM-5600LV扫描电子显微镜( SEM)、 ReNehanw IVIAS拉曼光谱仪对磨损表面进行形貌与成分分析。利用MicroXAM-800三维表面轮廓仪测量磨损表面的磨损面积,磨损率(W)由以下公式确定:

  • W=V/PS

  • 式中,W 为磨损率,V 为磨损体积(mm 3),P 为施加的载荷(N),S 为总滑移距离(m)。

  • 2 结果与讨论

  • 2.1 熔覆层的物相及显微组织

  • 图1 为利用优化工艺参数制备的Ni-Co复合涂层的宏观截面形貌,从图中可以看出整个涂层呈明显的三层结构,涂层截面质量良好,结构致密,未出现裂纹与气孔等明显的缺陷。过渡层底部与球墨铸铁基体的交界处,有明显的光亮带,表明过渡层与球墨铸铁基体呈良好的冶金结合。EDS线扫描图像结果表明,Fe、Ni、Cr、Co四种元素呈明显的梯度分布。沿线扫描方向Co、Cr元素含量增加,Fe元素含量减少。Ni元素主要分布在复合涂层中间区域,镍基过渡层的厚度为0.7~1.2mm。

  • 图1 Ni-Co复合涂层的截面形貌和元素线扫描图

  • Fig.1 Cross section SEM image of Ni-Co duplex coating and elements line scanning images

  • 为了确定两种涂层中物相的成分,对Ni过渡层和Co基涂层进行X射线衍射分析,结果如图2所示,可以看出Ni基过渡层的主要物相为 γ-Ni固溶体和少量的Ni3Si陶瓷相。原始粉末中部分Si原子在高能密度激光束作用下与金属Ni原子反应生成了少量的硬质陶瓷相。Co基涂层主要由 γ-Co固溶体和大量的Cr7C3 陶瓷相构成。在激光熔覆后的快速凝固阶段,Co无法在有限时间内转变为稳定的 ε-Co相,所以依然保持了高温状态的 γ-Co相 [16]。由于合金粉末中Cr和C元素所占比例较大,当Cr和C结合后在高能激光束的作用下形成了Cr7C3碳化物。

  • 图3 为Ni基过渡层不同区域的微观组织形貌,从图中可以看出过渡层组织致密无缺陷。在过渡层的底部(图3a),涂层和基体结合处是一个呈波浪形、无明显组织特征的平面晶区域,是由熔化的Ni基合金粉末与熔化的基体材料发生冶金反应形成的,是形成冶金结合的一种表现。显微组织主要包含尺寸相对较小的胞状晶。在过渡层中部区域(图3b),显微组织主要由粗大的柱状晶构成。而顶部区域主要为等轴晶和柱状晶的混合组织(图3c)。这主要是由于激光熔覆过程中,涂层不同部位的温度梯度存在较大差异,导致各部位凝固速率存在明显的不同。在熔池底部,与熔池温度相比基材温度较低,加之球墨铸铁具有较高的热导率,致使熔池与基材之间发生连续热传导,热量在基材侧迅速散失,导致熔池底部温度梯度 G 出现最大值,从而使涂层与基材的界面处获得很高的固-液界面稳定因子 G/R[13]。因此,在涂层靠近界面的部位形成了胞状晶组织。随着固液界面不断往前推进,涂层与基材之间的热传导减弱,凝固过程温度梯度降低,G/R 下降[17],有利于在熔池中形成成分过冷区,凝固过程中形成的胞状枝晶开始生长,晶粒状态由胞状枝晶转变为柱状枝晶组织。在熔池顶部,熔池与外界接触,热量可以沿各个方向向外传递,造成冷却速率增加,G/R 进一步降低,过冷度变大,从而生成了大量的等轴晶,这些等轴晶分布均匀,无明显生长取向[18]。等轴晶之间存在间隙,导致在间隙中生成少量的树枝晶。受到晶体学各向异性和热流方向的影响,这些树枝晶生长方向各异[19]

  • 图2 Ni基过渡层与Co基涂层的XRD衍射图谱

  • Fig.2 X-ray diffraction pattern of the Ni-based transition layer and Co-based functional layer

  • 图3 Ni基过渡层截面形貌

  • Fig.3 Cross-sectional SEM micrographs of Ni-based transition layer

  • 图4 为Ni基过渡层顶部区域的局部放大图,可以看出微观组织主要包含两种物相,分别为形状各异的枝晶和晶间细棒状相。从元素面分布图可以看出,Fe元素主要富集在枝晶中,Si元素富集在枝晶间,Ni、C、B三种元素分布相对均匀。结合XRD图谱可以得出枝晶相为 γ-Ni固溶体,Fe元素固溶在 γ-Ni基体中,枝晶间细棒状相为Ni3Si。同时可以看出,Ni基过渡层未形成明显的碳化物,并且XRD图谱也未检测到白口淬硬组织。说明Ni基过渡层的设计避免了在涂层与球墨铸铁基材的界面处形成白口淬硬组织,提高了涂层的界面结合强度。

  • 图4 Ni基过渡层顶部显微组织和元素面分布

  • Fig.4 Microstructure and EDS mappings in the top region of Ni-based transition layer

  • 图5 是Co基涂层不同区域的微观组织形貌,从图中可以看出Co基涂层组织结构致密、均匀性好,涂层内部无明显的气孔和裂纹等缺陷。在Co基涂层的底部(图5a),涂层和Ni基过渡层结合良好,呈冶金结合。显微组织主要为胞状晶与柱状晶的混合组织。在涂层中部(图5b),显微组织为取向一致的柱状晶组织。涂层的顶部区域为柱状晶和等轴晶的混合组织(图5c)。由此可以,看出涂层不同区域的显微组织呈现出完全不同的形貌,对比可以看出涂层中部相对于其他两个区域晶粒尺寸增大,并且晶粒生长方向呈明显的一致性。这是由于随着凝固过程的进行,结晶潜热不断释放,凝固速度降低,生长速率提高,驱动晶粒生长的动力呈各向同性,最终形成生长方向一致的粗大树枝状晶粒[20]

  • 图5 Co基涂层截面形貌

  • Fig.5 Cross-sectional SEM micrographs of Co-based coating

  • 图6 为Co基涂层顶部显微组织及元素分布,可以看出微观组织主要包括枝晶相和枝晶间沉淀相。通过对显微组织局部放大及进行元素分析发现, Co和Ni元素分布在枝晶中,而Cr和C元素分布在枝晶间的沉淀相中,其他元素分布相对均匀。结合XRD分析结果可以得出,枝晶相为 γ-Co固溶体, Ni和Fe元素固溶在 γ-Co基体中。Ni元素主要来源于Ni基过渡层,激光熔覆过程中,较高的热输入导致过渡层中Ni元素发生扩散进入Co基涂层并固溶在 γ-Co中。枝晶间的沉淀相为Cr7C3 陶瓷相,Cr元素与C元素有着较高的亲和性[21],优先于Fe与C元素结合,形成的Cr7C3

  • 图6 Co基涂层顶部显微组织和元素面分布

  • Fig.6 Microstructure and EDS mappings in the top region of Co-based functional layer

  • 2.2 熔覆层的显微硬度

  • 图7 为激光熔覆Ni-Co复合涂层横截面的显微硬度分布曲线,为了保证测试结果的精确性,每个点均测量3次后取平均值。可以看出Co基涂层的显微硬度在462.3~477.2HV0.2 区间内波动,平均显微硬度为471.1HV0.2,为球墨铸铁基材显微硬度(平均显微硬度220.9HV0.2)的2.1倍。显微硬度的改善主要得益于涂层中均匀分布的Cr7C3 陶瓷相,Cr7C3 具有较高的硬度,可以起到阻碍位错运动的作用[22],从而改善涂层的显微硬度。Ni基过渡层的平均显微硬度为260.3HV0.2

  • 从显微硬度图中可以看出,从Co基涂层到球墨铸铁基材,显微硬度平缓过渡,并未出现明显的突变。这说明Ni基过渡层的制备有效阻隔了球墨铸铁中C元素扩散,避免了涂层与基材界面处产生大量白口淬硬组织而导致涂层开裂,提高了涂层与铸铁基材的结合强度。显微硬度的改善有利于提高涂层的耐磨性能。

  • 图7 激光熔覆Ni-Co复合涂层横截面显微硬度曲线

  • Fig.7 Microhardness profiles of laser cladding Ni-Co composite coating

  • 2.3 熔覆层的高温摩擦学性能

  • 图8 为Co基涂层与球墨铸铁基材在不同温度下的平均摩擦因数与磨损率,从图8a中可以看出, Co基涂层与球墨铸铁基材的平均摩擦因数随着温度的变化表现出明显的差异。随温度的升高,Co基涂层的平均摩擦因数呈先增大后减小的变化趋势,在200℃,平均摩擦因数达到最大值为0.52,在800℃,平均摩擦因数达到最小值为0.34。而球墨铸铁基材的平均摩擦因数随温度的升高呈逐渐增加的趋势,30℃ 时平均摩擦因数出现最小值为0.22,800℃时平均摩擦因数出现最大值为0.89。对比平均摩擦因数可以看出,当温度为30℃和200℃时,球墨铸铁的平均摩擦因数小于Co基涂层,当温度高于200℃时,球墨铸铁的平均摩擦因数大于Co基涂层。这主要是因为在30℃和200℃,球墨铸铁内部的石墨起到很好的润滑作用。当测试温度处于400℃及以上时,石墨失去润滑作用,并且球墨铸铁基材发生氧化脱落和热软化效应造成平均摩擦因数明显增大[23]

  • 图8 球墨铸铁基材与Co基涂层在不同温度下的平均摩擦因数和磨损率

  • Fig.8 Mean friction factor and wear rate of ductile cast iron substrate and Co-based coatings at different temperatures

  • 对比Co基涂层与球墨铸铁基材在不同测试温度下的磨损率可以看出,Co基涂层的磨损率随温度的升高呈先增大后降低的趋势,在200℃磨损率出现最大值为23.13mm3/(N·m),800℃出现最小值为0.26mm3/(N·m)。球墨铸铁的磨损率在600℃ 达到最大值为62.00mm3/(N·m),在30℃达到最小值为9.62mm3/(N·m)。对比两种材料的磨损率可以看出,在30℃和200℃,球墨铸铁的磨损率略小于Co基涂层。当温度高于200℃时,球墨铸铁的磨损率均大于Co基涂层,尤其是在600℃和800℃,Co基涂层的磨损率分别低于球墨铸铁基材一个数量级和两个数量级。这说明Co基涂层具有优异的高温摩擦学性能,在球墨铸铁表面制备Co基涂层,可以显著改善球墨铸铁的高温摩擦学性能。

  • 图9 为不同温度下Co基涂层的磨损表面形貌,从图中可以看出,当温度为30℃(图9a)时,磨损表面分布有大量的黏着剪切层、轻微的犁沟以及刮擦,说明在Si3N4硬质配副的连续剪切应力作用下,Co基涂层表面发生了黏着磨损和磨粒磨损。随着温度升高到200℃(图9b),磨损表面出现了大面积的黏着剪切层,明显的犁沟和大量的磨屑分散在磨损表面。这些微观结构特征说明涂层发生了黏着磨损和磨粒磨损。由于Co基涂层表面在法向力作用下产生微切削效应,迫使产生的磨屑转变为磨粒,在滑动过程中,通过磨粒切割涂层表面形成明显的犁沟[24]。严重的黏着磨损和磨粒磨损导致涂层表现出相对高的平均摩擦因数和磨损率。当温度进一步升高至400℃(图9c),磨损表面出现了局部的分层现象、塑性变形和轻微的犁沟,这说明黏着磨损和磨粒磨损仍然是主要的磨损机制。此外,由于温度的升高,涂层材料发生软化,出现了塑性变形[25]。EDS分析结果表明,磨损表面的氧含量相对较高,这导致磨损表面发生氧化形成氧化膜。氧化膜的形成导致涂层的平均摩擦因数与磨损率下降。而分层现象的出现说明形成的氧化膜不连续,部分区域的氧化膜在摩擦力的作用下发生了脱落。当测试温度为600℃(图9d)时,磨损表面出现了大小不等的剥落凹坑、明显的塑性变形和犁沟。出现剥落坑主要是由于Si3N4 球与磨损表面之间的黏附力较大,在交变应力的作用下,一些材料从磨损表面剥离从而形成剥落凹坑[25]。磨损表面的氧含量进一步升高,说明磨损表面被进一步氧化,但氧化膜依旧不连续。随着摩擦测试温度升高至800℃(图9e),磨损表面的氧含量达到24.24wt.%,磨损表面发生明显的氧化而形成连续光滑的氧化膜,该氧化膜将摩擦配副与Co基涂层之间的摩擦形式转化为摩擦配副与氧化膜之间的摩擦,对涂层起到了很好的减摩作用,从而造成平均摩擦因数与磨损率大幅下降[26]。此外,在磨损表面还观察到明显的犁沟,这是由涂层材料的软化造成的。

  • 图9 Co基涂层在不同温度下的磨痕表面形貌

  • Fig.9 Surface friction and wear morphology of the Co-based coatings at different temperatures

  • 通过对不同温度下磨损表面形貌分析表明,Co基涂层在中低温条件下(≤400℃)主要发生了黏着磨损与磨粒磨损。在高温条件下(≥600℃)主要的磨损机制为磨粒磨损以及形成氧化膜。采用拉曼光谱分析了不同温度下磨损表面的氧化物,结果如图10所示。从图中可以看出温度为30℃时磨损表面未形成氧化物。当温度为200℃时,磨损表面形成了NiO,这是由于涂层中的Ni元素优先被氧化形成的。400℃磨痕内部形成了Fe2O3、Fe3O4、Cr2O3 以及CoO。当温度进一步升高至600℃时,磨痕内部除了形成Fe2O3、Fe3O4、Cr2O3以及CoO之外,还出现了新的CoO峰。当温度达到800℃时,磨痕内部并未出现新的氧化物峰。然而,Cr2O3 与CoO峰的强度显著增加,这说明随着温度的升高,Cr元素和Co元素不断被氧化从而在磨损表面形成氧化膜导致氧化膜的覆盖面积增加。此外,在800℃条件下,氧化物的形成速率增加,导致氧化物的含量保持增加。因此,在800℃涂层的平均摩擦因数与磨损率显著改善,这与氧化物之间的协同润滑作用有关。

  • 图10 Co基涂层在不同温度下磨损表面的拉曼光谱

  • Fig.10 Raman spectra inside the wear track of Co-based coatings at different temperatures

  • 2.4 熔覆层的耐腐蚀性能

  • 为进一步考察Co基涂层对球墨铸铁基材表面的腐蚀防护能力,分别测试了Co基涂层与球墨铸铁基材的耐腐蚀性能。图11为室温下球墨铸铁基材和Co基涂层在3.5%NaCl溶液中的动电位极化曲线,表2给出了相应的电化学参数。可以看出,Co基涂层的自腐蚀电位(E corr)高于球墨铸铁基材, Co基涂层的自腐蚀电流密度(J corr)低于球墨铸铁三个数量级。根据电化学腐蚀理论,金属材料的自腐蚀电位 E corr表示材料的腐蚀倾向,自腐蚀电位越正,说明材料的耐腐蚀性越好。自腐蚀电流密度 J corr 则是衡量腐蚀速率的标准,其值越小,说明材料的腐蚀速率越慢,耐腐蚀性越好[27]。因此,Co基涂层的耐腐蚀性能远高于球墨铸铁基材。这主要是由于Co基合金粉末中富含Co、Cr等耐腐蚀性较强的元素,且Cr元素有利于涂层在较低的电位时进入钝化状态,在涂层表面形成钝化膜,起到隔离腐蚀介质的作用,从而增强涂层的耐腐蚀性[28]。而球墨铸铁基材内部包含铁素体、石墨以及渗碳体。因为石墨和渗碳体的电极电位很高,在腐蚀介质中作为阴极,铁素体的电极电位相对较低,作为阳极。从而形成一个原电池,造成大阴极小阳极,在阳极区域由于腐蚀电流过大导致耐腐蚀性能下降[29]。所以,在球墨铸铁表面制备Co基涂层可以将基材和腐蚀溶液很好地隔离,避免基材组织与电解液接触发生腐蚀,从而对球墨铸铁基材起到有效的腐蚀防护作用。

  • 图11 球墨铸铁基材与Co基熔覆层的Tafel曲线

  • Fig.11 Tafel curves of ductile cast iron substrate and Co-based coating

  • 表2 球墨铸铁基材与Co基涂层的电化学腐蚀参数

  • Table2 Electrochemical corrosion parameters of ductile cast iron and Co-based coating

  • 3 结论

  • (1)采用激光熔覆技术通过添加Ni基过渡层成功在球墨铸铁表面制备了无缺陷的Co基涂层,Ni过渡层的制备抑制了球墨铸铁内部C元素的扩散,避免了在涂层与基材的界面处形成大量的白口淬硬组织。

  • (2)由于Cr7C3 陶瓷相的强化作用,Co基涂层的平均显微硬度为球墨铸铁基材的2.1倍。当温度高于200℃时,Co基涂层的平均摩擦因数与磨损率均低于球墨铸铁基材。

  • (3)中低温条件下Co基涂层与Si3N4 配副对磨时的主要磨损机制为黏着磨损与磨粒磨损,高温条件下磨损表面形成包含Fe2O3、Fe3O4、Cr2O3 以及CoO的氧化层,成为高温减摩抗磨的主要因素。

  • (4)Co基涂层的自腐蚀电位升高至−362.36mV,自腐蚀电流密度降低至13.95nA·cm−2,在球墨铸铁表面制备Co基涂层可以对球墨铸铁基材起到有效的腐蚀防护作用。

  • (5)Co基涂层为球墨铸铁基材高温磨损和腐蚀问题提供了新的解决方案,具有良好的应用前景。但其室温和200℃的摩擦因数与磨损率仍高于铸铁基材,需要进一步优化和改善。

  • 参考文献

    • [1] LIU J,LIU H,TIAN X H,et al.Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron[J].Journal of Alloys and Compounds,2020,822:153708.

    • [2] LI Y J,DONG S Y,LIU X T,et al.Interface phase evolution during laser cladding of Ni-Cu alloy on nodular cast iron by powder pre-placed method[J].Optics & Laser Technology,2021,135:106684.

    • [3] WANG Z Q,ZHANG J L,ZHANG P,et al.Effect of the 75 ferrosilicon on the laser cladding on gray cast iron[J].Optics & Laser Technology,2019,113:64-71.

    • [4] LI Y J,DONG S Y,YAN S X,et al.Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings[J].Surface and Coatings Technology,2018,347:20-28.

    • [5] LI Y J,DONG S Y,YAN S X,et al.Deep pit repairing of nodular cast iron by laser cladding NiCu/Fe-36Ni low-expansion composite alloy[J].Materials Characterization,2019,151:273-279.

    • [6] ZHU L J,LIU Y H,LI Z W,et al.Microstructure and properties of Cu-Ti-Ni composite coatings on gray cast iron fabricated by laser cladding[J].Optics & Laser Technology,2020,122:105879.

    • [7] 郑江鹏,初铭强,张书彦.铸铁材料激光熔覆修复表面强化技术研究进展[J].热加工工艺,2020,49(17):1-6,10.ZHENG Jiangpeng,CHU Mingqiang,ZHANG Shuyan.Research progress on laser cladding repair surface strengthening technology of cast iron materials[J].Hot Working Technology,2020,49(17):1-6,10.(in Chinese)

    • [8] LIU J L,YU H J,CHEN C Z,et al.Research and development status of laser cladding on magnesium alloys:A review[J].Optics & Lasers in Engineering,2017,93:195-210.

    • [9] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].ChinaSurface Engineering,2020,33(2):149-159.(in Chinese)

    • [10] LEE H W,JUNG K H,HWANG S K,et al.Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting[J].Materials Science and Engineering A,2019,749:65-73.

    • [11] 赵子龙.球墨铸铁表面激光熔覆钴基合金组织及性能研究[D].沈阳:沈阳航空航天大学,2017.ZHAO Zilong.The research on the microstructure and properties of the laser cladding layer of Co-base alloy on ductile cast iron[D].Shenyang:Shenyang Aerospace University,2017.(in Chinese)

    • [12] 闫世兴,董世运,徐滨士,等.预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J].材料工程,2015,43(1):30-36.YAN Shixing,DONG Shiyun,XU Binshi,et al.Effect of preheating temperature on microstructure and property of laser cladding Ni-based alloy coating on gray cast iron substrate[J].Journal of Materials Engineering,2015,43(1):30-36.(in Chinese)

    • [13] LIU H,HAO J B,HAN Z T,et al.Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron[J].Journal of Materials Processing Technology,2016,232:153-164.

    • [14] OCELIK V,OLIVEIRA U D,BOER M D,et al.Thick Co-based coating on cast iron by side laser cladding:Analysis of processing conditions and coating properties[J].Surface & Coatings Technology,2007,201(12):5875-5883.

    • [15] 闫世兴,董世运,徐滨士,等.灰铸铁件激光熔覆NiCuFeBSi合金的气孔行为[J].焊接学报,2014,35(6):21-25.YAN Shixing,DONG Shiyun,XU Binshi,et al.Pores distribution during laser cladding NiCuFeBSi alloy on gray cast iron[J].Transactions of the China Welding Institution,2014,35(6):21-25.(in Chinese)

    • [16] 王荣健,梁金禄,黄小玉,等.油气管道37Mn5钢表面激光熔覆CoCrW涂层的组织及腐蚀性能[J].粉末冶金材料科学与工程,2020,25(6):475-479.WANG Rongjian,LIANG Jinlu,HUANG Xiaoyu,et al.Microstructure and corrosion properties of laser cladding CoCrW coating on 37Mn5 steel surface of oil and gas pipeline[J].Materials Science and Engineering of Powder Metallurgy,2020,25(6):475-479.(in Chinese)

    • [17] JELVANIA S,RAZAVIB R S,BAREKATA M,et al.Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy[J].Optics & Laser Technology,2019,120:105761.

    • [18] LU S H,WEI X L,ZHAO J,et al.Wear resistance of nickel-based alloy coating formed by multilayer laser cladding[J].Materials Research Express,2018,5(12):126508.

    • [19] CHLEBUS E,GRUBER K,KUZNICKA B,et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J].Materials Science and Engineering:A,2015,639:647-655.

    • [20] 童文辉,赵子龙,王杰,等.球墨铸铁表面激光熔覆钴基合金涂层的组织与性能[J].稀有金属,2017,41(12):1386-1390.TONG Wenhui,ZHAO Zilong,WANG Jie,et al.Microstructure and property of laser cladding cobalt based alloy coatings on ductile cast iron[J].Chinese Journal of Rare Metals,2017,41(12):1386-1390.(in Chinese)

    • [21] LI Z Y,YAN H,ZHANG P L,et al.Improving surface resistance to wear and corrosion of nickel-aluminum bronze by laser-clad TaC/Co-based alloy composite coatings[J].Surface and Coatings Technology,2021,405:126592.

    • [22] TAO X P,ZHANG S,ZHANG C H,et al.Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding[J].Surface and Coatings Technology,2018,342:76-84.

    • [23] 陈乃利.球墨铸铁磨损行为及磨损机理的研究[D].镇江:江苏大学,2011.CHEN Naili.Research on wear behavior and wear mechanism of spheroidal graphite iron[D].Zhenjiang,Jiangsu University,2011.(in Chinese)

    • [24] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.

    • [25] XIN B B,YU Y J,ZHOU J S,et al.Effect of silver vanadate on the lubricating properties of NiCrAlY laser cladding coating at elevated temperatures[J].Surface and Coatings Technology,2016,307:136-145.

    • [26] LV Y H,LI J,TAO Y F,et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J].Applied Surface Science,2017,402:478-494.

    • [27] ZHANG P R,LIU Z Q,SU G S,et al.A study oncorrosion behaviors of laser cladded Fe-Cr-Ni coating in as-cladded and machined conditions[J].Materials and Corrosion,2019,70:711-719.

    • [28] 方振兴,祁文军,李志勤.304 不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J].材料导报,2021,35(12):12123-12129.FANG Zhenxing,QI Wenjun,LI Zhiqin.Effect of laser cladding lap ratio of 304 stainless steel on microstructure,wear resistance and corrosion resistance of CoCrW coating[J].Materials Reports,2021,35(12):12123-12129.(in Chinese)

    • [29] 张凯奕,韩宏升,杨川,等.铸铁表面激光熔覆哈氏合金C276组织及性能[J].表面技术,2021,50(6):109-115.ZHANG Kaiyi,HAN Hongshen,YANG Chuan,et al.Microstructures and properties of hastelloy C276 on cast iron surface by laser cladding[J].Surface Technology,2021,50(6):109-115.(in Chinese)

  • 参考文献

    • [1] LIU J,LIU H,TIAN X H,et al.Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron[J].Journal of Alloys and Compounds,2020,822:153708.

    • [2] LI Y J,DONG S Y,LIU X T,et al.Interface phase evolution during laser cladding of Ni-Cu alloy on nodular cast iron by powder pre-placed method[J].Optics & Laser Technology,2021,135:106684.

    • [3] WANG Z Q,ZHANG J L,ZHANG P,et al.Effect of the 75 ferrosilicon on the laser cladding on gray cast iron[J].Optics & Laser Technology,2019,113:64-71.

    • [4] LI Y J,DONG S Y,YAN S X,et al.Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings[J].Surface and Coatings Technology,2018,347:20-28.

    • [5] LI Y J,DONG S Y,YAN S X,et al.Deep pit repairing of nodular cast iron by laser cladding NiCu/Fe-36Ni low-expansion composite alloy[J].Materials Characterization,2019,151:273-279.

    • [6] ZHU L J,LIU Y H,LI Z W,et al.Microstructure and properties of Cu-Ti-Ni composite coatings on gray cast iron fabricated by laser cladding[J].Optics & Laser Technology,2020,122:105879.

    • [7] 郑江鹏,初铭强,张书彦.铸铁材料激光熔覆修复表面强化技术研究进展[J].热加工工艺,2020,49(17):1-6,10.ZHENG Jiangpeng,CHU Mingqiang,ZHANG Shuyan.Research progress on laser cladding repair surface strengthening technology of cast iron materials[J].Hot Working Technology,2020,49(17):1-6,10.(in Chinese)

    • [8] LIU J L,YU H J,CHEN C Z,et al.Research and development status of laser cladding on magnesium alloys:A review[J].Optics & Lasers in Engineering,2017,93:195-210.

    • [9] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].ChinaSurface Engineering,2020,33(2):149-159.(in Chinese)

    • [10] LEE H W,JUNG K H,HWANG S K,et al.Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting[J].Materials Science and Engineering A,2019,749:65-73.

    • [11] 赵子龙.球墨铸铁表面激光熔覆钴基合金组织及性能研究[D].沈阳:沈阳航空航天大学,2017.ZHAO Zilong.The research on the microstructure and properties of the laser cladding layer of Co-base alloy on ductile cast iron[D].Shenyang:Shenyang Aerospace University,2017.(in Chinese)

    • [12] 闫世兴,董世运,徐滨士,等.预热温度对灰铸铁表面激光熔覆镍基涂层组织与性能的影响[J].材料工程,2015,43(1):30-36.YAN Shixing,DONG Shiyun,XU Binshi,et al.Effect of preheating temperature on microstructure and property of laser cladding Ni-based alloy coating on gray cast iron substrate[J].Journal of Materials Engineering,2015,43(1):30-36.(in Chinese)

    • [13] LIU H,HAO J B,HAN Z T,et al.Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron[J].Journal of Materials Processing Technology,2016,232:153-164.

    • [14] OCELIK V,OLIVEIRA U D,BOER M D,et al.Thick Co-based coating on cast iron by side laser cladding:Analysis of processing conditions and coating properties[J].Surface & Coatings Technology,2007,201(12):5875-5883.

    • [15] 闫世兴,董世运,徐滨士,等.灰铸铁件激光熔覆NiCuFeBSi合金的气孔行为[J].焊接学报,2014,35(6):21-25.YAN Shixing,DONG Shiyun,XU Binshi,et al.Pores distribution during laser cladding NiCuFeBSi alloy on gray cast iron[J].Transactions of the China Welding Institution,2014,35(6):21-25.(in Chinese)

    • [16] 王荣健,梁金禄,黄小玉,等.油气管道37Mn5钢表面激光熔覆CoCrW涂层的组织及腐蚀性能[J].粉末冶金材料科学与工程,2020,25(6):475-479.WANG Rongjian,LIANG Jinlu,HUANG Xiaoyu,et al.Microstructure and corrosion properties of laser cladding CoCrW coating on 37Mn5 steel surface of oil and gas pipeline[J].Materials Science and Engineering of Powder Metallurgy,2020,25(6):475-479.(in Chinese)

    • [17] JELVANIA S,RAZAVIB R S,BAREKATA M,et al.Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy[J].Optics & Laser Technology,2019,120:105761.

    • [18] LU S H,WEI X L,ZHAO J,et al.Wear resistance of nickel-based alloy coating formed by multilayer laser cladding[J].Materials Research Express,2018,5(12):126508.

    • [19] CHLEBUS E,GRUBER K,KUZNICKA B,et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J].Materials Science and Engineering:A,2015,639:647-655.

    • [20] 童文辉,赵子龙,王杰,等.球墨铸铁表面激光熔覆钴基合金涂层的组织与性能[J].稀有金属,2017,41(12):1386-1390.TONG Wenhui,ZHAO Zilong,WANG Jie,et al.Microstructure and property of laser cladding cobalt based alloy coatings on ductile cast iron[J].Chinese Journal of Rare Metals,2017,41(12):1386-1390.(in Chinese)

    • [21] LI Z Y,YAN H,ZHANG P L,et al.Improving surface resistance to wear and corrosion of nickel-aluminum bronze by laser-clad TaC/Co-based alloy composite coatings[J].Surface and Coatings Technology,2021,405:126592.

    • [22] TAO X P,ZHANG S,ZHANG C H,et al.Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding[J].Surface and Coatings Technology,2018,342:76-84.

    • [23] 陈乃利.球墨铸铁磨损行为及磨损机理的研究[D].镇江:江苏大学,2011.CHEN Naili.Research on wear behavior and wear mechanism of spheroidal graphite iron[D].Zhenjiang,Jiangsu University,2011.(in Chinese)

    • [24] ROSENKRANZ A,COSTA H L,BAYKARA M Z,et al.Synergetic effects of surface texturing and solid lubricants to tailor friction and wear:A review[J].Tribology International,2021,155:106792.

    • [25] XIN B B,YU Y J,ZHOU J S,et al.Effect of silver vanadate on the lubricating properties of NiCrAlY laser cladding coating at elevated temperatures[J].Surface and Coatings Technology,2016,307:136-145.

    • [26] LV Y H,LI J,TAO Y F,et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J].Applied Surface Science,2017,402:478-494.

    • [27] ZHANG P R,LIU Z Q,SU G S,et al.A study oncorrosion behaviors of laser cladded Fe-Cr-Ni coating in as-cladded and machined conditions[J].Materials and Corrosion,2019,70:711-719.

    • [28] 方振兴,祁文军,李志勤.304 不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J].材料导报,2021,35(12):12123-12129.FANG Zhenxing,QI Wenjun,LI Zhiqin.Effect of laser cladding lap ratio of 304 stainless steel on microstructure,wear resistance and corrosion resistance of CoCrW coating[J].Materials Reports,2021,35(12):12123-12129.(in Chinese)

    • [29] 张凯奕,韩宏升,杨川,等.铸铁表面激光熔覆哈氏合金C276组织及性能[J].表面技术,2021,50(6):109-115.ZHANG Kaiyi,HAN Hongshen,YANG Chuan,et al.Microstructures and properties of hastelloy C276 on cast iron surface by laser cladding[J].Surface Technology,2021,50(6):109-115.(in Chinese)

  • 手机扫一扫看