en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

梁帅帅(通信作者),男,1988年出生,博士。主要研究方向为微流控成形制造。E-mail:liangss@ustb.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20211104002

参考文献 1
张甜甜,黄传兵,兰昊,等.镍基耐高温自润滑刷式封严涂层研究[J].航空制造技术,2017,60(8):24-29.ZHANG Tiantian,HUANG Chuanbing,LAN Hao,et al.Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J].Aeronautical manufacturing Technology,2017,60(8):24-29.(in Chinese)
参考文献 2
程涛涛,王志平,戴士杰,等.航空发动机陶瓷基高温封严涂层研究进展[J].机械工程学报,2021,57(10):126-136.CHEN Taotao,WANG Zhiping,DAI Shijie,et al.Research progress of ceramic-based high temperature sealing coating for aeroengines[J].Journal of Mechanical Engineering,2021,57(10):126-136.(in Chinese)
参考文献 3
SU W,ZHANG J,ZHANG J,et al.Microstructure ofHVOF-sprayed Ag-BaF2·CaF2·Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 ℃ to 800 ℃)[J].Ceramics International,2021,47(1):865-876.
参考文献 4
ÖZER A,KRIVEN W M,TÜR Y K.The effect of 3 mol% Y2O3 stabilized ZrO2 produced by a steric entrapment method on the mechanical and sintering properties of Cr3C2 based cermets[J].Materials Science and Engineering:A,2012,556:878-884.
参考文献 5
吴庆丹,肖金坤,张嘎,等.热喷涂金属基防滑耐磨涂层的研究进展[J].表面技术,2018,47(4):251-259.WU Qingdan,XIAO Jinkun,ZHANG Ga,et al.Thermal sprayed metal-based non-skid wear-resistant coatings[J].Surface Technology,2018,47(4):251-259.(in Chinese)
参考文献 6
赵坚,刘伟,陈小明,等.高温对爆炸喷涂 Cr3C2-25NiCr 涂层的氧化行为及性能的影响[J].材料热处理学报,2020,41(12):112-118.ZHAO Jian,LIU Wei,CHEN Xiaoming,et al.Effect of high temperature on oxidation behavior and properties of Cr3C2-25NiCr coating prepared by detonation spraying[J].Transactions of Materials and Heat Treatment,2020,41(12):112-118.(in Chinese)
参考文献 7
HUANG C,DU L,ZHANG W.Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2-BaF2·CaF2 composite coatings[J].Journal of Alloys and Compounds,2009,479(1-2):777-784.
参考文献 8
黄传兵,杜令忠,张伟刚.NiCr/Cr3C2-BaF2·CaF2 高温自润滑耐磨涂层的制备与摩擦磨损特性[J].摩擦学学报,2009,29(1):68-74.HUANG Chuanbing,DU Lingzhong,ZHANG Weigang.Preparation and tribological properties of NiCr/Cr3C2-BaF2 · CaF2 high temperature self-lubricating wearresistant coating[J].Tribology,2009,29(1):68-74.(in Chinese)
参考文献 9
何箐,汪瑞军,邹晗,等.不同结构 ZrO2 热障涂层对CMAS沉积物的防护作用[J].中国表面工程,2016,29(4):86-95.HE Qing,WANG Ruijun,ZOU Han,et al.Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits[J].China Surface Engineering,2016,29(4):86-95.(in Chinese)
参考文献 10
LOONG T H,EH NOUM S Y,MUN W W.The effect of Ta2O5 on the densification behaviour and mechanical properties of zirconia-toughened alumina(ZTA)composites prepared by two-stage sintering[J].Key Engineering Materials,2020,861:320-326.
参考文献 11
RAGHAVAN S,WANG H,DINWIDDIE R B,et al.Ta2O5/Nb2O5 and Y2O3 codoped zirconias for thermal barrier coatings[J].Journal of the American Ceramic Society,2008,87(3):431-437.
参考文献 12
黄绍东,李培忠,王晓静,等.Yb2O3-Y2O3-Ta2O5-ZrO2 体系相稳定性研究[J].稀土,2013,34(4):42-45.HUANG Shaodong,LI Peizhong,WANG Xiaojing,et al.The study of phase stability for Yb2O3-Y2O3-Ta2O5-ZrO2 system[J].Chinese Rare Earths,2013,34(4):42-45.(in Chinese)
参考文献 13
WU K,SCHELER S,PARK H,et al.Pressureless sintering of ZrO2-ZrSiO4/NiCr functionally graded materials with a shrinkage matching process[J].Journal of the European Ceramic Society,2013,33(6):1111-1121.
参考文献 14
LIU J,CHEN T,YUAN C,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.
参考文献 15
LIANG P,ZENG J,YANG X,et al.Duplex and functionally graded Al@NiCr/ZrO2 thermal barrier coatings on aluminum substrates[J].Journal of Alloys and Compounds,2019,790:928-940.
参考文献 16
ZHEN J,CHENG J,ZHU S,et al.High-temperature tribological behavior of a nickel alloy matrix solid-lubricating composite under vacuum[J].Tribology International,2017,110:52-56.
参考文献 17
ZHEN J,ZHU S,CHENG J,et al.Effects of sliding speed and testing temperature on the tribological behavior of a nickel-alloy based solid-lubricating composite[J].Wear,2016,368-369:45-52.
参考文献 18
LIU F,JIA J.Tribological properties and wear mechanisms of NiCr-Al2O3-SrSO4-Ag self-lubricating composites at elevated temperatures[J].Tribology Letters,2013,49(1):281-290.
参考文献 19
MAZUMDER S,BARAD B B,SHOW B K,et al.Tribological property enhancement of 3Y-TZP ceramic by the combined effect of CaF2 and MgO phases[J].Ceramics International,2019,45(10):13447-13455.
参考文献 20
KONG L,BI Q,ZHU S,et al.Effect of CuO on self-lubricating properties of ZrO2(Y2O3)-Mo composites at high temperatures[J].Journal of the European Ceramic Society,2014,34(5):1289-1296.
参考文献 21
KONG L,BI Q,NIU M,et al.High-temperature tribological behavior of ZrO2-MoS2-CaF2 self-lubricating composites[J].Journal of the European Ceramic Society,2013,33(1):51-59.
参考文献 22
齐庆杰,刘建忠,曹欣玉,等.CaF2高温分解特性试验研究[J].环境科学,2002,23(3):111-114.QI Qingjie,LIU Jianzhong,CAO Xinyu,et al.Stability of CaF2 at high temperature[J].Environmental Science,2002,23(3):111-114.(in Chinese)
参考文献 23
OUYANG J H,LI Y F,WANG Y M,et al.Microstructure and tribological properties of ZrO2(Y2O3)matrix composites doped with different solid lubricants from room temperature to 800 ℃[J].Wear,2009,267(9-10):1353-1360.
参考文献 24
苏威铭,张佳平,李浩宇,等.掺杂银对超音速火焰喷涂 NiCr/Cr3C2-BaF2·CaF2-Ag 涂层的影响[J].材料研究与应用,2020,14(2):103-108.SU Weiming,ZHANG Jiaping,LI Haoyu,et al.Effect of doped silver on HVOF-sprayed NiCr/Cr3C2-BaF2·CaF2-Ag coating[J].Materials Research and Application,2020,14(2):103-108.(in Chinese)
参考文献 25
BÜLENT NILÜFER O,GÖKÇE H,MUHAFFEL F,et al.The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2[J].Ceramics International,2016,42(8):9443-9447.
参考文献 26
GUO H,GUO J,BAKER A,et al.Cold sintering process for ZrO2-based ceramics:significantly enhanced densification evolution in yttria-doped ZrO2[J].Journal of the American Ceramic Society,2017,100(2):491-495.
目录contents

    摘要

    为提高 NiCr-Cr3C2-BaF2·CaF2 涂层高温耐摩擦磨损性能,减少热喷涂过程中润滑相 BaF2·CaF2 火焰烧蚀,采用溶胶凝胶方法将 BaF2·CaF2 粉体以弥散形式包覆于抗烧蚀陶瓷相 ZrO2 内,形成 ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体,将粉体与 NiCr-Cr3C2 混合后爆炸喷涂以提高涂层内 BaF2·CaF2含量,并表征涂层微观组织和高温耐磨损性能。结果表明:ZrO2包覆型粉体中 BaF2·CaF2呈弥散式分布,制备的 NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层相比传统 NiCr-Cr3C2-BaF2·CaF2涂层,Ca、Ba 元素含量均提升 1 倍以上,两涂层显微硬度分别为 1041 HV 和 690 HV,这说明 ZrO2陶瓷包覆能有效减少 BaF2·CaF2在喷涂过程中的高温烧蚀,且大幅提升了涂层硬度。高温摩擦磨损试验结果显示,NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层在 600 ℃、 700 ℃和 800 ℃时的平均摩擦因数分别为 0.25、0.17 和 0.18,与 NiCr-Cr3C2-BaF2·CaF2涂层相比分别降低了 16.7%、39.3% 和 5.3%;NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层磨损率为 5.47×10-6 mm3 ·N1 ·m1 ,较 NiCr-Cr3C2-BaF2·CaF2涂层降低了 38.6%。 对磨球表面的微观表征显示,涂层中润滑相含量提升使 NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层在对磨球表面形成更为完整的润滑转移膜,这将有利于涂层的高温润滑性、稳定性和耐磨损性能。研究结果对热喷涂粉体中易烧蚀物相的热防护和高温自润滑耐磨涂层性能的提升具有借鉴意义。

    Abstract

    Aiming to improve the friction and wear resistance of NiCr-Cr3C2-BaF2·CaF2 coating at high temperature and reduce the burn out of the self-lubricating component BaF2·CaF2 during thermal spraying, the sol-gel method is used to disperse the BaF2·CaF2 powder in ZrO2 microspheres. Then, the ZrO2-BaF2·CaF2 powder is mixed with the NiCr-Cr3C2 powder and then sprayed by a detonation gun to prepare coating samples. The microstructure, high-temperature friction and wear resistance of the coatings are studied. Results show that: BaF2 · CaF2 powder can homogeneously disperse in ZrO2 coated powder. Comparing the NiCr-Cr3C2-BaF2·CaF2 coating with the present NiCr-Cr3C2-ZrO2-BaF2·CaF2 coating, the elements of Ca and Ba in the latter are increased by more than one times, and the microhardness of the two coatings is 690 HV and 1041 HV, respectively. Therefore, it can be concluded that the ZrO2 coating can effectively reduce BaF2·CaF2 ablation during the spraying process and enormously improve the hardness of the coating. The average friction factor of NiCr-Cr3C2-ZrO2-BaF2·CaF2 coating is 0.25, 0.17 and 0.18 at 600 ℃, 700 ℃ and 800 ℃, respectively. Compared with the NiCr-Cr3C2-BaF2·CaF2 coating, the friction factor is reduced by 16.7%, 39.3% and 5.3% at 600 ℃ , 700 ℃ and 800 ℃ , respectively. The wear rate of NiCr-Cr3C2-ZrO2-BaF2 · CaF2 coating is 5.47×10-6 mm3 ·N-1 ·m-1 , which is 38.6% lower than that of NiCr-Cr3C2-BaF2·CaF2 coating. The microscopic characterization of the worn surface of the grinding ball shows that the increment of the lubricating phase in the coating makes the NiCr-Cr3C2-ZrO2-BaF2·CaF2 coating form a broader lubricating transfer film on the surface of the grinding ball, which will benefit the high-temperature lubricity, stability and wear resistance of the coating. The results can be used as a reference for the thermal protection of ablation phase in thermal spraying powder and the improvement of the performance of high temperature self-lubricating wear-resistant coating.

  • 0 前言

  • 航空发动机涡轮前端存在着较大的气流压力和火焰温度,而内部气流的泄露将对发动机动力造成损失。刷式封严技术通过刷丝与转子轴表面摩擦接触而具有优良的密封性能,但同时也将造成两者表面磨损,由此需要在转子轴表面制备高温固体自润滑耐磨涂层以降低刷丝与转子轴的磨损[1-2]

  • 高温固体自润滑耐磨涂层是一种具有优异力学性能、抗氧化性能和耐高温摩擦磨损性能的防护性涂层,对提高在高温、高速、摩擦、腐蚀和重负载恶劣环境中工作的转子轴使用寿命具有重要意义[3-4]。NiCrCr3C2-BaF2· CaF2 涂层是一种常用的高温固体自润滑耐磨涂层,涂层材料由NiCr合金黏结相、Cr3C2硬质陶瓷相和BaF2·CaF2高温润滑相组成,因此具有高熔点、高硬度、与基体结合力强和耐摩擦磨损等优点[5-6]

  • 但在涂层制备过程中,NiCr-Cr3C2-BaF2·CaF2 粉体经过高温熔融,存在Cr3C2 脱碳、氧化以及BaF2·CaF2 烧蚀的问题,Cr3C2 的成分变化将使涂层硬度降低和高温稳定性下降,而BaF2·CaF2 烧蚀不仅导致了润滑相粉体严重浪费,且烧蚀量随工艺参数变化也不利于涂层中组分调整与控制,造成各批次涂层组分一致性差。针对这些问题,HUANG等[7] 采用加氢还原与固相合金化技术制备了以BaF2·CaF2共晶和Cr3C2粉体为核心,NiCr合金包覆的NiCr-Cr3C2-BaF2·CaF2 复合粉体,并采用等离子喷涂技术制备了相应涂层。结果表明:当测试温度为800℃涂层中BaF2·CaF2含量为10wt.%时涂层摩擦磨损性能最佳,此时涂层摩擦因数约为0.42,磨损率约为4.7×10−5 mm 3 ·N−1 ·m−1。但在BaF2·CaF2 粉体表面直接包覆NiCr合金使被包覆润滑相粒径较大(38~90 μm),这可能不利于其在涂层中的分布均匀性,从而影响涂层高温稳定性与摩擦磨损性能。

  • 本文拟采用具有高硬度和优异高温热稳定性的8mol.%Y2O3-ZrO2(8YSZ)陶瓷包覆BaF2·CaF2 润滑相,ZrO2 陶瓷的高硬度有利于提升涂层的高温稳定性与耐磨损性能,且在热喷涂过程中通过ZrO2 熔融包覆,能够有效减少BaF2·CaF2 粉体与热喷涂焰流的接触,从而达到抗烧蚀的目的[8-9]。此外,根据文献报道,在ZrO2 粉体中加入少量Ta2O5可作为晶相稳定剂,Ta5+在ZrO2 晶界处偏析有助于细化ZrO2 晶粒尺寸并促进其致密化,增加ZrO2 对润滑相的防护作用[10-12]

  • 本文采用溶胶凝胶法制备ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体,并将所制备粉体与NiCr-Cr3C2粉体混合,使用爆炸喷涂方法制备NiCr-Cr3C2-ZrO2-BaF2·CaF2高温自润滑耐磨涂层,以改善NiCr-Cr3C2-BaF2·CaF2 涂层的高温稳定性和摩擦磨损性能。通过对比两涂层微观形貌、润滑相元素含量、高温摩擦因数和磨损率,分析和阐明了ZrO2 包覆BaF2·CaF2 粉体在热喷涂焰流中对润滑相的保护作用和在涂层中的减摩耐磨机理。

  • 1 试验

  • 1.1 主要原料

  • 试验所用的热喷涂粉体材料包括:NiCr-Cr3C2 粉末(中国科学院兰州化学物理研究所);NiCrCr3C2-BaF2·CaF2 粉体、BaF2·CaF2 粉体(中国科学院过程工程研究所);ZrO2 陶瓷主要制备药品包括:聚乙烯醇(西格玛奥德里奇上海贸易有限公司); 硝酸氧锆、硝酸钇和尿素(上海麦克林生化科技有限公司);乌洛托品(上海阿拉丁生化科技股份有限公司)。

  • 1.2 ZrO2-BaF2·CaF2抗烧蚀包覆型粉体及涂层制备

  • 如图1所示,ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体的制备可按照以下步骤进行。

  • 图1 ZrO2-BaF2·CaF2抗烧蚀包覆型粉体制备及喷涂过程示意图

  • Fig.1 Schematic of preparation and thermal spraying process of ZrO2-BaF2·CaF2 anti-ablation composite powder

  • (1)配制A液:将8.52g硝酸氧锆和2.45g硝酸钇加入至30mL含5wt.%聚乙烯醇(PVA)的水溶液中,在70℃水浴中搅拌30min,冷却至室温。

  • (2)配制B液:将2.25g乌洛托品和0.72g尿素加入至10mL去离子水中,搅拌至溶解。

  • (3)制备ZrO2前驱体溶胶:将A液与B液在4~6℃环境中冷却,搅拌A液并依次滴入适量硝酸和B液,制备ZrO2 前驱体溶胶,再将球磨后BaF2·CaF2 共晶粉7.5g和Ta粉1g加入至150mL前驱体溶液中搅拌至均匀弥散。

  • (4)配制三氯乙烯与异辛醇油相混合液:将ZrO2 前驱体溶胶滴入混合液中并快速搅拌,由于油水不相容特性和高速剪切力作用,ZrO2 前驱体溶胶被剪切分散成ZrO2 溶胶液滴。

  • (5)粉体烧结:将ZrO2溶胶液滴在70℃恒温环境中陈化48h形成凝胶球,经清洗干燥后,900℃ 常压烧结24h,制备出ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体。

  • (6)涂层制备:将ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体与NiCr-Cr3C2粉体按质量分数各50%混合后爆炸喷涂,制备NiCr-Cr3C2-ZrO2-BaF2·CaF2复合涂层,其中ZrO2-BaF2·CaF2粉体中ZrO2与BaF2·CaF2质量比为80∶20;将NiCr-Cr3C2-BaF2· CaF2 粉体爆炸喷涂,制备NiCr-Cr3C2-BaF2 · CaF2 涂层,粉体中BaF2·CaF2质量分数为10%。

  • 1.3 涂层制备与摩擦磨损测试

  • 采用俄罗斯OB型爆炸喷涂系统,分别制备NiCr-Cr3C2-ZrO2-BaF2·CaF2 和对照组NiCr-Cr3C2-BaF2·CaF2 涂层,喷涂系统采用乙炔为燃料气,氧气为助燃气,氮气载气供粉,如图1所示。涂层基底材料为GH4169镍基高温合金,爆炸喷涂工艺参数设置如表1所示。喷涂前对基底层表面乙醇清洗去除污染物,然后喷砂粗化处理。

  • 采用UMT-3型可控环境摩擦磨损仪进行了高温球盘摩擦磨损测试,对磨球材料为Si3N4,施加垂向载荷10N,线速度1m/s,试验温度设置采取分段方法,具体程序为室温升至600℃保温,摩擦测试10min,经过10min升温至700℃保温,摩擦测试10min,经过10min升温至800℃保温,摩擦测试40min,然后自然降至室温结束。

  • 表1 爆炸喷涂工艺参数

  • Table1 Detonation gun spraying process parameters

  • 1.4 样品表征方法

  • 使用Regulus 8100日立扫描电镜表征了涂层微观形貌,采用能量色散X光光谱(EDS)分析涂层中元素成分与含量。使用Image J分析软件分析涂层孔隙率。使用Ultima-Ⅳ型日本理学X射线衍射仪测试粉体与涂层物质成分。使用VMHT30M型莱卡显微硬度计测试涂层显微硬度,施加载荷为4.9N,保持时间15s,每个样本测量6个点取平均值。

  • 2 结果与分析

  • 2.1 ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体

  • 图2a所示为溶胶凝胶法制备的ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体表面形貌,复合粉体具有良好的球形度,粉体粒径为50~100 μm。图2b所示为ZrO2-BaF2·CaF2 粉体XRD图谱,从图中可以看出最强峰和次强峰分别为ZrO2 和BaF2·CaF2 特征峰,这说明溶胶凝胶法制备的ZrO2 粉体有效包覆和负载了BaF2·CaF2润滑相,且在粉体烧结时BaF2·CaF2 润滑相粉体未发生化学性质变化,此外还可看到粉体中少量起烧结助剂和稳定剂作用的Ta2O5的生成。

  • 图2 ZrO2-BaF2·CaF2抗烧蚀包覆型粉体与XRD图谱

  • Fig.2 Morphology and XRD pattern of ZrO2-BaF2·CaF2 anti-ablation composite powder

  • 图3 所示为ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体截面元素面分布,图中可以看出BaF2·CaF2 共晶粉体在ZrO2 粉体中分布均匀且包覆效果良好,这说明ZrO2 从溶胶固化为凝胶时,其中的BaF2·CaF2粉体仍能保持均匀弥散,并在微米尺度上实现均匀分布,这将有利于润滑相在涂层中的均匀分布且减少喷涂过程中烧蚀。

  • 图3 ZrO2-BaF2·CaF2抗烧蚀包覆型粉体截面元素面分布

  • Fig.3 Elemental mapping of cross section of ZrO2-BaF2·CaF2 anti-ablation composite powder

  • 2.2 涂层截面微观形貌与孔隙率

  • 图4 所示为爆炸喷涂制备的NiCr-Cr3C2-BaF2·CaF与NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层微观形貌及EDS能谱图。图4a和4d所示为爆炸喷涂制备的两涂层截面,多截面测量计算两涂层孔隙率分别为2.3%和6.7%,后者孔隙率升高主要是由于ZrO2-BaF2·CaF2 与NiCr-Cr3C2 复合粉体熔点差异较大,且润湿性相对较差,因而部分降低了涂层致密性[13]。但ZrO2-BaF2·CaF2 复合粉体的加入仍大幅提升了涂层硬度,经测试两涂层显微硬度分别为690HV和1 041HV。此外,从元素面分布中可以看出NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层中润滑相元素点密度更高且均匀性更好。从图4g和4h所示EDS元素含量分析结果中可以看出,NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层中Ca、Ba元素含量相比NiCr-Cr3C2-BaF2·CaF2 涂层分别提高了1倍以上,说明ZrO2-BaF2·CaF2抗烧蚀包覆型粉体在喷涂过程中,ZrO2陶瓷能够有效保护BaF2·CaF2共晶,减少润滑相在喷涂过程中高温烧蚀[14-15]

  • 图4 NiCr-Cr3C2-BaF2·CaF2与NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层微观形貌、Ca/Ba元素面分布与EDS能谱

  • Fig.4 Microstructure, Ca/Ba elemental distribution maps and EDS of NiCr-Cr3C2-BaF2·CaF2 and NiCr-Cr3C2-ZrO2-BaF2·CaF2 coatings

  • 2.3 涂层高温摩擦磨损性能

  • 图5 所示为白光干涉仪测量重建的两种涂层磨损轨迹三维形貌及磨损轨迹尺寸统计图,从图5a中可以看出NiCr-Cr3C2-BaF2·CaF2 涂层磨损轨迹边缘处有较为明显的凸起,结合图5c中涂层较高的磨损率统计结果,这可能是由于涂层在硬质Si3N4 对磨球挤压作用下产生的磨屑堆积导致的。图5b为NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层磨损轨迹,可以看出磨损轨迹底部连续且平滑,结合图5c可知其磨损率也较低。图5c为两涂层的磨损轨迹尺寸统计结果,图中可看出NiCr-Cr3C2-BaF2·CaF2 涂层磨损轨迹宽度、深度、磨损率分别为649.2± 14.2 μm,7.63±0.18 μm,8.92×10−6 mm 3 ·N−1 ·m−1, NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层磨损轨迹宽度、深度、磨损率分别为497.6±36 μm、4.35±0.34 μm、 5.47×10−6 mm 3 ·N−1 ·m−1,相比NiCr-Cr3C2-BaF2·CaF2 涂层,其磨损率下降了约38.6%。

  • 图6 所示为两种涂层在600℃、700℃、800℃ 相对于Si3N4 对磨球的滑动摩擦因数。其中NiCr-Cr3C2-BaF2·CaF2 涂层在600℃、700℃、800℃时的平均摩擦因数分别为0.3、0.28、0.19, NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层在600℃、700℃、 800℃时平均摩擦因数分别为0.25、0.17、0.18。可以看出,两种涂层在600℃时,摩擦曲线波动噪声较大,这是由于初始涂层表面微凸起在受对磨球正切向压力时产生了微量弹塑性变形并造成涂层中硬质颗粒脱落,此时NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层摩擦因数相比NiCr-Cr3C2-BaF2·CaF2 涂层降低了16.7%;在700℃时,两涂层摩擦曲线依然波动较大,但可见NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层平均摩擦因数大幅降低至0.17,此时涂层的润滑性能明显优于NiCr-Cr3C2-BaF2·CaF2 涂层,摩擦因数相比降低了约39.3%,说明NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层润滑膜形成速度更快,这得益于涂层中ZrO2 粉体包覆保留了更多的BaF2·CaF2 润滑相,使涂层经少量磨损就能释放更多的润滑相至磨损表面,并表现出较低的摩擦因数;在800℃时,NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层摩擦因数相比NiCr-Cr3C2-BaF2 · CaF2 涂层降低了5.3%,此时两种涂层摩擦因数趋于稳定,且摩擦因数相差减小,这说明涂层润滑膜充分形成,因此摩擦磨损趋于稳定[16-17]

  • 图5 NiCr-Cr3C2-BaF2·CaF2与NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层磨损轨迹三维形貌及磨损轨迹尺寸统计

  • Fig.5 Three-dimensional morphology and wear track size statistics of NiCr-Cr3C2-BaF2·CaF2 and NiCr-Cr3C2-ZrO2-BaF2·CaF2 coatings

  • 图6 NiCr-Cr3C2-BaF2·CaF2与NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层高温摩擦因数

  • Fig.6 High temperature friction factor of NiCr-Cr3C2-BaF2·CaF2 and NiCr-Cr3C2-ZrO2-BaF2·CaF2 coating

  • 图7a所示为NiCr-Cr3C2-BaF2·CaF2 涂层磨痕形貌,由图中可见其表面基本形成了连续的润滑膜,但伴随有一定程度的黏着磨损,黏着磨损产生的碎片经挤压产生塑性变形,因此使磨痕表面呈现出凹凸不平的形貌,此外磨痕表面还分布着少量磨屑与硬质相颗粒挤压形成的犁沟。

  • 图7b和7c所示为磨痕表面Ni与Ca元素面分布,由图中可见由于润滑膜的黏着磨损和塑性变形, Ni、Ca元素的分布均匀性也相对略差,呈现出局部富集的现象,这可能不利于涂层在高温摩擦磨损过程中的稳定性与耐磨性[18]

  • 由图7d所示为NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层磨痕形貌,由图中可见磨痕表面润滑膜连续且均匀,伴有较多的磨屑与犁沟。可见涂层在加入ZrO2-BaF2·CaF2粉体后其摩擦磨损机制也发了一些变化,一方面涂层表面润滑膜黏着磨损现象减少,这可能是由于涂层的硬度增大使润滑相在磨痕表面分布更加均匀,从而降低了其局部堆积和黏着磨损的现象; 从图7e和7f中元素面分布结果中也可以看出, NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层磨痕表面Ni与Ca元素分布更为均匀;另一方面,由于加入ZrO2-BaF2·CaF2 粉体后涂层中硬质相增多,因此摩擦过程中断裂的硬质相颗粒增多,致使磨痕表面分布较多硬质磨粒与犁沟[19]

  • 由图7g和7h所示EDS能谱中可以看出,两涂层磨损表面Ca、Ba元素含量大幅增加,这是由于涂层中所含的润滑相在摩擦磨损过程中被挤压并逐渐堆积在磨损表面。但可见经长期摩擦后NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层中Ca、Ba元素含量依然略高于NiCr-Cr3C2-BaF2·CaF2 涂层,可见ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体对BaF2·CaF2 润滑相的保护使其无论是在涂层中还是在磨痕表面均能保证较高的Ca、Ba含量。此外由两涂层磨痕表面能谱结果中可看出F含量均为0,根据大量文献的报道,这应是涂层中BaF2·CaF2 高温分解,分解后产生的CaO、BaO与Cr3C2 的氧化物Cr2O3 反应,在磨痕表面生成了具有优异润滑性的CaCrO4 和BaCrO4,这也使得两涂层在更高温度800℃时摩擦因数有进一步下降[20-24]

  • 图7 NiCr-Cr3C2-BaF2·CaF2与NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层磨损表面形貌、元素面分布与EDS能谱

  • Fig.7 Wear surface morphology, elemental mapping and EDS spectra of NiCr-Cr3C2-BaF2·CaF2 and NiCr-Cr3C2-ZrO2-BaF2·CaF2 coatings

  • 图8a和8c所示为两涂层对磨球磨损表面,其中NiCr-Cr3C2-BaF2·CaF2 对磨球磨损表面磨损程度较低且有部分转移膜黏附,这是由于其涂层中NiCr合金相含量相对较高,涂层整体硬度较低,在高温下润滑膜有部分黏着在对磨球表面; NiCr-Cr3C2-ZrO2-BaF2·CaF2 对磨球表面则磨损相对严重,同时磨损表面有更完整的转移膜黏附,这是由于ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体中ZrO2 陶瓷相的加入提高了涂层整体硬度,使对磨球在初始阶段磨损相对严重,但随着涂层与对磨球表面润滑膜的充分形成,对磨球表面充分黏附了润滑膜,使涂层在高温摩擦磨损过程中表现稳定[25-26];对比图7h和图8d的EDS能谱结果,可以看出对磨球表面转移膜成分与涂层润滑膜成分基本一致。

  • 图8 NiCr-Cr3C2-BaF2·CaF2与NiCr-Cr3C2-ZrO2-BaF2·CaF2 对磨球表面磨痕与EDS成分

  • Fig.8 Worn Surface and EDS composition of counter grinding ball of NiCr-Cr3C2-BaF2·CaF2 and NiCr-Cr3C2-ZrO2-BaF2·CaF2

  • 3 结论

  • (1)采用溶胶凝胶法制备球形度高、粒径分布均匀的ZrO2-BaF2·CaF2 抗烧蚀包覆型粉体,由粉体截面可看出ZrO2-BaF2·CaF2 粉体中ZrO2陶瓷对BaF2·CaF2润滑相包覆完全且润滑相分布均匀。

  • ( 2)使用爆炸喷涂技术制备NiCr-Cr3C2-BaF2·CaF2涂层和NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层, ZrO2-BaF2·CaF2抗烧蚀包覆型粉体的加入使涂层显微硬度得到大幅提升,两涂层显微硬度分别为690HV和1041HV,提升约50.9%。此外NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层中BaF2·CaF2 润滑相含量远高于NiCr-Cr3C2-BaF2·CaF2涂层,其中Ca、Ba元素含量均提高了1倍以上,说明ZrO2-BaF2·CaF2抗烧蚀包覆型粉体能够有效提高涂层的显微硬度,并通过包覆减少BaF2·CaF2润滑相在喷涂过程中高温烧蚀。

  • (3)高温摩擦磨损试验结果表明,NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层相比NiCr-Cr3C2-BaF2·CaF2 涂层,在600℃、700℃和800℃均具有更低的平均摩擦因数,分别为0.24、0.17和0.18,其磨损率降低了约38.6%,为5.47×10−6 mm 3 ·N−1 ·m−1,这是由于NiCr-Cr3C2-ZrO2-BaF2·CaF2 涂层整体硬度较高,大幅改善了NiCr-Cr3C2-BaF2·CaF2 涂层黏着磨损的磨损机制,此外较高的润滑相含量也使涂层润滑膜形成速度更快,涂层整体摩擦磨损性能表现更稳定。

  • 参考文献

    • [1] 张甜甜,黄传兵,兰昊,等.镍基耐高温自润滑刷式封严涂层研究[J].航空制造技术,2017,60(8):24-29.ZHANG Tiantian,HUANG Chuanbing,LAN Hao,et al.Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J].Aeronautical manufacturing Technology,2017,60(8):24-29.(in Chinese)

    • [2] 程涛涛,王志平,戴士杰,等.航空发动机陶瓷基高温封严涂层研究进展[J].机械工程学报,2021,57(10):126-136.CHEN Taotao,WANG Zhiping,DAI Shijie,et al.Research progress of ceramic-based high temperature sealing coating for aeroengines[J].Journal of Mechanical Engineering,2021,57(10):126-136.(in Chinese)

    • [3] SU W,ZHANG J,ZHANG J,et al.Microstructure ofHVOF-sprayed Ag-BaF2·CaF2·Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 ℃ to 800 ℃)[J].Ceramics International,2021,47(1):865-876.

    • [4] ÖZER A,KRIVEN W M,TÜR Y K.The effect of 3 mol% Y2O3 stabilized ZrO2 produced by a steric entrapment method on the mechanical and sintering properties of Cr3C2 based cermets[J].Materials Science and Engineering:A,2012,556:878-884.

    • [5] 吴庆丹,肖金坤,张嘎,等.热喷涂金属基防滑耐磨涂层的研究进展[J].表面技术,2018,47(4):251-259.WU Qingdan,XIAO Jinkun,ZHANG Ga,et al.Thermal sprayed metal-based non-skid wear-resistant coatings[J].Surface Technology,2018,47(4):251-259.(in Chinese)

    • [6] 赵坚,刘伟,陈小明,等.高温对爆炸喷涂 Cr3C2-25NiCr 涂层的氧化行为及性能的影响[J].材料热处理学报,2020,41(12):112-118.ZHAO Jian,LIU Wei,CHEN Xiaoming,et al.Effect of high temperature on oxidation behavior and properties of Cr3C2-25NiCr coating prepared by detonation spraying[J].Transactions of Materials and Heat Treatment,2020,41(12):112-118.(in Chinese)

    • [7] HUANG C,DU L,ZHANG W.Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2-BaF2·CaF2 composite coatings[J].Journal of Alloys and Compounds,2009,479(1-2):777-784.

    • [8] 黄传兵,杜令忠,张伟刚.NiCr/Cr3C2-BaF2·CaF2 高温自润滑耐磨涂层的制备与摩擦磨损特性[J].摩擦学学报,2009,29(1):68-74.HUANG Chuanbing,DU Lingzhong,ZHANG Weigang.Preparation and tribological properties of NiCr/Cr3C2-BaF2 · CaF2 high temperature self-lubricating wearresistant coating[J].Tribology,2009,29(1):68-74.(in Chinese)

    • [9] 何箐,汪瑞军,邹晗,等.不同结构 ZrO2 热障涂层对CMAS沉积物的防护作用[J].中国表面工程,2016,29(4):86-95.HE Qing,WANG Ruijun,ZOU Han,et al.Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits[J].China Surface Engineering,2016,29(4):86-95.(in Chinese)

    • [10] LOONG T H,EH NOUM S Y,MUN W W.The effect of Ta2O5 on the densification behaviour and mechanical properties of zirconia-toughened alumina(ZTA)composites prepared by two-stage sintering[J].Key Engineering Materials,2020,861:320-326.

    • [11] RAGHAVAN S,WANG H,DINWIDDIE R B,et al.Ta2O5/Nb2O5 and Y2O3 codoped zirconias for thermal barrier coatings[J].Journal of the American Ceramic Society,2008,87(3):431-437.

    • [12] 黄绍东,李培忠,王晓静,等.Yb2O3-Y2O3-Ta2O5-ZrO2 体系相稳定性研究[J].稀土,2013,34(4):42-45.HUANG Shaodong,LI Peizhong,WANG Xiaojing,et al.The study of phase stability for Yb2O3-Y2O3-Ta2O5-ZrO2 system[J].Chinese Rare Earths,2013,34(4):42-45.(in Chinese)

    • [13] WU K,SCHELER S,PARK H,et al.Pressureless sintering of ZrO2-ZrSiO4/NiCr functionally graded materials with a shrinkage matching process[J].Journal of the European Ceramic Society,2013,33(6):1111-1121.

    • [14] LIU J,CHEN T,YUAN C,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.

    • [15] LIANG P,ZENG J,YANG X,et al.Duplex and functionally graded Al@NiCr/ZrO2 thermal barrier coatings on aluminum substrates[J].Journal of Alloys and Compounds,2019,790:928-940.

    • [16] ZHEN J,CHENG J,ZHU S,et al.High-temperature tribological behavior of a nickel alloy matrix solid-lubricating composite under vacuum[J].Tribology International,2017,110:52-56.

    • [17] ZHEN J,ZHU S,CHENG J,et al.Effects of sliding speed and testing temperature on the tribological behavior of a nickel-alloy based solid-lubricating composite[J].Wear,2016,368-369:45-52.

    • [18] LIU F,JIA J.Tribological properties and wear mechanisms of NiCr-Al2O3-SrSO4-Ag self-lubricating composites at elevated temperatures[J].Tribology Letters,2013,49(1):281-290.

    • [19] MAZUMDER S,BARAD B B,SHOW B K,et al.Tribological property enhancement of 3Y-TZP ceramic by the combined effect of CaF2 and MgO phases[J].Ceramics International,2019,45(10):13447-13455.

    • [20] KONG L,BI Q,ZHU S,et al.Effect of CuO on self-lubricating properties of ZrO2(Y2O3)-Mo composites at high temperatures[J].Journal of the European Ceramic Society,2014,34(5):1289-1296.

    • [21] KONG L,BI Q,NIU M,et al.High-temperature tribological behavior of ZrO2-MoS2-CaF2 self-lubricating composites[J].Journal of the European Ceramic Society,2013,33(1):51-59.

    • [22] 齐庆杰,刘建忠,曹欣玉,等.CaF2高温分解特性试验研究[J].环境科学,2002,23(3):111-114.QI Qingjie,LIU Jianzhong,CAO Xinyu,et al.Stability of CaF2 at high temperature[J].Environmental Science,2002,23(3):111-114.(in Chinese)

    • [23] OUYANG J H,LI Y F,WANG Y M,et al.Microstructure and tribological properties of ZrO2(Y2O3)matrix composites doped with different solid lubricants from room temperature to 800 ℃[J].Wear,2009,267(9-10):1353-1360.

    • [24] 苏威铭,张佳平,李浩宇,等.掺杂银对超音速火焰喷涂 NiCr/Cr3C2-BaF2·CaF2-Ag 涂层的影响[J].材料研究与应用,2020,14(2):103-108.SU Weiming,ZHANG Jiaping,LI Haoyu,et al.Effect of doped silver on HVOF-sprayed NiCr/Cr3C2-BaF2·CaF2-Ag coating[J].Materials Research and Application,2020,14(2):103-108.(in Chinese)

    • [25] BÜLENT NILÜFER O,GÖKÇE H,MUHAFFEL F,et al.The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2[J].Ceramics International,2016,42(8):9443-9447.

    • [26] GUO H,GUO J,BAKER A,et al.Cold sintering process for ZrO2-based ceramics:significantly enhanced densification evolution in yttria-doped ZrO2[J].Journal of the American Ceramic Society,2017,100(2):491-495.

  • 参考文献

    • [1] 张甜甜,黄传兵,兰昊,等.镍基耐高温自润滑刷式封严涂层研究[J].航空制造技术,2017,60(8):24-29.ZHANG Tiantian,HUANG Chuanbing,LAN Hao,et al.Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J].Aeronautical manufacturing Technology,2017,60(8):24-29.(in Chinese)

    • [2] 程涛涛,王志平,戴士杰,等.航空发动机陶瓷基高温封严涂层研究进展[J].机械工程学报,2021,57(10):126-136.CHEN Taotao,WANG Zhiping,DAI Shijie,et al.Research progress of ceramic-based high temperature sealing coating for aeroengines[J].Journal of Mechanical Engineering,2021,57(10):126-136.(in Chinese)

    • [3] SU W,ZHANG J,ZHANG J,et al.Microstructure ofHVOF-sprayed Ag-BaF2·CaF2·Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 ℃ to 800 ℃)[J].Ceramics International,2021,47(1):865-876.

    • [4] ÖZER A,KRIVEN W M,TÜR Y K.The effect of 3 mol% Y2O3 stabilized ZrO2 produced by a steric entrapment method on the mechanical and sintering properties of Cr3C2 based cermets[J].Materials Science and Engineering:A,2012,556:878-884.

    • [5] 吴庆丹,肖金坤,张嘎,等.热喷涂金属基防滑耐磨涂层的研究进展[J].表面技术,2018,47(4):251-259.WU Qingdan,XIAO Jinkun,ZHANG Ga,et al.Thermal sprayed metal-based non-skid wear-resistant coatings[J].Surface Technology,2018,47(4):251-259.(in Chinese)

    • [6] 赵坚,刘伟,陈小明,等.高温对爆炸喷涂 Cr3C2-25NiCr 涂层的氧化行为及性能的影响[J].材料热处理学报,2020,41(12):112-118.ZHAO Jian,LIU Wei,CHEN Xiaoming,et al.Effect of high temperature on oxidation behavior and properties of Cr3C2-25NiCr coating prepared by detonation spraying[J].Transactions of Materials and Heat Treatment,2020,41(12):112-118.(in Chinese)

    • [7] HUANG C,DU L,ZHANG W.Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2-BaF2·CaF2 composite coatings[J].Journal of Alloys and Compounds,2009,479(1-2):777-784.

    • [8] 黄传兵,杜令忠,张伟刚.NiCr/Cr3C2-BaF2·CaF2 高温自润滑耐磨涂层的制备与摩擦磨损特性[J].摩擦学学报,2009,29(1):68-74.HUANG Chuanbing,DU Lingzhong,ZHANG Weigang.Preparation and tribological properties of NiCr/Cr3C2-BaF2 · CaF2 high temperature self-lubricating wearresistant coating[J].Tribology,2009,29(1):68-74.(in Chinese)

    • [9] 何箐,汪瑞军,邹晗,等.不同结构 ZrO2 热障涂层对CMAS沉积物的防护作用[J].中国表面工程,2016,29(4):86-95.HE Qing,WANG Ruijun,ZOU Han,et al.Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits[J].China Surface Engineering,2016,29(4):86-95.(in Chinese)

    • [10] LOONG T H,EH NOUM S Y,MUN W W.The effect of Ta2O5 on the densification behaviour and mechanical properties of zirconia-toughened alumina(ZTA)composites prepared by two-stage sintering[J].Key Engineering Materials,2020,861:320-326.

    • [11] RAGHAVAN S,WANG H,DINWIDDIE R B,et al.Ta2O5/Nb2O5 and Y2O3 codoped zirconias for thermal barrier coatings[J].Journal of the American Ceramic Society,2008,87(3):431-437.

    • [12] 黄绍东,李培忠,王晓静,等.Yb2O3-Y2O3-Ta2O5-ZrO2 体系相稳定性研究[J].稀土,2013,34(4):42-45.HUANG Shaodong,LI Peizhong,WANG Xiaojing,et al.The study of phase stability for Yb2O3-Y2O3-Ta2O5-ZrO2 system[J].Chinese Rare Earths,2013,34(4):42-45.(in Chinese)

    • [13] WU K,SCHELER S,PARK H,et al.Pressureless sintering of ZrO2-ZrSiO4/NiCr functionally graded materials with a shrinkage matching process[J].Journal of the European Ceramic Society,2013,33(6):1111-1121.

    • [14] LIU J,CHEN T,YUAN C,et al.Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr,WC-12Co,and Cr3C2-NiCr coatings[J].Journal of Thermal Spray Technology,2020,29(4):798-810.

    • [15] LIANG P,ZENG J,YANG X,et al.Duplex and functionally graded Al@NiCr/ZrO2 thermal barrier coatings on aluminum substrates[J].Journal of Alloys and Compounds,2019,790:928-940.

    • [16] ZHEN J,CHENG J,ZHU S,et al.High-temperature tribological behavior of a nickel alloy matrix solid-lubricating composite under vacuum[J].Tribology International,2017,110:52-56.

    • [17] ZHEN J,ZHU S,CHENG J,et al.Effects of sliding speed and testing temperature on the tribological behavior of a nickel-alloy based solid-lubricating composite[J].Wear,2016,368-369:45-52.

    • [18] LIU F,JIA J.Tribological properties and wear mechanisms of NiCr-Al2O3-SrSO4-Ag self-lubricating composites at elevated temperatures[J].Tribology Letters,2013,49(1):281-290.

    • [19] MAZUMDER S,BARAD B B,SHOW B K,et al.Tribological property enhancement of 3Y-TZP ceramic by the combined effect of CaF2 and MgO phases[J].Ceramics International,2019,45(10):13447-13455.

    • [20] KONG L,BI Q,ZHU S,et al.Effect of CuO on self-lubricating properties of ZrO2(Y2O3)-Mo composites at high temperatures[J].Journal of the European Ceramic Society,2014,34(5):1289-1296.

    • [21] KONG L,BI Q,NIU M,et al.High-temperature tribological behavior of ZrO2-MoS2-CaF2 self-lubricating composites[J].Journal of the European Ceramic Society,2013,33(1):51-59.

    • [22] 齐庆杰,刘建忠,曹欣玉,等.CaF2高温分解特性试验研究[J].环境科学,2002,23(3):111-114.QI Qingjie,LIU Jianzhong,CAO Xinyu,et al.Stability of CaF2 at high temperature[J].Environmental Science,2002,23(3):111-114.(in Chinese)

    • [23] OUYANG J H,LI Y F,WANG Y M,et al.Microstructure and tribological properties of ZrO2(Y2O3)matrix composites doped with different solid lubricants from room temperature to 800 ℃[J].Wear,2009,267(9-10):1353-1360.

    • [24] 苏威铭,张佳平,李浩宇,等.掺杂银对超音速火焰喷涂 NiCr/Cr3C2-BaF2·CaF2-Ag 涂层的影响[J].材料研究与应用,2020,14(2):103-108.SU Weiming,ZHANG Jiaping,LI Haoyu,et al.Effect of doped silver on HVOF-sprayed NiCr/Cr3C2-BaF2·CaF2-Ag coating[J].Materials Research and Application,2020,14(2):103-108.(in Chinese)

    • [25] BÜLENT NILÜFER O,GÖKÇE H,MUHAFFEL F,et al.The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2[J].Ceramics International,2016,42(8):9443-9447.

    • [26] GUO H,GUO J,BAKER A,et al.Cold sintering process for ZrO2-based ceramics:significantly enhanced densification evolution in yttria-doped ZrO2[J].Journal of the American Ceramic Society,2017,100(2):491-495.

  • 手机扫一扫看