en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王长亮,男,1981年出生,博士,研究员。主要研究方向为热喷涂技术。E-mail:cliiangwanng@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211031002

参考文献 1
曹玉霞,杜令忠,张伟刚,等.等离子喷涂 NiCoCrAlY/Al2O3 高温固体润滑耐磨涂层的抗氧化性能研究[J].表面技术,2015,44(4):48-53.CAO Yuxia,DU Lingzong,ZHANG Weigang,et al.Study on oxidation resistance of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings at elevated temperature[J].Surface Technology,2015,44(4):48-53.(in Chinese)
参考文献 2
郝恩康,安宇龙,赵晓琴,等.热喷涂高温自润滑涂层研究现状[J].表面技术,2018,47(6):104-111.HAO Enkang,AN Yulong,ZHAO Xiaoqin,et al.High temperature self-lubricating coatigs prepared by thermal spraying[J].Surface Technology,2018,47(6):104-111.(in Chinese)
参考文献 3
YANG H,ZOU J,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature[J].Corrosion Science,2020,175:108889.
参考文献 4
SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.
参考文献 5
JAFARI R,SADEGHI E.High-temperature corrosion performance of HVAF-sprayed NiCr,NiAl,and NiCrAlY coatings with alkali sulfate/chloride exposed to ambient air[J].Corrosion Science,2019,160:108066.
参考文献 6
HAO E,ZHAO X,AN Y,et al.The effect of pre-oxidation on microstructure,mechanical properties and hightemperature tribological behaviors of HVOF-sprayed NiCoCrAlYTa coating[J].Applied Surface Science,2019,489:187-197.
参考文献 7
刘自敬,曾威,杨焜.超音速等离子喷涂 NiCoCrAlYTa10% Al2O3涂层性能的研究[J].材料研究与应用,2017,11(1):23-29.LIU Zijing,ZENG Wei,YANG Kun.Properties of NiCoCrAlYTa-10% Al2O3 coating prepared by supersonic atmospheric plasma spraying[J].Materials Research and Application,2017,11(1):23-29.(in Chinese)
参考文献 8
HUANG X,ZHANG J,CHENG Y,et al.Effect of h-BN addition on the microstructure characteristics,residual stress and tribological behavior of WC-reinforced Ni-based composite coatings[J].Surface and Coatings Technology,2021,405:126534.
参考文献 9
DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2-NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.
参考文献 10
DELLACORTE C,EDMONDS B J.NASA PS400:A new temperature solid lubricant coating for high temperature wear applications[R].NASA,2009.
参考文献 11
BOBZIN K,SCHLÄFER T,RICHARDT K,et al.Development of oxide dispersion strengthened MCrAlY coatings[J].Journal of Thermal Spray Technology,2008,17(5):853-857.
参考文献 12
HOU G L,AN Y L,ZHAO X Q,et al.Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1 000 ℃[J].Acta Materialia,2015,95:164-175.
参考文献 13
李学娇,张骋,张娜.热障涂层研究进展[J].中国陶瓷,2013,49(3):1-4.LI Xuejiao,ZHANG Cheng,ZHANG Na.Research development of thermal barrier coatings[J].China Ceramics,2013,49(3):1-4.(in Chinese)
参考文献 14
LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating[J].Composites Part B,2013,53(7):347-354.
参考文献 15
MAZUMDER S,METSELAAR H S C,SUKIMAN N L,et al.An overview of fluoride-based solid lubricants in sliding contacts[J].Journal of the European Ceramic Society,2020,40(15):4974-4996.
参考文献 16
TORRES H,RODRÍGUEZ RIPOLL M,PRAKASH B.Tribological behaviour of self-lubricating materials at high temperatures[J].International Materials Reviews,2017,63(5):309-340.
参考文献 17
RADIL K,DELLACORTE C.The performance of PS400 subjected to sliding contact at temperatures from 260 to 927 ℃[J].Tribology Transactions,2017,60(6):957-964.
参考文献 18
SUN H W,YI G W,WAN S H,et al.Effect of adding soft Bi2O3 on structural modification and tribological regulation of Ni-5 wt% Al composite coating in wide temperatures range [J].Surface & Coatings Technology,2021,405:126517.
参考文献 19
SUN H,YI G,WAN S,et al.Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings[J].Surface and Coatings Technology,2021,427:127818.
参考文献 20
ZHAO Y,FENG K,YAO C,et al.Effect of MoO3 on the microstructure and tribological properties of laser-clad Ni60/nanoCu/h-BN/MoO3 composite coatings over wide temperature range[J].Surface and Coatings Technology,2020,387:125477.
参考文献 21
WANG A H,ZHANG X L,ZHANG X F,et al.Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd:YAG laser cladding[J].Materials Science and Engineering:A,2008,475(1-2):312-318.
参考文献 22
SUUTALA J,TUOMINEN J,VUORISTO P.Laser-assisted spraying and laser treatment of thermally sprayed coatings[J].Surface and Coatings Technology,2006,201(5):1981-1987.
参考文献 23
GARCIA-ALONSO D,SERRES N,DEMIAN C,et al.Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact[J].Journal of Thermal Spray Technology,2011,20(4):719-735.
参考文献 24
OUYANG J H,SASAKI S.Microstructure and tribological characteristics of ZrO2-Y2O3 ceramic coatings deposited by laser-assisted plasma hybrid spraying[J].Tribology International,2002,35(4):255-264.
参考文献 25
OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.
参考文献 26
DENG W,LI S,HOU G,et al.Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts[J].Ceramics International,2017,43(9):6976-6986.
参考文献 27
ANTOU G,MONTAVON G,HLAWKA F,et al.Microstructures of partially stabilized zirconia manufactured via hybrid plasma spray process[J].Ceramics International,2005,31(4):611-619.
参考文献 28
PEI Y T,OUYANG J H,LEI T C.Laser cladding of ZrO2-(Ni alloy)composite coating[J].Surface and Coatings Technology,1996,81(2):131-135.
参考文献 29
SU W,ZHANG J,ZHANG J,et al.Microstructure of HVOF-sprayed Ag-BaF2·CaF2-Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 °C to 800 ℃)[J].Ceramics International,2021,47(1):865-876.
参考文献 30
ZHU S,BI Q,YANG J,et al.Ni3Al matrix high temperature self-lubricating composites[J].Tribology International,2011,44(4):445-453.
参考文献 31
DAS B,NATH A K,BANDYOPADHYAY P P.Online monitoring of laser remelting of plasma sprayed coatings to study the effect of cooling rate on residual stress and mechanical properties[J].Ceramics International,2018,44(7):7524-7534.
参考文献 32
DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings[J].Surface and Coatings Technology,2018,337:439-446.
目录contents

    摘要

    高温耐磨涂层是航空发动机关键摩擦副可靠使用的重要保障,鉴于其服役环境日益严苛复杂,进一步提高涂层的高温耐磨性能是十分必要的。利用激光辅助热喷涂技术制备 NiCoCrAlYTa / ZrO2 / BaF2·CaF2 高温耐磨涂层,利用 SEM、EDS 分析高温耐磨涂层的横截面微观组织及化学成分,研究 ZrO2 / BaF2·CaF2质量分数、激光功率及扫描速度对耐磨涂层微观组织、力学性能及高温耐磨性能的影响。结果表明:激光辅助处理可以诱导耐磨涂层表面形成具有树枝状结构的 ZrO2陶瓷层; 当激光功率为 80 W,扫描速度为 8 mm / s,喷涂粉末为 75 wt.% NiCoCrAlYTa+25 wt.% ZrO2 / BaF2·CaF2时,制备涂层的微观组织、综合力学性能及高温耐磨性能达到最好;在此工艺参数下,涂层顶部的 ZrO2 陶瓷层最为致密均匀,其平均纳米硬度为 13.6 GPa,平均弹性模量为 182.5 GPa,800 ℃时的磨损率为 2.7×105 mm3 ·N1 ·m1 。将高温耐磨涂层的组分设计与激光辅助热喷涂工艺相结合,可为提高涂层综合性能的提供解决途径。

    Abstract

    High-temperature wear-resistant coatings are reliable guarantees of key friction pairs of aeroengines, and it is urgent to further improve wear resistance of the coatings under increasingly harsh service conditions. Therefore, the NiCoCrAlYTa / ZrO2 / BaF2·CaF2 high-temperature wear-resistant coatings are prepared by laser-assisted thermal spraying technology and the microstructure evolution with the chemical composition analysis are studied by SEM coupled with EDS techniques. Moreover, the effects of the mass fraction of ZrO2 / BaF2·CaF2, laser power and scanning speed on the microstructure, mechanical properties as well as high-temperature wear behaviors of the NiCoCrAlYTa / ZrO2 / BaF2·CaF2 coatings are investigated. Results show that the laser-treated coatings exhibit ZrO2 ceramic layers with dendritic microstructure on the top of the coatings. Particularly, the coating containing 25 wt.% ZrO2 / BaF2·CaF2, prepared by laser power of 80 W and scanning speed of 8 mm / s, exhibits optimum performance. And with the optimized parameters, the coating exhibits dense and uniform microstructure, the average value of hardness and elastic modulus could reach 13.6 GPa and 182.5 GPa, respectively, and wear rate could reach 2.7×10-5 mm3 ·N-1·m-1 after sliding under 800 ℃. Also, the methodology of combining the component design and preparation process of high-temperature wear-resistant coatings provides a reference for properties of coatings.

  • 0 前言

  • 高温环境下严重的摩擦磨损会使航空发动机的安全性和使用寿命大大降低。涂层作为一种能有效提高材料表面性能的手段,被广泛应用于解决高温环境下摩擦副的润滑和耐磨性问题[1-2]

  • MCrAlY(M=Ni, Co或NiCo)涂层因高温耐腐蚀性和抗氧化性优异,常用作航空发动机涡轮叶片的高温防护涂层和热障涂层的黏结层[3-5],该系列中的NiCoCrAlYTa涂层因具有更为良好的附着力而越来越多地用于航空发动机的机械零件中[6],但较低的硬度及弹性模量也使其应用受到限制[6-7]

  • 研究发现,在基体中添加WC[8]、Cr3C2 [9]、 Cr2O3 [10]、ZrO2 [11]等陶瓷增强相可以显著提高涂层的耐磨性能。在高温下,氧化物陶瓷增强相因不会出现如碳化物增强相一样的氧化分解[12]而备受关注,在氧化物陶瓷材料中,ZrO2 陶瓷线膨胀系数与NiCrAlY接近、强度高、耐磨性好、热导率低,加入Y2O3 稳定剂后相变也得到抑制[13],是一种具有良好高温稳定性的陶瓷增强材料。研究表明,加入5wt.%ZrO2-Y2O3 粉末后,超音速火焰喷涂(HVOF) 复合涂层NiCoCrAlY-ZrO2-Y2O3 的磨损等级降到了NiCoCrAlY涂层的一半[11]。除此之外,润滑技术也可以有效改善涂层的摩擦学性能。但液体润滑剂在高温下挥发的特性会恶化工况,为了实现高温下的有效润滑,研究人员着力于在涂层中添加固体润滑剂来制备高温自润滑耐磨涂层[14]。常用作固体润滑剂的物质有[15-16]:软贵金属(Au、Ag等),过渡金属二卤化物(MoS2、WS2 等),无机氟化物 (BaF2、CaF2等),氧化物(MoO3、V2O5、CuMoO4 等)等。但单一的固体润滑剂只在一定温度范围内才具有润滑效果:Ag、MoS2、WS2在较低温度下具有润滑效果,在高温下,Ag发生软化,MoS2、WS2 因被氧化而失去润滑效果;氟化物和氧化物则是优良的高温润滑剂,可以在高达1 000℃的条件下实现润滑,但它们在较低温度下没有润滑能力[15-16]

  • 目前,大气等离子喷涂和激光熔覆被较多地应用于制备高温耐磨涂层。例如,美国NASA开发的PS系列涂层就是利用大气等离子喷涂工艺制备的,该系列最新涂层PS400[10]是以NiMoAl作为粘合剂、 Cr2O3 作为增强相、Ag和BaF2·CaF2共晶作为固体润滑剂所制备的,它在650℃下磨损率可以达到7.6±1.2×10-6 mm 3 ·N−1 ·m−1,但该涂层在760~927℃时会发生膨胀,不利于服役于更高的温度[17]。 SUN等[18]利用大气等离子喷涂制备的NiAl-Bi2O3 涂层在800℃下具有优异的润滑性能,当Bi2O3含量为20wt.%时,涂层摩擦因数约为0.2,磨损率约为6×10−5 mm 3 ·N−1 ·m−1。在另一项试验中[19],他们在上述涂层中添加了Cr2O3 来改善涂层的耐磨性,可以使涂层在800℃下的摩擦因数降至0.15,磨损率降至5×10−5 mm 3 ·N−1 ·m−1。ZHAO等[20]利用激光熔覆技术制备的Ni60/nanoCu/h-BN/MoO3 复合涂层在高温摩擦过程中生成了CuMoO4固体润滑剂,并逐渐形成光滑致密的釉质层,其在800℃时的摩擦因数为0.34,磨损率为2.8×10−5 mm 3 ·N−1 ·m−1。不过,大气等离子喷涂工艺制备的涂层孔隙率高,与基体之间多为机械结合[2],激光熔覆工艺又存在由于润滑相上浮、分解、气化而难以有效地加入到涂层中的问题[9, 21],所以这两种制备工艺对进一步提升高温耐磨涂层的性能有一定的局限性。

  • 激光辅助热喷涂技术将高功率的激光与热喷涂方法相结合,不仅可以提高喷枪的熔化能力,实现涂层与基体的冶金结合,而且被认为是一种环境友好型技术[22-23],因此在制备高温耐磨涂层方面具有广阔的应用前景。OUYANG等[24]采用激光辅助等离子喷涂(LPHS)制备的ZrO2-Y2O3 涂层孔隙率低、微观组织均匀、硬度高(937~1 077HV)、结合强度高,其摩擦磨损性能表现出强烈的温度依赖性:当试验温度从室温增加到800℃时,涂层的磨损深度从35.0±5.0 µm增加到170.0±15.0 µm。基于此,采用激光辅助热喷涂技术制备了NiCoCrAlYTa/ZrO2/BaF2 · CaF2 高温耐磨涂层,通过改变ZrO2/BaF2·CaF2 含量、激光功率和激光扫描速度来调控涂层的微观组织,重点考察了涂层的力学性能和高温磨损性能,以期为开发能够在800℃下服役的高温耐磨涂层提供借鉴。

  • 1 试验准备

  • 1.1 试验材料

  • 粉末为NiCoCrAlYTa、ZrO2/BaF2·CaF2 复合粉末,粒度为10~90 μm,名义成分(质量分数)见表1,即粉末1的质量比为80%NiCoCrAlYTa∶20%ZrO2/BaF2 · CaF2;粉末2的质量比为75%NiCoCrAlYTa∶25%ZrO2/BaF2·CaF2。基体材料为GH4169镍基高温合金,尺寸为30mm × 15mm× 3mm。

  • 1.2 涂层的制备

  • 在喷涂前,先用丙酮清洗GH4169样品表面去除油污,随后用白刚玉进行喷砂处理以提高涂层与基体的结合强度。试验装置由Multi Coat系统F4等离子喷涂枪与TRUMPF TruDiode4006 4000W激光器组合而成。所有激光辅助热喷涂试验的的大气等离子喷涂参数(表2)相同,然后分别辅以不同功率和扫描速度的激光(表3)对粉末1、粉末2进行激光辅助热喷涂,并将得到的复合涂层依次标记为C1-1、C1-2、C1-3、 C1-4,C2-1、C2-2、C2-3、C2-4、C2-5。

  • 表1 NiCoCrAlYTa、ZrO2/BaF2·CaF2粉末的名义成分(质量分数)

  • Table1 Nominal chemical composition of NiCoCrAlYTa and ZrO2/BaF2·CaF2 powers

  • 表2 等离子喷涂参数

  • Table2 Plasma spraying parameters

  • 表3 部分激光辅助热喷涂参数

  • Table3 Part of the laser laser process parameters

  • 采用大气等离子喷涂粉末1、2制备复合涂层 (标记为C1-0、C2-0)来作为对比试验,喷涂参数同上(表2)。

  • 1.3 涂层的表征

  • 利用Quanta600型扫描电镜(SEM)观察复合涂层截面的组织形貌,并利用配套的能谱仪进行元素分析。

  • 1.4 涂层的纳米压痕试验

  • 采用纳米压痕仪测量了C1-X、C2-X复合涂层的力学性能,得到加载—卸载曲线。测量位置: C1-1、···、C1-4、C2-1、···、C2-5在涂层近表面横截面上进行,C1-0、C2-0在涂层横截面中间较致密处进行;试验最大载荷为50mN,加载/卸载速率为100mN/min,恒定加载时间为10s,每个试样至少选取3个点进行测量。然后根据Oliver-Pharr模型[6, 25],分别计算涂层的纳米硬度(H IT)、弹性模量(E IT)、塑性变形抗力(H3/E2)和弹性回复率(Re),并求取平均值。

  • Re=dmax-dres /dmax×100%

  • 式中,d max 为最大压入深度,d res 为残余压深[26]

  • 1.5 涂层的高温摩擦磨损试验

  • 采用球盘式高温摩擦磨损试验机研究了复合涂层与Si3N4 球的高温磨损行为。试验条件:载荷5N,温度800℃,旋转半径12mm,转速116r/min,试验时间120min。待测试样在给定试验条件下进行摩擦磨损试验,然后使用白光干涉仪对磨痕进行测试分析,得到涂层的平均磨损体积,计算涂层的磨损率,磨损率计算公式为:

  • w=V/SF

  • 式中,w 为磨损率,V 为磨损体积,F 为所施加的载荷,S 为滑动距离。

  • 2 结果与讨论

  • 2.1 等离子喷涂高温耐磨涂层的显微组织

  • 图1 为等离子喷涂涂层C1-0、C2-0截面显微组织的SEM图片。两种涂层均具有典型的等离子喷涂层状结构,涂层中存在未完全熔融的颗粒以及喷涂过程中形成的孔洞和裂纹。

  • 图1 等离子喷涂涂层截面SEM图片

  • Fig.1 SEM images of cross-section of plasma-sprayed coatings

  • 2.2 激光辅助热喷涂高温耐磨涂层的显微组织

  • 图2、图3分别为涂层C1-1、C1-2、C1-3、C1-4和涂层C2-1、C2-2、C2-3、C2-4、C2-5截面显微组织的SEM图片。在不同的激光功率、扫描速度条件下,涂层顶部均形成了树枝状的结构(如图2a、2c、 2e、2g和图3a、3c、3e、3g、3i),这是因为激光处理会使熔体前沿出现较大的温度梯度产生较大的过冷所致[27]。结合表4所列EDS成分可知,树枝状结构(No.1)主要为ZrO2,枝晶间隙(No.2)主要富集Al2O3及Ba和Ca。

  • 在涂层中心区域具有与喷涂态相似的层状结构,含有未熔融的颗粒、孔洞(图2b、2d、2f、 2h和图3b、d、3f、3h、3j)。在各涂层中心区域还能观察到因为热应力而产生的较大的裂纹。结合EDS分析结果可知,No.3和No.9处为Ni基体,并且与No.3相比,No.9处的Al和Ta元素显著减少。No.6处主要为ZrO2、CaF2、BaF2。涂层截面上还存在一些白色颗粒状和薄片状物质 (No.5),这些物质中含有较多的Ta元素,说明Ta在涂层中并没有充分固溶,而是存在偏聚现象。另外,在喷涂过程中不可避免地会发生元素的氧化,因此在涂层中还存在较多的氧化物。涂层中F元素含量极少,这可能是由喷涂过程能量过高而导致F烧蚀或氧化。

  • 激光辅助热喷涂过程中,涂层在激光的作用下形成熔池后,由于镍基熔体与已喷涂的涂层亲和力强,ZrO2 的密度低,在对流的推动下,镍基熔体在熔池下部偏析,ZrO2 陶瓷在熔池上部偏析,所以观察到结构分层的现象[28]。在此过程中密度较小的Al、Ca、Ba也会上浮至涂层的表面位置并固溶到枝晶间隙中,这些均匀分布在涂层上部枝晶间隙中的元素,可以在高温下发生反应,生成具有润滑作用的氧化物,有效降低磨损[29-30]

  • 对比图1和图2、3可以发现,与等离子喷涂涂层相比,激光辅助热喷涂的层状结构得到了明显的改善,并且在涂层顶部形成了具有树枝状结构的ZrO2 陶瓷层,它的形貌与激光工艺参数密切相关:对于涂层C1-X,当激光扫描速度为10mm/s时,随着激光功率从160W降至80W,涂层顶部陶瓷层的枝晶逐渐变得致密均匀(如图2a、2c、2e),当激光功率为80W,激光扫描速度从12mm/s降至10mm/s时,陶瓷层的枝晶也逐渐变得致密均匀 (如图2e、2g);分析C2-X涂层也可得出相同的结论。根据激光能量密度与激光功率成正比,与激光扫描速度成反比[31]可以推知,激光能量密度太大或太小都不利于在涂层顶部陶瓷层中得到致密均匀的枝晶,并且过大的激光功率还会引起涂层中心区域开裂(如C1-1、C1-2涂层),这些裂纹的扩展会恶化涂层的性能。

  • 图2 不同激光参数下激光辅助热喷涂制备的20%ZrO2/BaF2 CaF2-NiCoCrAlYTa涂层截面SEM图片

  • Fig.2 SEM images of cross-section of laser-assisted thermal sprayed 20%ZrO2/BaF2 CaF2-NiCoCrAlYTa coatings at various laser parameter

  • 另一方面,涂层的成分对涂层顶部陶瓷层的形貌也有很大影响。可以发现,C1-X陶瓷层中含有较多的孔洞,C2-X陶瓷层则没有发现类似的孔洞,组织也更为致密;C1-X陶瓷层中散布的球状Ni基相尺寸更大。这些结果表明,ZrO2 含量多更有利于形成致密的陶瓷层,并且抑制球状Ni基相的长大,从而得到质量良好的涂层。

  • 在两种成分的涂层中,涂层C1-3、C2-5相比于同组其他涂层组织更加致密均匀,缺陷更少。

  • 图3 不同激光参数下激光辅助热喷涂制备的25%ZrO2/BaF2 CaF2-NiCoCrAlYTa涂层截面SEM图片

  • Fig.3 SEM images of cross-section of laser-assisted thermal sprayed 25%ZrO2/BaF2 CaF2-NiCoCrAlYTa coatings at various laser parameter

  • 表4 20%ZrO2/BaF2 CaF2-NiCoCrAlYTa涂层图2标记各相的化学成分(EDS)(at.%)

  • Table4 Chemical composition of the marked phase of 20%ZrO2/BaF2 CaF2-NiCoCrAlYTa coatings in Fig.2by EDS(at.%)

  • 2.3 高温耐磨涂层的力学性能

  • 涂层的力学性能对涂层的耐磨性能有显著影响,而且摩擦通常发生在涂层的表面,所以采用纳米压痕法测量了激光辅助热喷涂涂层近表面横截面的力学性能。图4a、5a分别为在50mN载荷下涂层C1-X、C2-X横截面的加载—卸载曲线,可以看到曲线平滑,无突进或突退,说明在加载、卸载过程中涂层内部并未产生裂纹或脆性断裂。

  • 图4b、5b分别为涂层C1-X、C2-X的弹性模量和纳米硬度柱状图,可以看到涂层C1-0的平均纳米硬度为9.2GPa,平均弹性模量为211.0GPa,涂层C2-0的平均纳米硬度为7.2GPa,平均弹性模量为162.6GPa,即涂层C1-0的力学性能更好,这是因为在表2的喷涂工艺下, Powder 2中ZrO2/BaF2·CaF2 含量较高,相比powder1在焰流中熔融的少,涂层中的未熔颗粒、孔洞以及裂纹等缺陷较多,致使涂层的弹性模量和纳米硬度值较低。

  • 涂层C1-X和C2-X的平均纳米硬度值表明,激光辅助处理可以使涂层的纳米硬度显著提高。相较于涂层C1-0,涂层C1-1、C1-2、C1-3、C1-4的平均纳米硬度提升了31.5%~50.0%,相较于涂层C2-0,涂层C2-1、C2-2、C2-3、C2-4、C2-5的平均纳米硬度提高了61.1%~88.9%,表明激光辅助处理对涂层C2-X的影响更大。涂层纳米硬度的提高主要是因为激光辅助热喷涂得到的涂层表面形成了树枝状的ZrO2陶瓷层,其纳米硬度要高于喷涂态的涂层。对比发现,在试验所选参数下,激光扫描速度对涂层纳米硬度的影响要大于功率影响,降低激光扫描速度有利于气孔、裂纹以及未熔颗粒等缺陷的消除,从而提高涂层的纳米硬度。

  • 与C1-0相比,激光辅助热喷涂涂层C1-X的平均弹性模量均发生了不同程度的下降,功率较小 (80W)时,弹性模量下降幅度较大。而对于涂层C2-X,与C2-0相比,涂层C2-1、C2-5的平均弹性模量明显提高,涂层C2-3、C2-4的平均弹性模量降低。从结果中还可以看出,激光辅助热喷涂涂层的弹性模量与ZrO2/BaF2·CaF2 的含量并没有表现出明显的相关性,说明激光辅助热喷涂可以明显改善等离子喷涂涂层的性能。另外,涂层C2-4的弹性模量明显低于其他涂层,其值仅为118.9GPa,这是因为制备涂层C2-4所选用的激光扫描速度 (12mm/s)较快,未能充分熔化粉末,而且熔池中产生的气体也来不及排出,使得ZrO2 陶瓷层不致密、不连续,存在大量的缺陷,最终导致涂层弹性模量大幅降低。而扫描速度更快(15mm/s)的涂层C2-3,由于扫描速度过快,与原始喷涂涂层相比,形成的熔池较小,因此受到的影响也较小。

  • 图4 20%ZrO2/BaF2 CaF2-NiCoCrAlYTa涂层截面力学性能

  • Fig.4 Mechanical properties of the cross-section of 20%ZrO2/BaF2 CaF2-NiCoCrAlYTa coatings

  • 图5 25%ZrO2/BaF2 CaF2-NiCoCrAlYTa涂层截面力学性能

  • Fig.5 Mechanical properties of the cross-section of 25%ZrO2/BaF2 CaF2-NiCoCrAlYTa coatings

  • 在一定条件下,硬度和弹性模量的值越大,材料的耐磨性能越好[26]。对比发现,涂层C1-1、C1-3和C2-5的平均纳米硬度最高,分别为13.8GPa、13.2GPa、13.6GPa,平均弹性模量分别为180.6GPa、 166.8GPa、182.5GPa。由前节可知,C2-5陶瓷层致密均匀,C1-1、C1-3的陶瓷层中存在气孔等微观缺陷,而与涂层C1-3相比,制备涂层C1-1所选用的激光功率更大,所以熔池存在的时间更长,金属熔液波动更为剧烈,陶瓷相形成的枝晶较为粗大,因此硬度和弹性模量都高于涂层C1-3。

  • 表5 列出了各涂层的塑性变形抗力 H3/E2 和弹性回复率 Re,可以发现激光辅助热喷涂涂层的塑性变形抗力和弹性回复率均高于等离子喷涂涂层。在所有涂层中,C2-4的塑性变形抗力和弹性回复率最大,但其弹性模量和纳米硬度是所有激光辅助等离子喷涂涂层中最小的。除此之外,涂层C1-1、C1-3和C2-5也具有较大的塑性变形抗力和弹性回复率。一般认为塑性变形抗力和弹性回复率也可以反映涂层的耐磨性能,H3/E2 越大,涂层的耐磨性越好[26, 32]

  • 表5 复合涂层的塑性变形抗力和弹性回复率

  • Table5 Plastic deformation resistance and elastic recovery rate of composite coatings

  • 综上所述,涂层C1-1、C1-3和C2-5具有较好的综合力学性能,其中,C2-5涂层的综合力学性能最好,即当喷涂粉末为75wt.%NiCoCrAlYTa +25wt.%ZrO2/BaF2·CaF2,激光功率为80W,扫描速度为8mm/s时,所获得的激光辅助热喷涂涂层综合力学性能最好,其平均纳米硬度为13.6GPa,平均弹性模量为182.5GPa。

  • 由上一节可知,C1-1涂层中心区域存在较大的裂纹,这对于涂层的耐磨性能十分不利,所以综合考虑涂层组织与力学性能的影响,在C1-X涂层中选择C1-3,涂层C2-X中选择C2-5来进行高温摩擦磨损试验,进一步对比这两种工艺参数下所制备涂层的高温磨损行为。

  • 2.4 高温耐磨涂层的高温耐磨性能

  • 研究了涂层C1-3和C2-5在800℃下与Si3N4球的高温磨损行为。图6为试验温度为800℃时,涂层C1-3和C2-5磨痕的二维、三维轮廓。从图中可以看到,涂层C1-3的磨痕宽且深(最大深度约25 μm),在磨痕上还布有大量的平行“犁”,这说明涂层C1-3在高温摩擦过程中经历了严重的磨粒磨损,这种现象的发生可能是由于涂层表面的陶瓷材料质脆,陶瓷层在摩擦过程中由于载荷和摩擦热的反复作用逐渐开裂、剥落,虽然大部分的剥落碎片在离心力的作用下从磨痕表面移除,但仍有一小部分碎片残留在摩擦表面继续充当硬质颗粒,这些硬质颗粒在Si3N4球的推动下犁削涂层,从而加剧涂层的磨损,并在磨痕表面上留下大量的平行“犁”。

  • 图6 试验温度为800℃时涂层磨痕的三维、二维轮廓

  • Fig.6 3D and 2D topographies of wear traces of the coatings after sliding under 800℃

  • C2-5涂层的磨痕深度(最大磨损深度约为10 μm)明显小于C1-3涂层,并且磨痕表面形貌也与C1-3涂层有很大不同,它在高温摩擦过程中表面并没有形成大量的平行“犁”,而是形成了许多剥落坑,这些剥落坑可能是由于疲劳磨损所造成的。 OUYANG等[24]利用激光辅助热喷涂在AISI 304不锈钢表面制备了ZrO2-Y2O3 涂层,并研究了其与Al2O3 球的摩擦磨损行为。试验条件为:载荷50N、频率10Hz、持续时间1h。结果表明,当试验温度为800℃时,涂层的磨损深度高达170.0±15.0 µm。本文研究的C2-5涂层的磨损深度远低于对比文献中的涂层试验结果。

  • 表6 列出了涂层C1-3和C2-5的磨损率,发现C2-5具有更好的耐磨性,其磨损率为2.7 × 10−5 mm 3 ·N−1 ·m−1,比C1-3涂层的磨损率(3.2 ×10−4 mm 3 ·N−1 ·m−1)低一个数量级。结合前文的分析可知,磨损率的差异可能是由它们微观结构的差异引起的:从图2e中可以看到,C1-3陶瓷层中含有一些孔洞,这对于涂层的耐磨性能非常不利,因为在摩擦过程中应力集中甚至裂纹更易在这些位置产生;再者,陶瓷层中尺寸较大的球状Ni基相与陶瓷基体的润湿性差,在应力的反复作用下,裂纹极易在它们的界面处萌生扩展,这些因素导致涂层C1-3在摩擦过程中更易被破坏,表现为磨损率高。而C2-5涂层的组织更为致密均匀,综合力学性能更好,在摩擦过程中不会在出现短时间、较大范围内的陶瓷层开裂现象,分布在陶瓷相枝晶间隙的润滑相有效降低了磨损,所以C2-5涂层在试验条件下与C1-3涂层相比,表现出了更好的耐磨性。

  • 表6 试验温度为800℃时C1-3和C2-5的磨损率

  • Table6 Wear rates of C1-3and C2-5coatings after sliding under 800℃

  • 3 结论

  • 采用激光辅助热喷涂技术成功制备NiCoCrAlYTa/ZrO2/BaF2·CaF2 高温耐磨涂层,得到以下结论:

  • (1)NiCoCrAlYTa作为黏结相,ZrO2作为增强相,BaF2·CaF2 作为润滑相的材料体系可以制备出具有良好高温耐磨性能的涂层。

  • (2)激光辅助热喷涂技术可以改善涂层的微观组织,在涂层表面得到具有树枝状结构的ZrO2 陶瓷层,润滑相元素分布在枝晶间隙,通过调节激光能量密度以及涂层成分质量比可以得到具有良好的力学性能及高温耐磨性能的涂层。

  • (3)由于激光辅助热喷涂工艺具有一定的实施难度,为获得足够的涂层厚度,本文试验只在涂层上部制备了较优性能的涂层组织,未来需进一步验证制备厚度可控的工艺参数范围。

  • 参考文献

    • [1] 曹玉霞,杜令忠,张伟刚,等.等离子喷涂 NiCoCrAlY/Al2O3 高温固体润滑耐磨涂层的抗氧化性能研究[J].表面技术,2015,44(4):48-53.CAO Yuxia,DU Lingzong,ZHANG Weigang,et al.Study on oxidation resistance of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings at elevated temperature[J].Surface Technology,2015,44(4):48-53.(in Chinese)

    • [2] 郝恩康,安宇龙,赵晓琴,等.热喷涂高温自润滑涂层研究现状[J].表面技术,2018,47(6):104-111.HAO Enkang,AN Yulong,ZHAO Xiaoqin,et al.High temperature self-lubricating coatigs prepared by thermal spraying[J].Surface Technology,2018,47(6):104-111.(in Chinese)

    • [3] YANG H,ZOU J,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature[J].Corrosion Science,2020,175:108889.

    • [4] SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.

    • [5] JAFARI R,SADEGHI E.High-temperature corrosion performance of HVAF-sprayed NiCr,NiAl,and NiCrAlY coatings with alkali sulfate/chloride exposed to ambient air[J].Corrosion Science,2019,160:108066.

    • [6] HAO E,ZHAO X,AN Y,et al.The effect of pre-oxidation on microstructure,mechanical properties and hightemperature tribological behaviors of HVOF-sprayed NiCoCrAlYTa coating[J].Applied Surface Science,2019,489:187-197.

    • [7] 刘自敬,曾威,杨焜.超音速等离子喷涂 NiCoCrAlYTa10% Al2O3涂层性能的研究[J].材料研究与应用,2017,11(1):23-29.LIU Zijing,ZENG Wei,YANG Kun.Properties of NiCoCrAlYTa-10% Al2O3 coating prepared by supersonic atmospheric plasma spraying[J].Materials Research and Application,2017,11(1):23-29.(in Chinese)

    • [8] HUANG X,ZHANG J,CHENG Y,et al.Effect of h-BN addition on the microstructure characteristics,residual stress and tribological behavior of WC-reinforced Ni-based composite coatings[J].Surface and Coatings Technology,2021,405:126534.

    • [9] DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2-NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.

    • [10] DELLACORTE C,EDMONDS B J.NASA PS400:A new temperature solid lubricant coating for high temperature wear applications[R].NASA,2009.

    • [11] BOBZIN K,SCHLÄFER T,RICHARDT K,et al.Development of oxide dispersion strengthened MCrAlY coatings[J].Journal of Thermal Spray Technology,2008,17(5):853-857.

    • [12] HOU G L,AN Y L,ZHAO X Q,et al.Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1 000 ℃[J].Acta Materialia,2015,95:164-175.

    • [13] 李学娇,张骋,张娜.热障涂层研究进展[J].中国陶瓷,2013,49(3):1-4.LI Xuejiao,ZHANG Cheng,ZHANG Na.Research development of thermal barrier coatings[J].China Ceramics,2013,49(3):1-4.(in Chinese)

    • [14] LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating[J].Composites Part B,2013,53(7):347-354.

    • [15] MAZUMDER S,METSELAAR H S C,SUKIMAN N L,et al.An overview of fluoride-based solid lubricants in sliding contacts[J].Journal of the European Ceramic Society,2020,40(15):4974-4996.

    • [16] TORRES H,RODRÍGUEZ RIPOLL M,PRAKASH B.Tribological behaviour of self-lubricating materials at high temperatures[J].International Materials Reviews,2017,63(5):309-340.

    • [17] RADIL K,DELLACORTE C.The performance of PS400 subjected to sliding contact at temperatures from 260 to 927 ℃[J].Tribology Transactions,2017,60(6):957-964.

    • [18] SUN H W,YI G W,WAN S H,et al.Effect of adding soft Bi2O3 on structural modification and tribological regulation of Ni-5 wt% Al composite coating in wide temperatures range [J].Surface & Coatings Technology,2021,405:126517.

    • [19] SUN H,YI G,WAN S,et al.Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings[J].Surface and Coatings Technology,2021,427:127818.

    • [20] ZHAO Y,FENG K,YAO C,et al.Effect of MoO3 on the microstructure and tribological properties of laser-clad Ni60/nanoCu/h-BN/MoO3 composite coatings over wide temperature range[J].Surface and Coatings Technology,2020,387:125477.

    • [21] WANG A H,ZHANG X L,ZHANG X F,et al.Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd:YAG laser cladding[J].Materials Science and Engineering:A,2008,475(1-2):312-318.

    • [22] SUUTALA J,TUOMINEN J,VUORISTO P.Laser-assisted spraying and laser treatment of thermally sprayed coatings[J].Surface and Coatings Technology,2006,201(5):1981-1987.

    • [23] GARCIA-ALONSO D,SERRES N,DEMIAN C,et al.Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact[J].Journal of Thermal Spray Technology,2011,20(4):719-735.

    • [24] OUYANG J H,SASAKI S.Microstructure and tribological characteristics of ZrO2-Y2O3 ceramic coatings deposited by laser-assisted plasma hybrid spraying[J].Tribology International,2002,35(4):255-264.

    • [25] OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [26] DENG W,LI S,HOU G,et al.Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts[J].Ceramics International,2017,43(9):6976-6986.

    • [27] ANTOU G,MONTAVON G,HLAWKA F,et al.Microstructures of partially stabilized zirconia manufactured via hybrid plasma spray process[J].Ceramics International,2005,31(4):611-619.

    • [28] PEI Y T,OUYANG J H,LEI T C.Laser cladding of ZrO2-(Ni alloy)composite coating[J].Surface and Coatings Technology,1996,81(2):131-135.

    • [29] SU W,ZHANG J,ZHANG J,et al.Microstructure of HVOF-sprayed Ag-BaF2·CaF2-Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 °C to 800 ℃)[J].Ceramics International,2021,47(1):865-876.

    • [30] ZHU S,BI Q,YANG J,et al.Ni3Al matrix high temperature self-lubricating composites[J].Tribology International,2011,44(4):445-453.

    • [31] DAS B,NATH A K,BANDYOPADHYAY P P.Online monitoring of laser remelting of plasma sprayed coatings to study the effect of cooling rate on residual stress and mechanical properties[J].Ceramics International,2018,44(7):7524-7534.

    • [32] DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings[J].Surface and Coatings Technology,2018,337:439-446.

  • 参考文献

    • [1] 曹玉霞,杜令忠,张伟刚,等.等离子喷涂 NiCoCrAlY/Al2O3 高温固体润滑耐磨涂层的抗氧化性能研究[J].表面技术,2015,44(4):48-53.CAO Yuxia,DU Lingzong,ZHANG Weigang,et al.Study on oxidation resistance of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings at elevated temperature[J].Surface Technology,2015,44(4):48-53.(in Chinese)

    • [2] 郝恩康,安宇龙,赵晓琴,等.热喷涂高温自润滑涂层研究现状[J].表面技术,2018,47(6):104-111.HAO Enkang,AN Yulong,ZHAO Xiaoqin,et al.High temperature self-lubricating coatigs prepared by thermal spraying[J].Surface Technology,2018,47(6):104-111.(in Chinese)

    • [3] YANG H,ZOU J,SHI Q,et al.Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature[J].Corrosion Science,2020,175:108889.

    • [4] SAHITH M S,GIRIDHARA G,KUMAR R S.Development and analysis of thermal barrier coatings on gas turbine blades — A review[J].Materials Today:Proceedings,2018,5(1):2746-2751.

    • [5] JAFARI R,SADEGHI E.High-temperature corrosion performance of HVAF-sprayed NiCr,NiAl,and NiCrAlY coatings with alkali sulfate/chloride exposed to ambient air[J].Corrosion Science,2019,160:108066.

    • [6] HAO E,ZHAO X,AN Y,et al.The effect of pre-oxidation on microstructure,mechanical properties and hightemperature tribological behaviors of HVOF-sprayed NiCoCrAlYTa coating[J].Applied Surface Science,2019,489:187-197.

    • [7] 刘自敬,曾威,杨焜.超音速等离子喷涂 NiCoCrAlYTa10% Al2O3涂层性能的研究[J].材料研究与应用,2017,11(1):23-29.LIU Zijing,ZENG Wei,YANG Kun.Properties of NiCoCrAlYTa-10% Al2O3 coating prepared by supersonic atmospheric plasma spraying[J].Materials Research and Application,2017,11(1):23-29.(in Chinese)

    • [8] HUANG X,ZHANG J,CHENG Y,et al.Effect of h-BN addition on the microstructure characteristics,residual stress and tribological behavior of WC-reinforced Ni-based composite coatings[J].Surface and Coatings Technology,2021,405:126534.

    • [9] DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2-NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.

    • [10] DELLACORTE C,EDMONDS B J.NASA PS400:A new temperature solid lubricant coating for high temperature wear applications[R].NASA,2009.

    • [11] BOBZIN K,SCHLÄFER T,RICHARDT K,et al.Development of oxide dispersion strengthened MCrAlY coatings[J].Journal of Thermal Spray Technology,2008,17(5):853-857.

    • [12] HOU G L,AN Y L,ZHAO X Q,et al.Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1 000 ℃[J].Acta Materialia,2015,95:164-175.

    • [13] 李学娇,张骋,张娜.热障涂层研究进展[J].中国陶瓷,2013,49(3):1-4.LI Xuejiao,ZHANG Cheng,ZHANG Na.Research development of thermal barrier coatings[J].China Ceramics,2013,49(3):1-4.(in Chinese)

    • [14] LIU X B,LIU H Q,LIU Y F,et al.Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating[J].Composites Part B,2013,53(7):347-354.

    • [15] MAZUMDER S,METSELAAR H S C,SUKIMAN N L,et al.An overview of fluoride-based solid lubricants in sliding contacts[J].Journal of the European Ceramic Society,2020,40(15):4974-4996.

    • [16] TORRES H,RODRÍGUEZ RIPOLL M,PRAKASH B.Tribological behaviour of self-lubricating materials at high temperatures[J].International Materials Reviews,2017,63(5):309-340.

    • [17] RADIL K,DELLACORTE C.The performance of PS400 subjected to sliding contact at temperatures from 260 to 927 ℃[J].Tribology Transactions,2017,60(6):957-964.

    • [18] SUN H W,YI G W,WAN S H,et al.Effect of adding soft Bi2O3 on structural modification and tribological regulation of Ni-5 wt% Al composite coating in wide temperatures range [J].Surface & Coatings Technology,2021,405:126517.

    • [19] SUN H,YI G,WAN S,et al.Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings[J].Surface and Coatings Technology,2021,427:127818.

    • [20] ZHAO Y,FENG K,YAO C,et al.Effect of MoO3 on the microstructure and tribological properties of laser-clad Ni60/nanoCu/h-BN/MoO3 composite coatings over wide temperature range[J].Surface and Coatings Technology,2020,387:125477.

    • [21] WANG A H,ZHANG X L,ZHANG X F,et al.Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd:YAG laser cladding[J].Materials Science and Engineering:A,2008,475(1-2):312-318.

    • [22] SUUTALA J,TUOMINEN J,VUORISTO P.Laser-assisted spraying and laser treatment of thermally sprayed coatings[J].Surface and Coatings Technology,2006,201(5):1981-1987.

    • [23] GARCIA-ALONSO D,SERRES N,DEMIAN C,et al.Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact[J].Journal of Thermal Spray Technology,2011,20(4):719-735.

    • [24] OUYANG J H,SASAKI S.Microstructure and tribological characteristics of ZrO2-Y2O3 ceramic coatings deposited by laser-assisted plasma hybrid spraying[J].Tribology International,2002,35(4):255-264.

    • [25] OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [26] DENG W,LI S,HOU G,et al.Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts[J].Ceramics International,2017,43(9):6976-6986.

    • [27] ANTOU G,MONTAVON G,HLAWKA F,et al.Microstructures of partially stabilized zirconia manufactured via hybrid plasma spray process[J].Ceramics International,2005,31(4):611-619.

    • [28] PEI Y T,OUYANG J H,LEI T C.Laser cladding of ZrO2-(Ni alloy)composite coating[J].Surface and Coatings Technology,1996,81(2):131-135.

    • [29] SU W,ZHANG J,ZHANG J,et al.Microstructure of HVOF-sprayed Ag-BaF2·CaF2-Cr3C2-NiCr coating and its tribological behavior in a wide temperature range(25 °C to 800 ℃)[J].Ceramics International,2021,47(1):865-876.

    • [30] ZHU S,BI Q,YANG J,et al.Ni3Al matrix high temperature self-lubricating composites[J].Tribology International,2011,44(4):445-453.

    • [31] DAS B,NATH A K,BANDYOPADHYAY P P.Online monitoring of laser remelting of plasma sprayed coatings to study the effect of cooling rate on residual stress and mechanical properties[J].Ceramics International,2018,44(7):7524-7534.

    • [32] DU H,WANG L,YOUNG M,et al.Structure and properties of lanthanum doped AlCrN coatings[J].Surface and Coatings Technology,2018,337:439-446.

  • 手机扫一扫看