en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴彼,男,1988年出生,博士,特别研究助理。主要研究方向为摩擦学表面工程。E-mail:bwu17b@imr.ac.cn;

高禩洋(通信作者),男,1982年出生,博士,副研究员。主要研究方向为特殊工况材料摩擦学。E-mail:sygao@imr.ac.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20211101003

参考文献 1
LUGSCHEIDER E,ZWICK J,HERTTER M,et al.Control of coating properties of abradable seals by on-line process diagnostics[C]//International Thermal Spray Conference(ITSC),Basel,Switzerland,2005.
参考文献 2
XUE Weihai,GAO Siyang,DUAN Deli,et al.Material transfer behaviour between a Ti6Al4V blade and an aluminium hexagonal boron nitride abradable coating during high-speed rubbing[J].Wear,2015,322:76-90.
参考文献 3
FOIS N,STRINGER J,MARSHALL M B Adhesive transfer in aero-engine abradable linings contact[J].Wear,2013,304(1-2):202-210.
参考文献 4
ZHANG H L,HAN Y F,DAI Y B,et al.An ab initio molecular dynamics study:Liquid-Al/solid-TiB2 interfacial structure during heterogeneous nucleation[J].Journal of Physics D:Applied Physics,2012,45(45):455307.
参考文献 5
BERGER Mattias,HOGMARK Sture.Tribological properties of selected PVD coatings when slid against ductile materials[J].Wear,2002,252(7-8):557-565.
参考文献 6
KONCA E,CHENG Y T,WEINER A M,et al.Transfer of 319 Al alloy to titanium diboride and titanium nitride based(TiAlN,TiCN,TiN)coatings:Effects of sliding speed,temperature and environment[J].Surface and Coatings Technology,2005,200(7):2260-2270.
参考文献 7
GAO Siyang,XUE Weihai,DUAN Deli,et al.Tribological behaviors of turbofan seal couples from friction heat perspective under high-speed rubbing condition[J].Friction,2016,4(2):176-190.
参考文献 8
KELESOGLU Ergun,MITTERER C.Structure and properties of TiB2 based coatings prepared by unbalanced DC magnetron sputtering[J].Surface and Coatings Technology,1998,98(1-3):1483-1489.
参考文献 9
WU Bi,GAO Siyang,XUE Weihai,et al.Effect of microstructure on the adhesion strength of TiBx coating on Ti6Al4V substrate[J].Ceramics International,2021,47(4):5019-5027.
参考文献 10
BURNETT P J,RICKERBY D S The relationship between hardness and scratch adhession[J].Thin Solid Films,1987,154(1):403-416.
参考文献 11
PACE M T,THOMSONRC,WELLS J,et al.ASTM C1624-05:Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing[J].Coatings,2015,5:1-29.
参考文献 12
林松盛,周克崧,代明江.类金刚石/碳化钨多层膜的制备及其结构[J].中国有色金属学报,2013(2):434-438.LIN Shengsong,ZHOU Kesong,JIANG Daiming.Preparation and microstructure of DLC/WC multilayer thin films[J].The Chinese Journal of Nonferrous Metals,2013(2):434-438.(in Chinese)
参考文献 13
HABIG K.Friction and wear of sliding couples coated with TiC,TiN or TiB2[J].Surface and Coatings Technology,1990,42(2):133-147.
参考文献 14
SPADARO F,ROSSI A,RAMAKRISHNA S N,et al.Understanding complex tribofilms by means of H3BO3–B2O3 model glasses[J].Langmuir,2018,34(6):2219-2234.
参考文献 15
ERDEMIR A,HALTER M,FENSKE G R.Preparation of ultralow-friction surface films on vanadium diboride[J].Wear,1997,205(1-2):236-239.
参考文献 16
BHUSHAN B.Surface roughness analysis and measurement techniques[J].Modern Tribology Handbook,2001,1:49-120.
参考文献 17
SCHARF T,PRASAD S.Solid lubricants:A review[J].Journal of Materials Science,2013,48(2):511-531.
参考文献 18
KRISHNA D,BRAMA YL,SUN Y.Thick rutile layer on titanium for tribological applications[J].Tribology International,2007,40(2):329-334.
参考文献 19
KAYABA T,KATO K.The adhesive transfer of the slip-tongue and the wedge[J].Asle Transactions,1981,24(2):164-174.
参考文献 20
KONCA E.Adhesion and material transfer between aluminum and surfaces coated with diamond-like carbon and other coatings[D].Windsor,Canada:University of Windsor,2005.
参考文献 21
FINKIN E.Adhesive wear:A general review of the state of experimental knowledge and theory[J].International Journal of Materials in Engineering Applications,1979,1(3):154-161.
参考文献 22
KATO K.Micro-mechanisms of wear—wear modes[J].Wear,1992,153(1):277-295.
参考文献 23
LIU Rouyu,HUANG Chuangbing,DU Lingzhong,et al.Formation of diffusion layer on Ti-6Al-4V alloy during longtime friction with Al[J].Metals,2019,9(10):1107.
目录contents

    摘要

    航空发动机低压气机机匣内表面 Al 基封严涂层的使用,可以通过其自身的磨耗实现保护 TC4 叶尖的目的,但同时 Al 基封严涂层中以 Al 为主的基体材料易于大量黏着转移至 TC4 叶尖表面,使叶尖长度增加,影响发动机运行稳定性。采用直流脉冲磁控溅射工艺在钛合金表面沉积 TiB2 涂层,以期实现抗 Al 黏着磨损目的。具有致密结构的 TiB2涂层在钛合金表面膜基结合临界载荷(L C4)达 85.4 N。在高温销-盘摩擦磨损试验机上评价钛合金表面 TiB2涂层与纯铝销对摩(室温至 450 ℃) 的抗 Al 黏着磨损性能。与 TC4 基体相比较,TiB2 涂层可有效抑制 Al 的黏着转移。对摩铝销磨斑具有拖尾特征和剪切舌特征。 铝销向 TiB2涂层表面的机械涂抹和铝销对 Al 黏着转移层的剪切去除作用相互竞争,共同控制 Al 的黏着转移行为。TiB2涂层磨痕内保持低表面粗糙度可减小高温软化铝销的机械涂抹倾向。同时 TiB2涂层与 Al 黏着转移层间优异的化学稳定性可阻碍界面反应进行,降低界面结合强度,进而促进铝销对 Al 黏着转移层的剪切去除作用。钛合金表面 TiB2 涂层通过抑制铝销机械涂抹并增强铝销对 Al 黏着转移层的剪切去除而获得优异的抗 Al 黏着磨损性能。

    Abstract

    The application of the Al-based seal coating on the inner case of the compressor of the aero-engine can protect the TC4 blade tip by the abrasion of the seal coating itself. However, the Al-based seal coating is apt to adhesively transfer to the blade tip and increase the blade length, which will deteriorate the stability of the rotating system. The TiB2 coating is deposited on the TC4 substrate by D.C. pulsed magnetron sputtering. The dense TiB2 coating deposited on TC4 substrates has an adhesive critical load (L C4) up to 85.4 N. The tribology behavior of the TiB2 coating against pure Al pin is evaluated on a high-temperature Pin-on-disc wear test rig (R.T.~450℃). Comparing with TC4 substrate, TiB2 coating can inhibit the adhesive transfer of Al. The Al pin shows the smear tail and shear tongue characteristics. There is a competition between the mechanical smearing effect of the Al pin and the shear effect of Al adhesive-transfer layer by the Al pin, which controls the process of Al adhesive transfer. The mechanical smearing effect of high-temperature softened Al pin is reduced for the lower roughness in the wear track of the TiB2 coating. Meanwhile, the interface reaction between the TiB2 coating and Al adhesive is restrained for the chemical inertness of TiB2. Its interface strength is reduced and the shear effect of Al adhesive-transfer layer is improved. Therefore, the TiB2 coating on TC4 substrate can reduce the Al-adhesive transfer by inhibiting the mechanical smear and enhancing the shear removal of Al pin.

  • 0 前言

  • 在航空发动机压气机中,减小转子叶片尖端(简称叶尖)与机匣内表面间隙可降低叶片级间工作气体泄漏率,提高整机效率。但由于热膨胀或偏心转动等因素的存在,叶尖与机匣内壁将发生意外刮擦,造成叶片损伤。因此,一般在低压压气机机匣内壁喷涂铝基可磨耗封严涂层,通过封严涂层材料的磨耗,实现保护钛合金叶尖的目的[1-2]

  • 大量的工程实践和研究表明,Al基封严涂层与对偶钛合金叶片配副使用时,Al基封严涂层中基体Al易于大量黏着转移至钛合金叶尖表面,进而造成至少如下两方面的不利影响。一方面,使叶尖增长,增加叶尖对Al基封严涂层的入侵深度,加剧涂层的磨损,缩短其服役寿命[3];另一方面,影响转子系统动平衡,对叶片产生额外激振,危害发动机运行稳定性[2]

  • 目前,鲜有关于抑制Al基封严涂层向钛合金叶尖黏着转移的研究。 ZHANG等[4]报道熔融铝液难以在TiB2-B截断面有序润湿与形核,其与熔融铝液体现出极佳的化学稳定性。BERGER[5]和KONCA[6] 等对比TiB2、DLC、TiN和TiAlN涂层与铝合金对摩的黏着磨损行为,其中TiB2 涂层可在高温条件下较好地抑制铝合金的黏着转移。因此,在不改变封严涂层与叶尖材料原有设计的基础上,对钛合金叶片尖端进行TiB2 功能化表面改性是抑制Al基封严涂层高速刮擦过程中黏着转移的有效途径。

  • 在航空发动机压气机高温服役条件下,Al基封严涂层的力学性能因Al基体材料力学和热物性能的明显改变,而对其向钛合金叶尖表面黏着转移行为与规律产生显著影响[7]。因此,研究温度对Al基封严涂层材料向钛合金和(或)TiB2 改性钛合金叶尖表面黏着转移行为的影响对于调控或抑制Al基封严涂层黏着转移程度至关重要。此外,在Al基封严涂层中六方氮化硼(hBN,12wt.%)等作为固体润滑相添加,可一定程度抑制Al基材料的黏着转移。为便于摩擦学分析,突出Al黏着转移的影响。在高温摩擦磨损试验(室温至450℃)设计中采用纯铝替代Al基封严涂层。

  • 本文采用直流脉冲磁控溅射工艺,在常用作压气机叶片的TC4(Ti6Al4V)钛合金基体表面沉积TiB2 涂层。通过高温销-盘试验机模拟航空发动机压气机高温工况,研究高温下钛合金表面TiB2 涂层与纯铝销摩擦学行为。与未沉积涂层的TC4基体作为对比,评价温度对钛合金表面TiB2 涂层抑制纯铝黏着转移效果的影响,分析TiB2 涂层表面铝销黏着转移行为的控制机制。

  • 1 材料与方法

  • 1.1 材料制备

  • 采用直流脉冲磁控溅射工艺在镜面抛光的Ti6Al4V和单晶Si(100)基体表面首先沉积Cr过渡层以提高膜基结合强度,再在Cr过渡层上沉积TiB2 涂层。基体分别经过酒精和丙酮超声清洗20min以去除表面污染物。而后基体经压缩空干燥,放入真空室待镀。 TiB2 靶材为粉末烧结靶 (99.9at.%),直流脉冲溅射电源为其供电。具体磁控溅射沉积TiB2 涂层工艺参数如表1所示。

  • 表1 溅射沉积详细工艺参数

  • Table1 Detail parameters of sputtering deposition

  • (T.S.—Target to substrate)

  • 1.2 试验方法与设备

  • 采用Rigaku SmartLab X射线衍射仪表征TiB2涂层相结构。采用KLA Nano Indenter G200纳米压痕仪测量TiB2涂层硬度和弹性模量。采用RTEC MTF-5000多功能摩擦磨损试验机,装配洛氏压头(HRC-3)实现渐进加载划痕法测量钛合金表面TiB2涂层的膜基结合强度,最大法向加载为100N,根据三次重复划痕形貌确定膜基临界载荷。TiB2 涂层粗糙度和涂层厚度采用哈尔滨刃具量具集团2300A-R型接触式轮廓仪测量,其中涂层厚度通过测量掩膜方法制备的涂层至基体台阶高度获得。采用FEI INSPECT F50扫描电子显微镜观察TC4基体和TiB2涂层的形貌与高温销-盘试验后销试样和盘试样的磨痕形貌。

  • 高温销-盘试验在CETR UMT-2多功能摩擦磨损试验机上进行,以便更好地控制变量,研究温度对黏着磨损行为的影响。图1给出多功能摩擦磨损试验机高温销-盘模块结构示意图。上试样为直径4mm的球冠1060工业纯铝销,其上施加法向载荷为1N,下盘试样转动线速度为0.1m/s(回转半径20mm),试验时间为600s,试验温度分别为室温、 150℃、300℃和450℃,其中最高试验温度的选择依据苏尔寿-美科公司提供的Al基封严涂层最高服役温度选取,高于该温度后Al基材料力学性能与可磨耗性急剧下降。根据不同温度下三次试验结果确定摩擦因数和磨痕表面铝黏着转移程度。磨痕表面铝黏着转移程度通过磨痕表面Al黏着转移层覆盖率和平均厚度评价。其中Al黏着转移层覆盖率采用图像分析软件计算背散射模式扫描电子显微镜照片中Al黏着转移层在磨痕内覆盖面积比值获得; Al黏着转移层平均厚度通过接触式轮廓仪测量磨痕径向轮廓中高于磨痕水平基线的最大高度获得。 TC4基体磨痕犁沟平均深度测量方法与之类似,根据磨痕径向轮廓中低于磨痕水平基线的最大深度获得。每个试验条件下随机选取分析视场和磨痕轮廓测量位置数量均为10处。摩擦磨损试验机可在试验中记录Z轴位移作为铝销磨损长度变化。

  • 图1 高温销-盘试验机结构示意图

  • Fig.1 Schematic diagram of high-temperature pin on disc tribology test rig

  • 2 结果与讨论

  • 2.1 TiB2涂层的结构与性能

  • 图2 给出TiB2 涂层X射线衍射图谱,在衍射角分别为27.80°、44.34°和57.54°处,可见TiB2 涂层的(001)、(101)和(002)衍射峰[8]。涂层无明显晶面择优取向出现,TiB2(101)衍射峰强度略高于TiB2(001)衍射峰。另外,图谱中亦可见Cr过渡层的(210)和(220)衍射峰。

  • 图3 给出单晶Si(001)基体表面TiB2涂层的横截面SEM照片。在基体与TiB2 涂层间沉积厚度约200nm的Cr过渡层,Cr过渡层为粗大柱状晶结构。在基体负偏压的作用下TiB2 涂层体现出致密无特征结构。如图3b所示,TiB2 涂层表面可见较为光滑的岛丘结构,直径为100~200nm的岛丘内又包含大量纳米尺度颗粒。接触式轮廓仪测量涂层表面粗糙度为21nm,涂层平均厚度为1.1 μm。

  • 图2 TiB2涂层X射线衍射图谱

  • Fig.2 XRD spectra of TiB2 coating

  • 图3 TiB2涂层横截面与表面扫描电子显微镜照片

  • Fig.3 Cross-sectional and plain-view SEM micrographs of TiB2 coatings

  • 图4 为TiB2涂层硬度和弹性模量与纳米压痕压入深度变化曲线。当压入深度为达涂层平均厚度的1/10即100nm左右时,涂层硬度和弹性模量基本达到稳定,其硬度和弹性模量分别为34.37GPa和431.15GPa。单独制备并测量Cr过渡层的硬度和弹性模量分别为9.50GPa和289.24GPa。Cr过渡层可提高TiB2 涂层与TC4基体的协调变形能力,改善膜基结合强度。

  • 图4 TiB2 涂层硬度与弹性模量与纳米压痕压入深度的关系

  • Fig.4 Hardness and Young’ s modulus of TiB2 coating as a function of penetration displacement by nanoindentation

  • 涂层膜基结合强度是保证其摩擦学服役性能的重要指标。前期TiB2 改性钛合金叶尖与铝基六方氮化硼封严涂层(Al-hBN)高速刮擦试验结果表明,钛合金表面低结合强度TiB2 涂层会在高速刮擦过程中大面积脱落,暴露TC4叶尖,进而丧失抗Al黏着转移作用[9]。因此,有必要关注TiB2涂层与基体的膜基结合强度。

  • 图5 给出钛合金表面TiB2 涂层划痕形貌。洛氏压头滑动过程中随法向载荷提高,TiB2 涂层划痕边缘发生剥落,划痕内部涂层在拉应力作用下出现破碎失效(Chipping failure)特征,部分破碎涂层被压入划痕内部[10-11]。基于划痕形貌确定划痕内部涂层完全脱落对应的临界载荷 L C4 为85.4N,达到并优于部分航空发动机中钛合金表面物理气相沉积工艺制备TiN涂层膜基结合强度水平(L C4 为50N)[12]

  • 2.2 TiB2涂层与纯铝销的高温黏着磨损行为

  • 2.2.1 温度对TiB2 涂层表面Al黏着转移的影响

  • 图6a为不同温度下,钛合金表面TiB2 涂层与纯Al对摩的摩擦因数曲线。随磨损进行,各温度下的摩擦因数均逐渐趋于稳定。温度由室温提高至150℃,摩擦因数由0.44降低至0.23,表明TiB2 涂层体现出一定的高温润滑特性,其原因为高温下TiB2 涂层发生氧化,形成具有润滑功能的TiO2 和B2O3 [13]。其中,B2O3 可以与空气中的水蒸气发生反应形成具有片层结构的硼酸(H3BO3)润滑膜,能够明显降低摩擦因数[14-15]。但当温度高于170℃ 时,H3BO3 将发生分解,润滑效果减弱[16]。因此,当温度为300℃时,TiB2 涂层与Al对摩的摩擦因数升高至0.38,但仍低于室温条件下的摩擦因数。此时润滑作用主要来自于TiO2 和B2O3。进一步提高温度至450℃,摩擦因数大幅升高至0.69,且波动范围较大,其原因为此温度下Al的黏着转移程度大大提高,如图7c所示。图6b给出TC4基体和TiB2 涂层与纯Al对摩的摩擦因数。可见,摩擦因数也同样随温度升高而上升,但TC4基体与Al对摩摩擦因数均低于TiB2 涂层,这与TC4基体较低的弹性模量与剪切强度和更容易形成磨损氧化物有关[17-18]

  • 图5 钛合金表面TiB2涂层划痕扫描电子显微镜形貌

  • Fig.5 SEM micrograph of scratch of TiB2 coating on TC4substrate

  • 图6 不同温度下TiB2涂层和TC4基体与纯Al对摩的摩擦因数

  • Fig.6 Friction factor of TiB2 coating and TC4substrate against Al at different temperature

  • 图7 给出室温和450℃时TC4基体表面磨痕SEM照片。不同温度条件下,TC4基体表面均出现明显的犁沟,体现出磨粒磨损特征。磨痕轮廓测量结果表明,随温度提高,犁沟平均深度由2 μm增加至4 μm。同时磨痕表面可见Al黏着转移层存在,室温时Al黏着转移层覆盖率为10.22%,Al黏着转移层平均厚度为11.60 μm。随温度升高,TC4基体表面Al黏着转移程度增加。当温度为450℃时, TC4磨痕表面Al黏着转移程度最为严重,Al黏着转移层覆盖率和平均厚度分别为28.98%和26.96 μm。由图7d可见,Al黏着转移层表现出分层涂抹特征,表明TC4基体表面Al黏着后,铝销材料还会继续涂抹转移至Al黏着转移层表面。综上可见,对于TC4基体与纯Al对摩副,室温下以磨粒磨损为主,兼有少量的Al黏着转移;随着温度升高,磨粒磨损和黏着磨损均有增强,且黏着磨损引起的Al黏着转移程度增加的更为显著。

  • 图7 室温和450℃时TC4基体表面磨痕扫描电子显微镜照片

  • Fig.7 SEM micrographs of wear track on TC4substrate at room temperature and 450℃

  • 图8 为不同温度下钛合金表面TiB2涂层磨痕表面SEM照片。随温度升高,TiB2 涂层表面Al黏着转移程度加重。室温条件下TiB2 涂层表面磨痕保持光滑形貌,磨痕内外差别较小。磨痕内可见零星Al黏着颗粒或Al黏着转移层,Al黏着转移层覆盖率为6.27%,平均厚度为0.39 μm。当温度提高至150℃后,磨痕内Al黏着转移层覆盖率减小至3.59%,但平均厚度增加至1.38 μm。进一步升温至300℃和450℃,Al黏着转移层岛丘尺寸与厚度均大幅度增加。当温度为300℃时,Al黏着转移层覆盖率和平均厚度分别为15.27%和2.94 μm。提高温度至450℃时,Al黏着转移层覆盖率和平均厚度分别达16.30%和18.10 μm。高温导致TC4基体屈服强度降低,在氧化物磨屑的碾压和犁削作用下,TiB2 涂层随钛合金基体变形而出现的较浅的沟槽。但TiB2 涂层与基体界面结合良好,涂层随基体变形仅出现裂纹,涂层并无明显剥落。

  • 图8 不同温度下钛合金表面TiB2涂层与纯Al对摩磨痕扫描电子显微镜照片

  • Fig.8 SEM micrographs of wear tracks on TiB2 deposited TC4substrate at different temperature

  • 2.2.2 温度对铝销磨斑形貌的影响

  • 图9a和9b为与TC4基体对摩的铝销磨斑光学显微镜形貌。在背离滑动方向侧磨斑边缘(上边缘),可见由于纯Al在TC4基体表面塑性机械涂抹而产生的拖尾特征(Smear tail)。当温度为450℃时,拖尾特征更加明显。另外,在迎接滑动方向侧磨斑边缘(下边缘)可见因铝销对Al黏着转移层剪切去除而形成的剪切舌特征(Shear tongue)[19-20]。对比图9a和9b,仅在室温条件下,与TC4基体对摩铝销磨斑下边缘出现多条密集分布的剪切舌。

  • 结合图7和图9可见铝销磨斑形貌特征与TC4磨痕表面Al黏着转移程度能够良好对应。室温条件下,TC4基体表面Al黏着转移程度较轻,磨斑边缘可见明显的剪切舌而拖尾较弱。在450℃时,TC4基体表面Al黏着转移严重,磨斑边缘仅可见拖尾特征。

  • 图9c、9d、9e和9f为与钛合金表面TiB2涂层对摩的铝销磨斑光学显微镜形貌。室温时,与TiB2 涂层对摩铝销磨斑表面存在大量深色氧化铝磨屑,体现出磨粒磨损特点。此时TiB2 涂层表面Al黏着转移程度也最轻(图8a和8b)。随温度升高,磨斑边缘出现明显的拖尾和剪切舌特征,但剪切舌特征更加凸显,表明高温下Al黏着转移层与TiB2 涂层界面结合强度处于较低水平,铝销仍可将部分Al黏着转移层剪切去除。

  • 图9 不同温度条件下与TC4和TiB2涂层对摩铝销的光学显微镜形貌照片

  • Fig.9 Wear scar optical micrographs of Al pin against TC4and TiB2 coating at different temperatures

  • 2.3 TiB2涂层抗Al黏着转移机理的讨论

  • 由于铝销为球冠且高温氧化增重的影响,其磨损体积与失重难以准确获得,因此可以通过铝销磨损长度的改变准确地反映出铝销的磨损程度。由450℃条件下铝销长度变化(图10)可见,与TC4对摩铝销长度变化随时间呈线性关系,铝销磨损速率更高且磨损长度更大,最高为137 μm。而与钛合金表面TiB2 涂层对摩铝销长度变化随时间延长呈幂率关系,铝销磨损速率增长逐渐趋缓,磨损长度也更小,为89 μm。这表明钛合金表面TiB2 涂层可以在高温下抑制Al的黏着磨损,进而降低铝销磨损量。通过铝销磨损量与磨斑形貌的分析可发现,TC4基体和TiB2涂层表面铝销的黏着转移行为与铝销的磨损程度和形貌特征有关。

  • 铝销在黏着磨损过程中发生长度变化原因主要由三方面构成:① 铝销向对摩副表面的机械涂抹形成黏着转移层;② Al黏着转移层向铝销表面的再黏着(Re-adhesion);③ 铝销以Al磨屑或氧化物磨屑形式脱落。其中仅前两方面原因会直接对TC4基体或TiB2 涂层表面Al黏着转移程度产生影响。铝销的机械涂抹将加剧Al的黏着转移,而Al黏着转移层的再黏着会降低Al的黏着转移程度。

  • 图10 450℃条件下铝销磨损长度变化曲线

  • Fig.10 Length change of Al pin during wear at 450℃

  • 对比分析铝销磨斑形貌(图9)可以发现,高温下铝销向对摩副表面的塑性机械涂抹作用产生的铝销拖尾特征更为明显。因此,在后文讨论中主要考虑铝销的机械涂抹作用。一方面,在高温下铝销向对摩副表面机械涂抹不可避免[21],会在铝销侧出现拖尾特征。拖尾特征越明显,则对应对摩副表面更多的Al黏着的转移。另一方面,铝销的机械涂抹是铝销剪切去除作用的基础,铝销在滑动经过Al黏着转移层时,会对Al黏着转移层产生剪切去除作用。当Al黏着转移层与下样品表面结合较弱(界面反应受到抑制)时,Al黏着转移层易于在铝销的剪切下由界面处发生分离被推挤并堆积在铝销边缘形成剪切舌[22]。剪切舌特征越明显,对应铝销更强的剪切去除作用。因此,铝销的机械涂抹和铝销对Al黏着转移层的剪切去除作用在Al的黏着转移过程中相互竞争,共同作用决定铝销对摩副表面Al黏着转移程度。

  • 基于以上讨论提出钛合金表面TiB2涂层与铝销对摩的涂抹和剪切去除竞争机制。图11为钛合金表面TiB2涂层与铝销对摩的涂抹和剪切去除竞争机制示意图。对于钛合金表面TiB2 涂层,在室温和高温条件下TiB2涂层均能对钛合金基体提供良好保护,涂层表面在黏着磨损过程中始终保持光滑完整与较低的粗糙度,如图8所示。室温条件下,TiB2 涂层无明显磨损,表面光滑。同时,铝销仍保持较高剪切强度,其向涂层表面塑性涂抹倾向较低。因此,TiB2 涂层表面几乎无Al黏着转移(图8a),铝销无拖尾和剪切舌特征出现(图9c),体现出磨粒磨损特征。而高温条件下,TiB2 涂层表面保持低表面粗糙度可以降低高温软化铝销的机械涂抹倾向。少量Al涂抹转移至涂层表面,在铝销边缘形成拖尾特征(图9f)。此外, TiB2 涂层较高的熔点以及与Al间优异的化学稳定性,使得Al黏着转移层与TiB2 涂层间界面反应难以发生,界面结合较弱[4]。因此,在铝销的进一步剪切下,大部分Al黏着转移层将由TiB2 涂层表面分离,黏附并堆积在铝销边缘,形成剪切舌(图9d);另一小部分Al黏着转移层则以磨屑形式被排出或再次黏着于铝销表面形成再黏着层。再黏着层的出现也会使磨损过程中铝销长度增加,铝销长度变化曲线出现波动,如图10所示。钛合金表面TiB2 涂层通过保持磨痕光滑(较低表面粗糙度)而抑制铝销向TiB2 涂层表面的机械涂抹作用。同时,促进铝销对Al黏着转移层的剪切去除作用,最终实现抑制铝销的黏着磨损与黏着转移目的。

  • 图11 钛合金表面TiB2 涂层与铝销对摩的涂抹和剪切去除竞争机制示意图

  • Fig.11 Schematic diagram of smear and shear removal between TiB2 coating on TC4and pure Al pin

  • 作为对比,TC4基体表面Al黏着转移严重的原因,同样可以采用铝销的涂抹和剪切去除竞争机制来加以解释。在TC4基体与铝销对摩过程中,TC4基体磨痕内出现大量犁沟,粗糙的犁沟为铝销机械涂抹提供更多锚点,促进铝销的机械涂抹作用,进而加剧Al的黏着转移(图7)。同时,Al黏着转移层与TC4界面在高温下发生Ti-Al界面反应,形成TiAl3 和(或)γ-TiAl界面反应层,使Al黏着转移层与TC4基体紧密结合[23]。铝销难以再次将Al黏着转移层从界面处剪切去除,铝销的剪切去除作用受到明显抑制。因此,在TC4基体表面保留大面积Al黏着转移层,仅少部分Al黏着转移层以再黏着方式重新转移回铝销表面。最终导致高温(450℃) 条件下,铝销磨斑仅体现出拖尾特征(图9b),TC4基体表面Al黏着转移严重(图7c)。

  • 3 结论

  • (1)高温下钛合金表面TiB2 涂层与铝销对摩, TiB2 涂层可有效抑制铝销的黏着转移,且涂层未发生明显磨损。150℃时,TiB2 涂层摩擦氧化形成硼酸润滑膜,摩擦因数最低。温度进一步升高,硼酸润滑膜分解,摩擦因数随之上升。450℃条件下TiB2 涂层表面Al黏着转移层覆盖程度与室温时TC4基体相近。

  • (2)铝销向TC4基体或TiB2 涂层的涂抹会加剧Al的黏着转移,并在铝销边缘形成拖尾特征。而铝销对Al黏着转移层的剪切去除会减少Al的黏着转移,在铝销边缘形成剪切舌特征。铝销的塑性机械涂抹和剪切去除竞争机制共同作用决定Al黏着转移程度。

  • (3)高温下钛合金表面TiB2 涂层磨损轻微,磨痕内保持光滑,抑制高温软化铝销的塑性机械涂抹。同时,TiB2与Al间优异的化学稳定性会阻碍界面反应的进行,使Al黏着转移层易于被铝销剪切去除。高温下TiB2 涂层表面Al黏着转移程度能够处于较低水平。

  • 参考文献

    • [1] LUGSCHEIDER E,ZWICK J,HERTTER M,et al.Control of coating properties of abradable seals by on-line process diagnostics[C]//International Thermal Spray Conference(ITSC),Basel,Switzerland,2005.

    • [2] XUE Weihai,GAO Siyang,DUAN Deli,et al.Material transfer behaviour between a Ti6Al4V blade and an aluminium hexagonal boron nitride abradable coating during high-speed rubbing[J].Wear,2015,322:76-90.

    • [3] FOIS N,STRINGER J,MARSHALL M B Adhesive transfer in aero-engine abradable linings contact[J].Wear,2013,304(1-2):202-210.

    • [4] ZHANG H L,HAN Y F,DAI Y B,et al.An ab initio molecular dynamics study:Liquid-Al/solid-TiB2 interfacial structure during heterogeneous nucleation[J].Journal of Physics D:Applied Physics,2012,45(45):455307.

    • [5] BERGER Mattias,HOGMARK Sture.Tribological properties of selected PVD coatings when slid against ductile materials[J].Wear,2002,252(7-8):557-565.

    • [6] KONCA E,CHENG Y T,WEINER A M,et al.Transfer of 319 Al alloy to titanium diboride and titanium nitride based(TiAlN,TiCN,TiN)coatings:Effects of sliding speed,temperature and environment[J].Surface and Coatings Technology,2005,200(7):2260-2270.

    • [7] GAO Siyang,XUE Weihai,DUAN Deli,et al.Tribological behaviors of turbofan seal couples from friction heat perspective under high-speed rubbing condition[J].Friction,2016,4(2):176-190.

    • [8] KELESOGLU Ergun,MITTERER C.Structure and properties of TiB2 based coatings prepared by unbalanced DC magnetron sputtering[J].Surface and Coatings Technology,1998,98(1-3):1483-1489.

    • [9] WU Bi,GAO Siyang,XUE Weihai,et al.Effect of microstructure on the adhesion strength of TiBx coating on Ti6Al4V substrate[J].Ceramics International,2021,47(4):5019-5027.

    • [10] BURNETT P J,RICKERBY D S The relationship between hardness and scratch adhession[J].Thin Solid Films,1987,154(1):403-416.

    • [11] PACE M T,THOMSONRC,WELLS J,et al.ASTM C1624-05:Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing[J].Coatings,2015,5:1-29.

    • [12] 林松盛,周克崧,代明江.类金刚石/碳化钨多层膜的制备及其结构[J].中国有色金属学报,2013(2):434-438.LIN Shengsong,ZHOU Kesong,JIANG Daiming.Preparation and microstructure of DLC/WC multilayer thin films[J].The Chinese Journal of Nonferrous Metals,2013(2):434-438.(in Chinese)

    • [13] HABIG K.Friction and wear of sliding couples coated with TiC,TiN or TiB2[J].Surface and Coatings Technology,1990,42(2):133-147.

    • [14] SPADARO F,ROSSI A,RAMAKRISHNA S N,et al.Understanding complex tribofilms by means of H3BO3–B2O3 model glasses[J].Langmuir,2018,34(6):2219-2234.

    • [15] ERDEMIR A,HALTER M,FENSKE G R.Preparation of ultralow-friction surface films on vanadium diboride[J].Wear,1997,205(1-2):236-239.

    • [16] BHUSHAN B.Surface roughness analysis and measurement techniques[J].Modern Tribology Handbook,2001,1:49-120.

    • [17] SCHARF T,PRASAD S.Solid lubricants:A review[J].Journal of Materials Science,2013,48(2):511-531.

    • [18] KRISHNA D,BRAMA YL,SUN Y.Thick rutile layer on titanium for tribological applications[J].Tribology International,2007,40(2):329-334.

    • [19] KAYABA T,KATO K.The adhesive transfer of the slip-tongue and the wedge[J].Asle Transactions,1981,24(2):164-174.

    • [20] KONCA E.Adhesion and material transfer between aluminum and surfaces coated with diamond-like carbon and other coatings[D].Windsor,Canada:University of Windsor,2005.

    • [21] FINKIN E.Adhesive wear:A general review of the state of experimental knowledge and theory[J].International Journal of Materials in Engineering Applications,1979,1(3):154-161.

    • [22] KATO K.Micro-mechanisms of wear—wear modes[J].Wear,1992,153(1):277-295.

    • [23] LIU Rouyu,HUANG Chuangbing,DU Lingzhong,et al.Formation of diffusion layer on Ti-6Al-4V alloy during longtime friction with Al[J].Metals,2019,9(10):1107.

  • 参考文献

    • [1] LUGSCHEIDER E,ZWICK J,HERTTER M,et al.Control of coating properties of abradable seals by on-line process diagnostics[C]//International Thermal Spray Conference(ITSC),Basel,Switzerland,2005.

    • [2] XUE Weihai,GAO Siyang,DUAN Deli,et al.Material transfer behaviour between a Ti6Al4V blade and an aluminium hexagonal boron nitride abradable coating during high-speed rubbing[J].Wear,2015,322:76-90.

    • [3] FOIS N,STRINGER J,MARSHALL M B Adhesive transfer in aero-engine abradable linings contact[J].Wear,2013,304(1-2):202-210.

    • [4] ZHANG H L,HAN Y F,DAI Y B,et al.An ab initio molecular dynamics study:Liquid-Al/solid-TiB2 interfacial structure during heterogeneous nucleation[J].Journal of Physics D:Applied Physics,2012,45(45):455307.

    • [5] BERGER Mattias,HOGMARK Sture.Tribological properties of selected PVD coatings when slid against ductile materials[J].Wear,2002,252(7-8):557-565.

    • [6] KONCA E,CHENG Y T,WEINER A M,et al.Transfer of 319 Al alloy to titanium diboride and titanium nitride based(TiAlN,TiCN,TiN)coatings:Effects of sliding speed,temperature and environment[J].Surface and Coatings Technology,2005,200(7):2260-2270.

    • [7] GAO Siyang,XUE Weihai,DUAN Deli,et al.Tribological behaviors of turbofan seal couples from friction heat perspective under high-speed rubbing condition[J].Friction,2016,4(2):176-190.

    • [8] KELESOGLU Ergun,MITTERER C.Structure and properties of TiB2 based coatings prepared by unbalanced DC magnetron sputtering[J].Surface and Coatings Technology,1998,98(1-3):1483-1489.

    • [9] WU Bi,GAO Siyang,XUE Weihai,et al.Effect of microstructure on the adhesion strength of TiBx coating on Ti6Al4V substrate[J].Ceramics International,2021,47(4):5019-5027.

    • [10] BURNETT P J,RICKERBY D S The relationship between hardness and scratch adhession[J].Thin Solid Films,1987,154(1):403-416.

    • [11] PACE M T,THOMSONRC,WELLS J,et al.ASTM C1624-05:Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing[J].Coatings,2015,5:1-29.

    • [12] 林松盛,周克崧,代明江.类金刚石/碳化钨多层膜的制备及其结构[J].中国有色金属学报,2013(2):434-438.LIN Shengsong,ZHOU Kesong,JIANG Daiming.Preparation and microstructure of DLC/WC multilayer thin films[J].The Chinese Journal of Nonferrous Metals,2013(2):434-438.(in Chinese)

    • [13] HABIG K.Friction and wear of sliding couples coated with TiC,TiN or TiB2[J].Surface and Coatings Technology,1990,42(2):133-147.

    • [14] SPADARO F,ROSSI A,RAMAKRISHNA S N,et al.Understanding complex tribofilms by means of H3BO3–B2O3 model glasses[J].Langmuir,2018,34(6):2219-2234.

    • [15] ERDEMIR A,HALTER M,FENSKE G R.Preparation of ultralow-friction surface films on vanadium diboride[J].Wear,1997,205(1-2):236-239.

    • [16] BHUSHAN B.Surface roughness analysis and measurement techniques[J].Modern Tribology Handbook,2001,1:49-120.

    • [17] SCHARF T,PRASAD S.Solid lubricants:A review[J].Journal of Materials Science,2013,48(2):511-531.

    • [18] KRISHNA D,BRAMA YL,SUN Y.Thick rutile layer on titanium for tribological applications[J].Tribology International,2007,40(2):329-334.

    • [19] KAYABA T,KATO K.The adhesive transfer of the slip-tongue and the wedge[J].Asle Transactions,1981,24(2):164-174.

    • [20] KONCA E.Adhesion and material transfer between aluminum and surfaces coated with diamond-like carbon and other coatings[D].Windsor,Canada:University of Windsor,2005.

    • [21] FINKIN E.Adhesive wear:A general review of the state of experimental knowledge and theory[J].International Journal of Materials in Engineering Applications,1979,1(3):154-161.

    • [22] KATO K.Micro-mechanisms of wear—wear modes[J].Wear,1992,153(1):277-295.

    • [23] LIU Rouyu,HUANG Chuangbing,DU Lingzhong,et al.Formation of diffusion layer on Ti-6Al-4V alloy during longtime friction with Al[J].Metals,2019,9(10):1107.

  • 手机扫一扫看