en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

汤鑫,男,1998年出生,博士研究生。主要研究方向为复合材料的微观磨损机理。E-mail:tangx19@mails.tsinghua.edu.cn;

张杰(通信作者),男,1986年出生,特聘副教授。主要研究方向为超滑机理和复合材料自润滑机理。E-mail:zhangj517@ustb.edu.cn;

马天宝,男,1980年出生,博士,副教授,博士研究生导师。主要研究方向为固体超滑的机理和实现。E-mail:mtb@mail.tsinghua.edu.cn

中图分类号:TB331

DOI:10.11933/j.issn.1007−9289.20211029004

参考文献 1
KISHAWY H A,HOSSEINI A.Machining difficult-to-cut materials:Basic principles and challenges[M].Cham:Springer,2019.
参考文献 2
CHAWLA K K.Composite materials:Science and Engineering[M].New York:Springer,2012.
参考文献 3
翁琳.基于微观结构的颗粒增强复合材料力学性能数值分析[D].上海:上海交通大学,2015.WENG Lin.Numerical analysis about effects of microstructure on mechanical properties of particle reinforced composites[D].Shanghai:Shanghai Jiao Tong University,2015.(in Chinese)
参考文献 4
KUMAR SHARMA A,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.
参考文献 5
STOJANOVIĆ B,IVANOVIĆ L.Application of aluminium hybrid composites in automotive industry[J].Tehnički Vjesnik,2015,22(1):247-251.
参考文献 6
ZHOU H B,YAO P P,GONG T M,et al.Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites[J].Tribology International,2019,138:380-391.
参考文献 7
李志强,谭占秋,范根莲,等.高效热管理用金属基复合材料研究进展[J].中国材料进展,2013,32(7):431-441.LI Zhiqiang,TAN Zhanqiu,FAN Genlian,et al.Progress of metal matrix composites for efficient thermal management applications[J].Materials China,2013,32(7):431-441.(in Chinese)
参考文献 8
刘猛.电子封装用高导热颗粒增强金属基复合材料制备与研究[D].长沙:国防科学技术大学,2017.LIU Meng.Preparation and study of particle reinforced metal matrix composites with high thermal conductivity for electric packaging[D].Changsha:National University of Defense Technology,2017.(in Chinese)
参考文献 9
KARBALAEI AKBARI M,RAJABI S,SHIRVANIMOGHADDAM K,et al.Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites:A comparative study focusing on particle capture in matrix[J].Journal of Composite Materials,2015,49(29):3665-3681.
参考文献 10
YANG Y,JIANG R,LI X,et al.Effect of nanoparticle content on the microstructural and mechanical properties of forged and heat-treated TiC/2219 nanocomposites[J].Metals,Multidisciplinary Digital Publishing Institute,2019,9(9):982.
参考文献 11
AMIRKHANLOU S,NIROUMAND B.Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods[J].Transactions of Nonferrous Metals Society of China,2010,20:s788-s793.
参考文献 12
SHARMA D K,MAHANT D,UPADHYAY G.Manufacturing of metal matrix composites:A state of review[J].Materials Today:Proceedings,2020,26:506-519.
参考文献 13
LEE T,LEE J,LEE D,et al.Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites[J].Journal of Alloys and Compounds,2020,831:154647.
参考文献 14
MAJI P,GHOSH S K,NATH R K,et al.Microstructural,mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(4):191.
参考文献 15
MATLI P R,UBAID F,SHAKOOR R A,et al.Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process[J].RSC Advances,The Royal Society of Chemistry,2017,7(55):34401-34410.
参考文献 16
AL-AQEELI N,MOHAMMAD K,LAOUI T,et al.The effect of variable binder content and sintering temperature on the mechanical properties of WC-Co-VC/Cr3C2 nanocomposites[J].Materials and Manufacturing Processes,Taylor & Francis,2015,30(3):327-334.
参考文献 17
MAHMOOD M A,POPESCU A C,MIHAILESCU I N.Metal matrix composites synthesized by laser-melting deposition:A review[J].Materials,Multidisciplinary Digital Publishing Institute,2020,13(11):2593.
参考文献 18
HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599–20612.
参考文献 19
ZHAO Y,QIAN Z,MA X,et al.Unveiling the semicoherent interface with definite orientation relationships between reinforcements and matrix in novel Al3BC/Al Composites[J].ACS Applied Materials & Interfaces,2016,8(41):28194-28201.
参考文献 20
BAUMLI P.Interfacial aspects of metal matrix composites prepared from liquid metals and aqueous solutions:a review[J].Metals,2020,10(10):1400.
参考文献 21
PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying[J].Applied Surface Science,2017,396:1623-1634.
参考文献 22
DAVIS J R.Handbook of thermal spray technology[M].Geauga County,Ohio:ASM International,2004.
参考文献 23
李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)
参考文献 24
VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.
参考文献 25
王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold sprayed metal matrix composite coatings and materials[J].China Surface Engineering,2020,33(4):51-67.(in Chinese)
参考文献 26
孔亚茹,郭强,张获.颗粒增强铝基复合材料界面性能的研究[J].材料导报,2015,29(9):34-43,49.KONG Yaru,GUO Qiang,ZHANG Di.Review on interfacial iroperties of particle-reinforce aluminum matrix composites[J].Materials Reports,2015,29(9):34-43,49.(in Chinese)
参考文献 27
YANG H Y,WANG Z,CHEN L Y,et al.Interface formation and bonding control in high-volume-fraction(TiC+TiB2)/Al composites and their roles in enhancing properties[J].Composites Part B:Engineering,2021,209:108605.
参考文献 28
WILLIAMS J J,FLOM Z,AMELL A A,et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J].Acta Materialia,2010,58(18):6194-6205.
参考文献 29
范映伟.金属基复合材料微观损伤行为的研究进展[J].材料热处理学报,2020,41(10):1-23.FAN Yingwei.Research progress on micro-damage behavior of metal matrix composites[J].Transactions of Materials and Heat Treatment,2020,41(10):1-23.(in Chinese)
参考文献 30
ZHANG H,WANG X,LIU M,et al.Reciprocating wear performance and interfacial microstructure of a TiC-Ni2AlTi cermet[J].Tribology Letters,2014,55(2):211-218.
参考文献 31
WANG X H,SONG S L,QU S Y,et al.Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process[J].Surface and Coatings Technology,2007,201(12):5899-5905.
参考文献 32
SONG X,GAO Y,LIU X,et al.Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides[J].Acta Materialia,2013,61(6):2154-2162.
参考文献 33
YANG Q,SENDA T,OHMORI A.Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings[J].Wear,2003,254(1):23-34.
参考文献 34
HOUDKOVÁ Š,ZAHÁLKA F,KAŠPAROVÁ M,et al.Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J].Tribology Letters,2011,43(2):139-154.
参考文献 35
刘福朋.碳化钨、碳化铬类硬质合金涂层及耐磨耐蚀性能研究[D].银川:宁夏大学,2020.LIU Fuming.Study on wear resistance and corrosion resistance of tungsten carbide and chromium carbide caoting[D].Yinchuan:Ningxia University,2020.(in Chinese)
参考文献 36
褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel6 25 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)
参考文献 37
徐佳子,李承娣,朱峰,等.陶瓷颗粒含量对 Cr-Al2O3 复合镀活塞环摩擦磨损性能的影响[J].中国表面工程,2016,29(1):80-86.XU Jiazi,LI Chengdi,ZHU Feng,et al.Ceramic particles content on friction and wear behavior of Cr-Al2O3 piston rings by composite plating[J].China Surface Engineering,2016,29(1):80-86.(in Chinese)
参考文献 38
谷义杰,宫声凯.材料分析检测技术[M].长沙:中南大学出版社,2011.GU Yijie,GONG Shengkai.Analysis and testing technology on materials[M].Changsha:Central South University Press,2011.(in Chinese)
参考文献 39
GONG T M,YAO P P,XIONG X,et al.Microstructure and tribological behavior of interfaces in Cu-SiO2 and Cu-Cr metal matrix composites[J].Journal of Alloys and Compounds,2019,786:975-985.
参考文献 40
FAN Y,FAN J,WANG C.Optimizing wear resistance via brazing temperature adaption:Application into CBN/Cu-Sn-Ti Composites[J].Metallurgical and Materials Transactions B,2019,50(6):2517-2522.
参考文献 41
FAN Y,FAN J,WANG C.Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal[J].Journal of Materials Science & Technology,2021,68:35-39.
参考文献 42
HU T,RUFNER J F,LAGRANGE T B,et al.Metal/ceramic interface structures and segregation behavior in aluminum-based composites[J].Acta Materialia,2015,95:254-263.
参考文献 43
JIANG L,WEN H,YANG H,et al.Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix[J].Acta Materialia,2015,89:327-343.
参考文献 44
GUO X,GUO Q,NIE J,et al.Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J].Materials Science and Engineering:A,2018,711:643-649.
参考文献 45
王爱琴,刘帅洋,韩辉辉,等.SiCp/A390 复合材料中析出相的形貌及界面结构演变[J].电子显微学报,2017,36(6):535-541.WANG Aiqin,LIU Shuaiyang,HAN Huihui,et al.The evolution of morphology and interfacial microstructure of precipitated phases in SiCp/A390 composites[J].Journal of Chinese Electron Microscopy Society,2017,36(6):535-541.(in Chinese)
参考文献 46
李超,杨光.扫描透射电子显微镜及电子能量损失谱的原理及应用[J].物理,2014,43(9):597-605.LI Chao,YANG Guang.The principle and applications of STEM and EELS[J].Physics,2014,43(9):597-605.(in Chinese)
参考文献 47
MA Y,ADDAD A,JI G,et al.Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J].Acta Materialia,2020,185:287-299.
参考文献 48
ZHAO Y,FAN Z,TAN Q,et al.Interfacial and tribological properties of laser deposited TiOxNy/Ti composite coating on Ti alloy[J].Tribology International,2021,155:106758.
参考文献 49
宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.GONG Xiumin.Theoretical basis and application of phase transition[M].Wuhan:Wuhan University of Technology Press,2004.(in Chinese)
参考文献 50
WANG F,LI J,SHI C,et al.Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites[J].ACS Applied Materials & Interfaces,2019,11(45):42790-42800.
参考文献 51
景力军.Al-Si 系合金的微观组织调控及 α-Al 相细化机理的研究[D].南京:东南大学,2019.JING Lijun.Microstructure controlling of Al-Si alloys and refinement mechanism of α-Al[D].Nanjing:SoutheastUniversity,2019.(in Chinese)
参考文献 52
KELLY P M,ZHANG M X.Edge-to-edge matching— The fundamentals[J].Metallurgical and Materials Transactions A,2006,37(3):833-839.
参考文献 53
ZHANG M X,KELLY P M.Edge-to-edge matching and its applications:Part I.Application to the simple HCP/BCC system[J].Acta Materialia,2005,53(4):1073-1084.
参考文献 54
曹晔,钟宁,王晓东,等.边-边匹配晶体学模型及其应用——HCP/FCC体系晶体学位向关系的预测[J].上海交通大学学报,2007(4):586-591.CAO Ye,ZHONG Ning,WANG Xiaodong,et al.An edge to edge matching model and its application to the HCP/FCC System[J].Journal of Shanghai Jiaotong University,2007(4):586-591.(in Chinese)
参考文献 55
GUO B,CHEN B,ZHANG X,et al.Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes[J].Carbon,2018,135:224-235.
参考文献 56
BRONS J G,THOMPSON G B.Orientation mapping via precession-enhanced electron diffraction and its applications in materials science[J].JOM,2014,66(1):165-170.
参考文献 57
邱忆,周钲洋,孙俊良.利用电子衍射解析晶体结构的研究进展[J].中国科学:化学,2020,50(10):1384-1397.QIU Yi,ZHOU Zhengyang,SUN Junliang.Research progress on the crystal structure determination using electron diffraction[J].Scientia Sinica Chimica,2020,50(10):1384-1397.(in Chinese)
参考文献 58
GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.
参考文献 59
李凡国,于思荣.颗粒增强金属基复合材料界面研究进展[J].中国铸造装备与技术,2015(4):43-46.LI Fanguo,YU Sirong.Research progress on interface of particle reinforced metal matrix composites[J].China Foundry Machinery & Technology,2015(4):43-46.(in Chinese)
参考文献 60
OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.
参考文献 61
MEIJER G,ELLYIN F,XIA Z.Aspects of residual thermal stress/strain in particle reinforced metal matrix composites[J].Composites Part B:Engineering,2000,31(1):29-37.
参考文献 62
XIA S,QI Y,PERRY T,et al.Strength characterization of Al/Si interfaces:A hybrid method of nanoindentation and finite element analysis[J].Acta Materialia,2009,57(3):695-707.
参考文献 63
MAHATO A,SACHDEV A K,BISWAS S K.Effect of particle morphology on resistance to permanent sinking by normal loading of silicon particle in aluminium matrix of a cast aluminium silicon alloy[J].Wear,2008,265(5):849-855.
参考文献 64
MELGAREJO Z H,RESTO P J,STONE D S,et al.Study of particle-matrix interaction in Al/AlB2 composite via nanoindentation[J].Materials Characterization,2010,61(2):135-140.
参考文献 65
GUAN K,JIA L,KONG B,et al.Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite:Based on a mechanical characterization of interfacial strength[J].Materials Science and Engineering:A,2016,663:98-107.
参考文献 66
GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.
参考文献 67
范睿.陶瓷/金属复合材料界面结合性能的第一性原理研究[D].上海:上海交通大学,2019.FAN Rui.A first-principles investigation on the interfacial bonding properties of ceramic/metal composites[D].Shanghai:Shanghai Jiao Tong University,2019.(in Chinese)
参考文献 68
GUO X,GUO Q,LI Z,et al.Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars[J].Scripta Materialia,2016,114:56-59.
参考文献 69
JIANG L,HU T,YANG H,et al.Deformation of a ceramic/metal interface at the nanoscale[J].Nanoscale,2016,8(20):10541-10547.
参考文献 70
郭文波,胡启耀,肖鹏.界面反应产物对 B4C/Al 复合材料颗粒润湿性及界面强度的影响机制[J].复合材料学报,2022,39(6):2922-2929.GUO Wenbo,HU Qiyao,XIAO Peng.Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J].Acta Materiae Compositae Sinica,2022,39(6):2922-2929.(in Chinese)
参考文献 71
俞洋,苏益士,BERTHELOT Yann,等.颗粒增强金属基复合材料的结构建模与力学模拟研究进展[J].中国材料进展,2020,39(3):214-225.YU Yang,SU Yishi,BERTHELOT Yann,et al.Recent progress in structural modelling and mechanical simulation of particle reinforced metal matrix composites[J].Materials China,2020,39(3):214-225.(in Chinese)
参考文献 72
YANG Z,ZHOU Y,WANG T,et al.Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation[J].Computational Materials Science,2014,82:17-25.
参考文献 73
信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)
参考文献 74
JAGADEESH G V,GANGI SETTI S.A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J].Journal of Materials Science,2020,55(23):9848-9882.
参考文献 75
XU J,SHEIKH A H,XU C.3-D Finite element modelling of diamond pull-out failure in impregnated diamond bits[J].Diamond and Related Materials,2017,71:1-12.
参考文献 76
肖伯律,刘振宇,张星星,等.面向未来应用的金属基复合材料[J].中国材料进展,2016,35(9):666-673,701.XIAO Bolü,LIU Zhenyu,ZHANG Xingxing,et al.Metal matrix composites for future application[J].Materials China,2016,35(9):666-673,701.(in Chinese)
目录contents

    摘要

    界面作为颗粒增强金属基复合材料中硬质颗粒和金属基体之间连接的“纽带”,直接影响复合材料的力学和摩擦性能, 为了更好地揭示界面特性与复合材料整体性能之间的耦合关系,需要对界面展开微观研究。综述近年来对颗粒增强金属基复合材料界面的研究进展。主要分为三个方面:界面结构显微表征,即通过一系列电子显微镜和能谱分析,得到界面形貌、反应产物以及取向关系等信息;微观力学性能测试,即表征界面在微观尺度下的形变和失效过程,进而得到结合强度、断裂韧性等信息;模拟计算,在常规试验达不到的尺度,分析界面的结合能、电荷分布和电子结构,以及模拟界面的变形和失效过程。界面的微观研究对于界面改性和进一步提高颗粒增强金属基复合材料性能具有一定的指导意义。

    Abstract

    As a “bond” between hard particles and metal matrix in particle reinforced metal matrix composites, their interface directly affects mechanical and frictional properties of composites. In order to reveal the coupling relationship between the interfacial properties and mechanical and frictional properties of composites, an in-depth investigation at microscopic scale or even atomic scale on the interface is needed. The progress on the interface of particle reinforced metal matrix composites in recent years is reviewed. It is mainly divided into three aspects: microscopic characterization of the interface structure which obtains the information of interfacial morphology, reaction products and orientation relationship by a series of electron microscopy and energy spectrum analysis; micro mechanical property test which characterizes the deformation and failure process of the interface at the micro scale and obtains the interfacial bonding strength and fracture toughness; simulation that analyses the interfacial binding energy, charge distribution and electronic structure, as well as the deformation and failure process which can’ t be reached on a scale by conventional experiments. A microscopic investigation on the interface could provide guidance to interface modification and further improve the properties of particle reinforced metal matrix composites.

  • 0 前言

  • 金属基复合材料(Metal matrix composites, MMCs)是将高强度的第二增强相添加到金属基体中制备而成的复合材料,具有高强度、高弹性模量、耐磨损、耐高温和导电导热性能好等优点。根据增强相的形态可以将其分为层状MMCs、连续纤维增强MMCs、短纤维(晶须)增强MMCs、颗粒增强MMCs[1]。颗粒增强金属基复合材料(Particulate reinforced metal matrix composites, PRMMCs)与常规纤维增强和层状复合材料相比,具有各向同性、更容易加工、造价更为低廉等优点,在汽车工业、航空航天、电子工业、表面工程等领域都有广泛应用[1-8]

  • 颗粒增强金属基复合材料的制备方法有多种,主要包括液相法[9-13](搅拌铸造、超声辅助铸造、复合铸造、压力铸造等),固相法[14-16](粉末冶金、放电等离子烧结、搅拌摩擦法等),增材制造法[17-18] (选择激光融化法、激光融化沉积法等),原位合成法[12, 19],溶液辅助法(化学镀、电镀)[20],热喷涂法[21-24](火焰喷涂、高速火焰喷涂、爆炸喷涂、等离子喷涂、电弧喷涂、冷喷涂[25]等)。

  • 根据制备的PRMMCs的形态可以将其分为块体复合材料和涂层复合材料。在块体复合材料中,主要存在硬质颗粒和金属基体之间的界面。而对于涂层复合材料,情况更为复杂,除了上述界面,还包括涂层和基板之间的结合界面、沉积颗粒之间的结合界面。研究表明,喷涂过程中粒子碰撞沉积的短暂过程经历了急速冷却,不能使液态熔融粒子和已凝固的粒子充分润湿而在界面形成完全结合,层叠粒子间存在大量未结合界面,这使得涂层的力学性能和高载下的耐磨性都远低于同成分的块体材料,只有自熔合金涂层、激光重熔涂层或高温热处理涂层表现出与块体材料类似的性能[23-24]。本文重点关注的是PRMMCs中普遍存在的硬质颗粒和金属基体之间的界面(下文简称界面)。

  • 在PRMMCs中,界面作为硬质颗粒和金属基体之间的连接的“纽带”,具有传递载荷、调节应力分布、阻止裂纹传播和扩展的作用。如果界面结合不好,则在加载初期裂纹就会首先在界面处出现,从而大大降低颗粒载荷分担的强化效果,即硬质颗粒在早期就不能发挥承载效果;而过强的界面会在材料制造或二次加工过程中引入比较大的残余应力,同样在早期就容易对材料造成损害,因此对界面强度的要求是在一个“合适”的范围[3, 26]

  • 界面不仅仅影响PRMMCs的力学性能[27-29],也对材料的摩擦磨损性能具有显著影响[30-32]。颗粒剥落是PRMMCs的普遍磨损机理之一[33-37],颗粒剥落的难易程度受界面强度的影响,一般来说,界面越强韧,裂纹越不可能在界面处产生,硬质颗粒越难剥落,材料的耐磨性也会更强。ZHANG等[30]用Si3N4 球和近等体积分数的TiC-Ni2AlTi复合材料进行往复摩擦试验,发现其具有很好的耐磨性。通过HRTEM的分析表明,TiC和Ni2AlTi之间强键合的半共格界面阻碍了异质界面之间的失效,减少了颗粒的剥落。对剥落颗粒的分析表明,颗粒被Ni2AlTi金属相包围,说明断裂发生在金属基体中而不是界面处。LEE等[13]研究表明,经过高温氧化处理的SiC颗粒由于抑制了Al4C3 和孔隙的形成,提高了界面结合强度,在100N载荷下,表面处理后的复合材料耐磨性提高了3倍以上。对磨损下表面分析表明,未经处理的复合材料中裂纹优先在界面产生,SiC颗粒丧失了其作为增强相的作用,Al基体的剪切塑性形变导致了界面处裂纹的延长,而表面处理后的复合材料倾向于发生SiC颗粒的断裂,裂纹被限制在颗粒中,避免了长裂纹的形成,降低了磨损。

  • 然而,由于PRMMCs结构复杂,宏观试验大多数情况下只能定性对比不同界面的好坏,大量的结构信息被掩盖,为了更好地揭示界面特征与复合材料整体性能之间的耦合关系,需要从微观的角度对界面开展更加细致的研究。要全面理解界面,需要从两大方面着手:一是界面的结构和成分,包括准确测定不同材料体系和工艺条件下制备的复合材料的界面形貌、反应产物、元素偏析、位错分布、晶格失配、取向关系以及界面附近金属晶粒大小等信息;二是界面形变和失效过程的表征,获得结合强度、断裂韧性等信息。只有建立起界面结构和性能之间的关系,才能有针对性地进行界面改性,最终达到提升复合材料整体性能的目的。基于此,人们目前对界面的微观研究主要分为界面结构显微表征、微观机械性能测试、模拟计算三个方面。

  • 1 界面结构显微表征

  • 国内外学者采用各种电子显微镜及能谱分析的手段对界面结构进行了大量的显微表征[26]。广义而言,电子显微分析是基于电子束(波)与材料的相互作用而建立的各种材料现代分析方法,以材料微观形貌、结构和成分分析为基本目的。电子能谱分析方法是基于光子或运动实物粒子照射或轰击材料产生的电子能谱进行材料分析的方法[38]。下面具体介绍各种显微表征手段在界面分析中的典型应用。

  • 1.1 界面形貌

  • 对研磨抛光处理后复合材料界面的形貌进行扫描电镜(SEM)观察,可以大体上判断界面的结合是否良好,是否存在空洞和裂纹。如图1a,通过SEM可以看到Cu/SiO2界面附近大量的孔洞存在,没有观察到明显的界面反应产物,在界面纳米划痕试验后观察到裂纹的生成[39](图1b)。

  • 图1 SEM用于界面形貌的表征[39]

  • Fig.1 Interfacial morphology characterization by SEM[39]

  • 1.2 界面反应产物、元素分布和偏析

  • 常用X射线衍射(XRD)来对界面反应产物进行物相分析,如图2a中Cu/Cr界面的微区XRD分析表明反应产物Cr2O3 相的存在[39]。除此之外,对于不溶于酸的界面反应产物,可以用王水对复合材料进行深度刻蚀,借助SEM直接观察界面生成物的形貌,如图2b中对CuSnTi/CBN界面进行深度刻蚀后,观察到CBN颗粒表面柱状TiN和不规则层状TiB2的生成[40]

  • 能量色散谱仪(EDS)线扫可以得到元素沿着界面的分布曲线,分析界面处的扩散行为,如图2c中对CuSnTi/CBN界面的EDS线扫可以发现Ti元素在界面处的富集,并估计了扩散影响区的范围在1.28±0.06 μm[41]。EDS面扫可以得到不同元素的面分布,并由此观察界面处的元素偏析行为,如图2d所示在Al合金/B4C复合材料中观察到Mg元素的偏析[42]。然而,EDS只适合检测原子序数在碳以上的元素,电子能量损失谱(EELS)相较于EDS能探测所有元素,且可以达到原子级别的空间分辨率,可以获得界面元素成分、配位及化合价等信息,图2e对Al/B4C界面EELS分析表征了不同元素密度在几十纳米范围内的变化[42]。原子探针断层分析(APT),也称三维原子探针(3DAP),是在场离子显微镜基础上发展起来的具有原子级空间分辨率的测量和分析方法,通过对不同元素原子逐个进行分析,可以重构出界面所在的纳米空间内不同元素原子的三维分布图像,并给出精准的元素空间含量分布,如图2f所示为对Al/B4C界面重构的不同元素的三维分布图[43]

  • 图2 界面反应产物、元素分布和偏析表征[39-43]

  • Fig.2 Characterization of interfacial reactant, element distribution and segregation[39-43]

  • 1.3 界面微结构和位错

  • 透射电镜(TEM)采用明、暗场像对界面附近区域微结构进行分析,并可以观察界面附近由于热膨胀系数不匹配导致的位错的形成,如图3a中通过TEM像估计2009Al/SiC界面几何必要位错影响区半径为2.8 μm左右[44]

  • 高分辨透射电子显微镜(HRTEM)可以对界面附近的原子结构进行成像,从而分析界面晶格畸变 (图3b)、无定形化结构(图3c)、晶面间距(图3d) 等。选区电子衍射(SAED)可以选定区域进行电子衍射分析,对所得的衍射斑进行指数标定,可以用来对选区晶体结构进行分析,所得衍射斑点如图3b中左下角插图所示。对HRTEM原子像进行快速傅里叶变换(FFT)可以得到和SAED类似的衍射斑(图3e),再进行反快速傅里叶变换(IFFT)可以去除原始HRTEM像中的噪点,得到更加清楚的原子相[45](图3f)。

  • HRTEM虽然可以在原子尺度直接观察材料的微结构,但是衬度会随着成像条件(如物镜的欠焦量、样品厚度)的变化出现衬度反转,同时像点的分布规律也会改变。扫描透射电子显微镜-高角环形暗场像(STEM-HAADF)是一种非相干成像,其衬度依赖于原子序数,像衬度随物镜欠焦量和样品厚度的变化几乎不发生变化,图像更容易解释,广泛应用于材料原子尺度界面微结构和缺陷结构研究[46]。图3g给出了Al/TiB2界面的STEM-HAADF图,左下角对应TiB2 颗粒的FFT图像,右上角亮色区域对应溶质富集的区域[47]

  • 图3 界面微结构和位错的表征[27, 39, 44, 47-48]

  • Fig.3 Characterization of interfacial microstructure and dislocations[27, 39, 44, 47-48]

  • 1.4 界面取向关系

  • 在相变晶体学中,为了减少新旧相之间的相界能,两相之间的晶面和晶向会形成一定的晶体学取向关系(Orientation relationship)[49]。在PRMMCs中,增强相和基体的界面也可能存在一定的取向关系,它受复合材料本身性质、制备工艺和方法[26,43] 的影响。例如,在使用铸造法制备Al/SiC复合材料时,由于凝固过程中Al容易在SiC表面形核,从而形成一定的晶体学取向关系,而采用粉末冶金法制备时,由于制备过程中几乎没有液相产生,基体再结晶过程很难在增强体表面形核,因此界面没有明显的取向关系。表征基体和增强相之间的取向关系十分重要,因为它可能直接影响界面的结合强度[42],从而影响材料整体的力学性能。

  • 对于取向关系的判定,人们大多采用HRTEM或STEM-HAADF得到沿某一晶向拍摄得到的高分辨的界面原子图像,结合相应的FFT处理或SAED得到的衍射斑,可以得到晶面之间的平行/角度关系[19, 43, 47, 50]。以图4为例,图4a为Al3BC和Al界面的HRTEM图像,投影方向为 [011¯0]A13BC//[1¯12]Al(“//”表示互相匹配),图4b为经过傅里叶滤波处理后得到的更为清晰的原子图像,可以看到晶面(0001)Al3BC[1¯11]Al 平行,晶面 (21¯1¯0)Al3BC和 (220) Al 平行,从图4c中相应的FFT衍射斑叠加图像中也可以得到晶面之间的这种平行关系,而且还能得到晶面(21¯1¯4)Al3BC和 (311) Al也是平行的。

  • 图4 界面取向关系表征[19]

  • Fig.4 Characterization of interfacial orientation relationship[19]

  • 为了进一步确认取向关系的正确性,还可以用计算机软件模拟界面处的理论电子衍射斑点图(图5b)和界面原子结构(图5d),与试验获得的图像进行对比。

  • 图5 试验和模拟电子衍射斑点和界面原子结构[43, 47]

  • Fig.5 Experimental and simulated diffraction patterns and interfacial atomic configuration[43, 47]

  • 除了对相界面进行大量的试验表征,以总结出某种基体和增强相中存在一般位相关系外,人们提出了一系列的晶体学模型来预测和描述相变中新相和母相的关系。其中,在PRMMCs的取向关系预测中,使用最广泛的是边-边匹配模型(Edge-to-edge matching model,简称E2EM模型)[51-53]。该模型遵循的基本思想是“方向的匹配是比平面匹配更好的判据”[54],即在界面能没有显著各向异性的情况下,当两相的密排或近似密排原子列在界面处匹配时,界面能最小。YANG等[27]利用E2EM模型成功预测了 α-Al和TiC和TiB2 之间的晶体学取向关系。

  • 1.5 界面附近基体晶粒分布

  • 电子背散射衍射分析(EBSD/EBSP)基于SEM工作,能进行空间分辨率在亚微米级的衍射,根据得到的菊池花样,能分析由于异质界面引入带来的基体晶粒尺寸、形状和取向分布的变化,从采集到的数据可以绘制取向成像图(OIM)、极图(PF)、反极图(IPF)、取向分布函数图(ODF)。如图6a, GUO等[55]通过Al-1vol%SiC-1vol%CNTs复合材料EBSD图,统计得到Al基体的平均晶粒尺寸约为1.95 μm。旋进电子衍射(PED)相较于EBSD具有更高的空间分辨率,它是基于TEM得到的衍射斑点分析,可以用来判断晶体取向和相分布[56-57],如图6b表明Al/B4C界面附近的Al晶粒不存在优先取向[42]

  • 图6 界面附近基体晶粒分布表征[42,55]

  • Fig.6 Characterization of matrix grain distribution near interface[42,55]

  • 2 微观力学性能测试

  • 虽然用于测量宏观异质界面结合强度的试验方法已经非常成熟,但是直接评估微米级甚至纳米级颗粒增强金属基复合材料的界面强度十分困难[58-59]。传统的做法是对颗粒的尺寸、形状、分布和界面结合情况等作出简化和假设,将模型和宏观力学数据相拟合,间接得到界面强度。在过去的20年,由于纳米压/划痕仪、原子力显微镜等纳米/微米尺度机械测试技术的发展,通过高分辨地得到力和位移数据,精确测量材料微观力学性能成为可能,人们可以得到许多用传统试验方法没法测得的材料性能。

  • 2.1 纳米压痕

  • 纳米压痕技术是在传统压痕测试的基础上发展而来的,也称深度敏感压痕技术。由于施加的是超低载荷,监测传感器具有优于1nm的位移分辨率,可以达到小到纳米级的压深,它特别适合测量薄膜、涂层等超薄材料的力学性能,可以在纳米尺度测量材料的力学性能,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效果、黏弹性或蠕变行为等。

  • 由于PRMMCs中几何必要位错的强化作用,界面金属一侧的硬度值有所升高,纳米压痕可以用来表征界面金属一侧几何必要位错的影响范围。具体做法是:将试样研磨抛光,在跨越颗粒/金属的界面处做一系列压痕测试,得到压痕阵列;然后利用Oliver-Pharr方法[60]计算不同位置的硬度值,从而得到界面处硬度的变化情况。对于纳米压痕试验有两点需要注意:第一是关于压入深度和阵列间距的选择,既不能让相邻的压痕点互相影响,也要尽量保证高的空间分辨率;第二是应该避免尖角颗粒所在的界面区域,因为在尖角处会产生应力集中,使得测得的硬度值偏高[61]。GUO等[44]利用高分辨的纳米压痕阵列(见图7a),得到不同颗粒尺寸、相同体积分数 (15%)的SiC颗粒增强2009Al合金复合材料的颗粒/金属界面的硬度变化值(见图7b),并由此估计直径13 μm和11 μm颗粒增强的复合材料界面附近的硬度转变区宽度约为3 μm,而7 μm和5 μm颗粒增强的样品硬度转变区宽度约为2 μm。

  • 图7 界面纳米压痕[44]

  • Fig.7 Interfacial nanoindentation[44]

  • 2.2 颗粒压入

  • 在纳米压痕的基础上,发展了一种将微米颗粒压入基体,同时结合有限元模拟得到颗粒/基体界面力学性能的方法[62-65]。具体做法是,对抛光处理后的表面进行化学刻蚀,使硬质颗粒略微突出基体表面300~400nm,然后使用球形或锥形的压头对颗粒中心施加载荷,记录载荷-位移曲线。如图8a所示,在压入测试后,通过逐步刻蚀得到压入颗粒的3D形貌,从而得到颗粒的长径比,再结合有限元分析拟合,得到界面力学性能。 XIA等[62]研究了A356Al-Si合金中Si颗粒的压入特性,图8b所示为长径比分别为2.10、0.76和0.45的三种颗粒的压入载荷-位移曲线,在小载荷下,表现为弹性响应,在更高的载荷下,由于基体的塑性形变和界面的滑移,颗粒发生了不可恢复的下沉。通过减去载荷-位移曲线中弹性响应的部分,得到塑性响应部分的形变,再结合法向分离诱导的线性软化内聚区有限元模型(NILSCZM),最终得到Al/Si界面剪切强度τ0=± 240 6MPa,界面断裂韧性 Γ0=0.25±0.03Jm2。图8c给出了颗粒压入前后的原子力显微镜图像。

  • 图8 颗粒压入测试[62]

  • Fig.8 Particle nanoindentation test[62]

  • 2.3 纳米划痕

  • 纳米划痕可以用于研究复合材料界面处的摩擦学性能,一般是用金刚石压头从颗粒划向基体一侧。每一次划痕测试分为三步:

  • (1)预扫描。压头首先以小载荷划过样品表面,测量样品原始表面形貌。

  • (2)加载扫描。压头以给定的载荷、速度和长度划过选定界面区域。

  • (3)后扫描。压头再次以小载荷划过,测量划痕的残余深度。

  • 通过记录划动过程中的法相载荷、摩擦力和三次扫描的高度值,计算得到摩擦因数和压入深度。 ZHOU等[6]利用纳米划痕研究了不同晶体结构ZrO2 增强Cu基复合材料的界面,分析表明,单斜型ZrO2 (m-ZrO2)和Cu基体的结合强度大于立方型ZrO2 (c-ZrO2),在0.3N载荷下,c-ZrO2和Cu基体界面的断裂导致了滑动过程中滑动阻力的下降,具体表现为摩擦因数在界面处突然下降,如图9a淡蓝色虚线框中所示。GONG等[39]研究了Cu/SiO2 和Cu/Cr界面在不同载荷下的纳米划痕响应,当金刚石压头从硬质SiO2颗粒划向韧性的Cu基体时,由于界面结合弱,基体不能通过充分的载荷传递来分担足够的应力,导致了界面的破坏。此外,作者还提出,压入深度和摩擦因数在界面处的斜率能反应界面的完整性,如图9b所示,在2N载荷下压入深度的斜率比1N时要小,这是由于随着载荷的增加,界面破坏更加严重,产生了更多的裂纹和更严重的断键,减小了压入深度的变化率。

  • 图9 界面纳米划痕[6,39]

  • Fig.9 Nanoscratch across the interface[6, 39]

  • 2.4 微柱压缩

  • 利用聚焦离子束(FIB)或者光刻技术制备微纳测试的样品,然后用定制的压头对样品进行单轴拉伸、压缩或弯曲试验,这些新的试验方法为研究颗粒增强金属基复合材料的界面提供了可能[66]。微柱压缩是研究颗粒/金属界面形变和失效过程非常有效的方法,能直接测量界面的剪切强度,借助TEM还能对位错作用和裂纹形成等做进一步的分析。但是这种方法也存在一些缺陷,比如平头表面相对于样品顶面的非平行关系会导致应力状态的破坏,微柱的长宽比太大容易导致柱体屈曲,摩擦引起的约束效应,等等,这些可能会影响测试结果的准确性[67]

  • GUO等[68]为了模拟传统搅拌铸造工艺制备的SiC/Al复合材料的界面,将抛光的SiC薄片浸入熔融的Al中,并将得到的SiC/Al双层结构安装到45°楔形台上,在此基础上用FIB铣出微柱(图10a),利用平顶金刚石压头对微柱进行单轴压缩试验。由于在单轴压缩状态下,45°倾斜的SiC/Al界面将受到最大的分解剪切应力,应力在峰值处的下降对应于界面的破坏(图10b),借此估计了SiC/Al界面结合强度为133±26MPa,这与数值模拟的强度在同一范围。借助TEM分析,发现其实剪切断裂的发生并不是完全沿着SiC/Al的界面,在界面附近的裂纹可能是导致界面失效的起因;在界面附近观察到了高密度的位错堆积,表明界面在形变过程中阻碍了位错的运动,如图10c所示。

  • 图10 复合微柱压缩[68]

  • Fig.10 Compression test of composite micro-pillar[68]

  • 2.5 原位TEM拉伸

  • 由于同时配备有高速摄像机和力学测试装置,原位TEM测试能动态捕捉材料的微观变形过程,能在微纳尺度对形变机理提出新的见解。其中,原位TEM拉伸可以对包含单个硬质颗粒/金属基体界面的试样进行拉伸试验,得到应力应变曲线,并在纳米尺度下测量硬质颗粒/金属基体的界面拉伸强度,观察界面的变形行为。相较于微柱压缩,拉伸试验应力分布均匀且单轴分布,避免了压缩试验的大多数缺点,但是样品制备繁琐耗时且价格昂贵,对试验设备要求高,这些瓶颈限制了原位TEM拉伸的广泛应用。 JIANG等[69]用FIB制备了宽度约为500nm的狗骨棒状拉伸试样,试样包含一个单独的B4C/AA5083铝合金的界面(图11d),将试样焊接到拉伸装置上(图11a),进行单轴原位TEM拉伸试验。试验结果表明拉伸曲线上出现了两个失效点(图11b),第一个失效点对应于Al基体中纳米晶粒的旋转,第二个失效点对应于超细晶粒的拔出,失效发生在界面附近的金属中(图11e),表明界面的良好结合,判断出界面结合强度在1.5GPa以上,并且观察到界面处裂纹的钝化(图11c、e)。分析其原因,Al和B4C由于物理化学性质的差异,界面往往表现出非共格性, Mg元素在颗粒表面的偏析降低了界面能,强化了界面结合,初始界面裂纹在Al和Mg偏析纳米层中产生,但是由于Al基体的塑性变形,释放了应力,裂纹停止了扩展。

  • 图11 B4C/AA5083铝合金界面的原位TEM拉伸[69]

  • Fig.11 In situ TEM tension of B4C/AA5083aluminum alloy interface [69]

  • 3 模拟计算

  • 3.1 第一性原理计算

  • 第一性原理计算在量子力学的基础上,考虑原子核和电子之间的相互作用,通过对薛定谔方程求解,得到体系基态和激发态的能量和状态,从而获得材料体系的各种物理和化学性质[67]。在界面研究中,第一性原理能在常规的试验达不到的尺度,分析界面的结合能、电荷分布和电子结构,筛选出界面结合能最大和电子稳定性最高的界面原子取向组合,建立界面结构-界面性能之间的联系。但是,第一性原理对于晶体对称性差(非共格界面)、空间尺度大的体系适用性差,其计算量通常在几百个原子内。如图12所示,YANG等[27]总结了不同文献用第一性原理计算得到的Al/TiC和Al/TiB2 界面不同堆垛方式下的界面结合能(将界面分开成两个自由表面所需的能量),可以看到对于Al/TiC界面,不同堆垛方式下界面结合能相差五倍。郭文波等[70]利用试验分析结合第一性原理计算的方法,探讨了界面反应产物Al3BC和TiB2 对B4C/Al复合材料颗粒润湿性及界面结合强度的影响机制,结果表明,不同终端的Al/TiB2界面黏附功均大于Al/B4C的界面黏附功,表明界面反应产物TiB2可以提高B4C的润湿性,而界面反应产物Al3BC对提高B4C颗粒的润湿性有限。

  • 图12 第一性原理计算Al/TiC和Al/TiB2界面不同堆垛方式下结合能[27]

  • Fig.12 Al/TiC and Al/TiB2 interfacial binding energy under different stacking modes calculated by first-principles calculation[27]

  • 3.2 分子动力学模拟

  • 分子动力学模拟在分子或原子尺度对多体系统中微观粒子间相互作用与运动进行模拟,得到的计算结果的准确性关键在于原子间相互作用势函数的选择。对于陶瓷/金属异质界面,分子动力学模拟可以获得复合材料界面反应情况、微观结构、力学性能(包括界面结合强度)以及界面的变形和失效等信息,研究体系可以从几十个原子到超过百万个原子。然而,分子动力学模拟的可移植性较差,针对不同复合体系与边界条件需要确定不同的经验势函数与较多待定系数,所研究的材料对象通常在较窄的尺度范围内,而且在考虑计算成本条件下,所计算的材料变形应变速率通常较高[71]。YANG等[72]用分子动力学模拟的方法,通过比较位错形核的能量和界面解离的能量来判断裂纹的扩展方式,研究了界面强度、晶格失配、加载模式对Cu/SiC界面的裂纹扩展行为的影响(见图13),发现应力集中同时存在于裂纹的尖端和界面晶格失配的区域。

  • 图13 分子动力学模拟Cu/SiC界面裂纹沿着弱界面和强界面的扩展[72]

  • Fig.13 Crack propagation along Cu/SiC weak interface and strong interface by molecular dynamics simulation[72]

  • 3.3 有限元模拟

  • 有限元模拟受偏微分方程形式限制的程度小,同时离散化网络又便于处理复杂的几何形状,线性代数问题的求解方法也非常成熟,可作为求解各类场问题的通用算法。在PRMMCs的研究中,可以定量地描述增强相的种类、尺寸、含量、形貌分布及界面状况等微观组织参数对复合材料宏观性能的影响规律[73],因而已经成为PRMMCs建模计算中最常用的模拟方法之一。但是有限元模拟也存在着一些不足,如计算精度往往依赖于宏观材料的假设(基于连续力学、损伤力学或者断裂力学等)[74]。XU等[75]利用有限元模拟分析了金刚石颗粒和基体之间的界面脱黏行为,用以评估基体对于金刚石颗粒的把持能力,并研究了颗粒形状、取向和界面性能对把持力的影响,如图14所示。

  • 图14 有限元模拟不同金刚石形状对基体把持力的影响[75]

  • Fig.14 Effect of diamond shapes on matrix retention force by finite element simulation[75]

  • 4 结论与展望

  • 4.1 结论

  • PRMMCs作为结构和功能材料有着广泛的应用,硬质颗粒和金属基体之间的界面直接影响着复合材料的整体性能。随着各种电子显微镜和能谱分析技术的发展,人们已经能较好地对界面的结构进行表征和分析。在界面的微观力学性能测试方面,虽然已经取得了一定的进展,但是由于这些方法对设备要求较高,试验难度较大,且一般需要对材料进行特殊的处理,目前试验上得到的界面性能数据有限。模拟计算虽然能在一定程度上加深对界面的理解,但是其准确性需要靠试验数据的支撑和验证。

  • PRMMCs体系的多样性和材料本身结构的不均匀性决定了界面研究的难度,利用试验和模拟相结合的方法,建立界面结构和性能之间的关系,进而更好地指导界面改性,最终提升复合材料的整体性能。

  • 4.2 展望

  • 近年来,颗粒增强金属基复合材料向着纳米颗粒增强复合材料、超细晶基体复合材料、双尺度增强复合材料等方向发展,希望在充分发挥增强相作用的同时,改善材料的韧塑性[76]。然而界面问题仍然是复合材料体系中亟待解决的共性问题之一,未来需要从以下几个方面展开研究:

  • (1)研究多相多尺度复合材料界面及微区结构性能定量表征方法,表征与分析多级复合界面及微区的超微纳力学行为,揭示复合界面、微区结构、性能及应变局域化的内在关联,解决多相多尺度复合材料界面匹配性设计的基础性问题;

  • (2)研究复合材料的界面和构型与性能的内在关系,揭示多相多尺度构型化复合体系中组元间协调变形机理和强韧化机制,实现性能导向的复合材料智能化设计;

  • (3)将包含复合效应的材料微结构特征与力学计算相耦合,建立跨尺度力学拟实模型,建立多相多尺度复合构型调控强韧化的跨尺度力学理论。

  • 参考文献

    • [1] KISHAWY H A,HOSSEINI A.Machining difficult-to-cut materials:Basic principles and challenges[M].Cham:Springer,2019.

    • [2] CHAWLA K K.Composite materials:Science and Engineering[M].New York:Springer,2012.

    • [3] 翁琳.基于微观结构的颗粒增强复合材料力学性能数值分析[D].上海:上海交通大学,2015.WENG Lin.Numerical analysis about effects of microstructure on mechanical properties of particle reinforced composites[D].Shanghai:Shanghai Jiao Tong University,2015.(in Chinese)

    • [4] KUMAR SHARMA A,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.

    • [5] STOJANOVIĆ B,IVANOVIĆ L.Application of aluminium hybrid composites in automotive industry[J].Tehnički Vjesnik,2015,22(1):247-251.

    • [6] ZHOU H B,YAO P P,GONG T M,et al.Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites[J].Tribology International,2019,138:380-391.

    • [7] 李志强,谭占秋,范根莲,等.高效热管理用金属基复合材料研究进展[J].中国材料进展,2013,32(7):431-441.LI Zhiqiang,TAN Zhanqiu,FAN Genlian,et al.Progress of metal matrix composites for efficient thermal management applications[J].Materials China,2013,32(7):431-441.(in Chinese)

    • [8] 刘猛.电子封装用高导热颗粒增强金属基复合材料制备与研究[D].长沙:国防科学技术大学,2017.LIU Meng.Preparation and study of particle reinforced metal matrix composites with high thermal conductivity for electric packaging[D].Changsha:National University of Defense Technology,2017.(in Chinese)

    • [9] KARBALAEI AKBARI M,RAJABI S,SHIRVANIMOGHADDAM K,et al.Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites:A comparative study focusing on particle capture in matrix[J].Journal of Composite Materials,2015,49(29):3665-3681.

    • [10] YANG Y,JIANG R,LI X,et al.Effect of nanoparticle content on the microstructural and mechanical properties of forged and heat-treated TiC/2219 nanocomposites[J].Metals,Multidisciplinary Digital Publishing Institute,2019,9(9):982.

    • [11] AMIRKHANLOU S,NIROUMAND B.Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods[J].Transactions of Nonferrous Metals Society of China,2010,20:s788-s793.

    • [12] SHARMA D K,MAHANT D,UPADHYAY G.Manufacturing of metal matrix composites:A state of review[J].Materials Today:Proceedings,2020,26:506-519.

    • [13] LEE T,LEE J,LEE D,et al.Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites[J].Journal of Alloys and Compounds,2020,831:154647.

    • [14] MAJI P,GHOSH S K,NATH R K,et al.Microstructural,mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(4):191.

    • [15] MATLI P R,UBAID F,SHAKOOR R A,et al.Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process[J].RSC Advances,The Royal Society of Chemistry,2017,7(55):34401-34410.

    • [16] AL-AQEELI N,MOHAMMAD K,LAOUI T,et al.The effect of variable binder content and sintering temperature on the mechanical properties of WC-Co-VC/Cr3C2 nanocomposites[J].Materials and Manufacturing Processes,Taylor & Francis,2015,30(3):327-334.

    • [17] MAHMOOD M A,POPESCU A C,MIHAILESCU I N.Metal matrix composites synthesized by laser-melting deposition:A review[J].Materials,Multidisciplinary Digital Publishing Institute,2020,13(11):2593.

    • [18] HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599–20612.

    • [19] ZHAO Y,QIAN Z,MA X,et al.Unveiling the semicoherent interface with definite orientation relationships between reinforcements and matrix in novel Al3BC/Al Composites[J].ACS Applied Materials & Interfaces,2016,8(41):28194-28201.

    • [20] BAUMLI P.Interfacial aspects of metal matrix composites prepared from liquid metals and aqueous solutions:a review[J].Metals,2020,10(10):1400.

    • [21] PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying[J].Applied Surface Science,2017,396:1623-1634.

    • [22] DAVIS J R.Handbook of thermal spray technology[M].Geauga County,Ohio:ASM International,2004.

    • [23] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)

    • [24] VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [25] 王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold sprayed metal matrix composite coatings and materials[J].China Surface Engineering,2020,33(4):51-67.(in Chinese)

    • [26] 孔亚茹,郭强,张获.颗粒增强铝基复合材料界面性能的研究[J].材料导报,2015,29(9):34-43,49.KONG Yaru,GUO Qiang,ZHANG Di.Review on interfacial iroperties of particle-reinforce aluminum matrix composites[J].Materials Reports,2015,29(9):34-43,49.(in Chinese)

    • [27] YANG H Y,WANG Z,CHEN L Y,et al.Interface formation and bonding control in high-volume-fraction(TiC+TiB2)/Al composites and their roles in enhancing properties[J].Composites Part B:Engineering,2021,209:108605.

    • [28] WILLIAMS J J,FLOM Z,AMELL A A,et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J].Acta Materialia,2010,58(18):6194-6205.

    • [29] 范映伟.金属基复合材料微观损伤行为的研究进展[J].材料热处理学报,2020,41(10):1-23.FAN Yingwei.Research progress on micro-damage behavior of metal matrix composites[J].Transactions of Materials and Heat Treatment,2020,41(10):1-23.(in Chinese)

    • [30] ZHANG H,WANG X,LIU M,et al.Reciprocating wear performance and interfacial microstructure of a TiC-Ni2AlTi cermet[J].Tribology Letters,2014,55(2):211-218.

    • [31] WANG X H,SONG S L,QU S Y,et al.Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process[J].Surface and Coatings Technology,2007,201(12):5899-5905.

    • [32] SONG X,GAO Y,LIU X,et al.Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides[J].Acta Materialia,2013,61(6):2154-2162.

    • [33] YANG Q,SENDA T,OHMORI A.Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings[J].Wear,2003,254(1):23-34.

    • [34] HOUDKOVÁ Š,ZAHÁLKA F,KAŠPAROVÁ M,et al.Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J].Tribology Letters,2011,43(2):139-154.

    • [35] 刘福朋.碳化钨、碳化铬类硬质合金涂层及耐磨耐蚀性能研究[D].银川:宁夏大学,2020.LIU Fuming.Study on wear resistance and corrosion resistance of tungsten carbide and chromium carbide caoting[D].Yinchuan:Ningxia University,2020.(in Chinese)

    • [36] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel6 25 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [37] 徐佳子,李承娣,朱峰,等.陶瓷颗粒含量对 Cr-Al2O3 复合镀活塞环摩擦磨损性能的影响[J].中国表面工程,2016,29(1):80-86.XU Jiazi,LI Chengdi,ZHU Feng,et al.Ceramic particles content on friction and wear behavior of Cr-Al2O3 piston rings by composite plating[J].China Surface Engineering,2016,29(1):80-86.(in Chinese)

    • [38] 谷义杰,宫声凯.材料分析检测技术[M].长沙:中南大学出版社,2011.GU Yijie,GONG Shengkai.Analysis and testing technology on materials[M].Changsha:Central South University Press,2011.(in Chinese)

    • [39] GONG T M,YAO P P,XIONG X,et al.Microstructure and tribological behavior of interfaces in Cu-SiO2 and Cu-Cr metal matrix composites[J].Journal of Alloys and Compounds,2019,786:975-985.

    • [40] FAN Y,FAN J,WANG C.Optimizing wear resistance via brazing temperature adaption:Application into CBN/Cu-Sn-Ti Composites[J].Metallurgical and Materials Transactions B,2019,50(6):2517-2522.

    • [41] FAN Y,FAN J,WANG C.Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal[J].Journal of Materials Science & Technology,2021,68:35-39.

    • [42] HU T,RUFNER J F,LAGRANGE T B,et al.Metal/ceramic interface structures and segregation behavior in aluminum-based composites[J].Acta Materialia,2015,95:254-263.

    • [43] JIANG L,WEN H,YANG H,et al.Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix[J].Acta Materialia,2015,89:327-343.

    • [44] GUO X,GUO Q,NIE J,et al.Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J].Materials Science and Engineering:A,2018,711:643-649.

    • [45] 王爱琴,刘帅洋,韩辉辉,等.SiCp/A390 复合材料中析出相的形貌及界面结构演变[J].电子显微学报,2017,36(6):535-541.WANG Aiqin,LIU Shuaiyang,HAN Huihui,et al.The evolution of morphology and interfacial microstructure of precipitated phases in SiCp/A390 composites[J].Journal of Chinese Electron Microscopy Society,2017,36(6):535-541.(in Chinese)

    • [46] 李超,杨光.扫描透射电子显微镜及电子能量损失谱的原理及应用[J].物理,2014,43(9):597-605.LI Chao,YANG Guang.The principle and applications of STEM and EELS[J].Physics,2014,43(9):597-605.(in Chinese)

    • [47] MA Y,ADDAD A,JI G,et al.Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J].Acta Materialia,2020,185:287-299.

    • [48] ZHAO Y,FAN Z,TAN Q,et al.Interfacial and tribological properties of laser deposited TiOxNy/Ti composite coating on Ti alloy[J].Tribology International,2021,155:106758.

    • [49] 宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.GONG Xiumin.Theoretical basis and application of phase transition[M].Wuhan:Wuhan University of Technology Press,2004.(in Chinese)

    • [50] WANG F,LI J,SHI C,et al.Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites[J].ACS Applied Materials & Interfaces,2019,11(45):42790-42800.

    • [51] 景力军.Al-Si 系合金的微观组织调控及 α-Al 相细化机理的研究[D].南京:东南大学,2019.JING Lijun.Microstructure controlling of Al-Si alloys and refinement mechanism of α-Al[D].Nanjing:SoutheastUniversity,2019.(in Chinese)

    • [52] KELLY P M,ZHANG M X.Edge-to-edge matching— The fundamentals[J].Metallurgical and Materials Transactions A,2006,37(3):833-839.

    • [53] ZHANG M X,KELLY P M.Edge-to-edge matching and its applications:Part I.Application to the simple HCP/BCC system[J].Acta Materialia,2005,53(4):1073-1084.

    • [54] 曹晔,钟宁,王晓东,等.边-边匹配晶体学模型及其应用——HCP/FCC体系晶体学位向关系的预测[J].上海交通大学学报,2007(4):586-591.CAO Ye,ZHONG Ning,WANG Xiaodong,et al.An edge to edge matching model and its application to the HCP/FCC System[J].Journal of Shanghai Jiaotong University,2007(4):586-591.(in Chinese)

    • [55] GUO B,CHEN B,ZHANG X,et al.Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes[J].Carbon,2018,135:224-235.

    • [56] BRONS J G,THOMPSON G B.Orientation mapping via precession-enhanced electron diffraction and its applications in materials science[J].JOM,2014,66(1):165-170.

    • [57] 邱忆,周钲洋,孙俊良.利用电子衍射解析晶体结构的研究进展[J].中国科学:化学,2020,50(10):1384-1397.QIU Yi,ZHOU Zhengyang,SUN Junliang.Research progress on the crystal structure determination using electron diffraction[J].Scientia Sinica Chimica,2020,50(10):1384-1397.(in Chinese)

    • [58] GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.

    • [59] 李凡国,于思荣.颗粒增强金属基复合材料界面研究进展[J].中国铸造装备与技术,2015(4):43-46.LI Fanguo,YU Sirong.Research progress on interface of particle reinforced metal matrix composites[J].China Foundry Machinery & Technology,2015(4):43-46.(in Chinese)

    • [60] OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [61] MEIJER G,ELLYIN F,XIA Z.Aspects of residual thermal stress/strain in particle reinforced metal matrix composites[J].Composites Part B:Engineering,2000,31(1):29-37.

    • [62] XIA S,QI Y,PERRY T,et al.Strength characterization of Al/Si interfaces:A hybrid method of nanoindentation and finite element analysis[J].Acta Materialia,2009,57(3):695-707.

    • [63] MAHATO A,SACHDEV A K,BISWAS S K.Effect of particle morphology on resistance to permanent sinking by normal loading of silicon particle in aluminium matrix of a cast aluminium silicon alloy[J].Wear,2008,265(5):849-855.

    • [64] MELGAREJO Z H,RESTO P J,STONE D S,et al.Study of particle-matrix interaction in Al/AlB2 composite via nanoindentation[J].Materials Characterization,2010,61(2):135-140.

    • [65] GUAN K,JIA L,KONG B,et al.Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite:Based on a mechanical characterization of interfacial strength[J].Materials Science and Engineering:A,2016,663:98-107.

    • [66] GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.

    • [67] 范睿.陶瓷/金属复合材料界面结合性能的第一性原理研究[D].上海:上海交通大学,2019.FAN Rui.A first-principles investigation on the interfacial bonding properties of ceramic/metal composites[D].Shanghai:Shanghai Jiao Tong University,2019.(in Chinese)

    • [68] GUO X,GUO Q,LI Z,et al.Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars[J].Scripta Materialia,2016,114:56-59.

    • [69] JIANG L,HU T,YANG H,et al.Deformation of a ceramic/metal interface at the nanoscale[J].Nanoscale,2016,8(20):10541-10547.

    • [70] 郭文波,胡启耀,肖鹏.界面反应产物对 B4C/Al 复合材料颗粒润湿性及界面强度的影响机制[J].复合材料学报,2022,39(6):2922-2929.GUO Wenbo,HU Qiyao,XIAO Peng.Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J].Acta Materiae Compositae Sinica,2022,39(6):2922-2929.(in Chinese)

    • [71] 俞洋,苏益士,BERTHELOT Yann,等.颗粒增强金属基复合材料的结构建模与力学模拟研究进展[J].中国材料进展,2020,39(3):214-225.YU Yang,SU Yishi,BERTHELOT Yann,et al.Recent progress in structural modelling and mechanical simulation of particle reinforced metal matrix composites[J].Materials China,2020,39(3):214-225.(in Chinese)

    • [72] YANG Z,ZHOU Y,WANG T,et al.Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation[J].Computational Materials Science,2014,82:17-25.

    • [73] 信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)

    • [74] JAGADEESH G V,GANGI SETTI S.A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J].Journal of Materials Science,2020,55(23):9848-9882.

    • [75] XU J,SHEIKH A H,XU C.3-D Finite element modelling of diamond pull-out failure in impregnated diamond bits[J].Diamond and Related Materials,2017,71:1-12.

    • [76] 肖伯律,刘振宇,张星星,等.面向未来应用的金属基复合材料[J].中国材料进展,2016,35(9):666-673,701.XIAO Bolü,LIU Zhenyu,ZHANG Xingxing,et al.Metal matrix composites for future application[J].Materials China,2016,35(9):666-673,701.(in Chinese)

  • 参考文献

    • [1] KISHAWY H A,HOSSEINI A.Machining difficult-to-cut materials:Basic principles and challenges[M].Cham:Springer,2019.

    • [2] CHAWLA K K.Composite materials:Science and Engineering[M].New York:Springer,2012.

    • [3] 翁琳.基于微观结构的颗粒增强复合材料力学性能数值分析[D].上海:上海交通大学,2015.WENG Lin.Numerical analysis about effects of microstructure on mechanical properties of particle reinforced composites[D].Shanghai:Shanghai Jiao Tong University,2015.(in Chinese)

    • [4] KUMAR SHARMA A,BHANDARI R,AHERWAR A,et al.A study of advancement in application opportunities of aluminum metal matrix composites[J].Materials Today:Proceedings,2020,26:2419-2424.

    • [5] STOJANOVIĆ B,IVANOVIĆ L.Application of aluminium hybrid composites in automotive industry[J].Tehnički Vjesnik,2015,22(1):247-251.

    • [6] ZHOU H B,YAO P P,GONG T M,et al.Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites[J].Tribology International,2019,138:380-391.

    • [7] 李志强,谭占秋,范根莲,等.高效热管理用金属基复合材料研究进展[J].中国材料进展,2013,32(7):431-441.LI Zhiqiang,TAN Zhanqiu,FAN Genlian,et al.Progress of metal matrix composites for efficient thermal management applications[J].Materials China,2013,32(7):431-441.(in Chinese)

    • [8] 刘猛.电子封装用高导热颗粒增强金属基复合材料制备与研究[D].长沙:国防科学技术大学,2017.LIU Meng.Preparation and study of particle reinforced metal matrix composites with high thermal conductivity for electric packaging[D].Changsha:National University of Defense Technology,2017.(in Chinese)

    • [9] KARBALAEI AKBARI M,RAJABI S,SHIRVANIMOGHADDAM K,et al.Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites:A comparative study focusing on particle capture in matrix[J].Journal of Composite Materials,2015,49(29):3665-3681.

    • [10] YANG Y,JIANG R,LI X,et al.Effect of nanoparticle content on the microstructural and mechanical properties of forged and heat-treated TiC/2219 nanocomposites[J].Metals,Multidisciplinary Digital Publishing Institute,2019,9(9):982.

    • [11] AMIRKHANLOU S,NIROUMAND B.Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods[J].Transactions of Nonferrous Metals Society of China,2010,20:s788-s793.

    • [12] SHARMA D K,MAHANT D,UPADHYAY G.Manufacturing of metal matrix composites:A state of review[J].Materials Today:Proceedings,2020,26:506-519.

    • [13] LEE T,LEE J,LEE D,et al.Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites[J].Journal of Alloys and Compounds,2020,831:154647.

    • [14] MAJI P,GHOSH S K,NATH R K,et al.Microstructural,mechanical and wear characteristics of aluminum matrix composites fabricated by friction stir processing[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(4):191.

    • [15] MATLI P R,UBAID F,SHAKOOR R A,et al.Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process[J].RSC Advances,The Royal Society of Chemistry,2017,7(55):34401-34410.

    • [16] AL-AQEELI N,MOHAMMAD K,LAOUI T,et al.The effect of variable binder content and sintering temperature on the mechanical properties of WC-Co-VC/Cr3C2 nanocomposites[J].Materials and Manufacturing Processes,Taylor & Francis,2015,30(3):327-334.

    • [17] MAHMOOD M A,POPESCU A C,MIHAILESCU I N.Metal matrix composites synthesized by laser-melting deposition:A review[J].Materials,Multidisciplinary Digital Publishing Institute,2020,13(11):2593.

    • [18] HU Y,CONG W.A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J].Ceramics International,2018,44(17):20599–20612.

    • [19] ZHAO Y,QIAN Z,MA X,et al.Unveiling the semicoherent interface with definite orientation relationships between reinforcements and matrix in novel Al3BC/Al Composites[J].ACS Applied Materials & Interfaces,2016,8(41):28194-28201.

    • [20] BAUMLI P.Interfacial aspects of metal matrix composites prepared from liquid metals and aqueous solutions:a review[J].Metals,2020,10(10):1400.

    • [21] PEAT T,GALLOWAY A,TOUMPIS A,et al.The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying[J].Applied Surface Science,2017,396:1623-1634.

    • [22] DAVIS J R.Handbook of thermal spray technology[M].Geauga County,Ohio:ASM International,2004.

    • [23] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Applications,research progresses and future challenges of thermal spray technology[J].Thermal Spray Technology,2018,10(4):1-22.(in Chinese)

    • [24] VARDELLE A,MOREAU C,AKEDO J,et al.The 2016 thermal spray roadmap[J].Journal of Thermal Spray Technology,2016,25(8):1376-1440.

    • [25] 王吉强,崔新宇,熊天英.冷喷涂金属基复合涂层及材料研究进展[J].中国表面工程,2020,33(4):51-67.WANG Jiqiang,CUI Xinyu,XIONG Tianying.Research progress of cold sprayed metal matrix composite coatings and materials[J].China Surface Engineering,2020,33(4):51-67.(in Chinese)

    • [26] 孔亚茹,郭强,张获.颗粒增强铝基复合材料界面性能的研究[J].材料导报,2015,29(9):34-43,49.KONG Yaru,GUO Qiang,ZHANG Di.Review on interfacial iroperties of particle-reinforce aluminum matrix composites[J].Materials Reports,2015,29(9):34-43,49.(in Chinese)

    • [27] YANG H Y,WANG Z,CHEN L Y,et al.Interface formation and bonding control in high-volume-fraction(TiC+TiB2)/Al composites and their roles in enhancing properties[J].Composites Part B:Engineering,2021,209:108605.

    • [28] WILLIAMS J J,FLOM Z,AMELL A A,et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J].Acta Materialia,2010,58(18):6194-6205.

    • [29] 范映伟.金属基复合材料微观损伤行为的研究进展[J].材料热处理学报,2020,41(10):1-23.FAN Yingwei.Research progress on micro-damage behavior of metal matrix composites[J].Transactions of Materials and Heat Treatment,2020,41(10):1-23.(in Chinese)

    • [30] ZHANG H,WANG X,LIU M,et al.Reciprocating wear performance and interfacial microstructure of a TiC-Ni2AlTi cermet[J].Tribology Letters,2014,55(2):211-218.

    • [31] WANG X H,SONG S L,QU S Y,et al.Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process[J].Surface and Coatings Technology,2007,201(12):5899-5905.

    • [32] SONG X,GAO Y,LIU X,et al.Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides[J].Acta Materialia,2013,61(6):2154-2162.

    • [33] YANG Q,SENDA T,OHMORI A.Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings[J].Wear,2003,254(1):23-34.

    • [34] HOUDKOVÁ Š,ZAHÁLKA F,KAŠPAROVÁ M,et al.Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J].Tribology Letters,2011,43(2):139-154.

    • [35] 刘福朋.碳化钨、碳化铬类硬质合金涂层及耐磨耐蚀性能研究[D].银川:宁夏大学,2020.LIU Fuming.Study on wear resistance and corrosion resistance of tungsten carbide and chromium carbide caoting[D].Yinchuan:Ningxia University,2020.(in Chinese)

    • [36] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel6 25 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.CHU Qingkun,YU Chunfeng,DENG Zhaoyang,et al.Effect of TiC on microstructure and wear properties of inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [37] 徐佳子,李承娣,朱峰,等.陶瓷颗粒含量对 Cr-Al2O3 复合镀活塞环摩擦磨损性能的影响[J].中国表面工程,2016,29(1):80-86.XU Jiazi,LI Chengdi,ZHU Feng,et al.Ceramic particles content on friction and wear behavior of Cr-Al2O3 piston rings by composite plating[J].China Surface Engineering,2016,29(1):80-86.(in Chinese)

    • [38] 谷义杰,宫声凯.材料分析检测技术[M].长沙:中南大学出版社,2011.GU Yijie,GONG Shengkai.Analysis and testing technology on materials[M].Changsha:Central South University Press,2011.(in Chinese)

    • [39] GONG T M,YAO P P,XIONG X,et al.Microstructure and tribological behavior of interfaces in Cu-SiO2 and Cu-Cr metal matrix composites[J].Journal of Alloys and Compounds,2019,786:975-985.

    • [40] FAN Y,FAN J,WANG C.Optimizing wear resistance via brazing temperature adaption:Application into CBN/Cu-Sn-Ti Composites[J].Metallurgical and Materials Transactions B,2019,50(6):2517-2522.

    • [41] FAN Y,FAN J,WANG C.Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal[J].Journal of Materials Science & Technology,2021,68:35-39.

    • [42] HU T,RUFNER J F,LAGRANGE T B,et al.Metal/ceramic interface structures and segregation behavior in aluminum-based composites[J].Acta Materialia,2015,95:254-263.

    • [43] JIANG L,WEN H,YANG H,et al.Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix[J].Acta Materialia,2015,89:327-343.

    • [44] GUO X,GUO Q,NIE J,et al.Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites[J].Materials Science and Engineering:A,2018,711:643-649.

    • [45] 王爱琴,刘帅洋,韩辉辉,等.SiCp/A390 复合材料中析出相的形貌及界面结构演变[J].电子显微学报,2017,36(6):535-541.WANG Aiqin,LIU Shuaiyang,HAN Huihui,et al.The evolution of morphology and interfacial microstructure of precipitated phases in SiCp/A390 composites[J].Journal of Chinese Electron Microscopy Society,2017,36(6):535-541.(in Chinese)

    • [46] 李超,杨光.扫描透射电子显微镜及电子能量损失谱的原理及应用[J].物理,2014,43(9):597-605.LI Chao,YANG Guang.The principle and applications of STEM and EELS[J].Physics,2014,43(9):597-605.(in Chinese)

    • [47] MA Y,ADDAD A,JI G,et al.Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J].Acta Materialia,2020,185:287-299.

    • [48] ZHAO Y,FAN Z,TAN Q,et al.Interfacial and tribological properties of laser deposited TiOxNy/Ti composite coating on Ti alloy[J].Tribology International,2021,155:106758.

    • [49] 宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.GONG Xiumin.Theoretical basis and application of phase transition[M].Wuhan:Wuhan University of Technology Press,2004.(in Chinese)

    • [50] WANG F,LI J,SHI C,et al.Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites[J].ACS Applied Materials & Interfaces,2019,11(45):42790-42800.

    • [51] 景力军.Al-Si 系合金的微观组织调控及 α-Al 相细化机理的研究[D].南京:东南大学,2019.JING Lijun.Microstructure controlling of Al-Si alloys and refinement mechanism of α-Al[D].Nanjing:SoutheastUniversity,2019.(in Chinese)

    • [52] KELLY P M,ZHANG M X.Edge-to-edge matching— The fundamentals[J].Metallurgical and Materials Transactions A,2006,37(3):833-839.

    • [53] ZHANG M X,KELLY P M.Edge-to-edge matching and its applications:Part I.Application to the simple HCP/BCC system[J].Acta Materialia,2005,53(4):1073-1084.

    • [54] 曹晔,钟宁,王晓东,等.边-边匹配晶体学模型及其应用——HCP/FCC体系晶体学位向关系的预测[J].上海交通大学学报,2007(4):586-591.CAO Ye,ZHONG Ning,WANG Xiaodong,et al.An edge to edge matching model and its application to the HCP/FCC System[J].Journal of Shanghai Jiaotong University,2007(4):586-591.(in Chinese)

    • [55] GUO B,CHEN B,ZHANG X,et al.Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes[J].Carbon,2018,135:224-235.

    • [56] BRONS J G,THOMPSON G B.Orientation mapping via precession-enhanced electron diffraction and its applications in materials science[J].JOM,2014,66(1):165-170.

    • [57] 邱忆,周钲洋,孙俊良.利用电子衍射解析晶体结构的研究进展[J].中国科学:化学,2020,50(10):1384-1397.QIU Yi,ZHOU Zhengyang,SUN Junliang.Research progress on the crystal structure determination using electron diffraction[J].Scientia Sinica Chimica,2020,50(10):1384-1397.(in Chinese)

    • [58] GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.

    • [59] 李凡国,于思荣.颗粒增强金属基复合材料界面研究进展[J].中国铸造装备与技术,2015(4):43-46.LI Fanguo,YU Sirong.Research progress on interface of particle reinforced metal matrix composites[J].China Foundry Machinery & Technology,2015(4):43-46.(in Chinese)

    • [60] OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1564-1583.

    • [61] MEIJER G,ELLYIN F,XIA Z.Aspects of residual thermal stress/strain in particle reinforced metal matrix composites[J].Composites Part B:Engineering,2000,31(1):29-37.

    • [62] XIA S,QI Y,PERRY T,et al.Strength characterization of Al/Si interfaces:A hybrid method of nanoindentation and finite element analysis[J].Acta Materialia,2009,57(3):695-707.

    • [63] MAHATO A,SACHDEV A K,BISWAS S K.Effect of particle morphology on resistance to permanent sinking by normal loading of silicon particle in aluminium matrix of a cast aluminium silicon alloy[J].Wear,2008,265(5):849-855.

    • [64] MELGAREJO Z H,RESTO P J,STONE D S,et al.Study of particle-matrix interaction in Al/AlB2 composite via nanoindentation[J].Materials Characterization,2010,61(2):135-140.

    • [65] GUAN K,JIA L,KONG B,et al.Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite:Based on a mechanical characterization of interfacial strength[J].Materials Science and Engineering:A,2016,663:98-107.

    • [66] GUO Q,HAN Y,ZHANG D.Interface-dominated mechanical behavior in advanced metal matrix composites[J].Nano Materials Science,2020,2(1):66-71.

    • [67] 范睿.陶瓷/金属复合材料界面结合性能的第一性原理研究[D].上海:上海交通大学,2019.FAN Rui.A first-principles investigation on the interfacial bonding properties of ceramic/metal composites[D].Shanghai:Shanghai Jiao Tong University,2019.(in Chinese)

    • [68] GUO X,GUO Q,LI Z,et al.Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars[J].Scripta Materialia,2016,114:56-59.

    • [69] JIANG L,HU T,YANG H,et al.Deformation of a ceramic/metal interface at the nanoscale[J].Nanoscale,2016,8(20):10541-10547.

    • [70] 郭文波,胡启耀,肖鹏.界面反应产物对 B4C/Al 复合材料颗粒润湿性及界面强度的影响机制[J].复合材料学报,2022,39(6):2922-2929.GUO Wenbo,HU Qiyao,XIAO Peng.Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J].Acta Materiae Compositae Sinica,2022,39(6):2922-2929.(in Chinese)

    • [71] 俞洋,苏益士,BERTHELOT Yann,等.颗粒增强金属基复合材料的结构建模与力学模拟研究进展[J].中国材料进展,2020,39(3):214-225.YU Yang,SU Yishi,BERTHELOT Yann,et al.Recent progress in structural modelling and mechanical simulation of particle reinforced metal matrix composites[J].Materials China,2020,39(3):214-225.(in Chinese)

    • [72] YANG Z,ZHOU Y,WANG T,et al.Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation[J].Computational Materials Science,2014,82:17-25.

    • [73] 信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)

    • [74] JAGADEESH G V,GANGI SETTI S.A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J].Journal of Materials Science,2020,55(23):9848-9882.

    • [75] XU J,SHEIKH A H,XU C.3-D Finite element modelling of diamond pull-out failure in impregnated diamond bits[J].Diamond and Related Materials,2017,71:1-12.

    • [76] 肖伯律,刘振宇,张星星,等.面向未来应用的金属基复合材料[J].中国材料进展,2016,35(9):666-673,701.XIAO Bolü,LIU Zhenyu,ZHANG Xingxing,et al.Metal matrix composites for future application[J].Materials China,2016,35(9):666-673,701.(in Chinese)

  • 手机扫一扫看