en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐天杨,男,1994年出生,博士研究生。主要研究方向为材料表面工程。E-mail:306843499@qq.com;

汪瑞军(通信作者),男,1967年出生,博士,研究员,博士研究生导师。主要研究方向为材料加工。E-mail:13701380963@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210902001

参考文献 1
王永亮,赵广,孙绪聪,等.航空花键研究综述[J].航空制造技术,2017(3):91-100.WANG Yongliang,ZHAO Guang,SUN Xucong,et al.Review on research of aviation spline[J].Aeronautical Manufacturing Technology,2017(3):91-100.(in Chinese)
参考文献 2
XUE X Z,WANG S M,LI B.Modification methodology of fretting wear in involute spline[J].Wear,2016,368-369:435-444.
参考文献 3
CURÀ F,MURA A,PSD Sevilla.Recent advances in spline couplings reliability[J].Procedia Structural Integrity,2019,19:328-335.
参考文献 4
胡正根,朱如鹏,靳广虎,等.齿向分段抛物线修形对渐开线花键副微动磨损参数的影响[J].航空动力学报,2013,28(7):1644-1649.HU Zhenggen,ZHU Rupeng,JIN Guanghu,et al.Effect of axial piecewise parabolic modification of fretting wear parameters of involute spline couplings[J].Journal of Aerospace Power,2013,28(7):1644-1649.(in Chinese)
参考文献 5
CURÀ F,MURA A.Evaluation of the fretting wear damage on crowned splined couplings[J].Procedia Structural Integrity,2017,5:1393-1400.
参考文献 6
SCHAUBHUT A,SUOMI E,ESPINOSA P.Aircraft engine bearings and splines[R].Boston:Mechanics of Contact and Lubrication ME5656,Northeastern University,2009.
参考文献 7
KU P M,VALTIERRA M L.Spline wear-effects of design and lubrication[J].Journal of Engineering for Industry,1975,97(4):1257-1263.
参考文献 8
CHEN L Y,ZHAO Y,CHEN X,et al.Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating:Process,microstructure and properties[J].Ceramics International,2021,47(21):30113-30128.
参考文献 9
UEDA M,SILVA A R,PILLACA E J D M,et al.New possibilities of plasma immersion ion implantation(PIII)and deposition(PIII&D)in industrial components using metal tube fixtures[J].Surface and Coatings Technology,2017,312:37-46.
参考文献 10
詹华.海洋大气环境用元素掺杂碳基薄膜结构设计与制备[D].北京:中国农业机械化科学研究院,2018.ZHAN Hua.Design and preparation of element doping carbon-based thin films for marine atmosphere environment applications[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2018.(in Chinese)
参考文献 11
DU D X,LIU D X,Y Z Y,et al.Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J].Applied Surface Science,2014,313:462-469.
参考文献 12
魏荣华,李灿民.美国西南研究院等离子全方位离子镀膜技术研究及实际应用[J].中国表面工程,2012,25(1):1-10.WEI Ronghua,LI Canmin.Plasma immersion ion deposition research at SwRI and its practical applications [J].China Surface Engineering,2012,25(1):1-10.(in Chinese)
参考文献 13
NAKAZAWA H,KAMATA R,MIURA S,et al.Influence of duty ratio of pulsed bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition[J].Thin Solid Films,2013,539:134-138.
参考文献 14
NAKAZAWA H,MAGARA K,TAKAMI T,et al.Effects of source gases on the properties of silicon/nitrogenincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2017,636:177-182.
参考文献 15
ZHANG S,SUN D,FU Y.Toughening of hard nanostructural thin films:A critical review[J].Surface and Coatings Technology,2005,198(1-3):2-8.
参考文献 16
HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.
参考文献 17
LI L,GUO P,LIU L L,et al.Structural design of Cr/GLC films for high tribological performance in artificial seawater:Cr/GLC ratio and multilayer structure[J].Journal of Materials Science & Technology,2018,34(8):1273-1280.
参考文献 18
孙薇薇,田修波,李慕勤,等.偏压对自源笼形空心阴极放电制备 Si-DLC 薄膜结构和性能的影响[J].中国表面工程,2019,32(3):69-79.SUN Weiwei,TIAN Xiubo,LI Muqin,et al.Effects of bias voltage on structure and property of Si-DLC films fabricated by self-source cage type hollow cathode discharge process[J].China Surface Engineering,2019,32(3):69-79.(in Chinese)
参考文献 19
ZHAO R,STEINER J,ANDREAS K,et al.Investigation of tribological behaviour of a-C:H coatings for dry deep drawing of aluminum alloys[J].Tribology International,2018,118:484-490.
参考文献 20
WANG X Y,SUI X D,ZHANG S T,et al.Effect of deposition pressures on uniformity,mechanical and tribological properties of thick DLC coatings inside a long pipe prepared by PECVD method[J].Surface and Coatings Technology,2019,375:150-157.
参考文献 21
KONG L G,ZHANG M L,WEI X B,et al.Observation of uniformity of diamond-like carbon coatings utilizing hollow cathode discharges inside metal tubes[J].Surface and Coatings Technology,2019,375:123-131.
参考文献 22
PILLACA E J D M,RAMÍRES M A,GUTIERREZ BERNAL J M,et al.DLC deposition inside of a long tube by using the pulsed-DC PECVD process[J].Surface and Coatings Technology,2019,359:55-61.
参考文献 23
WEI R H,RINCON C,BOOKER T L,et al.Magnetic field enhanced plasma(MFEP)deposition of inner surfaces of tubes[J].Surface and Coatings Technology,2004,188-189:691-696.
参考文献 24
MUHL S,PÉREZ A.The use of hollow cathodes in deposition process:A critical review[J].Thin Solid Films,2015,579:174-198.
参考文献 25
XU L,LI L H,LUO S D,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.
参考文献 26
BRIEHL B,URBASSEK H M.Plasma recovery in plasma immersion ion implantation:Dependence on pulse frequency and duty cycle[J].Journal of Physics D:Applied Physics,2002,35(5):462-467.
参考文献 27
LI Y,ZHENG B C,LEI M K.Plasma low-pressure nonsteady diffusion fluid model for pulsed plasma recovery[J].IEEE Transactions on Plasma Science,2013,41(1):43-48.
参考文献 28
SHIBATA Y,KIMURA T,NAKAO S,et al,Preparation of silicon-doped diamond-like carbon films with electrical conductivity by reactive high-power impulse magnetron sputtering combined with a plasma-based ion implantation system[J].Diamond & Related Materials,2020,101:107635.
参考文献 29
HIRATA Y,CHOI J.Structure and mechanical properties of a-C:H films deposited on a 3D target:comparative study on target scale and aspect ratio[J].Journal of Physics D:Applied Physics,2017,50(15):155204.
参考文献 30
王浪平,王小峰,汤宝寅.等离子体浸没离子注入与沉积技术的发展及前沿问题[J].中国表面工程,2010,23(1):9-14.WANG Langping,WANG Xiaofeng,TANG Baoyin.The development and key problems of plasma immersion ion implantation and deposition[J].China Surface Engineering,2010,23(1):9-14.(in Chinese)
参考文献 31
VALENCIA F J,SANTIAGO J,RAQUEL GONZÁLEZARRABAL R,et al.Nanoindentation of Amorphous Carbon:A combined experimental and simulation approach[J].Acta Materialia,2021,203:116485.
目录contents

    摘要

    花键齿严重的磨损失效制约了机械传动部件的可靠性和使用寿命,传统表面处理技术如渗碳、渗氮等无法满足花键齿减摩耐磨的需求。为提高内花键齿表面的耐磨性,采用等离子体增强化学气相沉积(PECVD)技术,利用空心阴极放电(HCD) 产生的高密度等离子体,在大长径比内花键表面制备多层结构 Si-DLC 薄膜。分别研究薄膜制备过程中,沉积气压和脉冲频率对花键齿廓方向上薄膜的截面形貌、相结构、厚度均匀性和力学性能的影响。结果表明,沉积气压及脉冲频率是影响内花键齿表面薄膜性能及厚度均匀性的关键参数。沉积气压从 8 Pa 增加到 10 Pa 时,花键齿齿顶、齿中及齿根处的 Si-DLC 薄膜厚度均随之增大,而薄膜的硬度和弹性模量却随之降低。当脉冲频率从 300 Hz 增加到 500 Hz 时,花键齿表面薄膜厚度均随之减小。薄膜在花键齿廓方向上的厚度均匀性因等离子体密度增加,鞘层之间交叉重叠减少而变优。研究结果为耐磨强化涂层材料在动力传输系统上的发展与应用提供了基础。

    Abstract

    Severe wear failure of spline tooth limits reliability and service life for mechanical transmission parts, traditional surface treatments like carburization and nitriding are incapable to meet the requirements of friction reduction and wear resistance for spline tooth. To improve the wear resistance of internal spline tooth, high density plasma generated by hollow cathode discharge (HCD) is used for the deposition of multi-layer Si-DLC films on inner surface of internal spline with a high aspect ratio by plasma enhanced chemical vapor deposition(PECVD). Effects of deposition pressure and pulse frequency on cross-section morphology, microstructure, thickness distribution and mechanical properties for films are studied, respectively. The results show that deposition pressure and pulse frequency are both significant parameters which affect the performance and thickness distribution for films prepared on internal spline tooth. The film’s thickness at tooth top, middle and root are all increased with the increasing deposition pressure from 8 Pa to 10 Pa, however, the hardness and elastic modulus are both decreased. The film’s thickness decreased while the pulse frequency increased from 300 Hz to 500 Hz. The thickness distribution along tooth profile optimized when the density of plasma increases which resulted reduced overlapping of cathode sheath. This paper provides foundations for development and application for wear-resistant coatings for power transmission system.

  • 0 前言

  • 花键副由一组可以传递转矩和运动的同轴偶件组成,在航空航天、机械制造等领域有着广泛的应用。花键副在工作过程中,因花键连接不对中、振动、润滑等因素造成的磨损及失效问题严重影响了机械传动部件的可靠性[1]。研究发现,花键齿的磨损过程是一种由磨粒磨损、黏着磨损和氧化磨损综合作用下的微动磨损机制,而齿面所受接触应力和齿面之间相对位移是影响花键微动磨损的两大因素[2-3]。因此,人们通过优化花键副的机械设计[4]、对花键副材料进行表面处理[5]等方法来减少接触应力、提高花键材料的耐磨性,从而提高花键副的可靠性和使用寿命。其中尤以花键副材料的表面处理因其工艺简单、成本低廉而受到广泛关注。一般而言,花键表面通常采用渗碳、渗氮等传统表面处理技术来提高表面的承载能力和耐磨性[6]。KU等[7] 比较了五种表面处理后的外花键的耐磨性,发现其中表面电镀镍的花键耐磨效果最佳。电镀虽然简单且高效,但其对环境的污染制约了该技术的进一步发展。CHEN等[8]则采用激光熔覆技术,制备TiC增强镍基涂层来修复外花键轴,涂层的硬度及耐磨性较花键基材都有了大幅度提升。不过对于键齿位于内圆柱表面、拥有大长径比腔体的内花键,因为其内径小、轴向长度大的特点,难以利用热喷涂、激光熔覆等工艺对其表面进行处理。因此,这类大长径比内花键需要其他表面处理技术来提高其表面耐磨性。

  • 近些年来,等离子体增强化学气相沉积 (PECVD)技术的发展为处理大长径比的狭长管型工件内表面提供了新思路,其中将管型工件视为阴极,利用空心阴极放电(HCD)在管型工件内腔中激发高密度的等离子体,实现内表面上的高速率薄膜沉积的HCD-PECVD技术在处理狭长管内表面有着巨大优势[9]。研究表明,在狭长管型工件内表面上沉积类金刚石(DLC)薄膜能有效地提高内表面的减摩、耐磨及耐腐蚀性能,这是因为DLC薄膜由碳的sp 2 和sp 3 两种杂化键结构组成,兼具石墨结构的低摩擦因数及金刚石结构的高硬度等优点,是一种优秀的固体润滑材料[10-12]。但纯DLC薄膜仍存在内应力高、结合强度低等问题。元素掺杂是降低DLC薄膜内应力的常见手段,尤其是Si元素掺杂DLC(Si-DLC)可以通过形成C-Si键松弛DLC薄膜结构网络,降低内应力,并提高结合强度,且Si-DLC薄膜在空气气氛下拥有极低的摩擦因数[13-14]。而通过对DLC薄膜进行多层结构设计也可以提高薄膜的韧性并降低内应力[15-16]。LI等[17]设计并研究了不同Cr/GLC厚度比例的多层结构GLC薄膜在人工海水环境中的摩擦学性能,发现合适的多层结构设计能阻遏裂纹扩展,对基材起到更好的保护作用。

  • HCD-PECVD的沉积过程参数,诸如激发等离子体的电源电压、脉冲频率、脉宽、前驱体气量、气压等,均能影响管型工件内腔中等离子体特性,从而影响DLC薄膜的轴向均匀性、相结构、力学性能及摩擦学性能[18-22]。WEI等[23]利用磁场在长管内腔中产生空心阴极放电,实现了孔径0.9~2.5cm、轴向长度71cm的长管内表面DLC薄膜的制备。然而,利用PECVD技术在大长径比内花键表面沉积薄膜、提高键齿耐磨性的相关研究较少,而且现有工作集中在长管DLC薄膜轴向均匀性的研究,缺乏DLC薄膜在花键齿这类复杂几何形状表面,沿齿廓方向均匀性的相关报道。

  • 本文利用HCD-PECVD技术在大长径比内花键表面制备多层结构的Si-DLC薄膜,提高花键齿表面的耐磨性,并分别研究了沉积气压和脉冲频率对Si-DLC薄膜在花键齿廓方向厚度均匀性、相结构和力学性能的影响。

  • 1 材料与方法

  • 1.1 试验材料与装置

  • 图1 所示为一长300mm、外径38mm、内径28mm的内花键模拟件,由304不锈钢制造,在内花键的中部加工出等距的12个梯形槽,槽中可插入304不锈钢制的梯形试片,用以模拟内花键的键齿结构。该内花键模拟件可实现多次薄膜制备,在每次薄膜制备试验前,可用湿喷砂去除内表面氧化皮及污染物,并在梯形槽中插入打磨抛光后的新试片即可。

  • 图1 内花键模拟件截面示意图

  • Fig.1 Schematic diagram for cross section of the internal spline workpiece

  • 图2 为制备内花键内表面Si-DLC薄膜的PECVD试验装置示意图,设备由真空室、前驱体送气系统、脉冲电源及真空系统等部分组成。将内花键模拟件置于与真空室绝缘的转架上,前驱体气体通过进气管送入内花键腔体。脉冲电源负极与内花键相连,在脉冲电压的作用下,前驱体气体在腔体内被击穿,产生辉光放电,因其阴极围成圆筒形,负辉区的叠加发生了空心阴极效应,在花键内产生了高密度的等离子体,从而实现了内花键这类拥有大长径比内腔零件内表面碳基薄膜的沉积[24]。薄膜制备过程中的沉积气压可由分子泵的抽速调节阀来进行调节,脉冲频率的改变则通过调节电源输出参数实现。

  • 图2 PECVD试验装置示意图

  • Fig.2 Schematic diagram of the PECVD system

  • 1.2 薄膜制备

  • 分别将下底长8mm、上底长3.4mm、高为4mm的304不锈钢梯形试片的顶面和侧面,以及下底长8mm、上底长7mm、高为1mm的304不锈钢梯形试片的顶面依次用#240、#600、#1000和#1500的SiC砂纸打磨,再用氧化铝液体抛光剂将打磨面抛光至镜面无划痕。将试片及内花键模拟件放置于酒精中,超声清洗20min,取出后用压缩空气吹干表面。将上述两种尺寸的梯形试片插入内花键模拟件后,放置在真空室的转架上,并使截面几何中心正对进气管口。将真空室抽至5mPa后,通入氩气,流量设为200cm3/min,在脉冲电压为−1.1kV、气压为11Pa的环境下,利用氩气辉光放电去除内花键内表面上的氧化膜和附着物。为提高薄膜与基材之间的结合力,通入四甲基硅烷(TMS),制备一层Si打底层,随后通入TMS和乙炔(C2H2)混合气体沉积Si-DLC薄膜, TMS和C2H2 的流量分别为8cm3/min和80cm3/min。所沉积的薄膜为Si/Si-DLC/DLC/Si-DLC多层结构。为研究沉积气压及脉冲频率对内花键齿表面薄膜及其齿廓方向厚度均匀性的影响,在制备薄膜时,通过调节分子泵的抽速,分别在沉积气压8Pa、9Pa和10Pa下制备薄膜,而电源脉冲频率则分别选取了300Hz、400Hz和500Hz。具体的薄膜制备参数见表1。

  • 表1 内花键内表面Si-DLC薄膜沉积参数

  • Table1 Deposition parameters for Si-DLC films on inner surface of internal spline

  • 1.3 性能表征

  • 为分析Si-DLC薄膜在花键齿廓方向上的均匀性,将高4mm的梯形试片的顶面、侧面以及高1mm的梯形试片顶面分别视作花键齿顶、齿中及齿根三个位置,并对这三个位置的薄膜性能进行表征。采用S-4800冷场发射扫描电镜(FESEM)观察薄膜截面形貌并测量厚度;采用LabRAM HR Evolution型高分辨拉曼光谱仪观察薄膜的相结构,选用532nm激光器激发,束斑直径1.25 μm,扫描范围800~2 000cm−1;采用Agilent G200纳米压痕仪测量薄膜的硬度及弹性模量,采用压痕深度控制法,最大压入深度300nm。

  • 2 结果与分析

  • 2.1 薄膜形貌及相结构

  • 图3 是不同沉积气压下,花键齿表面Si-DLC薄膜的截面形貌,可以观察到薄膜完整且连续,无明显裂纹,与基体结合良好,无分层现象。花键齿齿顶、齿中和齿根三处表面的Si-DLC薄膜厚度均随着沉积气压的增大而增大,即薄膜的沉积速率随着气压增大而增大,当沉积气压为10Pa时,花键齿表面三处位置的Si-DLC薄膜厚度达到最大,分别为6.75 μm、5.07 μm和5.09 μm。同时也可以观察到10Pa下沉积的Si-DLC薄膜有类似于柱状的结构。等离子体中的电子、离子及中性粒子之间会相互作用,电子与前驱体气体粒子之间通过非弹性碰撞,使气体激发或电离,并为气相粒子之间的化学反应提供了能量[24]。电子的平均自由程 λe可通过如下方程计算[25]

  • λe=kTpσ
    (1)
  • σ=πr2
    (2)
  • 式中 pkTσr 分别是气压、玻尔兹曼常数、真空室温度、碰撞截面和有效碰撞粒子半径。沉积Si-DLC薄膜过程中没有对真空室进行加热,因此 T 可大致看做常数,可知电子平均自由程受沉积气压的影响,即电子在与前驱体气体粒子发生碰撞之间所运动的平均距离随着气压的增大而减小。因此,高沉积气压下电子与气体粒子发生碰撞的概率增大,等离子体密度增加,造成了更快的沉积速率。高沉积气压下,入射粒子到达基体前与其他粒子的碰撞频率更为频繁,使得入射能量降低。因此,如图3g、3h所示,在较高气压下所沉积的薄膜有着较为疏松的柱状结构。文献[18]中利用对工件施加偏压的方法,来提高入射粒子的能量来减缓这种效应,当沉积气压下降时,粒子入射能量提高,所制备的薄膜结构更为紧致,薄膜柱状结构消失。

  • 图3 不同沉积气压下花键齿表面Si-DLC薄膜截面形貌

  • Fig.3 Cross-section morphology for Si-DLC films on internal spline tooth with different deposition pressure

  • 图4 所示是不同电源脉冲频率下,花键齿表面Si-DLC薄膜的截面形貌,可以观察到花键齿表面的Si-DLC薄膜厚度随脉冲频率的降低而增大,当电源脉冲频率为300Hz时,花键齿齿顶、齿中和齿根三处位置表面的Si-DLC薄膜的厚度达到最大,分别为7.68 μm、5.95 μm和5.68 μm,即在此频率下的Si-DLC薄膜沉积速率最高。电源脉冲频率和脉冲宽度之间的关系可由如下关系式来表示:

  • f=1τon+τoff
    (3)
  • 式中,f 是电源脉冲频率;τon 是脉冲宽度;τoff是脉冲关断时间。BRIEHKL等[26]采用PIC/MC模型研究脉冲频率对等离子体离子注入电流的影响时发现,脉冲关断时间影响等离子体恢复,脉冲关断时间越长,最大离子注入电流越大。LI等[27]在利用流体模型分析等离子体离子注入(PBII)处理管内表面的鞘层动力学时,也发现对于较短的脉冲关断时间,等离子体无法恢复到它的起始状态,并导致离子注入电流偏低。因此,低频率(300Hz)脉冲下的沉积速率最高可能是由于当脉冲宽度不变时,在该频率下有足够长的脉冲关断时间使等离子体恢复,从而获得了更高的沉积电流。从图4a、4d中能观察到300Hz和400Hz的脉冲频率下沉积的Si-DLC薄膜也有着与沉积气压为10Pa下所制备的薄膜相类似的柱状结构。

  • 图4 不同脉冲频率下花键齿表面Si-DLC薄膜形貌

  • Fig.4 Cross-section morphology for Si-DLC films on internal spline tooth with different pulse frequency

  • 拉曼光谱是分析DLC薄膜结构的重要手段之一, DLC薄膜的拉曼光谱在1 000cm−1 到1 800cm−1 处呈现一个不对称的宽峰,并可以拟合成两个高斯峰:一个1 360cm−1 左右的D峰和一个1 580cm−1 左右的G峰。 D峰及G峰的强度比(I D/I G)以及G峰的半高宽 (FWHM-G)都可以用来表征DLC薄膜的结构,I D/I G 值越小反应出DLC薄膜中sp 3 杂化键的含量越高,而G峰半高宽则与内应力相关[19-22]。图5a、5b、5c分别展示了沉积气压为8Pa、9Pa和10Pa下,花键齿三处位置表面的拉曼光谱,表明在花键齿表面成功制备了Si-DLC薄膜。图6则展示了花键齿齿顶、齿中、齿根三处位置Si-DLC薄膜的 I D/I G及G峰半高宽随沉积气压的变化情况。当沉积气压从8Pa上升到10Pa时,花键齿表面的Si-DLC薄膜的I D/I G值逐渐增大,表明薄膜中的sp 3 含量逐渐降低;而G峰的半高宽随气压增加而降低,说明薄膜内应力的减少[28]。当沉积气压升高时,粒子之间的碰撞频率上升使得入射到基材的粒子能量降低,因此所制备的薄膜中sp 3 含量减少。相同的沉积气压下,齿顶处的DLC薄膜有着最小的 I D/I G值,而齿根处的I D/I G有着最大值,当沉积气压为8Pa时,齿顶、齿中和齿根处的I D/I G值分别为1.56、1.66和1.81。根据亚植入生长模型,入射粒子的高能量是形成sp 3 结构的关键,齿中和齿根处的粒子平均入射能量较齿顶处低,因此薄膜中sp 3 含量较少[29]

  • 图5 不同沉积气压下花键齿表面Si-DLC薄膜的拉曼光谱

  • Fig.5 Raman spectra of Si-DLC films prepared on internal spline tooth with different deposition pressure

  • 图6 不同沉积气压下花键齿表面Si-DLC薄膜的 I D/I G和G峰半高宽

  • Fig.6 I D/I G and FWHM-G values for Si-DLC films prepared on internal spline tooth with different deposition pressure

  • 图7a、7b、7c分别展示了脉冲频率为300Hz、 400Hz和500Hz下花键齿表面DLC薄膜的拉曼光谱结果,图8则展示了不同脉冲频率下花键齿齿顶、齿中和齿根三处位置表面Si-DLC薄膜的I D/I G和G峰半高宽。可以看出花键齿顶及齿根处的DLC薄膜的 I D/I G比值随着频率增加而降低,而齿中处DLC薄膜的 I D/I G比值随频率变化不明显。由于等离子体需要一定的脉冲关断时间来完成恢复,因此较低频率下的离子注入电流较大[26-27],入射粒子的平均能量因更频繁的碰撞而降低,所制备的薄膜中sp 3 含量较少。同时可以发现在脉冲频率为400Hz时,花键齿表面薄膜的 I D/I G值变化不大,即沿花键齿廓方向上的DLC薄膜结构均匀性最佳。

  • 图7 不同频率下花键齿表面Si-DLC薄膜的拉曼光谱

  • Fig.7 Raman spectra of Si-DLC films prepared on internal spline tooth with different pulse frequency

  • 图8 不同频率下花键齿表面Si-DLC薄膜的 I D/I G和G峰半高宽

  • Fig.8 I D/I G and FWHM-G values for Si-DLC films prepared on internal spline tooth with different pulse frequency

  • 2.2 沉积气压及脉冲频率对齿廓方向薄膜厚度均匀性的影响

  • 图9 为不同沉积气压下,花键齿齿顶、齿中和齿根三处位置表面Si-DLC薄膜的厚度分布和非均匀性数值的变化情况。由下式计算非均匀性数值[20]

  • X=Xmax-Xmin/X-
    (4)
  • 图9 不同沉积气压下花键齿表面Si-DLC薄膜厚度分布

  • Fig.9 Thickness distribution for Si-DLC films prepared on spline tooth with different deposition pressure

  • 式(4)用来表征花键齿齿廓方向上薄膜的厚度均匀程度,式中 X max是三处位置薄膜的厚度最大值, X min 是三处位置薄膜的厚度最小值,而 X- 是厚度平均值,显然非均匀性数值越小代表着薄膜厚度均匀性越佳。可以发现薄膜沿花键齿廓方向的厚度均匀性随沉积气压增大而变优,沉积气压为10Pa时,薄膜的非均匀性数值最小,均匀性最佳。图10所示为不同脉冲频率下,花键齿齿顶、齿中和齿根三处位置表面Si-DLC薄膜的厚度分布及非均匀性数值变化情况。可以发现,花键齿表面薄膜沿齿廓方向的厚度均匀性随频率降低而变优,在脉冲频率为300Hz时达到最佳。

  • 图10 不同脉冲频率下花键齿表面Si-DLC薄膜厚度分布

  • Fig.10 Thickness distribution for Si-DLC films prepared on spline tooth with different pulse frequency

  • 等离子体中电子和离子之间迁移能力的不同导致放电器件壁或阴极表面形成一个电势梯度较大的薄层,称为等离子体鞘层[24]。鞘层中的离子会被鞘层电场加速并入射到阴极表面,从而实现离子注入和薄膜沉积。鞘层厚度增加会导致鞘层形状与待处理表面几何形状不一致,鞘层之间的扩展特性和交叉重叠会使入射粒子的均匀性下降,因此调节过程参数并控制鞘层的厚度对于在复杂形状表面制备薄膜至关重要[30]。阴极鞘层的厚度与等离子体参数之间的关系可以用Child-Langmuir方程来表示[24]

  • ls=ε01/2Vc3/4ekni2Te1/4
    (5)
  • 式中,l s 是阴极鞘层厚度;ε0是介电常数;V c 是阴极电位降;n i 是离子密度;T e 是电子温度。鞘层厚度与离子密度大小呈反比,由上节可知,增大沉积气压或减小脉冲频率均可以增加等离子体密度及沉积电流。综上,在高气压(10Pa)下或者是低脉冲频率(300Hz)下,由于阴极表面鞘层厚度减小,减弱了鞘层之间的交叉重叠并增强了入射粒子的均匀性,在花键齿表面获得了齿廓方向上厚度均匀性较优的Si-DLC薄膜。

  • 2.3 薄膜的力学性能

  • 图11a、11b、11c分别是沉积气压8Pa、9Pa和10Pa下花键齿表面Si-DLC薄膜的载荷-压入深度曲线,卸载的位移反应了薄膜的弹性性能[31],最大压入深度控制在300nm,这一深度远小于薄膜厚度的1/10,反应了Si-DLC薄膜的真实硬度[20]。当控制压入深度时,薄膜的硬度越高,所需要的载荷越大,而薄膜的弹性模量越高,对应着载荷-压入曲线在卸载阶段更陡峭的斜率。图12a和12b分别是键齿表面不同位置Si-DLC薄膜硬度和弹性模量随沉积气压的变化曲线。可以发现,Si-DLC薄膜的硬度在7~11GPa,远高于基体304不锈钢的硬度(~4GPa)[21]。薄膜的硬度与弹性模量均随着沉积气压的上升而降低,在沉积气压为8Pa时,花键齿表面三处位置的薄膜的硬度与弹性模量分别达到最大值。DLC薄膜的硬度与弹性模量的大小均与薄膜中sp 3 杂化键的含量正相关,图6中Si-DLC薄膜的 I D/I G值随沉积气压的变化趋势说明沉积气压越高, sp 3 杂化键的含量越少。因此,沉积气压可以影响DLC薄膜的 I D/I G值,从而影响薄膜的硬度与弹性模量。

  • 图11 不同沉积气压下花键齿表面Si-DLC薄膜的载荷-压入深度曲线

  • Fig.11 Load-depth curves for Si-DLC films on internal spline tooth with different deposition pressure

  • 图12 不同沉积气压下花键齿表面Si-DLC薄膜的硬度和弹性模量

  • Fig.12 Hardness and elastic modulus for Si-DLC films on spline tooth with different deposition pressure

  • 图13a、13b、13c分别是不同脉冲频率下花键齿三处位置表面Si-DLC薄膜的载荷-压入深度曲线,图14a、14b分别是Si-DLC薄膜的硬度和弹性模量随脉冲频率的变化情况。可以发现薄膜的硬度在8~10GPa,高于花键基体304不锈钢的硬度,花键齿顶与花键齿根的薄膜硬度均随频率增加而上升,这符合图8中获得的Si-DLC薄膜 I D/I G值随脉冲频率增加而降低的变化规律,由于薄膜中sp 3 杂化键含量降低,薄膜的硬度也逐渐降低。而花键齿顶与齿根处的薄膜弹性模量则是在400Hz时达到了最大值。花键齿中处薄膜的硬度与弹性模量随脉冲频率增加变化不明显,这也与花键齿中处薄膜的 I D/I G 值随脉冲频率变化维持在1.8左右的现象吻合。

  • 图13 不同脉冲频率下花键齿表面Si-DLC薄膜的载荷-压入深度曲线

  • Fig.13 Load-depth curves for Si-DLC films on internal spline tooth with different pulse frequency

  • 图14 不同脉冲频率下花键齿表面Si-DLC薄膜的硬度和弹性模量

  • Fig.14 Hardness and elastic modulus for Si-DLC films on spline tooth with different pulse frequency

  • 3 结论

  • (1)利用HCD-PECVD技术在大长径比内花键齿表面制备多层结构的Si-DLC薄膜。薄膜厚度一致,与基体间的界面平整,无分层等现象,相比于基材,Si-DLC薄膜能显著提高其表面硬度,达到7~11GPa,有效地提高了花键齿的耐磨性能。

  • (2)薄膜制备过程中,沉积气压及脉冲频率是影响内花键齿表面Si-DLC薄膜厚度、相结构及力学性能的重要参数。当沉积气压从8Pa增加到10Pa时,内花键齿齿顶、齿中及齿根三处位置的Si-DLC薄膜厚度均随之增加,而薄膜的硬度和弹性模量却随之降低,随着脉冲频率从300Hz增加到500Hz,内花键齿齿顶、齿中以及齿根三处位置的Si-DLC薄膜厚度均逐渐降低。

  • (3)增大沉积气压或者减小脉冲频率均可以提高花键齿廓方向上的薄膜均匀性,这是由等离子体密度升高使得靠近键齿表面的阴极鞘层厚度降低,减弱了鞘层之间的交叉重叠,提高了入射粒子均匀性所致。

  • 参考文献

    • [1] 王永亮,赵广,孙绪聪,等.航空花键研究综述[J].航空制造技术,2017(3):91-100.WANG Yongliang,ZHAO Guang,SUN Xucong,et al.Review on research of aviation spline[J].Aeronautical Manufacturing Technology,2017(3):91-100.(in Chinese)

    • [2] XUE X Z,WANG S M,LI B.Modification methodology of fretting wear in involute spline[J].Wear,2016,368-369:435-444.

    • [3] CURÀ F,MURA A,PSD Sevilla.Recent advances in spline couplings reliability[J].Procedia Structural Integrity,2019,19:328-335.

    • [4] 胡正根,朱如鹏,靳广虎,等.齿向分段抛物线修形对渐开线花键副微动磨损参数的影响[J].航空动力学报,2013,28(7):1644-1649.HU Zhenggen,ZHU Rupeng,JIN Guanghu,et al.Effect of axial piecewise parabolic modification of fretting wear parameters of involute spline couplings[J].Journal of Aerospace Power,2013,28(7):1644-1649.(in Chinese)

    • [5] CURÀ F,MURA A.Evaluation of the fretting wear damage on crowned splined couplings[J].Procedia Structural Integrity,2017,5:1393-1400.

    • [6] SCHAUBHUT A,SUOMI E,ESPINOSA P.Aircraft engine bearings and splines[R].Boston:Mechanics of Contact and Lubrication ME5656,Northeastern University,2009.

    • [7] KU P M,VALTIERRA M L.Spline wear-effects of design and lubrication[J].Journal of Engineering for Industry,1975,97(4):1257-1263.

    • [8] CHEN L Y,ZHAO Y,CHEN X,et al.Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating:Process,microstructure and properties[J].Ceramics International,2021,47(21):30113-30128.

    • [9] UEDA M,SILVA A R,PILLACA E J D M,et al.New possibilities of plasma immersion ion implantation(PIII)and deposition(PIII&D)in industrial components using metal tube fixtures[J].Surface and Coatings Technology,2017,312:37-46.

    • [10] 詹华.海洋大气环境用元素掺杂碳基薄膜结构设计与制备[D].北京:中国农业机械化科学研究院,2018.ZHAN Hua.Design and preparation of element doping carbon-based thin films for marine atmosphere environment applications[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2018.(in Chinese)

    • [11] DU D X,LIU D X,Y Z Y,et al.Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J].Applied Surface Science,2014,313:462-469.

    • [12] 魏荣华,李灿民.美国西南研究院等离子全方位离子镀膜技术研究及实际应用[J].中国表面工程,2012,25(1):1-10.WEI Ronghua,LI Canmin.Plasma immersion ion deposition research at SwRI and its practical applications [J].China Surface Engineering,2012,25(1):1-10.(in Chinese)

    • [13] NAKAZAWA H,KAMATA R,MIURA S,et al.Influence of duty ratio of pulsed bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition[J].Thin Solid Films,2013,539:134-138.

    • [14] NAKAZAWA H,MAGARA K,TAKAMI T,et al.Effects of source gases on the properties of silicon/nitrogenincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2017,636:177-182.

    • [15] ZHANG S,SUN D,FU Y.Toughening of hard nanostructural thin films:A critical review[J].Surface and Coatings Technology,2005,198(1-3):2-8.

    • [16] HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.

    • [17] LI L,GUO P,LIU L L,et al.Structural design of Cr/GLC films for high tribological performance in artificial seawater:Cr/GLC ratio and multilayer structure[J].Journal of Materials Science & Technology,2018,34(8):1273-1280.

    • [18] 孙薇薇,田修波,李慕勤,等.偏压对自源笼形空心阴极放电制备 Si-DLC 薄膜结构和性能的影响[J].中国表面工程,2019,32(3):69-79.SUN Weiwei,TIAN Xiubo,LI Muqin,et al.Effects of bias voltage on structure and property of Si-DLC films fabricated by self-source cage type hollow cathode discharge process[J].China Surface Engineering,2019,32(3):69-79.(in Chinese)

    • [19] ZHAO R,STEINER J,ANDREAS K,et al.Investigation of tribological behaviour of a-C:H coatings for dry deep drawing of aluminum alloys[J].Tribology International,2018,118:484-490.

    • [20] WANG X Y,SUI X D,ZHANG S T,et al.Effect of deposition pressures on uniformity,mechanical and tribological properties of thick DLC coatings inside a long pipe prepared by PECVD method[J].Surface and Coatings Technology,2019,375:150-157.

    • [21] KONG L G,ZHANG M L,WEI X B,et al.Observation of uniformity of diamond-like carbon coatings utilizing hollow cathode discharges inside metal tubes[J].Surface and Coatings Technology,2019,375:123-131.

    • [22] PILLACA E J D M,RAMÍRES M A,GUTIERREZ BERNAL J M,et al.DLC deposition inside of a long tube by using the pulsed-DC PECVD process[J].Surface and Coatings Technology,2019,359:55-61.

    • [23] WEI R H,RINCON C,BOOKER T L,et al.Magnetic field enhanced plasma(MFEP)deposition of inner surfaces of tubes[J].Surface and Coatings Technology,2004,188-189:691-696.

    • [24] MUHL S,PÉREZ A.The use of hollow cathodes in deposition process:A critical review[J].Thin Solid Films,2015,579:174-198.

    • [25] XU L,LI L H,LUO S D,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [26] BRIEHL B,URBASSEK H M.Plasma recovery in plasma immersion ion implantation:Dependence on pulse frequency and duty cycle[J].Journal of Physics D:Applied Physics,2002,35(5):462-467.

    • [27] LI Y,ZHENG B C,LEI M K.Plasma low-pressure nonsteady diffusion fluid model for pulsed plasma recovery[J].IEEE Transactions on Plasma Science,2013,41(1):43-48.

    • [28] SHIBATA Y,KIMURA T,NAKAO S,et al,Preparation of silicon-doped diamond-like carbon films with electrical conductivity by reactive high-power impulse magnetron sputtering combined with a plasma-based ion implantation system[J].Diamond & Related Materials,2020,101:107635.

    • [29] HIRATA Y,CHOI J.Structure and mechanical properties of a-C:H films deposited on a 3D target:comparative study on target scale and aspect ratio[J].Journal of Physics D:Applied Physics,2017,50(15):155204.

    • [30] 王浪平,王小峰,汤宝寅.等离子体浸没离子注入与沉积技术的发展及前沿问题[J].中国表面工程,2010,23(1):9-14.WANG Langping,WANG Xiaofeng,TANG Baoyin.The development and key problems of plasma immersion ion implantation and deposition[J].China Surface Engineering,2010,23(1):9-14.(in Chinese)

    • [31] VALENCIA F J,SANTIAGO J,RAQUEL GONZÁLEZARRABAL R,et al.Nanoindentation of Amorphous Carbon:A combined experimental and simulation approach[J].Acta Materialia,2021,203:116485.

  • 参考文献

    • [1] 王永亮,赵广,孙绪聪,等.航空花键研究综述[J].航空制造技术,2017(3):91-100.WANG Yongliang,ZHAO Guang,SUN Xucong,et al.Review on research of aviation spline[J].Aeronautical Manufacturing Technology,2017(3):91-100.(in Chinese)

    • [2] XUE X Z,WANG S M,LI B.Modification methodology of fretting wear in involute spline[J].Wear,2016,368-369:435-444.

    • [3] CURÀ F,MURA A,PSD Sevilla.Recent advances in spline couplings reliability[J].Procedia Structural Integrity,2019,19:328-335.

    • [4] 胡正根,朱如鹏,靳广虎,等.齿向分段抛物线修形对渐开线花键副微动磨损参数的影响[J].航空动力学报,2013,28(7):1644-1649.HU Zhenggen,ZHU Rupeng,JIN Guanghu,et al.Effect of axial piecewise parabolic modification of fretting wear parameters of involute spline couplings[J].Journal of Aerospace Power,2013,28(7):1644-1649.(in Chinese)

    • [5] CURÀ F,MURA A.Evaluation of the fretting wear damage on crowned splined couplings[J].Procedia Structural Integrity,2017,5:1393-1400.

    • [6] SCHAUBHUT A,SUOMI E,ESPINOSA P.Aircraft engine bearings and splines[R].Boston:Mechanics of Contact and Lubrication ME5656,Northeastern University,2009.

    • [7] KU P M,VALTIERRA M L.Spline wear-effects of design and lubrication[J].Journal of Engineering for Industry,1975,97(4):1257-1263.

    • [8] CHEN L Y,ZHAO Y,CHEN X,et al.Repair of spline shaft by laser-cladding coarse TiC reinforced Ni-based coating:Process,microstructure and properties[J].Ceramics International,2021,47(21):30113-30128.

    • [9] UEDA M,SILVA A R,PILLACA E J D M,et al.New possibilities of plasma immersion ion implantation(PIII)and deposition(PIII&D)in industrial components using metal tube fixtures[J].Surface and Coatings Technology,2017,312:37-46.

    • [10] 詹华.海洋大气环境用元素掺杂碳基薄膜结构设计与制备[D].北京:中国农业机械化科学研究院,2018.ZHAN Hua.Design and preparation of element doping carbon-based thin films for marine atmosphere environment applications[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2018.(in Chinese)

    • [11] DU D X,LIU D X,Y Z Y,et al.Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J].Applied Surface Science,2014,313:462-469.

    • [12] 魏荣华,李灿民.美国西南研究院等离子全方位离子镀膜技术研究及实际应用[J].中国表面工程,2012,25(1):1-10.WEI Ronghua,LI Canmin.Plasma immersion ion deposition research at SwRI and its practical applications [J].China Surface Engineering,2012,25(1):1-10.(in Chinese)

    • [13] NAKAZAWA H,KAMATA R,MIURA S,et al.Influence of duty ratio of pulsed bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition[J].Thin Solid Films,2013,539:134-138.

    • [14] NAKAZAWA H,MAGARA K,TAKAMI T,et al.Effects of source gases on the properties of silicon/nitrogenincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2017,636:177-182.

    • [15] ZHANG S,SUN D,FU Y.Toughening of hard nanostructural thin films:A critical review[J].Surface and Coatings Technology,2005,198(1-3):2-8.

    • [16] HOGMARK S,JACOBSON S,LARSSON M.Design and evaluation of tribological coatings[J].Wear,2000,246(1-2):20-33.

    • [17] LI L,GUO P,LIU L L,et al.Structural design of Cr/GLC films for high tribological performance in artificial seawater:Cr/GLC ratio and multilayer structure[J].Journal of Materials Science & Technology,2018,34(8):1273-1280.

    • [18] 孙薇薇,田修波,李慕勤,等.偏压对自源笼形空心阴极放电制备 Si-DLC 薄膜结构和性能的影响[J].中国表面工程,2019,32(3):69-79.SUN Weiwei,TIAN Xiubo,LI Muqin,et al.Effects of bias voltage on structure and property of Si-DLC films fabricated by self-source cage type hollow cathode discharge process[J].China Surface Engineering,2019,32(3):69-79.(in Chinese)

    • [19] ZHAO R,STEINER J,ANDREAS K,et al.Investigation of tribological behaviour of a-C:H coatings for dry deep drawing of aluminum alloys[J].Tribology International,2018,118:484-490.

    • [20] WANG X Y,SUI X D,ZHANG S T,et al.Effect of deposition pressures on uniformity,mechanical and tribological properties of thick DLC coatings inside a long pipe prepared by PECVD method[J].Surface and Coatings Technology,2019,375:150-157.

    • [21] KONG L G,ZHANG M L,WEI X B,et al.Observation of uniformity of diamond-like carbon coatings utilizing hollow cathode discharges inside metal tubes[J].Surface and Coatings Technology,2019,375:123-131.

    • [22] PILLACA E J D M,RAMÍRES M A,GUTIERREZ BERNAL J M,et al.DLC deposition inside of a long tube by using the pulsed-DC PECVD process[J].Surface and Coatings Technology,2019,359:55-61.

    • [23] WEI R H,RINCON C,BOOKER T L,et al.Magnetic field enhanced plasma(MFEP)deposition of inner surfaces of tubes[J].Surface and Coatings Technology,2004,188-189:691-696.

    • [24] MUHL S,PÉREZ A.The use of hollow cathodes in deposition process:A critical review[J].Thin Solid Films,2015,579:174-198.

    • [25] XU L,LI L H,LUO S D,et al.Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube[J].Applied Surface Science,2017,393:467-473.

    • [26] BRIEHL B,URBASSEK H M.Plasma recovery in plasma immersion ion implantation:Dependence on pulse frequency and duty cycle[J].Journal of Physics D:Applied Physics,2002,35(5):462-467.

    • [27] LI Y,ZHENG B C,LEI M K.Plasma low-pressure nonsteady diffusion fluid model for pulsed plasma recovery[J].IEEE Transactions on Plasma Science,2013,41(1):43-48.

    • [28] SHIBATA Y,KIMURA T,NAKAO S,et al,Preparation of silicon-doped diamond-like carbon films with electrical conductivity by reactive high-power impulse magnetron sputtering combined with a plasma-based ion implantation system[J].Diamond & Related Materials,2020,101:107635.

    • [29] HIRATA Y,CHOI J.Structure and mechanical properties of a-C:H films deposited on a 3D target:comparative study on target scale and aspect ratio[J].Journal of Physics D:Applied Physics,2017,50(15):155204.

    • [30] 王浪平,王小峰,汤宝寅.等离子体浸没离子注入与沉积技术的发展及前沿问题[J].中国表面工程,2010,23(1):9-14.WANG Langping,WANG Xiaofeng,TANG Baoyin.The development and key problems of plasma immersion ion implantation and deposition[J].China Surface Engineering,2010,23(1):9-14.(in Chinese)

    • [31] VALENCIA F J,SANTIAGO J,RAQUEL GONZÁLEZARRABAL R,et al.Nanoindentation of Amorphous Carbon:A combined experimental and simulation approach[J].Acta Materialia,2021,203:116485.

  • 手机扫一扫看