en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑丽丽(通信作者),女,博士,教授,博士研究生导师。主要研究方向为热科学在材料制备中的应用,包括等离子体喷涂、晶体生长等。E-mail:zhenglili@tsinghua.edu.cn

中图分类号:V261

DOI:10.11933/j.issn.1007−9289.20211108001

参考文献 1
LIMA R S,MARPLE B R.Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural,thermal barrier and biomedical applications:A review[J].Journal of Thermal Spray Technology,2007,16(1):40-63.
参考文献 2
FAUCHAIS P,MONTAVON G,LIMA R S,et al.Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles,suspensions and solutions:An invited review[J].Journal of Physics D Applied Physics,2011,44(9):885-896.
参考文献 3
周洪,李飞,何博,等.等离子喷涂热障涂层的隔热性分析[J].中国有色金属学报,2007,17(10):1609-1615.ZHOU Hong,LI Fei,HE Bo,et al.Analyses on thermal barrier effects of zirconia based thermal barrier coating[J].The Chinese Journal of Nonferrous Metals,2007,17(10):1609-1615.(in Chinese).
参考文献 4
王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程 2019,32(1):88-97.WANG Dafeng,MA Bing,CHENG Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)
参考文献 5
曹玉杰,刘友好,张鹏杰,等.纳米 CeO2 掺杂对烧结钕铁硼磁体表面Zn-Al涂层性能的影响[J].中国表面工程,2020,33(6):100-107.CAO Yujie,LIU Youhao,ZHANG Pengjie,et al.Effects of CeO2 nanoparticles doping on properties of Zn-Al coating on sintered NnFeB magnets[J].China Surface Engineering,2020,33(6):100-107.(in Chinese).
参考文献 6
GELL M,JORDAN E H,SOHN Y H,et al.Development and implementation of plasma sprayed nanostructured ceramic coatings[J].Surface & Coatings Technology,2001,146:48-54.
参考文献 7
邵宇轩,王磊,杨勇,等.纳米 Al2O3 对等离子喷涂 ZrC-ZrSi2 复合涂层结构与性能的影响[J].中国表面工程,2021,34(4):30-37.SHAO Yuxuan,WANG Lei,YANG Yong,et al.Effects of nano-Al2O3 on the microstructure and properties of ZrC-ZrSi2 composite coating prepared by plasma spraying [J].China Surface Engineering,2021,34(4):30-37.(in Chinese)
参考文献 8
RACEK O,BERNDT C C,GURU D N,et al.Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J].Surface & Coatings Technology,2006,201(1-2):338-346.
参考文献 9
GHASEMI R,VAKILIFARD H.Plasma-sprayed nanostructured YSZ thermal barrier coatings:Thermal insulation capability and adhesion strength[J].Ceramics International,2017,43:8556-8563.
参考文献 10
周莉,白宇,唐健江,等.纳米及传统微米级热障涂层热循环过程中的组织演变研究[J].热喷涂技术,2013,5(1):16-21.ZHOU Li,BAI Yu,TANG Jianjiang,et al.Study on the microstructure evolution of nano and micron-size thermal barrier coatings during thermal cycling[J].Thermal Spray Technology,2013,5(1):16-21.(in Chinese)
参考文献 11
LIMA R S,MARPLE B R.Toward highly sinteringresistant nanostructured ZrO2-7wt.%Y2O3 coatings for TBC applications by employing differential sintering[J].Journal of Thermal Spray Technology,2008,17(5-6):846-852.
参考文献 12
LIMA R S,MARPLE B R.Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J].Materials Science & Engineering A,2008,485(1-2):182-193.
参考文献 13
张红松,刘振启,关绍康.等离子喷涂纳米与微米YSZ热障涂层的孔隙结构比较[J].表面技术,2010,39(5):4-7.ZHANG Hongsong,LIU Zhenqi,GUAN Shaokang.Comparison of pore structure between plasma-sprayed nano-YSZ and micron-YSZ thermal barrier coatings[J].Surface Technology,2010,39(5):4-7.(in Chinese)
参考文献 14
JAMALI H,MOZAFARINIA R,RAZAVI R S,et al.Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].Ceramics International,2012,38(8):6705-6712.
参考文献 15
王斌利,常羽彤,黄宝庆,等.纳米YSZ热障涂层组织结构及性能分析[J].热喷涂技术,2015,7(3):8-12,7.WANG Binli,CHANG Yutong,HUANG Baoqing,et al.the microstructure and properties of the nanometer zirconia thermal barrier coating[J].Thermal Spray Technology,2015,7(3):8-12,7.(in Chinese)
参考文献 16
JING W,GUO H B,LE Z,et al.Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J].Journal of Thermal Spray Technology,2010,19(6):1186-1194.
参考文献 17
GKOMOZA P,VARDAVOULIAS M,PANTELIS D I,et al.Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder,for applications in medical implants[J].Surface and Coatings Technology,2018,357(16):748-758.
参考文献 18
JORDAN E H,GELL M,SOHN Y H,et al.Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties[J].Materials Science & Engineering A,2001,301(1):80-89.
参考文献 19
GOBERMAN D,SOHN Y H,SHAW L,et al.Microstructure development of Al2O3-13wt.% TiO2 plasma sprayed coatings derived from nanocrystalline powders[J].Acta Materialia,2002,50(5):1141-1152.
参考文献 20
MANTRY S,MISHRA B K,CHAKRABORTY M.Parametric appraisal of process parameters for adhesion of plasma sprayed nanostructured YSZ coatings using taguchi experimental design[J].The Scientific World Journal,2013,2013:527491.
参考文献 21
WANG J,SUN J,ZHANG H,et al.Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J].Journal of Alloys & Compounds,2017:730:471-482.
参考文献 22
赵岩,高阳,刘久成,等.等离子喷涂纳米结构YSZ涂层的结构与性能[J].中国表面工程,2016,29(4):96-102.ZHAO Yan,GAO Yang,LIU Jiucheng,et al.Structure and properties of plasma sprayed nanostructured YSZ coatings[J].China Surface Engineering,2016,29(4):96-102.(in Chinese)
参考文献 23
赵岩,高阳.低压等离子喷涂纳米YSZ涂层的结构及力学性能[J].中国表面工程,2016,29(2):91-97.ZHAO Yan,GAO Yang.Microstructure and mechanical properties of low pressure plasma sprayed nanostructuredYSZ coating[J].China Surface Engineering,2016,29(2):91-97.(in Chinese)
参考文献 24
付倩倩,通雁鹏,赵海燕.超音速等离子喷涂粒子飞行特性对纳米YSZ涂层性能的影响[J].金属热处理,2017,42(8):135-141.FU Qianqian,TONG Yanpeng,ZHAO Haiyan.Effect of particle in-flight characteristics during supersonic atmospheric plasma spraying on properties of nanostructured YSZ coatings[J].Heat Treatment of Metals,2017,42(8):135-141(in Chinese).
参考文献 25
丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al.Analysis of YSZ effective thermal conductivity based on fractal theory [J].China Surface Engineering,2020,33(3):104-10.(in Chinese)
参考文献 26
ETTOUIL F B,PATEYRON B,AGEORGES H,et al.Fast modeling of phase changes in a particle injected within a d.c plasma jet[J].Journal of Thermal Spray Technology,2007,16:744-50.
参考文献 27
ETTOUIL F B,MAZHOROVA O,PATEYRON B,et al.Predicting dynamic and thermal histories of agglomerated particles injected within a d.c.plasma jet[J].Surface and Coatings Technology,2008,202:4491-4495.
参考文献 28
BOBZIN K,ÖTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.
参考文献 29
BOBZIN K,ÖTE M,KNOCH M A,et al.macroscopic modeling of an agglomerated and sintered particle in air plasma spraying[J].Journal of Thermal Spray Technology,2020,29:13-24.
参考文献 30
XIONG H,ZHENG L,LI L,et al.Melting and oxidation behavior of in-flight particles in plasma spray process[J].International Journal of Heat and Mass Transfer,2005,48(25):5121-5133.
参考文献 31
ZHAO L,BAI Y,TANG J J,et al.Effect of particle in-flight behavior on the composition of thermal barrier coatings[J].Applied Surface Science,2013,286:184-191.
参考文献 32
LIU K,TANG J,BAI Y,et al.Particle in-flight behavior and its influence on the microstructure and mechanical property of plasma sprayed La2Ce2O7 thermal barrier coatings[J].Materials Science and Engineering:A,2015,625:177-85.
参考文献 33
XIONG H,ZHENG L,SAMPATH S,et al.Three-dimensional simulation of plasma spray:effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior[J].International Journal of Heat and Mass Transfer,2004,47(24):5189-200.
参考文献 34
王东生,田宗军,沈理达,等.等离子喷涂纳米团聚体粉末熔化过程数值模拟[J].中国机械工程,2009,10(4):417-422.WANG Dongsheng,TIAN Zongjun,SHEN Lida,et al.Numerical simulation of nanostructured agglomerated powder melting process during plasma spraying[J].China Mechanical Engineering,2009,10(4):417-422.(in Chinese)
参考文献 35
付文强,高辉,薛征欣,等.多孔材料有效导热系数的实验和模型研究[J].中国测试,2016,42(5):124-130.FU Wenqiang,GAO Hui,XUE Zhengxin,et al.Experimental measurement and calculation of thermal conductivity of porous material[J].China Measurement & Test,2016,42(5):124-130.(in Chinese)
目录contents

    摘要

    在热喷涂制备微米 / 纳米双结构涂层的工艺优化研究中缺乏对颗粒状态与喷涂工艺和涂层结构性能之间关系的综合分析。针对大气等离子喷涂制备双模态微观结构的热障涂层过程开展工艺参数优化研究。首先基于试验测量和数值仿真模拟所获得的颗粒状态以及射流信息,计算可表征飞行粒子受热状态的熔融因子分布,同时开展试验研究获得给定喷涂工况下涂层微观结构和沉积效率。最后以熔融因子为中间参数,研究并建立喷涂工艺-飞行粒子状态-涂层结构特性相关关系。结果表明, 数值仿真模拟得到的纳米团聚颗粒状态与试验测量结果基本一致。纳米结构涂层微观结构主要缺陷为未熔纳米团聚粒子及微裂纹。在纳米结构涂层制备过程中,随着喷涂距离增加,飞行粒子的熔融因子先增大后减小,涂层沉积效率先增加后降低, 孔隙率和未熔粒子数则先减小后增大。主气流量的增加则会导致熔融因子减小。在喷涂功率相近情况下,采用低电流高电压的组合会使得飞行粒子熔融因子分布取值较大,进而使得涂层沉积效率增加、孔隙率降低。使用熔融因子分析喷涂工艺参数对纳米团聚粉末颗状态和涂层结构特性的影响关系,可用于指导纳米双结构涂层制备过程工艺控制。

    Abstract

    In the study of process parameters optimization of nanostructured coating prepared by thermal spraying, comprehensive analysis of the relationship among particle status, spraying parameters, and coating properties is lacking.The process parameter optimization is carried out for the preparation of nanostructured YSZ coatings by atmospheric plasma spraying. Based on the particle state and jet information obtained by experimental measurement and numerical simulation, the melting index (M.I.) distribution that can characterize the heating state of in-flight particles is calculated. Experimental research is carried out to obtain the coating microstructure and deposition efficiency under given spraying conditions. M.I. is used as an intermediate parameter to study and establish the correlation between process parameters, in-flight particle states, and coating characteristics. The results show that the state of nano-agglomerated particles obtained by numerical simulation is consistent with the experimental measurement results. The main defects in the microstructure of nanostructured coatings are un-melted nano-agglomerated particles and microcracks. During the preparation of nanostructured coatings, as the spraying distance increases, M.I. of in-flight particles and the coating deposition efficiency first increase and then decrease, and the porosity and the number of un-melted particles first decrease and then increase. The increase of argon flow rate can lead to the decrease of M.I.. When the spraying power is similar, the combination of relatively low current and high voltage can make M.I. distribution of in-flight particles larger, which can increase the deposition efficiency and reduce the porosity of coatings. The effects of spraying parameters on agglomerated particle status and coating characteristics are analyzed by M.I., which can be used to guide the process optimization of nanostructured coatings.

  • 0 前言

  • 在涂层生产制备过程中通过采用纳米团聚粉末,可以在工件表面得到纳米结构涂层。相比于采用常规粉末制备的涂层,纳米结构涂层具有双模态的微观结构,从而使得涂层在耐高温、抗磨损、可磨耗、生物相容性等方面具有更好的可塑性[1-3]。纳米结构WC-CoCr涂层呈现低脱碳率、高致密性等优良综合性能[4]。纳米CeO2 掺杂提升了Zn-Al涂层的耐腐蚀性[5]。具有双模态微观结构的氧化铝涂层相比于常规氧化铝涂层有更好的耐磨性、更高的结合强度和韧性[6],纳米Al2O3 提升了ZrC-ZrSi2 涂层的致密度[7]。由于未熔纳米颗粒的存在,纳米结构YSZ涂层在受外力时变形更加均匀,从而抑制了涂层服役时裂纹的生长[7-10]。同时,纳米结构YSZ涂层能够更好地应对高温服役环境,其中未完全熔融粒子明显的烧结效应使得涂层内部孔隙率增加,热导率降低,隔热性能增加[11-13],并且能提高涂层的抗热震性能[14-15],提高热循环寿命[16]。除此,双模态微观结构的存在也进一步提升了羟基磷灰石涂层的生物相容性[17]。由此可见,具有双模态微观结构的涂层在多方面优于常规微米涂层,而如何更好地控制纳米团聚粒子的状态进而控制涂层的微观结构及性能对纳米结构涂层的实际应用至关重要。

  • 许多研究通过试验设计或数值仿真模拟分析纳米结构涂层制备过程中喷涂工艺参数对纳米团聚颗粒状态以及纳米结构涂层性能的影响关系,进而优化喷涂工艺参数。GELL等[6, 18-19]采用临界等离子喷涂参数CPSP,建立纳米结构涂层微观结构、相成分和喷涂工艺参数的内在关系,基于CPSP参数优化控制涂层内的晶粒尺寸以及微观结构。MANTRY等[20]采用田口试验设计方法对比等离子喷涂制备纳米YSZ涂层中喷枪功率、喷涂距离等工艺参数对涂层结合强度影响的重要程度,提出增加涂层结合强度所需要的工艺参数。WANG等[21]分析等离子喷涂制备YSZ涂层中喷枪功率对涂层微观结构及性能的影响,发现减小喷涂功率会使涂层中纳米结构占比及孔隙率增加、结合强度增加和显微硬度降低。赵岩等[22-23]分析喷涂电流、热处理时间对等离子喷涂制备YSZ涂层过程影响,发现增加喷涂电流,能增大涂层平均晶粒尺寸、降低孔隙率。付倩倩等[24] 研究超音速等离子喷涂制备纳米结构涂层中喷涂工艺参数对飞行粒子温度、速度以及熔融因子影响,发现喷涂工艺参数会引起涂层微观结构及隔热性能的变化,飞行粒子在处于中温中速区时涂层的综合性能最好。丁坤英等[25]基于分形方法优化热导率与涂层孔隙的定量关系,并通过聚苯酯粉末控制涂层的孔隙率。ETTOUIL等[26-27]和BOBZIN等[28-29]通过数值模拟预测喷涂过程中飞行粒子温度、熔化程度以及速度随着喷涂距离的变化情况,从而为控制粒子飞行状态以及涂层内部纳米结构提供依据和指导。

  • XIONG等[30]针对常规YSZ涂层的制备过程,细化了熔融因子参数,将飞行颗粒的数值模拟结果和试验数据相结合,从而更全面地描述颗粒在飞行过程中的状态,并发现飞行颗粒熔融因子分布与涂层沉积效率、孔隙率等结构性能呈现很好的相关性[31-32]。因此,为了更好地对纳米结构涂层制备过程进行优化分析,利用熔融因子将纳米团聚颗粒的试验观测数据和模拟结果结合并与涂层结构特性数据相关联,从而建立纳米结构涂层制备过程中喷涂工艺参数飞行粒子状态-涂层结构特性的影响关系。

  • 本文针对纳米结构涂层制备过程,建立喷涂工艺参数、纳米团聚颗粒和涂层结构特性相关关系,实现对喷涂工艺参数的优化。首先构建描述纳米团聚粉末喷涂过程的物理和数值模型,并设计试验对数值模拟得到的纳米团聚颗粒状态进行对比验证。然后利用试验测量和数值模拟得到的颗粒和流场数据计算纳米团聚颗粒的熔融因子分布。之后基于熔融因子分析不同喷涂工艺参数对团聚颗粒状态和涂层沉积特性的影响。最后,根据不同喷涂工况下熔融因子的分布情况确定喷涂工艺参数组合。

  • 1 试验准备

  • 本研究采用大气等离子喷涂技术制备纳米结构YSZ涂层。使用的喷涂粉末为8YSZ纳米团聚粉末,其微观结构见图1和图2。利用激光粒度仪(LS13320)测得粉末粒径范围为35~65 μm(具体分布见图3)。 YSZ粉末材料的物性参数在表1中列出[33]。研究中采用的衬底材料为镍基高温合金,尺寸为25mm× 13mm×1.5mm。在喷涂试验中,使用SprayWatch (Oseir Ltd, Finland)测量飞行粒子的状态参数,主要包括在一定喷涂距离下飞行颗粒的平均温度和平均速度。表2为研究中采用的喷涂基础工艺参数。

  • 图1 YSZ纳米团聚粉末微观形貌

  • Fig.1 Micro morphology of agglomerated YSZ powder

  • 图2 YSZ纳米团聚颗粒微观形貌

  • Fig.2 Micro morphology of agglomerated particle

  • 图3 YSZ纳米团聚粉末粒径分布

  • Fig.3 Particle size distribution of agglomerated YSZ powder

  • 表1 YSZ粉末材料物性参数

  • Table1 Physical properties of YSZ particle

  • 表2 等离子喷涂基础工艺参数

  • Table2 Basic process parameters of plasma spraying

  • 涂层表征包括涂层沉积效率、孔隙率以及内部的未熔粒子数。其中通过涂层试样在喷涂前后的质量之差得到沉积在试样表面的粉末质量,通过喷涂时长和送粉率得到使用的涂层粉末,从而得到涂层的喷涂效率。利用压汞法(AutoPore IV 9500)测量涂层的孔隙率及孔径分布。对涂层样品的横截面抛光处理后,使用扫描电子显微镜(Zeiss SEM)观测涂层的微观结构,使用软件ImageJ(National Institutes of Health)分析涂层图片得到涂层孔隙率,并观察未熔粒子分布。

  • 2 物理和数学模型及计算方法

  • 等离子喷涂的数值仿真模拟主要包括喷枪中电弧以及等离子体射流的产生,飞行粒子与等离子体射流相互作用,熔融液滴与衬底碰撞变形凝固和沉积。本工作使用LAVA-P-3D数值仿真软件,主要对等离子体射流和飞行粒子的状态开展数值仿真模拟,预测粒子在飞行过程中的运动和受热状态变化情况。

  • 2.1 等离子体射流模型

  • 等离子体射流是高温多组分湍流反应流,假设其具有局部热力学平衡特性,满足理想气体状态方程,其热力学和传输特性依赖于射流温度。等离子射流方程主要包括质量方程、动量方程、能量方程、组分当量方程和理想气体状态方程[33]

  • 质量方程:

  • ρt+(ρu)=0
    (1)
  • 式中, ρ 表示射流气体密度, u 表示射流气体速度矢量。

  • 动量方程:

  • t(ρu)+(ρuu)=-p+23ρk+σ+F
    (2)
  • F=mpdUpdt
    (3)
  • 式中, F 表示由颗粒引起的受力源项, k 表示平均湍动能,σ 表示黏性应力张量,p 表示压力。m p 表示颗粒的质量,U p 表示颗粒的速度。

  • 能量方程:

  • t(ρe)+(ρeu)=-pu-q+ρε+Q˙c-Q˙R+Q˙p
    (4)
  • 式中,e 表示内能,q 表示热流矢量,ε 表示黏性耗散率,Q˙c 表示化学反应引起的热量变化率,Q˙R表示辐射引起的热量损失率,Q˙p表示入射颗粒带来的热量源项。

  • 组分方程:

  • tρYi+ρuYi=-Ji+Ri
    (5)
  • 式中,Yi表示不同组分质量浓度,Ji 表示组分质量扩散通量,Ri 表示化学反应引起的组分变化率。

  • 气体状态方程:

  • p=RTρiMi
    (6)
  • 式中,R 为摩尔气体常数,T 为温度,Mi 为不同组分气体摩尔质量。

  • 2.2 颗粒与射流之间相互作用模型

  • 飞行粒子与高温等离子体射流之间发生相互作用,颗粒由于受到射流带来的黏性阻力而改变速度,同时颗粒和射流之间存在对流传热而引起温度变化,其温度和速度变化通过下述方程进行描述。

  • 颗粒速度方程:

  • dUpdt=38ρ-ρpCDrpU~+U'-UpU~+U'-Up
    (7)
  • 式中,ρ-为等离子体射流密度,ρp 为飞行颗粒密度, r p 为粒子半径,C D 表示阻力系数,U~U'表示等离子体射流速度的时均值和波动值。

  • 研究中假设飞行颗粒为理想球形,其内部传热采用一维热传导模型,颗粒温度方程:

  • ρpcpTt=1r2rkpr2Tr
    (8)
  • 式中,c p 为颗粒的比热容,k p 为颗粒的热导率。

  • 2.3 数值计算方法

  • 使用LAVA-P-3D软件对方程 (1)~(8)进行联立求解[33],通过数值模拟预测得到射流和飞行颗粒的温度、速度。其中等离子体射流的模拟是基于三维计算区域,从喷枪出口处开始射流的温度场和速度场模拟,其温度和速度分布与工作气体的流量、焓值相匹配。飞行颗粒温度方程求解基于一维对称区域,在颗粒表面考虑对流换热和辐射换热,在颗粒内部忽略熔融部分的对流换热。对于上述等离子体射流和颗粒的控制方程基于有限体积法进行离散求解。

  • 本文中采用的是纳米团聚颗粒,在数值模拟时物性参数中的比热容、密度根据式(9)和(10)进行修正[34],导热系数根据式(11)进行修正[35],其中α 为纳米团聚粉末的孔隙率,可以根据粉末流动密度的变化推算得出。

  • cp,eff=cp,s(1-α)
    (9)
  • ρeff=ρS(1-α)
    (10)
  • keff=ks1-α1+0.5α
    (11)
  • 式中,cp,sρsks 分别为粉末材料的比热容、密度和热导率,cp,effρeffkeff分别为考虑纳米团聚粉末孔隙率后的有效物性参数。

  • 3 结果与讨论

  • 基于表2中的等离子喷涂基础工艺参数,本文将喷枪电流、喷枪电压、喷涂距离、主气流量作为主要研究工艺参数,表3为喷涂参数的取值范围。

  • 表3 等离子喷涂主要工艺参数取值范围

  • Table3 Range of process parameters of plasma spraying

  • 3.1 数值模拟和试验验证

  • 基于表3中的喷涂参数取值范围以及正交试验设计得到9组等离子喷涂工况,如表4所示。在设定的喷涂工况下,通过LAVA-P-3D软件模拟预测飞行颗粒的温度和速度,并在喷涂试验中使用SprayWatch测量飞行粒子的温度、速度,从而对模拟结果进行对比验证。图4为SprayWatch监测的飞行粒子状态数据与对应的数值仿真模拟结果,数据分别为在一定喷涂距离位置的多个粉末颗粒温度/速度的测量结果和模拟结果平均值。可以看出测量得到的颗粒状态数据与模拟结果基本一致,其中温度的相对误差低于4%,速度的相对误差低于5%。

  • 表4 喷涂工况主要工艺参数组合

  • Table4 Combination of process parameters in spraying

  • 图4 SprayWatch监测颗粒状态和模拟结果对比

  • Fig.4 Comparison of particle status obtained by SprayWatch and simulation

  • 3.2 纳米结构涂层与常规涂层对比

  • 在基础工况下使用纳米团聚粉末和中空粉末通过大气等离子喷涂制备了纳米结构YSZ涂层和常规YSZ涂层。图5为纳米结构YSZ涂层和常规YSZ涂层的横截面微观结构图,利用ImageJ图像处理软件以及压汞法得到了两种涂层的孔隙率,其中纳米结构YSZ涂层的孔隙率为5.05%,常规YSZ涂层的孔隙率为10.84%,纳米结构YSZ涂层的孔隙率较低。对比两种涂层微观结构可以看出,纳米结构涂层中的主要结构缺陷为未熔纳米团聚粒子及微裂纹,而常规涂层中主要的结构缺陷为孔隙和微裂纹。这主要是由于中空粉末内部的孔导致涂层的孔隙率增大,纳米团聚颗粒中未完全熔化的部分则导致涂层内主要的结构缺陷为未熔融粒子。

  • 图5 纳米结构涂层与常规涂层微观结构图

  • Fig.5 Microstructure of nanostructured coating and conventional coating

  • 3.3 喷涂工艺参数的影响

  • 研究中采用熔融因子(Melting index, M.I.)表征飞行粒子在等离子体射流中的综合状态,熔融因子定义为飞行粒子在等离子体射流中的飞行时间与完全熔化所需要的时间之比,可通过能量分析的角度得到熔融因子关于飞行粒子表面温度、速度和尺寸的表达式[30],在给定喷涂距离 S 时,通过试验测量得到飞行颗粒的温度和速度,通过数值模拟得到飞行颗粒的温度、速度和尺寸以及参数A和毕渥数 Bi。然后利用验证后的模拟数据计算得到多颗粒的熔融因子,进而得到喷涂截面上飞行颗粒熔融因子平均值。

  • M.I.=Δtfly Δtmelt=A12k1ρpLm11+2/BiTs-TmSrp2up
    (12)
  • 式中,A=Tf-Tm/Ts-TmT f 为等离子体射流温度,T s 为飞行粒子温度,T m 为粒子熔点温度,S 为粒子的飞行距离。

  • 下面针对主要的喷涂工艺参数即喷枪电压、喷枪电流、喷涂主气流量、喷涂距离对飞行颗粒熔融因子以及涂层沉积特性的影响进行分析讨论。图6显示的是在基础喷涂工况条件下改变喷涂距离,飞行粒子熔融状态和涂层沉积特性的变化趋势。其中熔融因子通过数值模拟和试验结果根据式(12)计算得到,涂层的沉积效率和孔隙率通过试验测量得到。从图中可以看出,飞行粒子熔融因子的分布随着喷涂距离的增加而增大,在达到峰值后,再随着喷涂距离的增加而减小。试验测量得到的粒子沉积效率随着喷涂距离先增加后减小,同时涂层的孔隙率随着喷涂距离先减小后增大。图7是喷涂距离分别为62mm、76mm和86mm时得到的涂层SEM结构图,图中的箭头指向未熔粒子区域。涂层中未熔粒子的数量随着喷涂距离的增加而增大,即飞行粒子熔化程度是逐渐降低的,并且涂层微观结构中的主要缺陷由微裂纹和小孔转变为未熔粒子。

  • 因此,在等离子喷涂中飞行粒子的熔融因子分布是随着喷涂距离先增大后减小,存在一个最佳喷涂距离使得熔融因子取得最大值,此处涂层的沉积效率达到最大[30],涂层孔隙率和未熔粒子数则最小。针对上述的基础喷涂工况下,通过熔融因子分布可以得出其对应的最佳喷涂距离为62mm。

  • 图6 熔融因子、沉积效率和孔隙率随喷涂距离变化

  • Fig.6 Distribution of melting index, deposition efficiency and porosity with spraying distance

  • 图7 涂层内未熔粒子随喷涂距离的变化

  • Fig.7 Variation of un-melted particles in coating with spraying distance

  • 图8 显示的是在基础喷涂工况条件下改变主气流量,飞行颗粒熔融状态以及涂层沉积特性的变化情况,本文采用的喷涂主气流量为22L/min、27L/min和32L/min,其中喷涂距离为85mm。从图中可以看出,随着主气流量的增加,飞行粒子熔融因子数值逐渐减小,同时涂层的沉积效率逐渐降低,而得到的涂层孔隙率逐渐增加。图9为试验中采用三种主气流量得到的涂层微观结构图,从图中可以看出,涂层中未熔粒子的数量分别为2、7、10,随着喷涂主气流量的增加而增加。并且在主气流量为22L/min时,涂层主要的结构缺陷为微裂纹和小孔,在增加到32L/min时,涂层中主要的缺陷为未熔的纳米颗粒,即飞行粒子熔化程度随主气流量的增加而降低。

  • 分析可以得出,随着喷涂主气流量变化,飞行粒子的熔融因子的变化趋势与涂层沉积效率变化趋势相反,与涂层的孔隙率变化趋势相同。在研究范围内采用主气流量为22L/min可以使涂层的沉积效率最高,并使涂层中的未熔粒子数降低,从而获得较为致密的涂层。

  • 图8 熔融因子、沉积效率和孔隙率随主气流量变化

  • Fig.8 Distribution of melting index, deposition efficiency and porosity with Ar flow rate

  • 图9 涂层内未熔粒子随主气流量的变化

  • Fig.9 Variation of un-melted particles in coating with Ar flow rate

  • 图10 显示的是在基础喷涂工况条件下改变喷枪电流,飞行粒子熔融状态以及涂层沉积特性的变化情况,本文采用的喷枪电流分别为550A、600A和650A,其中喷涂距离为85mm。从图中可以看出,随着喷枪电流的增加,飞行粒子熔融因子的分布取值先增大后减小,同时粒子的沉积效率稍有增大而后减小,涂层孔隙率则是先减小后增大。从整体分布上看飞行粒子的熔融因子、涂层沉积效率以及涂层孔隙率变化幅度均比较小。因此,喷枪电流在研究的变化范围内对粒子熔融状态和涂层沉积特性的影响较小。图11为喷涂时采用不同喷涂电流得到的涂层微观结构图,可以看出涂层中未熔粒子数量在电流为600A时稍有减少,涂层中结构缺陷最少,结构缺陷主要为未熔粒子。在电流为550A和650A时,涂层结构缺陷主要为未熔粒子和小孔。

  • 图10 熔融因子、沉积效率和孔隙率随喷枪电流变化

  • Fig.10 Distribution of melting index, deposition efficiency and porosity with spray gun current

  • 图11 涂层内未熔粒子随喷枪电流的变化

  • Fig.11 Variation of un-melted particles in coating with current

  • 通过分析可以看出,在设定范围内喷枪电流变化对飞行粒子状态以及涂层沉积特性变化的影响较小。对比三组数据可以得到,在喷枪电流为600A时,飞行粒子的熔融因子值较大,涂层沉积效率最大,同时涂层结构中缺陷最少,涂层致密性最好。

  • 图12 显示的是在基础喷涂工况条件下改变喷枪电压,飞行粒子熔融状态以及涂层沉积特性的变化情况,本文采用的喷枪电压分别为70V、75V和80V,其中喷涂距离为85mm。可以看出,随着喷枪电压增加,飞行粒子熔融因子数值增加,涂层的沉积效率增加,同时涂层的孔隙率降低。图13为喷涂中采用不同喷涂电压得到的涂层微观结构图,可以看出涂层微观结构中未熔粒子数量随着喷枪电压变化呈现下降的趋势,同时涂层中的裂纹数量也逐渐减少。通过对三组数据进行对比得到,喷枪电压为80V时,飞行粒子的熔融因子数值最大,熔融状态比较好,涂层的沉积效率最高,涂层微观结构中未熔粒子的占比最低。

  • 图12 熔融因子、沉积效率和孔隙率随喷枪电压变化

  • Fig.12 Distribution of melting index, deposition efficiency and porosity with spray gun voltage

  • 图13 涂层内未熔粒子随喷枪电压的变化

  • Fig.13 Variation of un-melted particles in coating with voltage

  • 通过上述分析得到喷涂距离、主气流量、喷枪电流等对飞行粒子熔融因子和涂层特性的影响关系。为了使涂层制备过程中飞行颗粒熔化较好、沉积效率较高,研究中通过熔融因子的分布确定所需要的喷涂距离和工艺参数。首先根据三水平正交试验设计得到的表4中喷涂工况,结合模拟和试验数据得到相应工况下飞行粒子熔融因子的分布情况,如图14所示。可以看出不同的主气流量会使熔融因子分布呈现分组现象,与前面对主气流量影响的分析相同。同时在喷涂功率相近情况下,采用相对较低的喷涂电流和较高喷涂电压会使得熔融因子分布取值较大。

  • 图14 颗粒熔融因子在不同喷涂工艺参数下的分布

  • Fig.14 Melting index under different spraying parameters

  • 综合前面对喷涂参数影响关系的分析以及对熔融因子分布的对比,得到了熔融因子分布较大时对应的喷涂工艺参数组合,即喷枪电压为80V,喷枪电流为600A,主气流量为22L/min,最佳喷涂距离为75mm。在此喷涂工况条件下进行了涂层制备,飞行粒子沉积效率达到42.4%,同时涂层的孔隙率和缺陷率均较低,孔隙率为3.97%,其微观结构如图15所示。

  • 图15 最优喷涂参数组合情况下涂层的微观结构图

  • Fig.15 Microstructure of the coating under optimized spraying parameters combination

  • 4 结论

  • 通过喷涂试验和数值仿真模拟相结合,利用熔融因子得到喷涂工艺参数对纳米团聚颗粒状态的影响关系,以及熔融因子和涂层微观结构特性的关联关系,即随着喷涂距离增加,飞行粒子的熔融因子先增大后减小,涂层沉积效率先增加后降低,孔隙率和涂层中未熔粒子数则先减小后增大。在喷涂功率相近情况下,采用相对较低电流高电压组合会使得飞行粒子熔融因子分布取值较大,涂层沉积效率增加、孔隙率降低。分析结果可以更精准地指导纳米双结构涂层制备过程中涂层微观结构控制以及工艺优化。

  • 尚未分析涂层具体性能,后续将进一步结合试验测量,对涂层性能和颗粒状态进行综合分析研究,从而更好地针对涂层具体性能进行工艺控制。

  • 参考文献

    • [1] LIMA R S,MARPLE B R.Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural,thermal barrier and biomedical applications:A review[J].Journal of Thermal Spray Technology,2007,16(1):40-63.

    • [2] FAUCHAIS P,MONTAVON G,LIMA R S,et al.Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles,suspensions and solutions:An invited review[J].Journal of Physics D Applied Physics,2011,44(9):885-896.

    • [3] 周洪,李飞,何博,等.等离子喷涂热障涂层的隔热性分析[J].中国有色金属学报,2007,17(10):1609-1615.ZHOU Hong,LI Fei,HE Bo,et al.Analyses on thermal barrier effects of zirconia based thermal barrier coating[J].The Chinese Journal of Nonferrous Metals,2007,17(10):1609-1615.(in Chinese).

    • [4] 王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程 2019,32(1):88-97.WANG Dafeng,MA Bing,CHENG Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)

    • [5] 曹玉杰,刘友好,张鹏杰,等.纳米 CeO2 掺杂对烧结钕铁硼磁体表面Zn-Al涂层性能的影响[J].中国表面工程,2020,33(6):100-107.CAO Yujie,LIU Youhao,ZHANG Pengjie,et al.Effects of CeO2 nanoparticles doping on properties of Zn-Al coating on sintered NnFeB magnets[J].China Surface Engineering,2020,33(6):100-107.(in Chinese).

    • [6] GELL M,JORDAN E H,SOHN Y H,et al.Development and implementation of plasma sprayed nanostructured ceramic coatings[J].Surface & Coatings Technology,2001,146:48-54.

    • [7] 邵宇轩,王磊,杨勇,等.纳米 Al2O3 对等离子喷涂 ZrC-ZrSi2 复合涂层结构与性能的影响[J].中国表面工程,2021,34(4):30-37.SHAO Yuxuan,WANG Lei,YANG Yong,et al.Effects of nano-Al2O3 on the microstructure and properties of ZrC-ZrSi2 composite coating prepared by plasma spraying [J].China Surface Engineering,2021,34(4):30-37.(in Chinese)

    • [8] RACEK O,BERNDT C C,GURU D N,et al.Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J].Surface & Coatings Technology,2006,201(1-2):338-346.

    • [9] GHASEMI R,VAKILIFARD H.Plasma-sprayed nanostructured YSZ thermal barrier coatings:Thermal insulation capability and adhesion strength[J].Ceramics International,2017,43:8556-8563.

    • [10] 周莉,白宇,唐健江,等.纳米及传统微米级热障涂层热循环过程中的组织演变研究[J].热喷涂技术,2013,5(1):16-21.ZHOU Li,BAI Yu,TANG Jianjiang,et al.Study on the microstructure evolution of nano and micron-size thermal barrier coatings during thermal cycling[J].Thermal Spray Technology,2013,5(1):16-21.(in Chinese)

    • [11] LIMA R S,MARPLE B R.Toward highly sinteringresistant nanostructured ZrO2-7wt.%Y2O3 coatings for TBC applications by employing differential sintering[J].Journal of Thermal Spray Technology,2008,17(5-6):846-852.

    • [12] LIMA R S,MARPLE B R.Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J].Materials Science & Engineering A,2008,485(1-2):182-193.

    • [13] 张红松,刘振启,关绍康.等离子喷涂纳米与微米YSZ热障涂层的孔隙结构比较[J].表面技术,2010,39(5):4-7.ZHANG Hongsong,LIU Zhenqi,GUAN Shaokang.Comparison of pore structure between plasma-sprayed nano-YSZ and micron-YSZ thermal barrier coatings[J].Surface Technology,2010,39(5):4-7.(in Chinese)

    • [14] JAMALI H,MOZAFARINIA R,RAZAVI R S,et al.Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].Ceramics International,2012,38(8):6705-6712.

    • [15] 王斌利,常羽彤,黄宝庆,等.纳米YSZ热障涂层组织结构及性能分析[J].热喷涂技术,2015,7(3):8-12,7.WANG Binli,CHANG Yutong,HUANG Baoqing,et al.the microstructure and properties of the nanometer zirconia thermal barrier coating[J].Thermal Spray Technology,2015,7(3):8-12,7.(in Chinese)

    • [16] JING W,GUO H B,LE Z,et al.Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J].Journal of Thermal Spray Technology,2010,19(6):1186-1194.

    • [17] GKOMOZA P,VARDAVOULIAS M,PANTELIS D I,et al.Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder,for applications in medical implants[J].Surface and Coatings Technology,2018,357(16):748-758.

    • [18] JORDAN E H,GELL M,SOHN Y H,et al.Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties[J].Materials Science & Engineering A,2001,301(1):80-89.

    • [19] GOBERMAN D,SOHN Y H,SHAW L,et al.Microstructure development of Al2O3-13wt.% TiO2 plasma sprayed coatings derived from nanocrystalline powders[J].Acta Materialia,2002,50(5):1141-1152.

    • [20] MANTRY S,MISHRA B K,CHAKRABORTY M.Parametric appraisal of process parameters for adhesion of plasma sprayed nanostructured YSZ coatings using taguchi experimental design[J].The Scientific World Journal,2013,2013:527491.

    • [21] WANG J,SUN J,ZHANG H,et al.Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J].Journal of Alloys & Compounds,2017:730:471-482.

    • [22] 赵岩,高阳,刘久成,等.等离子喷涂纳米结构YSZ涂层的结构与性能[J].中国表面工程,2016,29(4):96-102.ZHAO Yan,GAO Yang,LIU Jiucheng,et al.Structure and properties of plasma sprayed nanostructured YSZ coatings[J].China Surface Engineering,2016,29(4):96-102.(in Chinese)

    • [23] 赵岩,高阳.低压等离子喷涂纳米YSZ涂层的结构及力学性能[J].中国表面工程,2016,29(2):91-97.ZHAO Yan,GAO Yang.Microstructure and mechanical properties of low pressure plasma sprayed nanostructuredYSZ coating[J].China Surface Engineering,2016,29(2):91-97.(in Chinese)

    • [24] 付倩倩,通雁鹏,赵海燕.超音速等离子喷涂粒子飞行特性对纳米YSZ涂层性能的影响[J].金属热处理,2017,42(8):135-141.FU Qianqian,TONG Yanpeng,ZHAO Haiyan.Effect of particle in-flight characteristics during supersonic atmospheric plasma spraying on properties of nanostructured YSZ coatings[J].Heat Treatment of Metals,2017,42(8):135-141(in Chinese).

    • [25] 丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al.Analysis of YSZ effective thermal conductivity based on fractal theory [J].China Surface Engineering,2020,33(3):104-10.(in Chinese)

    • [26] ETTOUIL F B,PATEYRON B,AGEORGES H,et al.Fast modeling of phase changes in a particle injected within a d.c plasma jet[J].Journal of Thermal Spray Technology,2007,16:744-50.

    • [27] ETTOUIL F B,MAZHOROVA O,PATEYRON B,et al.Predicting dynamic and thermal histories of agglomerated particles injected within a d.c.plasma jet[J].Surface and Coatings Technology,2008,202:4491-4495.

    • [28] BOBZIN K,ÖTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.

    • [29] BOBZIN K,ÖTE M,KNOCH M A,et al.macroscopic modeling of an agglomerated and sintered particle in air plasma spraying[J].Journal of Thermal Spray Technology,2020,29:13-24.

    • [30] XIONG H,ZHENG L,LI L,et al.Melting and oxidation behavior of in-flight particles in plasma spray process[J].International Journal of Heat and Mass Transfer,2005,48(25):5121-5133.

    • [31] ZHAO L,BAI Y,TANG J J,et al.Effect of particle in-flight behavior on the composition of thermal barrier coatings[J].Applied Surface Science,2013,286:184-191.

    • [32] LIU K,TANG J,BAI Y,et al.Particle in-flight behavior and its influence on the microstructure and mechanical property of plasma sprayed La2Ce2O7 thermal barrier coatings[J].Materials Science and Engineering:A,2015,625:177-85.

    • [33] XIONG H,ZHENG L,SAMPATH S,et al.Three-dimensional simulation of plasma spray:effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior[J].International Journal of Heat and Mass Transfer,2004,47(24):5189-200.

    • [34] 王东生,田宗军,沈理达,等.等离子喷涂纳米团聚体粉末熔化过程数值模拟[J].中国机械工程,2009,10(4):417-422.WANG Dongsheng,TIAN Zongjun,SHEN Lida,et al.Numerical simulation of nanostructured agglomerated powder melting process during plasma spraying[J].China Mechanical Engineering,2009,10(4):417-422.(in Chinese)

    • [35] 付文强,高辉,薛征欣,等.多孔材料有效导热系数的实验和模型研究[J].中国测试,2016,42(5):124-130.FU Wenqiang,GAO Hui,XUE Zhengxin,et al.Experimental measurement and calculation of thermal conductivity of porous material[J].China Measurement & Test,2016,42(5):124-130.(in Chinese)

  • 参考文献

    • [1] LIMA R S,MARPLE B R.Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural,thermal barrier and biomedical applications:A review[J].Journal of Thermal Spray Technology,2007,16(1):40-63.

    • [2] FAUCHAIS P,MONTAVON G,LIMA R S,et al.Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles,suspensions and solutions:An invited review[J].Journal of Physics D Applied Physics,2011,44(9):885-896.

    • [3] 周洪,李飞,何博,等.等离子喷涂热障涂层的隔热性分析[J].中国有色金属学报,2007,17(10):1609-1615.ZHOU Hong,LI Fei,HE Bo,et al.Analyses on thermal barrier effects of zirconia based thermal barrier coating[J].The Chinese Journal of Nonferrous Metals,2007,17(10):1609-1615.(in Chinese).

    • [4] 王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程 2019,32(1):88-97.WANG Dafeng,MA Bing,CHENG Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)

    • [5] 曹玉杰,刘友好,张鹏杰,等.纳米 CeO2 掺杂对烧结钕铁硼磁体表面Zn-Al涂层性能的影响[J].中国表面工程,2020,33(6):100-107.CAO Yujie,LIU Youhao,ZHANG Pengjie,et al.Effects of CeO2 nanoparticles doping on properties of Zn-Al coating on sintered NnFeB magnets[J].China Surface Engineering,2020,33(6):100-107.(in Chinese).

    • [6] GELL M,JORDAN E H,SOHN Y H,et al.Development and implementation of plasma sprayed nanostructured ceramic coatings[J].Surface & Coatings Technology,2001,146:48-54.

    • [7] 邵宇轩,王磊,杨勇,等.纳米 Al2O3 对等离子喷涂 ZrC-ZrSi2 复合涂层结构与性能的影响[J].中国表面工程,2021,34(4):30-37.SHAO Yuxuan,WANG Lei,YANG Yong,et al.Effects of nano-Al2O3 on the microstructure and properties of ZrC-ZrSi2 composite coating prepared by plasma spraying [J].China Surface Engineering,2021,34(4):30-37.(in Chinese)

    • [8] RACEK O,BERNDT C C,GURU D N,et al.Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J].Surface & Coatings Technology,2006,201(1-2):338-346.

    • [9] GHASEMI R,VAKILIFARD H.Plasma-sprayed nanostructured YSZ thermal barrier coatings:Thermal insulation capability and adhesion strength[J].Ceramics International,2017,43:8556-8563.

    • [10] 周莉,白宇,唐健江,等.纳米及传统微米级热障涂层热循环过程中的组织演变研究[J].热喷涂技术,2013,5(1):16-21.ZHOU Li,BAI Yu,TANG Jianjiang,et al.Study on the microstructure evolution of nano and micron-size thermal barrier coatings during thermal cycling[J].Thermal Spray Technology,2013,5(1):16-21.(in Chinese)

    • [11] LIMA R S,MARPLE B R.Toward highly sinteringresistant nanostructured ZrO2-7wt.%Y2O3 coatings for TBC applications by employing differential sintering[J].Journal of Thermal Spray Technology,2008,17(5-6):846-852.

    • [12] LIMA R S,MARPLE B R.Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects[J].Materials Science & Engineering A,2008,485(1-2):182-193.

    • [13] 张红松,刘振启,关绍康.等离子喷涂纳米与微米YSZ热障涂层的孔隙结构比较[J].表面技术,2010,39(5):4-7.ZHANG Hongsong,LIU Zhenqi,GUAN Shaokang.Comparison of pore structure between plasma-sprayed nano-YSZ and micron-YSZ thermal barrier coatings[J].Surface Technology,2010,39(5):4-7.(in Chinese)

    • [14] JAMALI H,MOZAFARINIA R,RAZAVI R S,et al.Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].Ceramics International,2012,38(8):6705-6712.

    • [15] 王斌利,常羽彤,黄宝庆,等.纳米YSZ热障涂层组织结构及性能分析[J].热喷涂技术,2015,7(3):8-12,7.WANG Binli,CHANG Yutong,HUANG Baoqing,et al.the microstructure and properties of the nanometer zirconia thermal barrier coating[J].Thermal Spray Technology,2015,7(3):8-12,7.(in Chinese)

    • [16] JING W,GUO H B,LE Z,et al.Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ[J].Journal of Thermal Spray Technology,2010,19(6):1186-1194.

    • [17] GKOMOZA P,VARDAVOULIAS M,PANTELIS D I,et al.Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder,for applications in medical implants[J].Surface and Coatings Technology,2018,357(16):748-758.

    • [18] JORDAN E H,GELL M,SOHN Y H,et al.Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties[J].Materials Science & Engineering A,2001,301(1):80-89.

    • [19] GOBERMAN D,SOHN Y H,SHAW L,et al.Microstructure development of Al2O3-13wt.% TiO2 plasma sprayed coatings derived from nanocrystalline powders[J].Acta Materialia,2002,50(5):1141-1152.

    • [20] MANTRY S,MISHRA B K,CHAKRABORTY M.Parametric appraisal of process parameters for adhesion of plasma sprayed nanostructured YSZ coatings using taguchi experimental design[J].The Scientific World Journal,2013,2013:527491.

    • [21] WANG J,SUN J,ZHANG H,et al.Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J].Journal of Alloys & Compounds,2017:730:471-482.

    • [22] 赵岩,高阳,刘久成,等.等离子喷涂纳米结构YSZ涂层的结构与性能[J].中国表面工程,2016,29(4):96-102.ZHAO Yan,GAO Yang,LIU Jiucheng,et al.Structure and properties of plasma sprayed nanostructured YSZ coatings[J].China Surface Engineering,2016,29(4):96-102.(in Chinese)

    • [23] 赵岩,高阳.低压等离子喷涂纳米YSZ涂层的结构及力学性能[J].中国表面工程,2016,29(2):91-97.ZHAO Yan,GAO Yang.Microstructure and mechanical properties of low pressure plasma sprayed nanostructuredYSZ coating[J].China Surface Engineering,2016,29(2):91-97.(in Chinese)

    • [24] 付倩倩,通雁鹏,赵海燕.超音速等离子喷涂粒子飞行特性对纳米YSZ涂层性能的影响[J].金属热处理,2017,42(8):135-141.FU Qianqian,TONG Yanpeng,ZHAO Haiyan.Effect of particle in-flight characteristics during supersonic atmospheric plasma spraying on properties of nanostructured YSZ coatings[J].Heat Treatment of Metals,2017,42(8):135-141(in Chinese).

    • [25] 丁坤英,李志远,王者,等.基于分形方法的YSZ热障涂层有效热导率分析[J].中国表面工程,2020,33(3):104-110.DING Kunying,LI Zhiyuan,WANG Zhe,et al.Analysis of YSZ effective thermal conductivity based on fractal theory [J].China Surface Engineering,2020,33(3):104-10.(in Chinese)

    • [26] ETTOUIL F B,PATEYRON B,AGEORGES H,et al.Fast modeling of phase changes in a particle injected within a d.c plasma jet[J].Journal of Thermal Spray Technology,2007,16:744-50.

    • [27] ETTOUIL F B,MAZHOROVA O,PATEYRON B,et al.Predicting dynamic and thermal histories of agglomerated particles injected within a d.c.plasma jet[J].Surface and Coatings Technology,2008,202:4491-4495.

    • [28] BOBZIN K,ÖTE M,KNOCH M A,et al.Macroscopic particle modeling in air plasma spraying[J].Surface and Coatings Technology,2019,364:449-456.

    • [29] BOBZIN K,ÖTE M,KNOCH M A,et al.macroscopic modeling of an agglomerated and sintered particle in air plasma spraying[J].Journal of Thermal Spray Technology,2020,29:13-24.

    • [30] XIONG H,ZHENG L,LI L,et al.Melting and oxidation behavior of in-flight particles in plasma spray process[J].International Journal of Heat and Mass Transfer,2005,48(25):5121-5133.

    • [31] ZHAO L,BAI Y,TANG J J,et al.Effect of particle in-flight behavior on the composition of thermal barrier coatings[J].Applied Surface Science,2013,286:184-191.

    • [32] LIU K,TANG J,BAI Y,et al.Particle in-flight behavior and its influence on the microstructure and mechanical property of plasma sprayed La2Ce2O7 thermal barrier coatings[J].Materials Science and Engineering:A,2015,625:177-85.

    • [33] XIONG H,ZHENG L,SAMPATH S,et al.Three-dimensional simulation of plasma spray:effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior[J].International Journal of Heat and Mass Transfer,2004,47(24):5189-200.

    • [34] 王东生,田宗军,沈理达,等.等离子喷涂纳米团聚体粉末熔化过程数值模拟[J].中国机械工程,2009,10(4):417-422.WANG Dongsheng,TIAN Zongjun,SHEN Lida,et al.Numerical simulation of nanostructured agglomerated powder melting process during plasma spraying[J].China Mechanical Engineering,2009,10(4):417-422.(in Chinese)

    • [35] 付文强,高辉,薛征欣,等.多孔材料有效导热系数的实验和模型研究[J].中国测试,2016,42(5):124-130.FU Wenqiang,GAO Hui,XUE Zhengxin,et al.Experimental measurement and calculation of thermal conductivity of porous material[J].China Measurement & Test,2016,42(5):124-130.(in Chinese)

  • 手机扫一扫看