en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

麻恒,女,1995年出生,硕士。主要研究方向为金属材料表面改性。E-mail:1962694190@qq.com;

胡静(通信作者),女,1966年出生,博士,教授。主要研究方向为金属材料表面改性。E-mail:jinghoo@126.com

中图分类号:TG178

DOI:10.11933/j.issn.1007-9289.20210421001

参考文献 1
张利,王洪顺,孟庆华,等.45 钢气体低温氮硼复合共渗研究[J].沈阳航空航天大学学报,2008,25(2):28-29.ZHANG Li,WANG Hongshun,MENG Qinghua,et al.Study on low temperature nitrogen and boron compound infiltration of 45 steel[J].Journal of Shenyang University of Aeronautics Engineering,2008,25(2):28-29.(in Chinese)
参考文献 2
杨浩鹏,吴晓春.H13 钢低温固体渗硼及其热熔损性能的研究[J].上海金属,2019(4):65-68.YANG Haopeng,WU Xiaochun.Study on the lowtemperature pack boriding and erosion property of H13 steel [J].Shanghai Metals,2019,22(4):65-68.(in Chinese)
参考文献 3
梁文萍,徐重,缪强,等.Ti2AlNbO 相合金双层辉光等离子渗Mo摩擦性能[J].稀有金属材料与工程,2006,35(11):1826-1829.LIANG Wenping,XU Zhong,MIAO Qiang,et al.Friction properties of Ti2AlNbO phase alloy infiltrated with Mo by double glow plasma[J].Rare Metal Materials and Engineering,2006,35(11):1826-1829.(in Chinese)
参考文献 4
TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.
参考文献 5
BHARDRAIAH D,NOUVEAU C,VEERASWAMI B,et al.Plasma based nitriding of tool steel for the enhancement of hardness[J].Materials Today:Proceedings,2021,30:118-120.
参考文献 6
GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.
参考文献 7
LI J,YANG X,WANG S K,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140steel[J].MaterialsLetters,2014,116(1):199-202.
参考文献 8
李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)
参考文献 9
MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J].Materials Letters,2021,304(1):130709-1307012.
参考文献 10
YE X M,WU J Q,ZHU Y L,et al.A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel[J].Vacuum,2014,110:74-77.
参考文献 11
LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.
参考文献 12
毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)
参考文献 13
TANG L,MAO C J,JIA W J,et al.The effect of novel composite pretreatment on performances of plasma nitrided layer[J].Journal of Materials Research and Technology,2020,9(5):9531-9536.
参考文献 14
KERTSCHER R,BRUNATTO S F.On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding[J].Surface and Coatings Technology,2020,401:126-130.
参考文献 15
LU Y Y,MA H,LI D,et al.Enhanced plasma nitriding efficiency and properties by severe plastic deformation pretreatment for 316 L austenitic stainless steel[J].Journal of Materials Research and Technology,2021,15:1742-1746.
目录contents

    摘要

    以 42CrMo 钢为材料,探索添加微量硼对离子渗氮效率和渗层组织性能的影响。利用光学显微镜、X 射线衍射仪(XRD)、 显微硬度计、摩擦磨损测试仪等仪器对截面显微组织、物相、截面硬度、渗层韧性以及耐磨性等性能进行测试和分析。研究结果表明,离子共渗可显著提高渗氮效率,在相同离子渗氮工艺 520 ℃保温 6 h 条件下,化合物层厚度随 B 添加量增加逐渐加厚,由常规离子渗氮处理后的 18.78 μm 增加到 29.44 μm;同时硼氮离子共渗后在化合物层与扩散层相连处形成了锯齿状垂直楔入基体的硼铁化合物 FeB 和 Fe2B,达到增强渗层与基体结合力及提高渗层硬度的显著效果。随 B 添加量增加,试样表面硬度和有效硬化层深度都逐渐提高,表面硬度可由常规离子渗氮的 750 HV0.05提高至 1002 HV0.05;有效硬化层厚度由常规离子渗氮的 265 μm 增加到 355 μm,相当于渗氮效率提高约 35%。硼氮离子共渗处理后试样耐磨性和渗层韧性明显高于常规离子渗氮。

    Abstract

    In order to improve the characteristics of plasma nitriding layer, a novel plasma boron-nitriding is carried out on 42CrMo steel. The cross-sectional microstructure, phase compositions, cross-sectional hardness, brinell hardness tester and wear resistance of the nitriding layer are tested and analyzed by optical microscope, XRD, microhardness tester, nitriding layer toughness and friction and wear tester. The results show that plasma boron-nitriding can significantly increase the thickness of compound layer from 18.78 μm to 29.44 μm, and saw-tooth vertical wedge appears in the compound layer, which enhances the bonding force between the compound layer and the matrix. In addition, hard phases FeB and Fe2B are formed in the nitrided layer of the sample after plasma boron-nitriding, and the surface hardness of the sample is enhance from 750 HV0.05 to 1002 HV0.05. At the same time, the hardness in the same layer depth is significantly improved, and the thickness of the effective diffusion layer is increased from 265 μm to 355 μm, that is, the nitriding efficiency is increased by nearly 35%. The wear resistance and toughness of the samples treated by plasma boron-nitriding is obviously higher than that of conventional plasma nitriding.

    关键词

    42CrMo 钢硼氮离子共渗渗层耐磨性韧性

  • 0 前言

  • 以钢铁材料为主的金属材料仍然是人类食品、服装、住宅、交通和能源工业的重要基础,对于金属材料,基体要求具有高的强度和一定的韧性,而表面要求具有高硬度、耐磨性、耐腐蚀性和耐高温氧化等。进一步扩大金属材料应用领域,提高表面硬度、耐磨性和抗蚀性,一般都要进行表面热处理。

  • 离子渗氮是一种应用广泛的化学热处理技术,具有工件变形小以及无污染等显著优势。然而,离子渗氮随化合物层厚度增加、脆性增大,对于承受冲击和重载磨损的零部件,服役过程中易出现化合物层局部开裂和脱落现象,导致零部件早期失效[1-3]。同时,某些服役环境下,离子渗氮获得的渗层硬度偏低,达不到严苛的技术要求[4-5]

  • 渗硼是向钢或其他合金中扩散渗入硼元素,以在表层获得硼化物的一种表面化学渗扩工艺。硼化物层具有高硬度、高耐磨性、抗腐蚀、耐高温氧化等优良性能。因此,渗硼是提高钢铁及其合金表面性能的有效手段,并已广泛地应用于工业生产中。普通碳素钢和合金钢渗硼后表层硬度可高达150 0~2 000HV,由此显著提高零件的耐磨性和使用寿命[6]。目前,固体渗硼应用较多,遗憾的是固体渗硼所需温度高达1 000℃左右,且保温时间长,导致工件变形大。因此固体渗硼技术存在能耗大、效率低、工件尺寸精度难以保障等不足。虽然有研究探索了感应加热渗硼,可有效缩短渗硼时间,但该技术存在温度和加热时间难于控制的问题,不易掌握,因而基本上没有工程应用[7-8]

  • 已研发的复合渗,如软氮化、氮氧共渗、钛氮复合渗等,具有比单一元素渗更加优越的性能或效率优势[9-10],本文探索能否在离子渗氮时通过添加微量硼,来实现离子硼氮复合渗,同时探索离子硼氮复合渗是否可以扬长避短,达到提高离子渗氮效率和改善渗层性能的效果。

  • 基于此,本文在离子渗氮时添加微量硼铁,旨在达到提高离子渗氮效率和提升表层硬度及耐磨性的效果,满足产学研合作单位客户提出的离子渗氮后42CrMo钢零部件表面硬度大于800HV的技术要求。

  • 1 试验

  • 试验材料为调质态42CrMo钢,其化学成分(质量分数,%)为0.39C、0.28Si、0.21Mo、0.77Mn、 0.89Cr,其余为Fe,基体硬度为320HV0.05。采用线切割加工成尺寸为10mm×10mm×5mm的试样,并采用180#~2000#的砂纸逐步进行打磨,然后将样品放在无水乙醇中并用超声波清洗10min去除油污和杂质,取出吹干并放入密封袋待用。

  • 将42CrMo钢样品放入离子渗氮炉中进行离子硼氮复合渗处理。为提升硼氮复合渗效率,先进行预氧化处理,预氧化温度为300℃,时间为30min。预氧化结束后进行硼氮离子复合处理,温度为520℃,时间为6h。硼氮离子复合处理时每炉放置相同尺寸 (10mm×10mm×5mm)试样4个。通过在试样周围均匀摆放不同含量相同尺度的颗粒状硼铁实现硼氮离子共渗处理,硼铁添加量范围为0.5~1.5g。

  • 需要说明的是:硼铁添加量大于1.5g时,化合物层厚度随硼铁添加量增加基本不发生改变。可能原因是进一步增加硼铁不再增加被离子溅射的有效表面积,而只有被离子溅射硼铁的硼铁表面才能产生活性B离子,从而对离子渗氮产生有利影响,因此本文最大硼铁添加量采用1.5g。

  • 硼氮离子复合处理后,采用DMI-3000M型光学光学显微镜观察截面显微组织;D/max-2500型X射线衍射仪测试物相组成,使用射线为Cu-Kα 射线,波长为 λ=0.154nm,扫描速度设为5 (°)/min,步宽设定为0.02°,2θ 范围选定为20°~100 °。采用HXD-1000TMC型维氏显微硬度计测量截面显微硬度,载荷为50g,保荷时间为15s,采用MMV-1A万能摩擦磨损试验机测量耐磨性。对磨材料为GCr15钢球,直径为5mm,旋转半径为2mm,转速为200r/min,加载载荷为400g,对磨时间为15min。磨损试验结束后,使用金相显微镜观察磨痕表面形貌,并使用origin软件作出摩擦磨损系数曲线。采用较大加载载荷1kg进行维氏显微硬度测试,然后利用显微镜观察压痕周围有无开裂及开裂程度,由此进行横向对比不同试验条件下获得渗层的韧性差异。

  • 2 试验结果与讨论

  • 2.1 截面显微组织

  • 图1 为硼氮离子共渗处理试样渗层截面显微组织。从图中可以看出,常规离子渗氮处理后的化合物层厚度为18.78 μm,而经硼氮离子共渗处理后化合物层厚度均得到不同程度的增加,且化合物层出现锯齿状垂直楔入基体,其中,在添加硼铁含量为1.5g时,化合物层厚度达到最大值29.44 μm。

  • 图1 硼氮离子共渗处理(520℃, 6h)试样截面显微组织

  • Fig.1 Cross-section microstructure of samples treated by plasma boron-nitriding(520℃, 6h)

  • 2.2 渗层物相分析

  • 图2 为硼氮离子共渗处理试样X射线衍射图谱。从图中可见,硼氮离子共渗与常规离子渗氮一样,渗层中都含有 ε-Fe2-3N、γ'-Fe4N相,同时,硼氮离子共渗处理后渗层中新增了FeB和Fe2B,且随硼含量的增加,FeB和Fe2B衍射峰强度逐渐增加,硼氮离子共渗与常规离子渗氮相比,其主峰衍射峰强度明显降低。其中,在硼铁含量为1.5g时,FeB和Fe2B峰值最大。

  • 图2 硼氮离子共渗处理(520℃, 6h)试样XRD图谱

  • Fig.2 X-ray diffraction patterns of samples treated by plasma boron-nitriding(520℃, 6h)

  • 2.3 截面硬度分析

  • 图3 为硼氮离子共渗处理试样截面显微硬度曲线。从图中可以看出,随硼含量的增加,硼氮离子共渗试样表面硬度显著增加,不同深度截面显微硬度也都得到不同程度的提高,有效硬化层逐渐增厚。硼添加量为1.5g时,表面硬度由750HV0.05 提高至1 002HV0.05,且硬度梯度较为平缓,有效硬化层厚度由常规离子渗氮的265 μm增加到355 μm。由此说明,与常规离子渗氮相比,硼氮离子共渗不仅提高了截面及表面硬度,也增加了有效硬化层厚度。

  • 图3 硼氮离子共渗处理试样截面显微硬度曲线

  • Fig.3 Micro-hardness profile of samples treated by plasma boron-nitriding

  • 2.4 韧性分析

  • 图4 为硼氮离子共渗处理试样维氏显微硬度测试后压痕形貌,加载载荷均为1kg。从图中可以看出,常规离子渗氮处理后,试样压痕周围出现明显的开裂现象,而随着硼含量的增加,开裂程度逐渐减轻,在硼铁添加量为1.5g时,试样周围未出现开裂现象。由此可以说明,硼氮离子共渗可以显著提高渗层韧性。

  • 图4 42CrMo钢经不同硼添加量硼氮离子共渗处理后的表面压痕形貌

  • Fig.4 Morphology of surface indentation of 42CrMo steel after plasma boron-nitriding treatment at 520℃ for 6h with different boron additions

  • 2.5 耐磨性分析

  • 图5 为硼氮离子共渗处理试样磨痕形貌。从图中可以看出,常规离子渗氮处理后试样表面出现较深且较宽的磨损轨迹,而硼氮离子共渗处理试样,随硼含量增加,其磨损轨迹逐渐变浅,变窄,且表面的磨损和破碎痕迹逐渐减少。同时,从图6可以看出,常规离子渗氮处理后试样的磨损率为3mg/cm2,硼氮离子共渗处理是随硼含量增加,磨损率逐渐减少;硼含量为1.5g时,磨损率最小,为1mg/cm2

  • 图5 硼氮离子共渗处理试样磨痕形貌

  • Fig.5 Morphology of wear mark of samplesafter plasma boron-nitriding treatment (520℃, 6h)

  • 图6 硼氮离子共渗处理(520℃, 6h)试样磨损率

  • Fig.6 Wear rate of samples after plasma boron-nitriding treatment(520℃, 6h)

  • 图7 为42CrMo硼氮离子共渗处理后试样的摩擦因数曲线。从图中可以看出,硼氮离子共渗试样的摩擦因数均低于常规离子渗氮试样,且随硼含量的增加,试样摩擦因数逐渐降低,当硼含量为1.5g时,试样的摩擦因数最小,约为0.36,且摩擦因数曲线较为平稳,而常规离子渗氮试样的摩擦因数最大,约为0.62,由此表明,硼氮离子共渗处理后能显著提高试样渗层的耐磨性。

  • 图7 硼氮离子共渗处理(520℃, 6h)试样摩擦因数

  • Fig.7 Friction coefficient of samples treated by plasma boron-nitriding(520℃, 6h)

  • 3 机理分析讨论

  • 综合上述研究结果可见,在520℃×6h相同工艺条件下,硼氮离子共渗化合物层厚度可由常规离子渗氮处理的18.78 μm增加到29.44 μm,同时,硼氮离子共渗处理可显著提高渗层硬度、耐磨性和韧性。

  • 产生这种显著效果的可能原因如下:虽然溅射理论不能解释离子渗氮存在的所有现象,但它是一种为很多人接受(或默认)的经典理论[11-12]。正是基于溅射理论,有理由认为离子渗氮过程中,放置在阴极的硼铁也会被高能正离子轰击,通过溅射形成B及Fe活性原子,溅射出的活性B原子一方面可与活性Fe化合形成FeB,另一方面还可能由于背散射沉积到试样表面,在离子轰击和热激活作用下,活性B进一步与活性Fe化合形成FeB。同时,FeB在离子轰击作用下发生分解(FeB→Fe2B)转变为低B化合物。该分析与图1所示金相组织和图2所示XRD分析结果吻合。为进一步证实溅射理论的可靠性,本文采用只通氢气、不通氮气的气源条件,放置硼铁进行离子渗的试验方法,结果发现试样表层硬度依然有一定程度提高,由此证实了溅射理论解释辉光离子渗机理的合理性。

  • 由于FeB、Fe2B具有高硬度[13],这些硼铁化合物在渗层中作为强化相,使试样表层硬度及耐磨性显著提高[14-15]。经硼氮离子共渗处理后,表面硬度由常规离子渗氮的750HV0.05 提高至1 002HV0.05。同时,由于添加硼离子渗氮时渗层中形成的硼化合物FeB、Fe2B以垂直于表面且楔入基体的锯齿状结构存在(图1),这种结构有利于提高渗层与基体的结合力,改善渗层与基体的协同变形能力,从而提高渗层韧性。

  • 综上,硼氮离子共渗处理基于溅射理论形成了楔入基体的锯齿状高硬度FeB、Fe2B,因而可获得比常规离子渗氮具有更高表面硬度、截面硬度、耐磨性及渗层韧性,能够满足一些关键零部件严苛的服役要求。

  • 4 结论

  • 在相同工艺条件(520℃, 6h)下,对42CrMo钢进行了硼氮离子共渗处理,得出如下结论:

  • (1)硼氮离子共渗使化合物层厚度由常规离子渗氮处理的18.78 μm增加到29.44 μm,有效扩散层厚度由常规离子渗氮的265 μm增加到355 μm。同时,硼氮离子共渗处理后,在化合物层与扩散层相连处形成了锯齿状化合物垂直楔入基体,有利于提高化合物层与基体结合力。

  • (2)硼氮离子共渗处理后,渗氮层中形成硼铁化合物FeB和Fe2B,表面硬度由常规离子渗氮的750HV0.05 提高至1 002HV0.05

  • (3)经硼氮离子共渗处理后,渗层韧性显著改善。加载载荷1kg进行维氏显微硬度测试后,压痕周围无开裂现象。

  • (4)经硼氮离子共渗处理后,耐磨性显著提高,磨痕较浅、较窄,磨损率由3.0mg/cm2 降低到1.0mg/cm2,摩擦因数由0.62降低到0.36。

  • 参考文献

    • [1] 张利,王洪顺,孟庆华,等.45 钢气体低温氮硼复合共渗研究[J].沈阳航空航天大学学报,2008,25(2):28-29.ZHANG Li,WANG Hongshun,MENG Qinghua,et al.Study on low temperature nitrogen and boron compound infiltration of 45 steel[J].Journal of Shenyang University of Aeronautics Engineering,2008,25(2):28-29.(in Chinese)

    • [2] 杨浩鹏,吴晓春.H13 钢低温固体渗硼及其热熔损性能的研究[J].上海金属,2019(4):65-68.YANG Haopeng,WU Xiaochun.Study on the lowtemperature pack boriding and erosion property of H13 steel [J].Shanghai Metals,2019,22(4):65-68.(in Chinese)

    • [3] 梁文萍,徐重,缪强,等.Ti2AlNbO 相合金双层辉光等离子渗Mo摩擦性能[J].稀有金属材料与工程,2006,35(11):1826-1829.LIANG Wenping,XU Zhong,MIAO Qiang,et al.Friction properties of Ti2AlNbO phase alloy infiltrated with Mo by double glow plasma[J].Rare Metal Materials and Engineering,2006,35(11):1826-1829.(in Chinese)

    • [4] TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.

    • [5] BHARDRAIAH D,NOUVEAU C,VEERASWAMI B,et al.Plasma based nitriding of tool steel for the enhancement of hardness[J].Materials Today:Proceedings,2021,30:118-120.

    • [6] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [7] LI J,YANG X,WANG S K,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140steel[J].MaterialsLetters,2014,116(1):199-202.

    • [8] 李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)

    • [9] MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J].Materials Letters,2021,304(1):130709-1307012.

    • [10] YE X M,WU J Q,ZHU Y L,et al.A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel[J].Vacuum,2014,110:74-77.

    • [11] LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.

    • [12] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [13] TANG L,MAO C J,JIA W J,et al.The effect of novel composite pretreatment on performances of plasma nitrided layer[J].Journal of Materials Research and Technology,2020,9(5):9531-9536.

    • [14] KERTSCHER R,BRUNATTO S F.On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding[J].Surface and Coatings Technology,2020,401:126-130.

    • [15] LU Y Y,MA H,LI D,et al.Enhanced plasma nitriding efficiency and properties by severe plastic deformation pretreatment for 316 L austenitic stainless steel[J].Journal of Materials Research and Technology,2021,15:1742-1746.

  • 参考文献

    • [1] 张利,王洪顺,孟庆华,等.45 钢气体低温氮硼复合共渗研究[J].沈阳航空航天大学学报,2008,25(2):28-29.ZHANG Li,WANG Hongshun,MENG Qinghua,et al.Study on low temperature nitrogen and boron compound infiltration of 45 steel[J].Journal of Shenyang University of Aeronautics Engineering,2008,25(2):28-29.(in Chinese)

    • [2] 杨浩鹏,吴晓春.H13 钢低温固体渗硼及其热熔损性能的研究[J].上海金属,2019(4):65-68.YANG Haopeng,WU Xiaochun.Study on the lowtemperature pack boriding and erosion property of H13 steel [J].Shanghai Metals,2019,22(4):65-68.(in Chinese)

    • [3] 梁文萍,徐重,缪强,等.Ti2AlNbO 相合金双层辉光等离子渗Mo摩擦性能[J].稀有金属材料与工程,2006,35(11):1826-1829.LIANG Wenping,XU Zhong,MIAO Qiang,et al.Friction properties of Ti2AlNbO phase alloy infiltrated with Mo by double glow plasma[J].Rare Metal Materials and Engineering,2006,35(11):1826-1829.(in Chinese)

    • [4] TANG L,JIA W J,HU J.An enhanced rapid plasma nitriding by laser shock peening[J].Materials Letters,2018,231:91-93.

    • [5] BHARDRAIAH D,NOUVEAU C,VEERASWAMI B,et al.Plasma based nitriding of tool steel for the enhancement of hardness[J].Materials Today:Proceedings,2021,30:118-120.

    • [6] GATEY A M,HOSMANI S S,FIGUEROA C A,et al.Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel[J].Surface and Coatings Technology,2016,304:413-424.

    • [7] LI J,YANG X,WANG S K,et al.A rapid D.C.plasma nitriding technology catalyzed by pre-oxidation for AISI4140steel[J].MaterialsLetters,2014,116(1):199-202.

    • [8] 李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)

    • [9] MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J].Materials Letters,2021,304(1):130709-1307012.

    • [10] YE X M,WU J Q,ZHU Y L,et al.A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel[J].Vacuum,2014,110:74-77.

    • [11] LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.

    • [12] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xiliang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [13] TANG L,MAO C J,JIA W J,et al.The effect of novel composite pretreatment on performances of plasma nitrided layer[J].Journal of Materials Research and Technology,2020,9(5):9531-9536.

    • [14] KERTSCHER R,BRUNATTO S F.On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding[J].Surface and Coatings Technology,2020,401:126-130.

    • [15] LU Y Y,MA H,LI D,et al.Enhanced plasma nitriding efficiency and properties by severe plastic deformation pretreatment for 316 L austenitic stainless steel[J].Journal of Materials Research and Technology,2021,15:1742-1746.

  • 手机扫一扫看