en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

石秋生,男,1997年出生,硕士。主要研究方向为叶尖防护涂层。E-mail:972550584@qq.com;

杨冠军(通信作者),男,1977年出生,博士,教授,博士研究生导师。主要研究方向为防护涂层、钙钛矿电池。E-mail:ygj@mail.xjtu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20210401001

参考文献 1
李乔磊,宋鹏,黄太红,等.热喷涂陶瓷层与金属粘结层的界面调控及其强度研究[J].中国表面工程,2020,39(10):754-762,739.LI Qiaolei,SONG Peng,HUANG Taihong,et al.Research on interface control and bonding strength of thermal spraying ceramic top-coats and metal bond-coats[J].Materials China,2020,39(10):754-762,739.(in Chinese)
参考文献 2
陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)
参考文献 3
王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Yuyue,NIU Qiang,YANG Guanjun,et al.Investigations on corrosion-resistant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application.2019,13(3):165-172.(in Chinese)
参考文献 4
胡伟,张振宇,梁补女,等.基于大气等离子喷涂的镍铬基粉末制备及其涂层组织结构[J].热喷涂技术,2019,11(2):36-42.HU Wei,ZHANG Zhenyu,LIANG Bunü,et al.Preparation of nickel-chromium based powder and microstructure of its atmospheric plasma spraying coating[J].Thermal Spray Technology,2019,11(2):36-42.(in Chinese)
参考文献 5
张小锋,周克崧,刘敏,等.大气等离子喷涂环境障涂层镀Al表面改性[J].中国材料进展,2018,37(12):978-984,993.ZHANG Xiaofeng,ZHOU Kesong,LIU Min,et al.Al-modified environmental barrier coating prepared by atmospheric plasma spray[J].Materials China,2018,37(12):978-984,993.(in Chinese)
参考文献 6
LI C J,YANG G J,LI C X.Development of particle interface bonding in thermal spray coatings:A review[J].Journal of Thermal Spray Technology,2013,22(2-3):192-206.
参考文献 7
孙文.基于感应重熔温度场模拟的控制系统设计及改性Ni60涂层研究[D].北京:机械科学研究总院,2019.SUN Wen.The control systems design based on simulation of temperature field in induction remelting and research on modified Ni60 coatings[D].Beijing:China Academy of Machinery Science,2019.(in Chinese)
参考文献 8
孙文,童向阳,陈同舟,等.热输入对感应重熔Ni60合金涂层组织与性能的影响[J].热加工工艺,2020,49(6):116-120.SUN Wen,TONG Xiangyang,CHEN Tongzhou,et al.Influence of heat input on microstructure and properties of Ni60 alloy coating by induction remelting[J].Hot Working Technology,2020,49(6):116-120.(in Chinese)
参考文献 9
DONG T S,LIU L,FU B G,et al.Investigation of rolling/sliding contact fatigue behaviors of induction remelted Ni-based coating[J].Surface and Coatings Technology,2019,375:451-462.
参考文献 10
WANG Z G,OUYANG J H,MA Y H,et al.Formation mechanism of a wrinkled and textured Al2O3-ZrO2 nanoeutectic rapidly solidified from oxy-acetylene flame remelting[J].Journal of the American Ceramic Society,2019,102(1):63-69.
参考文献 11
樊巧芳,张波,林瑛.Ni60 合金粉末炉内重熔工艺及耐磨性研究[J].表面技术,2016,45(4):226-231.FAN Qiaofang,ZHANG Bo,LIN Ying.Re-melting process and wear resistance of Ni60 alloy powder in furnace[J].Surface Technology,2016,45(4):226-231.(in Chinese)
参考文献 12
FENG Y,DONG T S,LI G L,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.
参考文献 13
PRAKHT V A,DMITRIEVSKII V A.Computer-based modeling of moving cylindrical ferromagnetic billets induction heating[J].The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2014,33(1):273-285.
参考文献 14
赵锐,杨红军,于鹤龙,等.高频感应重熔处理火焰喷涂NiCrBSi涂层的显微组织与力学性能[J].中国表面工程,2016,29(3):65-73.ZHAO Rui,YANG Hongjun,YU Helong,et al.Microstructure and mechanical properties of flame spray NiCrBSi coating remelted by high rrequency induction heating[J].China Surface Engineering,2016,29(3):65-73.(in Chinese)
参考文献 15
孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能[J].材料保护,2018,51(12):82-89.MENG Ying,ZHU Xiaopeng,DU Pengcheng,et al.High frequency induction remelting of Ni60-40WC coating prepared by high velocity oxy-fuel spraying and its water-lubricated wear resistance[J].Materials Protection,2018,51(12):82-89.(in Chinese)
参考文献 16
杨建鸣,秦义.圆柱体工件高频感应熔涂温度场数值模拟[J].铸造技术,2012,33(4):419-422.YANG Jianming,QING Yi.Numerical simulation on temperature field of cylinder workpiece in high frequency induction cladding[J].Foundry Technology,2012,33(4):419-422.(in Chinese)
参考文献 17
YANG X T,WANG Z P,LU Y,et al.Investigation of surface coating preparation of high-aluminum bronze alloy by induction remelting process[J].Advanced Materials Research,2012,1569.
参考文献 18
张生欣,狄平,徐梦廓,等.感应重熔-热处理对镍基碳化钨涂层的影响[J].中国表面工程,2016,29(1):46-50.ZHANG Shengxin,DI Ping,XU Mengkuo,et al.Effects of induction remelting and heat treatment on WC reinforced Ni-based alloy coatings[J].China Surface Engineering,2016,29(1):46-50.(in Chinese)
参考文献 19
吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(Z1):29-31.WU Mian,PAN Lin,TONG Xiangyang,et al.Induction remelting technology and its application in modern industry[J].Surface Engineering & Remanufacturing[J].2017,17(Z1):29-31.(in Chinese)
参考文献 20
张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005(3):98-102.ZHANG Weiping,LIU Shuo.Research on the crack of Ni-based metal-ceramis composite coating by laser cladding[J].Acta Materiae Compositae Sinica,2005(3):98-102.(in Chinese)
目录contents

    摘要

    重熔处理技术作为提高基体与涂层界面结合强度的方法之一,具有加热速度快、工作环境清洁等优点,但仍存在热影响偏大时造成基体损伤的风险。以感应重熔涂层为研究对象,建立二维有限元传热模型,研究涂层感应重熔过程中的温度场变化规律。以 TC11 钛合金基体表面感应重熔钛基涂层 Ti49Zr49Be 为典型材料,研究发现:集肤深度分别为 4.0 mm、1.5 mm 和 0.6 mm 时,三种集肤深度下涂层熔化界面推移方式均不同,且基体热敏感温度区深度和持续时间随着集肤深度的减小呈现递减趋势;感应重熔功率分别为 35 kW、45 kW 和 55 kW 时,发现界面推移方式相同,均为涂层表面、涂层 / 基体界面处向涂层内部双向推移,且基体热敏感温度区深度和持续时间随加热功率的增加呈现递减的趋势。涂层感应重熔过程传热模型和温度场变化规律研究表明,增大功率、减小集肤深度有助于工程应用中抑制基体热影响。

    Abstract

    To improve the interface bonding strength between substrate and coating, remelting technology has been applied as an environmental friendly approach with fast heating speed. However, the substrate might be deterioded by the over heating by induction during brazing coating process. A two-dimensional finite element model of heat transfer for induction remelting coating is established to examine the temperature field. Taking titanium-based coating Ti49Zr49Be on TC11 titanium alloy substrate as typical material system, the following conclusions can be drawn. The melting interface moves forward by different ways when the skin depths are 4.0 mm, 1.5 mm and 0.6 mm, respectively. It is found that both depth and duration of thermal sensitive temperature zone of substrate decrease with the decrease of the skin depth. When the induction remelting power is 35 kW, 45 kW and 55 kW, it is found that the interface moves by the same way from both coating surface and coating / substrate interface to the coating center. In addition, both depth and duration of thermal sensitive temperature zone of the substrate decrease with the increase of heating power. Based on the heat transfer model and variation of temperature field, it is demonstrated that increasing power and decreasing skin depth are helpful to restrain the thermal effect of the substrate in engineering application.

  • 0 前言

  • 热喷涂[1]技术作为重要表面工程技术之一,是通过在材料表面制备材料保护涂层与功能涂层,赋予基体材料没有但服役环境所必须有的表面性能的方法,具有喷涂材料选择范围广泛、涂层制备灵活性高、易于自动化加工、适应性强的特点,可以使材料表面具备耐磨损、耐环境腐蚀、耐高温氧化等优异性能[2-3],已经广泛应用于航天、航空、电力、化工众多产业领域。但是,由于热喷涂层大多呈多孔的层状结构[4],存在一定的残余应力[5],与基体结合强度较弱[6],容易剥落,并且涂层表面不均匀,影响材料优异耐磨性的发挥并可能降低疲劳强度,因此近年来人们一直在积极探索涂层重熔处理技术。

  • 重熔处理[7]是使用高温热源将涂层中的部分金属熔化,金属液渗入其他金属颗粒当中,填充金属颗粒间的孔隙,使孔隙率降低甚至消失,热喷涂层中疏松的层状组织变为较均匀的致密组织,重熔层与基体之间形成了扩散转移带以及一定程度的冶金结合[8]。除此之外,重熔处理还可以提高涂层与基体间的结合强度[9]。涂层重熔工艺有多种,如火焰加热重熔[10]、炉内重熔[11]、激光重熔[12]、感应重熔等。感应重熔技术是以感应涡流作为热源熔化重熔层的工艺方法[13],具有加热速度快、对基体影响小、工作环境清洁等特点,由于其独特的优势而受到研究者的青睐[14]。在感应重熔中,利用感应线圈中的交变磁场在基体表面产生涡流,涡流产生的热量熔化合金涂层,从而使涂层与基体实现冶金结合[15-18]。利用感应加热的集肤效应,即加热仅仅发生在工件表面的薄层区域,可以使涂层重熔而最大限度减少对工件的热损伤,既能提高热喷涂生产效率和涂层质量、减少对工件的热损伤和变形、改善操作者的劳动环境,又可以避免涂层材料被过度熔化的基体稀释[19-20]

  • 工业生产中很难通过计算求得工件感应加热时的最佳工艺参数,虽然工业生产上通过试验方法可以确定电源功率、加热时间等参数,但无法掌握工件温度场具体变化情况,造成了涂层材料和试验时间的浪费[7]。为探究涂层感应重熔工艺参数对基体的热影响,建立二维有限元模型,研究涂层感应重熔过程中的温度场变化规律。钛合金表面感应重熔合金涂层时,与其他自熔性合金相比较,由于钛基涂层Ti49Zr49Be与基体成分更接近,在感应重熔过程中与基体具有更好的相容性,使得涂层与基体界面具有更高的强度。本文首先研究了集肤深度分别为4.0mm、 1.5mm和0.6mm时的温度分布规律,其次研究了加热功率分别为35kW、45kW和55kW时的温度分布规律,为优选钎涂感应参数提供了可靠依据。

  • 1 物理模型及网格划分

  • 本文建立了一个感应加热表面预涂覆涂层的基体模型。工件横向尺寸可以被感应加热头完全覆盖,因此可将模型简化为沿深度方向的二维传热。

  • 本文采用有限元方法分析钎涂感应涂层过程中涂层及基体内部的二维传热过程。建立有限元模型,模型的网格划分示意图如图1所示。由于涂层在感应加热及后续冷却过程中会发生固液相变,涂层部分需要选用十分精细的网格,同时需要足够小的计算时间步长。以涂层上表面为基准建立坐标系,沿基体深度向内为 x 轴正方向。

  • 图1 不同集肤深度下模拟区域的计算网格

  • Fig.1 Calculation grid of the simulation area in different skin depth models

  • 本模型所采用的参数、初始和边界条件如下:

  • 基体和预置涂层的初始温度为298K,基体和涂层两侧的边界条件设置为自然对流换热、基体的下表面为恒温边界条件。所施加的感应热源的热流密度由涂层表面向内部呈指数规律衰减。

  • 基体为钛合金TC11(Ti-6.5Al-3.5Mo-1.5Zr),密度为4 480kg·m−3,钛合金基体的(α+β)/β 相变点温度为1 308K,在本文中作为基体敏感的代表性热影响温度参数,基体中高于此温度区域定义为基体敏感深度。涂层材料为钛基合金Ti49Zr49Be,固液相变温度为1 223K,相变潜热为320kJ·kg−1

  • 2 不同集肤深度下涂层和基体的温度场

  • 集肤深度作为感应加热过程中影响功率密度分布的一个非常重要参数,其取值大小能明显改变被加热物体内部的温度分布,从而影响加热速度和加热效率。集肤深度选取依据以下公式:

  • δ=1πfμr

  • 式中,f 为频率,µ 为磁导率,r 为电导率。根据所选钛基涂层及基体的物性参数,结合实际工程应用,选取频率分别为25kHz、180kHz、1 000kHz,通过计算得知其所对应的集肤深度分别为4.0mm、 1.5mm和0.6mm。图2为加热功率取45kW,不同集肤深度下涂层和基体的温度分布云图,观察可知,三种集肤深度下,涂层表面温度均呈现先升高后降低的趋势,且基体的热影响深度逐渐增大。在集肤深度为4.0mm的条件下,加热到1.61s,涂层表面温度达到1 000K左右。继续加热,温度不断升高,热量不断向基体传递。加热到3.17s时,涂层表面达到最高温度,且热影响深度逐渐增大,随后逐渐冷却,3.97s时基体表面温度开始低于基体的敏感温度。集肤深度为1.5mm时,加热至2.00s时,涂层表面就达到最高温度,2.23s为基体结束相变的临界时刻,可以看出此时的热影响深度低于集肤深度为4.0mm的热影响深度。相同加热功率、集肤深度为0.6m时,工件表面1.6s时就已经加热到最高温度,1.7s时基体表面温度开始低于基体的敏感温度,与前两种相比,热影响深度更低。因此,相同的加热功率下,随着集肤深度的减小,表面达到最高温度所需时间越来越短,且热影响深度也越来越小。

  • 图2 不同集肤深度下涂层和基体的温度场

  • Fig.2 Temperature field of coating and substrate with different skin depths

  • 图3a提取三种集肤深度下,温度达到最高时涂层表面至基体内部的温度分布曲线,可以看出,由涂层表面至基体内部,温度呈递减的趋势,涂层内部的温度梯度小于基体内部的温度梯度。随着集肤深度的减小,基体内部的温度梯度越大,热影响深度越小。

  • 图3 不同集肤深度下涂层和基体内部温度分布及涂层表面最高温度随时间变化

  • Fig.3 Temperature distribution of the coating and substrate and the change of maximum coating surface temperature with time

  • 图3b为涂层表面温度随时间变化的曲线,三种集肤深度下加热,涂层表面温度均随着加热和冷却的进行,先升高至涂层熔点,在熔化潜热的作用下发生等温熔化,随后继续升温到表面最高温度,开始冷却。冷却至涂层凝固点后在结晶潜热的作用下发生等温凝固,凝固结束后基体继续冷却。加热功率不变,随着集肤深度的减小,表面达到相同的温度时的加热时间不断缩短,且熔化和凝固时间也呈现出一定程度的缩短。因此,小的集肤深度有助于加热区域的更集中,同时使得加热速度也大幅提高,本文条件下,优选0.6mm为最佳集肤深度。

  • 为研究涂层的熔化过程,提取不同集肤深度下涂层熔化过程不同时刻的温度在深度方向的分布曲线,如图4所示。集肤深度取4.0mm时,固液界面推移方式为从涂层/基体界面处向涂层表面单向推移;当集肤深度取1.5mm时,固液界面推移方式为从涂层/基体界面处、涂层表面向涂层内部双向推移,且最终熔化位置位于0.23mm处;当集肤深度取0.6mm时,固液界面推移方式为从涂层表面向涂层/基体界面处单向推移。分析可知,涂层加热熔化所需热量来源于两部分,一是涂层表面的热源输入产生的热量,二是界面处热量高于涂层内部产生的反向热输入,集肤深度不同使得涂层表面产生与界面处反向热输入比重不同,造成熔化界面推移方式不同的现象。

  • 图4 不同集肤深度下涂层熔化过程不同时刻的温度在深度方向的分布

  • Fig.4 Temperature distribution in the depth direction at different moments of the coating melting process

  • 图5 精确提取了涂层熔化过程中固液界面位置随时间变化曲线。在集肤深度为4.0mm的条件下, 2.15s涂层/基体界面处先开始熔化,随着加热的进行,固液界面不断向涂层表面推进,直至2.59s固液界面到达涂层表面,熔化过程结束,历时0.44s。集肤深度减小至1.5mm,涂层/基体界面处的涂层在1.48s时先开始熔化,继续加热0.04s后,表面处的涂层也开始熔化,固液界面从涂层表面、涂层/基体界面处向涂层内部双向推移,直至1.58s时,固液界面重合,熔化过程结束,历时0.10s,且从熔化的最后位置可以看出,涂层表面向内部推进的速度更大,占据主导地位。集肤深度继续减小至0.6mm时, 1.03s表面处涂层先开始熔化,随着加热的进行,固液界面不断向涂层/基体界面处推进,直至1.27s固液界面到达界面处,熔化过程结束,历时0.24s。

  • 图5 不同集肤深度下涂层熔化过程固液界面位置随时间变化

  • Fig.5 Changes of solid-liquid interface position with time in coating melting process

  • 图6 为三种集肤深度下基体表面处的温度及基体热敏感温度区深度随时间变化曲线。从图6a可以看出,不同集肤深度下,基体表面温度均呈现先升高再下降的趋势,基体表面温度在一定时间段内超过基体敏感温度点。集肤深度为4.0mm、1.5mm和0.6mm时,基体温度高于敏感温度的时间依次递减,分别为1.27s、0.56s和0.36s。从图6b可以看出基体热敏感温度区深度均随时间变化先增后减。集肤深度为4.0mm、1.5mm和0.6mm时,基体热敏感温度区深度分别为1.72mm、0.76mm和0.39mm,即随集肤深度的减小,基体热敏感温度区深度随之减小。

  • 图6 不同集肤深度下基体表面温度及敏感深度随时间变化

  • Fig.6 Changes of substrate surface temperature and heat sensitive depth with time under different skin depths

  • 综上所述,集肤深度改变了涂层熔化界面的推移方式,集肤深度分别为4.0mm、1.5mm和0.6mm时,发现了涂层熔化界面推移方式分别为从涂层/基体界面处单向推移、从涂层表面、涂层/基体界面向涂层内部双向推移、从涂层表面单向推移的现象。基体高于敏感温度的时间和最大敏感深度均随着集肤深度的减小而递减。减小集肤深度可保证涂层熔化充分、基体热敏感区小、持续时间短,有助于工程应用中抑制基体热影响。

  • 3 不同加热功率下涂层和基体的温度场

  • 图7 为集肤深度1.5mm,不同加热功率下涂层和基体的温度分布云图,观察可知,三种功率热循环过程中,涂层表面温度均呈现先升高后降低的趋势。随着加热功率的增加,对基体的热影响深度逐渐减小。在35kW加热功率条件下,加热3.03s时,涂层表面达到最高温度,随后冷却,涂层热量不断向基体传递, 3.33s时,基体表面温度开始低于基体的敏感温度1 308K。加热功率增加至45kW时,加热到2.00s时涂层表面就达到最高温度;冷却至2.23s时,基体表面温度开始低于基体的敏感温度1 308K,且此时的基体敏感深度低于功率为35kW时的最大敏感深度。继续将加热功率提高至55kW,涂层到达最高温度缩短至1.45s,与前两种相比,热影响深度更低。

  • 图7 不同功率下涂层和基体的温度场

  • Fig.7 Temperature field of coating and substrate under different powers

  • 为进一步定量地研究涂层熔化情况,提取了三种功率下,涂层熔化阶段不同时刻温度在深度方向的分布曲线,如图8所示。可以看出三种加热功率下涂层熔化过程中固液界面的推移方式均从涂层表面、涂层/基体界面处向涂层内部双向推移。功率为35kW、45kW和55kW时,涂层最终熔化位置分别位于0.26mm、0.23mm和0.20mm,三种功率下涂层均从表面推进占据主导地位。

  • 图8 不同加热功率下涂层熔化阶段不同时刻温度在深度方向分布

  • Fig.8 The temperature distribution in the depth direction at different moments during coating melting stage under different heating powers

  • 图9 为三种加热功率下涂层熔化过程固液界面位置随时间变化曲线,可以发现,在35kW加热功率的条件下,2.23s时涂层表面处先开始熔化,继续加热0.02s后,界面处的涂层也开始熔化,固液界面从涂层表面、涂层/基体界面处向涂层内部双向推移,直至2.35s时,固液界面重合,熔化过程结束,历时0.10s。而加热功率增加至45kW及55kW时,与小功率加热不同的是,固液界面均先在涂层/基体界面处形成后涂层表面处形成,随后两侧的固液界面同时向涂层内部发生双向推移,直至熔化结束。分析原因,这是由于功率较小时,加热时间较长,涂层表面热输入占据主导,表面处的涂层热量积累更多;而功率增加至一定程度时,加热时间缩短同时表面热输入向涂层内部传递使得界面处的反向热输入相对于表面的热输入更大。

  • 图9 不同加热功率下涂层熔化过程固液界面位置随时间变化

  • Fig.9 Changes of solid-liquid interface position with time during coating melting process under different heating powers

  • 为了更深入地研究涂层对基体的热影响,提取了三种加热功率下基体表面处的温度和基体敏感深度随时间变化曲线,如图10所示。从图10可以看出,不同加热功率下,基体表面温度均呈现先升高再下降的趋势,基体表面温度在一定时间段内超过基体热敏感温度点。加热功率为35kW、45kW和55kW时,基体高于敏感温度的时间依次缩短,分别为0.84s、0.56s和0.40s。图10b表明,三种加热功率下的基体热敏感温度区深度均随时间变化呈现先增后减的趋势。加热功率为35kW、45kW和55kW时,基体热敏感温度区深度分别为0.88mm、 0.76mm和0.68mm,即随着加热功率的增加,基体热敏感温度区深度随之减小。

  • 综上所述,在集肤深度相同的条件下,涂层熔化界面推移方式对35~55kW范围内的加热功率变化不敏感,发现了三种加热功率下涂层熔化时固液界面推移方式均从涂层表面、涂层/基体界面处向涂层内部双向推移,且从表面推移占据主导地位。基体热敏感温度区深度和持续时间均随着加热功率的增加呈现递减的趋势。增大功率可保证涂层熔化充分、基体热敏感温度区小、持续时间短,有助于工程应用中抑制基体热影响。本文条件下,优选55kW为最佳工艺参数。

  • 图10 不同加热功率下基体表面温度及热敏感温度区深度随时间变化

  • Fig.10 Changes of substrate surface temperature and substrate heat sensitive depth with time under different heating powers

  • 4 结论

  • 通过建立钎涂感应二维传热模型,阐明了感应重熔时集肤深度和加热功率对基体的热影响规律,得到如下主要结论。

  • (1)集肤深度改变了涂层熔化界面的推移方式,在本文的条件下,随集肤深度增加,熔化界面先从涂层表面向基体方向单向推进,转变为从涂层表面和涂层/基体界面向涂层内部双向推进,最后转变为从涂层/基体界面向涂层表面单向推进,基体热敏感温度区深度和持续时间均随集肤深度的减小而递减。

  • (2)在功率为35~55kW范围内,涂层熔化界面推进方式对加热功率的变化不敏感,从涂层表面和涂层/基体界面向涂层内部双向推进未受影响,基体热敏感温度区深度和持续时间均随加热功率的增加而递减。

  • (3)综合加热功率和集肤特性对基体温度场的影响规律,增大功率、减小集肤深度,均有助于工程应用中抑制基体热影响。

  • 参考文献

    • [1] 李乔磊,宋鹏,黄太红,等.热喷涂陶瓷层与金属粘结层的界面调控及其强度研究[J].中国表面工程,2020,39(10):754-762,739.LI Qiaolei,SONG Peng,HUANG Taihong,et al.Research on interface control and bonding strength of thermal spraying ceramic top-coats and metal bond-coats[J].Materials China,2020,39(10):754-762,739.(in Chinese)

    • [2] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)

    • [3] 王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Yuyue,NIU Qiang,YANG Guanjun,et al.Investigations on corrosion-resistant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application.2019,13(3):165-172.(in Chinese)

    • [4] 胡伟,张振宇,梁补女,等.基于大气等离子喷涂的镍铬基粉末制备及其涂层组织结构[J].热喷涂技术,2019,11(2):36-42.HU Wei,ZHANG Zhenyu,LIANG Bunü,et al.Preparation of nickel-chromium based powder and microstructure of its atmospheric plasma spraying coating[J].Thermal Spray Technology,2019,11(2):36-42.(in Chinese)

    • [5] 张小锋,周克崧,刘敏,等.大气等离子喷涂环境障涂层镀Al表面改性[J].中国材料进展,2018,37(12):978-984,993.ZHANG Xiaofeng,ZHOU Kesong,LIU Min,et al.Al-modified environmental barrier coating prepared by atmospheric plasma spray[J].Materials China,2018,37(12):978-984,993.(in Chinese)

    • [6] LI C J,YANG G J,LI C X.Development of particle interface bonding in thermal spray coatings:A review[J].Journal of Thermal Spray Technology,2013,22(2-3):192-206.

    • [7] 孙文.基于感应重熔温度场模拟的控制系统设计及改性Ni60涂层研究[D].北京:机械科学研究总院,2019.SUN Wen.The control systems design based on simulation of temperature field in induction remelting and research on modified Ni60 coatings[D].Beijing:China Academy of Machinery Science,2019.(in Chinese)

    • [8] 孙文,童向阳,陈同舟,等.热输入对感应重熔Ni60合金涂层组织与性能的影响[J].热加工工艺,2020,49(6):116-120.SUN Wen,TONG Xiangyang,CHEN Tongzhou,et al.Influence of heat input on microstructure and properties of Ni60 alloy coating by induction remelting[J].Hot Working Technology,2020,49(6):116-120.(in Chinese)

    • [9] DONG T S,LIU L,FU B G,et al.Investigation of rolling/sliding contact fatigue behaviors of induction remelted Ni-based coating[J].Surface and Coatings Technology,2019,375:451-462.

    • [10] WANG Z G,OUYANG J H,MA Y H,et al.Formation mechanism of a wrinkled and textured Al2O3-ZrO2 nanoeutectic rapidly solidified from oxy-acetylene flame remelting[J].Journal of the American Ceramic Society,2019,102(1):63-69.

    • [11] 樊巧芳,张波,林瑛.Ni60 合金粉末炉内重熔工艺及耐磨性研究[J].表面技术,2016,45(4):226-231.FAN Qiaofang,ZHANG Bo,LIN Ying.Re-melting process and wear resistance of Ni60 alloy powder in furnace[J].Surface Technology,2016,45(4):226-231.(in Chinese)

    • [12] FENG Y,DONG T S,LI G L,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [13] PRAKHT V A,DMITRIEVSKII V A.Computer-based modeling of moving cylindrical ferromagnetic billets induction heating[J].The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2014,33(1):273-285.

    • [14] 赵锐,杨红军,于鹤龙,等.高频感应重熔处理火焰喷涂NiCrBSi涂层的显微组织与力学性能[J].中国表面工程,2016,29(3):65-73.ZHAO Rui,YANG Hongjun,YU Helong,et al.Microstructure and mechanical properties of flame spray NiCrBSi coating remelted by high rrequency induction heating[J].China Surface Engineering,2016,29(3):65-73.(in Chinese)

    • [15] 孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能[J].材料保护,2018,51(12):82-89.MENG Ying,ZHU Xiaopeng,DU Pengcheng,et al.High frequency induction remelting of Ni60-40WC coating prepared by high velocity oxy-fuel spraying and its water-lubricated wear resistance[J].Materials Protection,2018,51(12):82-89.(in Chinese)

    • [16] 杨建鸣,秦义.圆柱体工件高频感应熔涂温度场数值模拟[J].铸造技术,2012,33(4):419-422.YANG Jianming,QING Yi.Numerical simulation on temperature field of cylinder workpiece in high frequency induction cladding[J].Foundry Technology,2012,33(4):419-422.(in Chinese)

    • [17] YANG X T,WANG Z P,LU Y,et al.Investigation of surface coating preparation of high-aluminum bronze alloy by induction remelting process[J].Advanced Materials Research,2012,1569.

    • [18] 张生欣,狄平,徐梦廓,等.感应重熔-热处理对镍基碳化钨涂层的影响[J].中国表面工程,2016,29(1):46-50.ZHANG Shengxin,DI Ping,XU Mengkuo,et al.Effects of induction remelting and heat treatment on WC reinforced Ni-based alloy coatings[J].China Surface Engineering,2016,29(1):46-50.(in Chinese)

    • [19] 吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(Z1):29-31.WU Mian,PAN Lin,TONG Xiangyang,et al.Induction remelting technology and its application in modern industry[J].Surface Engineering & Remanufacturing[J].2017,17(Z1):29-31.(in Chinese)

    • [20] 张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005(3):98-102.ZHANG Weiping,LIU Shuo.Research on the crack of Ni-based metal-ceramis composite coating by laser cladding[J].Acta Materiae Compositae Sinica,2005(3):98-102.(in Chinese)

  • 参考文献

    • [1] 李乔磊,宋鹏,黄太红,等.热喷涂陶瓷层与金属粘结层的界面调控及其强度研究[J].中国表面工程,2020,39(10):754-762,739.LI Qiaolei,SONG Peng,HUANG Taihong,et al.Research on interface control and bonding strength of thermal spraying ceramic top-coats and metal bond-coats[J].Materials China,2020,39(10):754-762,739.(in Chinese)

    • [2] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3-21.CHEN Lin,YANG Guanjun,LI Chengxin,et al.Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3-21.(in Chinese)

    • [3] 王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Yuyue,NIU Qiang,YANG Guanjun,et al.Investigations on corrosion-resistant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application.2019,13(3):165-172.(in Chinese)

    • [4] 胡伟,张振宇,梁补女,等.基于大气等离子喷涂的镍铬基粉末制备及其涂层组织结构[J].热喷涂技术,2019,11(2):36-42.HU Wei,ZHANG Zhenyu,LIANG Bunü,et al.Preparation of nickel-chromium based powder and microstructure of its atmospheric plasma spraying coating[J].Thermal Spray Technology,2019,11(2):36-42.(in Chinese)

    • [5] 张小锋,周克崧,刘敏,等.大气等离子喷涂环境障涂层镀Al表面改性[J].中国材料进展,2018,37(12):978-984,993.ZHANG Xiaofeng,ZHOU Kesong,LIU Min,et al.Al-modified environmental barrier coating prepared by atmospheric plasma spray[J].Materials China,2018,37(12):978-984,993.(in Chinese)

    • [6] LI C J,YANG G J,LI C X.Development of particle interface bonding in thermal spray coatings:A review[J].Journal of Thermal Spray Technology,2013,22(2-3):192-206.

    • [7] 孙文.基于感应重熔温度场模拟的控制系统设计及改性Ni60涂层研究[D].北京:机械科学研究总院,2019.SUN Wen.The control systems design based on simulation of temperature field in induction remelting and research on modified Ni60 coatings[D].Beijing:China Academy of Machinery Science,2019.(in Chinese)

    • [8] 孙文,童向阳,陈同舟,等.热输入对感应重熔Ni60合金涂层组织与性能的影响[J].热加工工艺,2020,49(6):116-120.SUN Wen,TONG Xiangyang,CHEN Tongzhou,et al.Influence of heat input on microstructure and properties of Ni60 alloy coating by induction remelting[J].Hot Working Technology,2020,49(6):116-120.(in Chinese)

    • [9] DONG T S,LIU L,FU B G,et al.Investigation of rolling/sliding contact fatigue behaviors of induction remelted Ni-based coating[J].Surface and Coatings Technology,2019,375:451-462.

    • [10] WANG Z G,OUYANG J H,MA Y H,et al.Formation mechanism of a wrinkled and textured Al2O3-ZrO2 nanoeutectic rapidly solidified from oxy-acetylene flame remelting[J].Journal of the American Ceramic Society,2019,102(1):63-69.

    • [11] 樊巧芳,张波,林瑛.Ni60 合金粉末炉内重熔工艺及耐磨性研究[J].表面技术,2016,45(4):226-231.FAN Qiaofang,ZHANG Bo,LIN Ying.Re-melting process and wear resistance of Ni60 alloy powder in furnace[J].Surface Technology,2016,45(4):226-231.(in Chinese)

    • [12] FENG Y,DONG T S,LI G L,et al.High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J].Journal of Alloys and Compounds,2020,828:154266.

    • [13] PRAKHT V A,DMITRIEVSKII V A.Computer-based modeling of moving cylindrical ferromagnetic billets induction heating[J].The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2014,33(1):273-285.

    • [14] 赵锐,杨红军,于鹤龙,等.高频感应重熔处理火焰喷涂NiCrBSi涂层的显微组织与力学性能[J].中国表面工程,2016,29(3):65-73.ZHAO Rui,YANG Hongjun,YU Helong,et al.Microstructure and mechanical properties of flame spray NiCrBSi coating remelted by high rrequency induction heating[J].China Surface Engineering,2016,29(3):65-73.(in Chinese)

    • [15] 孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能[J].材料保护,2018,51(12):82-89.MENG Ying,ZHU Xiaopeng,DU Pengcheng,et al.High frequency induction remelting of Ni60-40WC coating prepared by high velocity oxy-fuel spraying and its water-lubricated wear resistance[J].Materials Protection,2018,51(12):82-89.(in Chinese)

    • [16] 杨建鸣,秦义.圆柱体工件高频感应熔涂温度场数值模拟[J].铸造技术,2012,33(4):419-422.YANG Jianming,QING Yi.Numerical simulation on temperature field of cylinder workpiece in high frequency induction cladding[J].Foundry Technology,2012,33(4):419-422.(in Chinese)

    • [17] YANG X T,WANG Z P,LU Y,et al.Investigation of surface coating preparation of high-aluminum bronze alloy by induction remelting process[J].Advanced Materials Research,2012,1569.

    • [18] 张生欣,狄平,徐梦廓,等.感应重熔-热处理对镍基碳化钨涂层的影响[J].中国表面工程,2016,29(1):46-50.ZHANG Shengxin,DI Ping,XU Mengkuo,et al.Effects of induction remelting and heat treatment on WC reinforced Ni-based alloy coatings[J].China Surface Engineering,2016,29(1):46-50.(in Chinese)

    • [19] 吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(Z1):29-31.WU Mian,PAN Lin,TONG Xiangyang,et al.Induction remelting technology and its application in modern industry[J].Surface Engineering & Remanufacturing[J].2017,17(Z1):29-31.(in Chinese)

    • [20] 张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005(3):98-102.ZHANG Weiping,LIU Shuo.Research on the crack of Ni-based metal-ceramis composite coating by laser cladding[J].Acta Materiae Compositae Sinica,2005(3):98-102.(in Chinese)

  • 手机扫一扫看