en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张栋强,男,1981年出生,博士,教授,博士研究生导师。主要研究方向为复合膜材料的制备及应用。E-mail:zhangdq@lut.cn;

王园园,女,1996年出生,硕士研究生。主要研究方向为固液复合润滑。E-mail:1506592598@qq.com;

高凯雄(通信作者),男,1986年出生,博士,副研究员。主要研究方向为低摩擦材料、PVD技术及工程应用。E-mail:kxgao@licp.cas.cn

中图分类号:TB39

DOI:10.11933/j.issn.1007−9289.20210916002

参考文献 1
WANG H D,LIU Y H,WANG W R,et al.Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives[J].Applied Materials & Interfaces,2017,9(36):30891-30899.
参考文献 2
WANG H D,LIU Y H,GUO F M,et al.Catalytically active oil-based lubricant additives enabled by calcining Ni-Al layered double hydroxides[J].Journal of Physical Chemistry Letters,2020,11(1):113-120.
参考文献 3
HOD O,MEYER E,ZHENG Q S,et al.Structural superlubricity and ultralow friction across the length scales[J].Nature,2018,563(7732):485-492.
参考文献 4
WANG H D,LIU Y H,LIU W R,et al.Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets[J].ACS Applied Materials and Interfaces,2019,11(22):20249-20256.
参考文献 5
HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-234.
参考文献 6
NEALE M J,FULLER D D.Theory and practice oflubrication for engineers[J].Tribology International,1984,17(6):349-349.
参考文献 7
BA Z W,HAN Y Y,QIAO D,et al.Composite nanoparticles based on hydrotalcite as high performance lubricant additives[J].Industrial & Engineering Chemistry Research,2018,57(45):15225-15233.
参考文献 8
WANG H D,LIU Y H,CHEN Z,et al.Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives[J].Scientific Reports,2016,6:22748.
参考文献 9
LI S,BHUSHAN B.Lubrication performance and mechanisms of Mg/Al-,Zn/Al-,and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives[J].Applied Surface Science,2016,378:308-319.
参考文献 10
郑泉水,欧阳稳根,马明,等.超润滑:“零”摩擦的世界[J].科技导报,2016,34(9):12-26.ZHENG Quanshui,OUYANG Wengen,MA Ming,et al.Superlubricity:A world of “zero” friction[J].Science & Technology Review,2016,34(9):12-26.(in Chinese).
参考文献 11
COSTA F R,ABDEL-GOAD M,WAGENKNECHT U,et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide.I.Synthesis and characterization[J].Polymer,2005,46(12):4447-4453.
参考文献 12
鞠晓丹,田惠文,刘昂,等.ZnTi 层状双氢氧化物的制备及其缓蚀和抑菌性能研究[J].表面技术,2020,49(11):245-251.JU Xiaodan,TIAN Huiwen,LIU Ang,et al.Synthesis of Zn Ti-layered double hydroxide and its corrosion inhibition property and antimicrobial activities[J].Surface Technology,2020,49(11):245-251.(in Chinese).
参考文献 13
杨炳元,王忠维,麻彦龙.层状双金属氢氧化物在金属腐蚀防护领域的研究进展[J].表面技术,2020,49(12):127-137.YANG Bingyuan,WANG Zhongwei,MA Yanlong.Research progress of layered double hydroxides in corrosion protection of metallic materials[J].Surface Technology,2020,49(12):127-137.(in Chinese).
参考文献 14
LI S,BAI Z M,ZHAO D.Characterization and friction performance of Zn/Mg/Al-CO3 layered double hydroxides[J].Applied Surface Science,2013,284:7-12.
参考文献 15
贾潞,马建中,高党鸽,等.层状双氢氧化物/聚合物纳米复合材料[J].化学进展,2018,30(Z1):295-303.JIA Lu,MA Jianzhong,GAO Dangge,et al.Layered double hydroxides/polymer nanocomposites materials[J].Progress in Chemistry,2018,30(Z1):295-303.(in Chinese).
参考文献 16
COSTA F R,WAGEBKNECHT U,JEHNICHEN D.et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide:Characterisation of modified clay,morphological and rheological analysis of nanocomposites[J].Plastics,Rubber and Composites,2013,35(4):139-148.
参考文献 17
华幼卿,秦倩.层状双羟基氢氧化物的结构表征及对PVC的热稳定作用[J].高分子材料科学与工程,2003,19(3):172-174,178.HUA Youqing,QIN Qian.Structural characterization of layered double hydroxides and its effect on thermal stabilization of PVC[J].Polymer Materials Science and Engineering,2003,19(3):172-174,178.(in Chinse).
参考文献 18
孙金陆,甄卫军,李进.LDHs 材料的结构、性质及其应用研究进展[J].化工进展,2013,32(3):610-616.SUN Jinlu,ZHEN Weijun,LI Jin.Structure,properties and applications of LDHs[J].Chemical Industry and Engineering Progress,2013,32(3):610-616.(in Chinese).
参考文献 19
赵宁,廖立兵.水滑石类化合物及其制备、应用的研究进展[J].材料导报,2011(1):543-548,528.ZHAO Ning,LIAO Libing.Research and application progress of hydrotalcite-like compounds[J].Materials Review,2011(1):543-548,528.(in Chinese).
参考文献 20
陆军,刘晓磊,史文颖,等.水滑石类插层组装功能材料[J].石油化工,2008(6):539-547.LU Jun,LIU Xiaolei,SHI Wenyin,et al.Functional materials of intercalated assembling layered double hydroxides[J].Petrochemical Engineering,2008(6):539-547.(in Chinese).
参考文献 21
霍彦杉,祝琳华,杨劲,等.水滑石类阴离子型插层材料的结构、性质、制备及其在催化领域的应用[J].硅酸盐通报,2013,32(3):429-433.HUO Yanbin,ZHU Linhua,YANG Jin,et al.Structure,properties and preparation of layered double hydroxides and its application in field catalysis[J].Silicate Bulletin,2013,32(3):429-433.(in Chinese).
参考文献 22
黄蝶,尹仕豪,李明,等.层状双金属氢氧化物制备及其吸附性能研究综述[J].化学工程与装备,2016(1):165-166.HUANG Die,YIN Shihao,LI Ming,et al.Review on preparation and adsorption properties of layered double-metal hydroxides[J].Chemical Engineering & Equipment,2016(1):165-166.(in Chinese).
参考文献 23
ILLAIL A,TAVIOT-GUEHO C,LAVIS J,et al.Unusual polystyrene nanocomposite structure using emulsifiermodified layered double hydroxide as nanofiller[J].Chemistry of Materials,2008,20(15):4854-4860.
参考文献 24
BAI Z M,WANG Z Y,ZHANG T G,et al.Synthesis and characterization of Co-Al-CO3 layered double-metal hydroxides and assessment of their friction performances[J].Applied Clay Science,2012,59-60:36-41.
参考文献 25
IGLESIAS A H,FERREIRA O P,GOUVEIA D X,et al.Structural and thermal properties of Co-Cu-Fe hydrotalcite-like compounds[J].Journal of Solid State Chemistry,2005,178(1):142-152.
参考文献 26
杨志广,闫海彦,张璐瑶,等.层状双金属氢氧化物的制备及其应用研究[J].化学教育,2017,38(20):6-8.YANG Zhiguang,YAN Haiyan,ZHANG Luyao,et al.Preparation and application of layered double-metal hydroxides[J].Chemical Education,2017,38(20):6-8.(in Chinese).
参考文献 27
李文涛,周升国,赵文杰.层状双金属氢氧化物耐蚀材料的研究进展[J].表面技术,2019,48(1):241-248.LI Wentao,ZHOU Shengguo,ZHAO Wenjie.Research progress of layered double hydroxide corrosion resistant materials[J].Surface Technology,2019,48(1):241-248.(in Chinese).
参考文献 28
聂宏骞,侯万国.层状双金属氢氧化物的剥离方法及其应用[J].物理化学学报,2011,27(8):1783-1796.NIE Hongqian,HOU Wanguo.Methods and application for delamination of layered double hydroxides[J].Journal of Physical Chemistry,2011,27(8):1783-1796.(in Chinese).
参考文献 29
瞿保钧,陈伟,邱龙臻,等.聚合物/层状双氢氧化物纳米复合材料的研究与展望[J].自然科学进展,2005(3):18-27.QU Baojun,CHEN Wei,QIU Longzhen,et al.Research and prospect of polymer/layered double hydroxide nanocomposites[J].Progress in Natural Science,2005(3):18-27.(in Chinese).
参考文献 30
何璐红,李娜.层状双氢氧化物的制备及应用述评[J].盐业与化工,2015,44(11):1-5.HE Luhong,LI Na.Preparation and application review of layered double hydroxides[J].Salt Industry and Chemical Industry,2015,44(11):1-5.(in Chinese).
参考文献 31
印露,雷国元,王德民,等.ZnAlFe 类水滑石的制备及其吸磷性能的研究[J].工业安全与环保,2013,39(3):1-4.YIN Lu,LEI Guoyuan,WANG Demin,et al.Study on preparation of ZnAlFe and its performance in phosphate adsorption[J].Industrial Safety and EnvironmentalProtection,2013,39(3):1-4.(in Chinese).
参考文献 32
SENAPATI S,THAKUR R,VERMA S P,et al.Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions[J].Journal of Controlled Release,2016,224:186-198.
参考文献 33
谢博尧,张纪梅,郝帅帅,等.层状双氢氧化物析氧催化剂的研究进展[J].材料工程,2020,48(1):1-9.XIE Boyao,ZHAGN Jimei,HAO Shuaishuai,et al.Research progress in layered double hydroxides catalysts for oxygen evolution reaction[J].Journal of Materials Engineering,2020,48(1):1-9.(in Chinese).
参考文献 34
BUSSI J,LÓPEZ A,PEÑA F,et al.Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites[J].Applied Catalysis A:General,2003,253(1):177-189.
参考文献 35
KUZAWA K,JUNG Y J,KISO Y,et al.Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent[J].Chemosphere,2006,62(1):45-52.
参考文献 36
杨杰,谢光银.聚合物-层状双氢氧化物纳米复合材料的研究进展[J].合成纤维,2014,43(6):41-47.YANG Jie,XIE Guangyin.Progress in polymer-layered double hydroxides nanocomposites[J].Synthetic Fibre,2014,43(6):41-47.(in Chinese).
参考文献 37
卜祥星,谷晓昱,张胜,等.牛磺酸插层水滑石的制备及其阻燃 EVA[J].塑料,2016,45(4):43-45,49.BU Xiangxing,GU Xiaoyu,ZHANG Sheng,et al.Intercalation of layered double hydroxides by taurine and influences on flame retardancy of ethylene-vinyl acetate copolymer [J].Plastic,2016,45(4):43-45,49.(in Chinese).
参考文献 38
ZHAO W,DU Y C,SUN Y B,et al.Study on preparation of layered double hydroxides(LDHs)and properties of EPDM/LDHs composites[J].Plastics,Rubber and Composites,2014,43(6):192-201.
参考文献 39
SORRENTINO A,GORRASI G,VITTORIA V,et al.Potential perspectives of bio-nanocomposites for food packaging applications[J].Trends in Food Science & Technology 2007,18(2):84-95.
参考文献 40
彭霞辉,黄可龙,焦飞鹏,等.水滑石作为药物载体― 萘普生的插层和缓释[J].功能材料,2006(3):415-417.PENG Huixia,HUANG Kelong,JIAO Feipeng,et al.Layered double hydroxides as a drug delivery system― intercalation and controlled release of naproxen[J].Function Materials,2006(3):415-417.(in Chinese).
参考文献 41
BAI Z M,WANG Z Y,ZHANG T G,et al.Characterization and friction performances of Co-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate[J].Applied Clay Science,2013,75-76:22-27.
参考文献 42
LI S,QIN H J,ZUO R F,et al.Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives[J].Applied Surface Science,2015,353:643-650.
参考文献 43
LI S,QIN H J,ZUO R F,et al.Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives[J].Tribology International,2015,91:60-66.
参考文献 44
LI S,REN L I,BAI Z M.Friction performance and mechanisms of calcined products of Mg/Al layered double hydroxides as lubricant additives[J].Applied Surface Science,2019,470:979-990.
参考文献 45
LONKAR S P,THERIAS S,LEROUX F,et al.Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites[J].Polymer International,2011,60(12):1688-1696.
参考文献 46
LV L,YANG Z X,CHEN K,et al.2D layered double hydroxides for oxygen evolution reaction:from fundamental design to application[J].Advanced Energy Materials,2019,9(17):1803358.
参考文献 47
TAEI M,HAVAKESHIAN E,ABEDI F,et al.The effect of Cu-Mg-Fe layered double hydroxide on the electrocatalytic activity of gold nanoparticles towards ethanol electrooxidation[J].International Journal of Hydrogen Energy,2016,41(31):13575-13582.
参考文献 48
MA R Z,LIU Z P,LI L,et al.Exfoliating layered double hydroxides in formamide:A method to obtain positively charged nanosheets[J].Journal of Materials Chemistry,2006,16(39):3809-3813.
参考文献 49
谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001(1):70-72.XIE Hui,JIAO Qingze,DUAN Xue.Synthesis of hydrotalcite by hydrothermal method[J].Applied Chemistry,2001(1):70-72.(in Chinese).
参考文献 50
赵仁波,苏荣军,梁爽,等.层状双氢氧化物的制备性质及应用[J].黑龙江科技信息,2017(12):67.ZHAO Renbo,SU Rongjun,LIANG Shuang,et al.Preparation and application of layered double hydroxides[J].Heilongjiang Science and Technology Information,2017(12):67.(in Chinese).
参考文献 51
敖燕辉,王丹丹,王沛芳,等.层状双金属氢氧化物的制备方法及光催化应用[J].四川环境,2016,35(1):136-143.AO Yanhui,WANG Dandan,WANG Peifang,et al.Preparation method and photocatalytic application of layered double hydroxides[J].Sichuan Environment,2016,35(1):136-143.(in Chinese).
参考文献 52
曹光群,陈健,方云,等.水滑石及其纳米插层材料的制备和应用[J].日用化学工业,2008(1):50-53,68.CAO Guangqun,CHEN Jian,FANG Yun,et al.Preparation and application of hydrotalcite and its intercalated nanocomposites[J].China Surfactant Detergent & Cosmetics,2008(1):50-53,68.(in Chinese).
参考文献 53
杨正芳,张悦,蔡金霄,等.层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J].材料导报,2021,35(19):19062-19069.YANG Zhengfang,ZHANG Yue,CAI Jinxiao,et al.Recent advances in the preparation and application of layered double hydroxides and their composites[J] Materials Reports,2021,35(19):19062-19069.(in Chinese).
参考文献 54
郭科,段巍卓,王晓东,等.微波法合成乙二醇插层镍铝层状双金属氢氧化物[J].应用化学,2016,33(1):84-91.GUO Ke,DUAN Weizhuo,WANG Xiaodong,et al.Microwave assisted synthesis of ethylene glycol intercalated nickel-aluminum layered double hydroxides [J].Applied Chemistry,2016,33(1):84-91.(in Chinese).
参考文献 55
ZHAO D,KASRAI M,SHAM T K,et al.Preparation of platy Co/Al hydrotalcites using aluminum hydroxide and investigation of their tribological properties in base oil[J].Canadian Journal of Chemistry,2015,93(2):151-159.
参考文献 56
WANG H D,WANG Y,LIU Y H,et al.Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives[J].Friction,2021,9(5):11.
参考文献 57
ZHAO D,SHAM T K,KASRAI M,et al.Tribological properties of Mg/Al-CO3 layered double hydroxide as additive in base oil[J].Tribology-materials,Surfaces & Interfaces,2014,8(4):222-234.
参考文献 58
ZHAO D,BAI Z M,ZHAO F Y.Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability[J].Materials Research Bulletin,2012,47(11):3670-3675.
参考文献 59
WANG X B,BAI Z M,ZHAO D,et al.Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite[J].Applied Surface Science,2013,277(15):134-138.
目录contents

    摘要

    具有特殊层状结构的双氢氧化物(LDHs)作为润滑添加剂能极大地降低机械系统的摩擦和材料磨损,但在摩擦学领域对该材料的研究还相对较少。概述了 LDHs 的结构、性能和制备方法,并对不同制备方法进行比较和评价,重点综述 LDHs 材料作为油基、脂基以及水基润滑添加剂时的摩擦学行为。相关研究结果表明:LDHs 材料作为油基、脂基以及水基润滑添加剂时可以形成含有金属氧化物的保护膜,该保护膜具有高耐磨性和自润滑能力,可以达到减摩降磨的效果。但是 LDHs 材料作为油基润滑添加剂时,存在尺寸效应以及分散稳定性差的问题,成为制约其广泛应用的关键因素。通常采用表面改性剂来改善 LDHs 材料在润滑油中的分散性,如月桂酸、油酸和油胺等。对于层状双氢氧化物的研究和应用具有参考意义。

    Abstract

    Layered double hydroxides (LDHs) with special layered structure as lubricant additives can remarkably reduce the friction and material wear of mechanical systems, but little research has been devoted to this material in the field of tribology. The structure, properties and preparation methods of LDHs are reviewed, the different synthesis methods of LDHs are further compared and evaluated. Moreover, the tribological behavior of LDHs materials as oil based, grease based and water based lubricant additives are reviewed. Relevant research results show that LDHs materials as oil, grease and water-based lubricant additives can form a protective film containing metal oxides, which has high wear resistance and self-lubricating ability, and the protective film can also achieve the effect of friction reduction and wear reduction. However, when LDHs are used as oil-based lubricant additives, there are problems of size effect and poor dispersion stability, which become the key factors limiting its wide application. Surface modifiers are usually used to improve the dispersibility of LDHs materials in lubricants, such as lauric acid, oleic acid and oleylamine. This paper is a reference for the research and application of LDHs.

  • 0 前言

  • 摩擦与磨损是自然界一种广泛存在的现象,摩擦是由两个物体彼此接触,在外力作用下发生相对运动或有相对运动趋势时产生的,磨损则随着不同程度的摩擦而产生。在现代工业生产过程中,不必要的摩擦和磨损导致巨大的经济损失(约占国民生产总值的5%~7%)[1-5]。据粗略估计,磨损的出现不仅消耗了1/3~1/2的能源,同时也造成了机械部件的失效[6]。因此,采用润滑材料来减少机械系统的摩擦和材料磨损,提高部件的使用寿命和能源的使用效率,成为重要的研究方向之一。

  • 固体润滑添加剂是众多用于减摩抗磨的润滑材料之一,包括一些具有弱的层间作用力的层状结构材料,如石墨衍生物、黑磷、MoS2和WS2[7],上述层状结构材料的润滑机理主要归因于层与层之间的非公度接触和界面间微弱的相互作用(范德华力)[2,8-10]。另外固体润滑添加剂还包括聚四氟乙烯 (PTFE)、尼龙、聚乙烯、聚酰亚胺等高分子化合物,以及主要用于轻负荷工况下润滑脂及焊锡膏中的固体润滑添加剂三聚氰尿酸络合物(MCA)。层状双氢氧化物(LDHs)是由带正电荷的金属氢氧化物和层间带负电荷的可交换阴离子两部分所形成的一类层状化合物[11-14]。由于其具有来源广泛、合成方法简单多样、成本低廉、比表面积和阴离子交换容量较大以及环境友好等优势,因此在摩擦学领域作为固体润滑添加剂具有极大的应用前景。

  • 1 层状双氢氧化物的结构和性能

  • CIRCA是世界上最早发现天然水滑石存在的科学家[15-17]。随着对层状双氢氧化物的不断探索与研究,意大利佛罗伦萨大学MANASSE教授在1915年首次提出水滑石的首个精确化学式: Mg6Al2(OH)16CO3 • 4H2O[18]。1942年,FEITKNECHT等采用共沉淀法初次成功合成LDHs,并提出双层结构模型,但是对于微观结构仍然不是很明确[19-20]。直到1969年,ANMANM等通过单晶X射线衍射试验才确认了LDHs的层状结构,发现是两种金属处于同一层上[15, 20]

  • 随着科学技术的日新月异,研究人员总结了LDHs的共性,提出了LDHs的结构通式: M1-x2+Mx3+(OH)2x+An-x/nmH2O,其中M2+和M3+分别为带正电的二价和三价金属阳离子,通常二价金属阳离子有Mg2+、Zn2+、Mn2+、Co2+等,三价金属阳离子有Ni3+、Al3+、Cr3+、Fe3+等,一般情况下金属离子之间的半径差值对于形成稳定的层板结构具有极大的影响,相差越近时越容易形成稳定的层板结构;另外,结构式中An-代表具有 n 个负电荷的层间阴离子,如Cl-、CO3 2-、NO3- 等,x 代表三价金属阳离子在阳离子总数中所占的分数(通常在0.20~0.33),m 为结晶水的数目(通常在0~6) [21-27]。图1为LDHs的晶体结构示意图[28]。从图中可以看出,位于八面体中心的金属阳离子与位于其六个顶点上的OH-之间互相连接形成具有与石墨烯、二硫化钼等类似的二维层状结构[29,30]

  • 图1 LDHs的晶体结构示意图[28]

  • Fig.1 Crystal structure diagram of LDHs[28]

  • LDHs具有这种优良结构性能,被广泛应用于诸多领域:LDHs的层间阴离子具有可交换性,可以作为阴离子交换剂[31-32];由于LDHs独特的结构记忆效应,可以将其进行焙烧后的复合氧化产物 (LDOs)作为阴离子吸收剂、催化剂载体以及催化剂前驱体[33-35];聚合物与LDHs合成的纳米复合材料可以用作阻燃剂[36-38];通过对LDHs进行插层可以将其作为药物缓释剂,等等[39-40]

  • LDHs不仅在上述领域展现出广阔的应用前景,还可以作为改善摩擦学性能的润滑添加剂,在摩擦学领域获得重要应用[41]。目前,尚未有关于LDHs的摩擦学行为的综述性文章。本文简要回顾LDHs的各种制备方法,评价不同制备方法的优缺点,并对其在摩擦学领域的研究现状进行了综述与展望。

  • 2 层状双氢氧化物的制备

  • 自然界存在的天然LDHs是有限的,且含有不同程度的杂质,人工合成LDHs则是解决这一难题的唯一方法。为了制得理想的LDHs材料,国内外研究工作者进行了大量的探索研究工作,开发出了许多不同的制备方法,如共沉淀法、水热/溶剂热合成法、离子交换法、焙烧复原法、溶胶-凝胶法和剥离重组法等[14-15, 42-48]

  • 2.1 共沉淀法

  • 共沉淀法是将构成目标LDHs的主体金属阳离子盐溶液与客体待交换阴离子盐置于反应容器中使其发生共沉淀反应,随后将获得的产物进一步进行一系列操作从而获得所需目标的LDHs。该方法大多用于LDHs前驱体的制备。不同反应条件下,共沉淀法大致可分为以下几种:

  • (1)饱和度不同,可以将共沉淀法划分为低饱和度法(PLS)和高饱和度法(PHS),低饱和度法是通过控制加入到金属盐混合溶液中的碱液的滴加速度来达到控制pH值的方法,高过饱和度法则相反,是在剧烈搅拌情况下,将混合金属盐溶液快速加入到碱液中的方法。PLS法是两种方法中最常用的制备方法,这是为了避免杂相在制备的目标LDHs中出现,进而影响制备的LDHs的性能。

  • (2)根据在反应过程是否对反应溶液的pH进行控制,共沉淀法可以分为pH变化法(又称单滴法)和pH恒定法(又称双滴法)。

  • (3)成核/晶化隔离法,顾名思义是指将反应成核与晶核生长这两个阶段分开,目的是得到小粒径且分布均匀的粒子。该方法与其他一般制备方法相比较而言,制备出的产物粒径均一,操作容易,反应过程时间短,有利于工业化[19],另外该方法合成的产物LDHs的结晶度较高。

  • (4)尿素法是将尿素与混合阳离子金属盐溶液在反应器中混合,利用尿素受热水解的性质,为目标产物LDHs提供形成与生长所需要的碱性环境,采用尿素法制备出的产物LDHs特点是尺寸大且生长比较完整[19]

  • 虽然采用共沉淀法制备目标LDHs具有以下诸多缺点,如制备时间长、制备过程中粒子的大小不容易控制、较高的过饱和度,产生无定型氢氧化物和难溶盐等杂相,但是共沉淀法具有适用范围较广,容易操作,反应条件温和,所得产物分散性好,以及容易获得不同品种产品等优点,到目前为止该法依然是最普遍的制备方法。

  • 2.2 水热/溶剂热合成法

  • 水热/溶剂热合成法是指在反应溶剂为水或有机溶剂的条件下,通过调节烘箱的温度,使得置于烘箱中高压釜内的金属阳离子盐溶液与碱液的混合溶液发生晶化,随后对晶化后的浆液进一步抽滤、洗涤、干燥等一系列操作最终得到目标LDHs样品[49]。虽然采用水热/溶剂热合成法制备的目标LDHs晶体粒子具有结晶度较高,晶粒形状易控制,产物颗粒分布均匀及易分散等优点,但同时存在一定的缺点,如制备过程需要特殊的温度和压力且制备时间较长,难以对晶体粒子的成核速度和生长过程进行定量控制[26]。谢晖等[49]利用水热法制备具有水滑石结构的双层氢氧化物,结果表明,提高水热老化温度和老化时间有利于水滑石结构的形成,并且可以通过改变老化温度和时间来控制产物的晶粒尺寸。

  • 2.3 离子交换法

  • 离子交换法是指将含有较小体积阴离子的LDHs前驱体与目标阴离子通过离子交换,获得目标产物LDHs的方法[19]。该方法可以实现对层间阴离子种类和数量的设计以及组装,进而合成一些组成结构特殊的LDHs。然而离子交换法的实现受到诸多因素的限制,通常情况下要求进入层间的阴离子的交换能力要强,这就需要所选阴离子具备较大电荷、较小半径、较小pH溶液体系以及相对适合的溶胀剂和溶胀条件[26, 50]。下述是一些常见阴离子的交换能力顺序:CO3 2− >SO4 2− >HPO4 >OH >Cl >Br >NO3,其中最容易进行交换的阴离子是NO3[51]

  • 2.4 焙烧复原法

  • 焙烧复原法又称热处理法。该方法所依据的原理是LDHs的层间阴离子可交换性以及其独特的 “记忆效应”。焙烧复原法是指将LDHs焙烧成的双金属氧化物在氮气氛围的保护下分散到某种阴离子溶液中进行混合,使溶液中的阴离子进入到层板间隙形成新的层状结构,制备出新的目标LDHs。利用该方法制备出的LDHs纯度与结晶度都较好,阴离子体积较大的LDHs一般是利用此方法来制备的。但该方法也存在以下缺点:复杂的反应过程容易形成非晶体相,煅烧温度对插层结构是否能够复原起着决定性的作用,大多数情况下,当煅烧温度超过550℃时,反应过程中生成的尖晶石使得LDHs的层状结构难以恢复[26, 50]

  • 2.5 溶胶-凝胶法

  • 溶胶-凝胶法被广泛地应用于金属氧化物纳米粒子的制备。该方法具有合成温度低、产物纯度高、均匀性好、比表面积大等优点,通常用于合成纳米级、亚微米级和微米级LDHs材料,但仍然存在原料成本较高、溶胶-凝胶过程时间长、干燥过程中易收缩等诸多缺点[19, 26, 52]

  • 2.6 剥离重组法

  • 剥离重组法是指克服层间作用力将LDHs的层板进行剥离,将剥离之后得到的带正电荷的纳米片与带负电荷的纳米片进行不同质量比混合,利用正负电荷之间的相互作用重组为新型层状化合物的方法[53]。该方法最大的困难在于如何克服层间作用力使得LDHs的层板顺利剥离,因为一般LDHs层板所带正电荷的密度较高且与层间阴离子存在较强的静电作用。

  • 除了上述所提到的制备方法之外,还存在其他一些制备LDHs的方法。

  • (1)模板法[19]。该方法是借助有机物模板,使得置于模板与溶液相界面处的反应物通过化学反应形成LDHs/有机物复合体,随后再通过焙烧、溶蚀等不同手段去除有机物模板,进一步得到具有一定方向、形状和大小的LDHs材料的方法。

  • (2)机械力化学法[19]。该方法是指借助外界机械作用力,使物质本身发生化学或物理变化来制备目标LDHs材料的方法。研磨是最常见的机械力化学法。该方法具有制备工艺条件简单、能耗低、产率较高等优点。

  • (3)微波辅助合成法[54]。该方法是指利用微波试验仪所能提供的温度,电流等外界环境对LDHs阴离子交换前驱体与插层物质,以及促进剂的混合物进行密闭处理,将微波处理之后得到的固体进行洗涤、抽滤、干燥等操作后得到目标产物的方法。该方法与其他常规合成LDHs的方法相比较而言,具有催化效率高、合成时间短且产物结晶度高等优点。

  • 3 层状双氢氧化物的摩擦学行为

  • 在摩擦学研究中,天然无机矿物LDHs因其优异的摩擦学性能得到了广泛的研究。结果表明当矿物颗粒用作润滑添加剂时,可以形成含有金属氧化物的保护膜。该保护膜具有高耐磨性和自润滑能力,可以达到减摩降磨的效果。根据润滑剂分散介质的不同,LDHs作为润滑添加剂在摩擦学领域的研究大致可以分为油基润滑添加剂、脂基润滑添加剂和水基润滑添加剂三个方面,其中作为油基润滑添加剂的研究较多。表1总结了目前在涉及摩擦学研究方面的LDHs材料的制备方法,但并不代表其他方法制备的LDHs材料不能用于润滑油添加剂或其他形式的润滑材料。

  • 表1 涉及摩擦学研究方面的LDHs材料的制备方法

  • Table1 Preparation methods of LDHs in the field of tribology

  • 3.1 LDHs作为油基润滑添加剂的摩擦学行为

  • LDHs作为油基润滑添加剂在近些年得到了广泛的关注,主要集中在对单一掺杂LDHs作为油基润滑添加剂、将LDHs与其他材料形成纳米复合材料作为油基润滑添加剂,以及对LDHs在润滑油中的分散稳定性和尺寸效应等研究方面。

  • 2012年,BAI等[24]采用粒径150nm的钴铝基LDHs粉体作为润滑油添加剂并研究了其摩擦性能,这是LDHs在摩擦学领域的首次报道。2015年, ZHAO等[55]采用水热合成法,以不溶性氢氧化铝作为前驱体合成了直径0.2~1.5 µm、厚度40nm且具有完美六边形片状结构的CoAl-LDHs。通过四球摩擦试验和销盘式摩擦磨损试验,研究了所制备的CoAl-LDHs作为CD15W-40基础润滑油添加剂时的摩擦学性能。极压条件下四球摩擦试验结果表明,单独使用基础润滑油时随着滑动时间的延长,摩擦因数从0.1逐渐增大到0.11,磨斑宽度为0.46mm。相比而言添加了LDHs的基础润滑油的摩擦因数均低于纯基础润滑油的摩擦因数,且随着滑动时间的延长,摩擦因数稳定在0.08左右,磨斑宽度为0.34mm,摩擦因数、磨损与纯基础润滑油相比分别降低了22.3%和26.1%。抗磨条件下采用销盘式摩擦磨损试验,试验结果表明,与不添加LDHs润滑油的摩擦因数0.07相比,添加了LDHs的润滑油的摩擦因数达到了0.06,且摩擦曲线变得更加平滑。进一步用ATM和XANES对磨损表面的形貌和化学成分进行表征。以上结果表明,吸附在磨损表面上的LDHs可以防止摩擦副之间的直接接触,并降低磨损表面的粗糙度,从而降低摩擦磨损。

  • 由于LDHs纳米粒子表面带正电荷,容易吸附一些带有负电荷的纳米粒子(如石墨烯、氧化石墨烯、二硫化钼等),形成相应的具有更好润滑性能的复合材料。BA等[7]采用静电自组装的方法合成LDHs/GO、LDHs/MOS2 纳米复合材料。该研究主要考察了复合纳米粒子作为聚 α 烯烃(PAO)添加剂的摩擦学性能。结果表明LDHs/GO、LDHs/MOS2 作为添加剂可以显著提高PAO油的减摩抗磨性能。另外还提出合成的纳米复合材料的润滑机理,复合纳米材料的优异摩擦学性能主要归因于LDHs与GO或MOS2 之间协同润滑作用(图2)。

  • 图2 复合纳米材料的润滑机理示意图[7]

  • Fig.2 Schematic illustration of the lubrication model of composite nanomaterials[7]

  • 单一的LDHs作为润滑添加剂在摩擦学领域具有显著的减摩降磨作用,与其他添加剂复配使用时,是否具有一加一大于二的作用还有待研究。

  • 2014年,ZHAO等[57]研究了在100℃下MgAl-LDHs作为单一添加剂以及与二烷基二硫代磷酸锌(ZDDP)复配使用时的摩擦学性能,其摩擦因数与磨损结果如图3所示,结果表明,单独使用MgAl-LDH作为添加剂比LDHs与ZDDP混合作为润滑添加剂时具有更好的减摩性能,但是添加ZDDP有助于摩擦因数的稳定。

  • 当层状双氢氧化物作为油基润滑添加剂时,往往存在溶解性问题,导致其分散稳定性差,进而影响其广泛使用。为了克服这一问题,通常采用月桂酸、油酸、油胺等表面活性剂对LDHs进行表面改性,以增强其分散稳定性,进一步加强其润滑性能。

  • 图3 采用不同添加剂时的摩擦因数图和磨损直径数据[57]

  • Fig.3 Friction factor and wear scar width of different additives[57]

  • 月桂酸又称十二烷酸(DA-CH3(CH2)10COOH),是常用的工业表面活性剂。经月桂酸插层后的水滑石具有较高的层间距,且能够进一步提高其在油中的分散稳定性,使其具有极大的应用前景。ZHAO等[58]采用共沉淀法成功制备了MgAl-LDHs,在不同pH值下将MgAl-LDHs作为前驱体,用月桂酸进行改性,制备出不同分散溶剂的插层MgAl-DA-LDHs,进一步研究前驱体与插层产物的摩擦学性能。试验结果表明, MgAl-LDHs前驱体和插层产物MgAl-DA-LDHs均具有优异的减摩性能,其摩擦因数分别为0.089和0.091,与基础油的摩擦因数相比分别降低23.9%和22.2%。摩擦试验之后,测量了含有MgAl-LDHs前驱体的基础油、插层产物MgAl-DA-LDHs的基础油,以及纯基础油三种不同条件下对偶球上的磨斑直径,结果表明,含有LDHs的基础油中对偶球的平均直径均小于纯基础油中对偶球的平均直径,且含有MgAl-LDHs前驱体的基础油中对偶球的磨斑直径明显小于含有插层产物MgAl-DA-LDHs基础油中对偶球的磨斑直径,两者的磨损率相较于纯基础油分别降低了4.97%和1.73%(表2)。同样的改性方法,WANG等[59]用月桂酸钠对以菱镁矿为原料制备出的MgAl-LDHs进行改性,测试了改性后的MgAl-LDHs作为基础油润滑添加剂的摩擦学性能,研究表明添加了改性后的MgAl-LDHs的润滑油与基础油相比,其摩擦因数和磨斑直径分别降低11.0%和8.5%,这说明改性后的MgAl-LDHs作为润滑添加剂在降低摩擦磨损方面具有优异的性能。

  • 表2 不同条件下样品球的磨斑直径[58]

  • Table2 Wear scar diameters of sample balls in the different conditions [58]

  • 油酸(C12H34O2)也是一种常用的表面改性剂,通过油酸改性的LDHs能进一步增加其在基础油中的分散稳定性,提高摩擦学性能。LI等[14]采用共沉淀法合成了Zn/Mg/Al-CO3 2--LDHs,并用油酸对产物进行了表面改性。改性后的Zn/Mg/Al-CO3 2--LDHs具有较高的结晶度和完美六方片状结构。随后用四球摩擦试验机研究了改性后的产物在基础油中的摩擦学性能。由表3中摩擦试验数据显示,含0.5wt.%Zn/Mg/Al-CO3 2--LDH的基础油具有最佳的减摩性能,摩擦因数和磨斑直径分别降低68.6%和24.6%(表4)。这是由于LDHs纳米粒子吸附在磨损表面,在摩擦过程中形成了摩擦保护膜,降低了摩擦磨损。

  • 表3 不同浓度添加剂的摩擦因数值[14]

  • Table3 Friction factor of additives with different concentrations[14]

  • 表4 四球摩擦试验球磨斑直径[14]

  • Table4 Wear scar diameters of balls in the four-ball friction test[14]

  • 随着对LDHs更加深入的研究,发现LDHs的尺寸大小以及形貌的变化对于摩擦学性能也存在极大的影响。2017年,WANG等[1]采用微乳化法通过控制溶液结晶时间(6h、12h、24h)制备出三种不同尺寸的NiAl-LDHs纳米片,将其作为天然气合成基础油(GTL)润滑添加剂,使用SRV-4微动摩擦磨损试验机在往复模式下评价了不同载荷下的摩擦学性能。结果表明,大尺寸纳米片(NiAl-24h)表现出最佳和最稳定的摩擦学性能,在2.16GPa(100N)的接触压力下,大尺寸纳米片(NiAl-24h)与基础油的混合物的摩擦因数比单纯使用基础油时的摩擦因数降低了约10%(图4)。在50N条件下,用添加剂润滑的固体表面磨斑的直径相对于使用纯基础油固体表面磨斑直径要小,并且没有出现磨损痕迹和划痕。通过观察NiAl-24h样品用作油基润滑添加剂时的三维轮廓图和磨痕的线扫描图,表明LDHs的加入有利于进一步改善固体表面之间的耐磨性。他们提出了LDHs作为润滑添加剂的润滑机理模型,如图5所示。虽然粒径较小的纳米添加剂在滑动过程中容易嵌入滑动表面的缺陷和凹坑中形成厚度相对较厚的摩擦膜,但是由于其晶体结构不完整,尺寸较小,因此很难提高接触面的力学性能。然而,具有较大尺寸和良好晶体结构的纳米添加剂,在滑动过程中容易与基底牢固地结合在一起,确保了摩擦表面光滑,同时改善力学性能,从而降低了摩擦磨损。这项工作首次证实了纳米LDHs作为潜在的减摩抗磨添加剂在油基润滑剂中(特别是在苛刻的接触条件下)的优异摩擦学性能,从而为工业实际应用提供了方向。

  • 图4 三种不同尺寸NiAl-LDHs在不同载荷下的摩擦因数[1]

  • Fig.4 Friction factor of three different sizes NiAl-LDHs under different loads[1]

  • 图5 不同LDHs纳米添加剂润滑机理模型[1]

  • Fig.5 Schematic illustration of proposed lubrication model with different nano-LDHs additives[1]

  • 3.2 LDHs作为脂基润滑添加剂的摩擦学行为

  • LDHs作为润滑添加剂,同样在脂基润滑中也表现出了优异的摩擦学行为。2020年,WANG等[56] 采用共沉淀法制备了四种不同二价金属阳离子 (Co2+、Mg2+、Zn2+、Ni2+)(图6a)化学组成和三种不同形貌的MgAl-LDHs(图7a~7c)的样品,并对其在Mobil MP润滑脂中的摩擦学性能进行评价和比较,结果如图6c、6d所示,其中NiAl-LDHs具有相对于其他样品更低的摩擦因数与磨损量。由于MgAl-LDHs的制备相对容易控制,因此通过控制反应溶液pH值制备三种不同形貌MgAl-LDHs,测试了不同形貌LDHs的摩擦学性能,研究发现就摩擦学性能而言,形貌的变化比化学成分的变化影响更大,在制备的所有样品中,具有高比表面积和超薄花状结构的LDHs样品具有最佳的摩擦学性能,在相同试验条件下,磨损量仅为单独使用基础润滑脂润滑时的0.2%。并且通过对摩擦试验后磨损轨迹的观察和分析,提出LDHs作为润滑添加剂的润滑机理模型,得出LDHs作为润滑添加剂与滑动固体表面发生摩擦化学反应,形成了微观结构独特且成分均匀的摩擦膜,该摩擦膜能有效地改善润滑系统的摩擦学性能。该工作为润滑脂添加剂的优化提供了指导,具有很大的应用潜力。

  • 图6 化学组成不同的LDHs的SEM图、XRD图、摩擦因数曲线和磨损体积和直径[56]

  • Fig.6 SEM images (a), XRD patterns (b), friction factor (c) of ZnAl-, MgAl-, NiAl-and CoAl-LDHs, and wear condition of base grease and those with 1wt%LDHs (d) [56] (PS: Unified scale of the four figures in Fig.6a is 1 μm)

  • 图7 不同形貌MgAl-LDHs的SEM图像 (a)片状;(b)花状;(c)球状;(d)不同形貌LDHs的XRD图[56] (备注:图7(a~c)三幅图统一标尺为1 μm)

  • Fig.7 SEM images of MgAl-LDHs with (a) plate-like, (b) flower-like, (c) spherical morphology, and (d) XRD patterns of these LDHs[56] (PS: Unified scale of the three figures in Fig.7a-7c is 1 μm)

  • 3.3 LDHs作为水基润滑添加剂的摩擦学行为

  • 随着经济的不断发展,环境友好型、经济型的润滑剂在摩擦学领域引起了极大的关注。其中水作为一种来源丰富、无污染的能源对于可持续发展和节能至关重要。LDHs作为一类具有优异结构的黏土类化合物使得其在水基润滑系统中也表现出了优异的摩擦学性能。

  • 2016年,WANG等[8]通过水热法在微乳液中合成了NiAl-LDHs纳米片,采用油胺对其进行表面改性,改性后的样品不需要额外的分散体或表面活性剂就可以得到稳定且半透明的水溶液,通过摩擦学性能测试,结果表明与纯水相比,其作为水基润滑添加剂时的摩擦因数、磨痕直径、磨痕深度和宽度分别降低83.1%、43.2%、88.5%和59.5%,提出LDHs作为水基润滑添加剂的润滑机理模型(如图8所示)。由于所制备样品的层状结构具有弱相互作用和高承载能力,剥落的纳米片在摩擦过程中吸附在滑动的固体表面上,有效防止了粗糙体的直接碰撞,降低了摩擦磨损。该工作丰富了水基润滑剂的研究,在节能、机械加工、设备操作和其他工业应用方面具有潜在应用价值。

  • 图8 LDHs作为水基润滑添加剂的润滑机理模型[8]

  • Fig.8 Schematic illustration of the lubrication model of LDHs as water-based lubrication additive[8]

  • 在之前研究的液体超滑工作中发现,大量氢离子的存在会加速系统超滑的实现,但是仍然存在磨合期较长的缺点,另外氢离子的存在会引起固体材料和相关设备的严重腐蚀。作为润滑添加剂,二维纳米材料比普通纳米材料更容易进入滑动表面的接触区域,由于其优异的力学性能防止了粗糙体之间的直接碰撞,从而可以有效地控制摩擦和磨损,以减少材料和能量的损失。2019年,WANG等[4]合成了两种不同类型的纳米LDHs:超薄LDHs纳米片 (ULDH-NS)和LDHs纳米粒子(LDH-NP),其中ULDH-NS的横向尺寸约为80nm,纵向尺寸约为1nm(单层或双层)。LDH-NP的横向尺寸约为20nm,纵向尺寸约为10nm。随后将0.5wt.%的LDHs纳米添加剂分散在HB-400PAG水溶液中进行摩擦学试验,试验结果表明,LDHs纳米片的加入大大缩短了(高达85%)达到超滑状态之前的磨合期。该项研究在超滑领域成功地将二维固体材料与水基润滑剂相结合,分析了它们在超润滑中的协同作用,并探索了润滑机理(图9),有利于在实际工业应用中实现超润滑。

  • 图9 润滑机理模型[4]

  • Fig.9 Schematic illustration of the lubrication model[4]

  • 4 结论与展望

  • 简要介绍了层状双氢氧化物的不同制备方法,并对其不同制备方法的优缺点进行了评价。着重综述了层状双氢氧化物在摩擦学领域的行为以及研究现状。层状双氢氧化物具有与石墨烯、二硫化钼等材料类似的二维结构,作为润滑添加剂在摩擦学领域具有广泛的应用前景。

  • 层状双氢氧化物在润滑油中的尺寸效应、分散性是制约其应用的主要因素,同时缺乏试验和计算模拟相结合的分析手段,因此,仍须开展进一步的系统研究,主要有以下几个方面:

  • (1)LDHs材料的尺寸能极大地影响其在摩擦学中的性能,因此如何实现对LDHs材料的均一性控制,达到可控制备需要进一步探索。

  • (2)LDHs材料在润滑油中的分散稳定性是制约其应用的主要因素,迫切需要开发环境友好且操作简便的方法,对层状双氢氧化物进行修饰,克服分散稳定性问题。

  • (3)LDHs材料在分散剂中的分散方法、片层尺寸、分散浓度对实现低摩擦具有较大的影响,在今后的工作中很有必要进一步探究分散方法、片层尺寸、浓度与低摩擦之间的关系。

  • (4)目前大量研究是对于润滑现象的数值分析,在与计算机模拟相结合开发新的、更加全面的模型方面还有极大的发展空间。

  • 参考文献

    • [1] WANG H D,LIU Y H,WANG W R,et al.Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives[J].Applied Materials & Interfaces,2017,9(36):30891-30899.

    • [2] WANG H D,LIU Y H,GUO F M,et al.Catalytically active oil-based lubricant additives enabled by calcining Ni-Al layered double hydroxides[J].Journal of Physical Chemistry Letters,2020,11(1):113-120.

    • [3] HOD O,MEYER E,ZHENG Q S,et al.Structural superlubricity and ultralow friction across the length scales[J].Nature,2018,563(7732):485-492.

    • [4] WANG H D,LIU Y H,LIU W R,et al.Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets[J].ACS Applied Materials and Interfaces,2019,11(22):20249-20256.

    • [5] HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-234.

    • [6] NEALE M J,FULLER D D.Theory and practice oflubrication for engineers[J].Tribology International,1984,17(6):349-349.

    • [7] BA Z W,HAN Y Y,QIAO D,et al.Composite nanoparticles based on hydrotalcite as high performance lubricant additives[J].Industrial & Engineering Chemistry Research,2018,57(45):15225-15233.

    • [8] WANG H D,LIU Y H,CHEN Z,et al.Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives[J].Scientific Reports,2016,6:22748.

    • [9] LI S,BHUSHAN B.Lubrication performance and mechanisms of Mg/Al-,Zn/Al-,and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives[J].Applied Surface Science,2016,378:308-319.

    • [10] 郑泉水,欧阳稳根,马明,等.超润滑:“零”摩擦的世界[J].科技导报,2016,34(9):12-26.ZHENG Quanshui,OUYANG Wengen,MA Ming,et al.Superlubricity:A world of “zero” friction[J].Science & Technology Review,2016,34(9):12-26.(in Chinese).

    • [11] COSTA F R,ABDEL-GOAD M,WAGENKNECHT U,et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide.I.Synthesis and characterization[J].Polymer,2005,46(12):4447-4453.

    • [12] 鞠晓丹,田惠文,刘昂,等.ZnTi 层状双氢氧化物的制备及其缓蚀和抑菌性能研究[J].表面技术,2020,49(11):245-251.JU Xiaodan,TIAN Huiwen,LIU Ang,et al.Synthesis of Zn Ti-layered double hydroxide and its corrosion inhibition property and antimicrobial activities[J].Surface Technology,2020,49(11):245-251.(in Chinese).

    • [13] 杨炳元,王忠维,麻彦龙.层状双金属氢氧化物在金属腐蚀防护领域的研究进展[J].表面技术,2020,49(12):127-137.YANG Bingyuan,WANG Zhongwei,MA Yanlong.Research progress of layered double hydroxides in corrosion protection of metallic materials[J].Surface Technology,2020,49(12):127-137.(in Chinese).

    • [14] LI S,BAI Z M,ZHAO D.Characterization and friction performance of Zn/Mg/Al-CO3 layered double hydroxides[J].Applied Surface Science,2013,284:7-12.

    • [15] 贾潞,马建中,高党鸽,等.层状双氢氧化物/聚合物纳米复合材料[J].化学进展,2018,30(Z1):295-303.JIA Lu,MA Jianzhong,GAO Dangge,et al.Layered double hydroxides/polymer nanocomposites materials[J].Progress in Chemistry,2018,30(Z1):295-303.(in Chinese).

    • [16] COSTA F R,WAGEBKNECHT U,JEHNICHEN D.et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide:Characterisation of modified clay,morphological and rheological analysis of nanocomposites[J].Plastics,Rubber and Composites,2013,35(4):139-148.

    • [17] 华幼卿,秦倩.层状双羟基氢氧化物的结构表征及对PVC的热稳定作用[J].高分子材料科学与工程,2003,19(3):172-174,178.HUA Youqing,QIN Qian.Structural characterization of layered double hydroxides and its effect on thermal stabilization of PVC[J].Polymer Materials Science and Engineering,2003,19(3):172-174,178.(in Chinse).

    • [18] 孙金陆,甄卫军,李进.LDHs 材料的结构、性质及其应用研究进展[J].化工进展,2013,32(3):610-616.SUN Jinlu,ZHEN Weijun,LI Jin.Structure,properties and applications of LDHs[J].Chemical Industry and Engineering Progress,2013,32(3):610-616.(in Chinese).

    • [19] 赵宁,廖立兵.水滑石类化合物及其制备、应用的研究进展[J].材料导报,2011(1):543-548,528.ZHAO Ning,LIAO Libing.Research and application progress of hydrotalcite-like compounds[J].Materials Review,2011(1):543-548,528.(in Chinese).

    • [20] 陆军,刘晓磊,史文颖,等.水滑石类插层组装功能材料[J].石油化工,2008(6):539-547.LU Jun,LIU Xiaolei,SHI Wenyin,et al.Functional materials of intercalated assembling layered double hydroxides[J].Petrochemical Engineering,2008(6):539-547.(in Chinese).

    • [21] 霍彦杉,祝琳华,杨劲,等.水滑石类阴离子型插层材料的结构、性质、制备及其在催化领域的应用[J].硅酸盐通报,2013,32(3):429-433.HUO Yanbin,ZHU Linhua,YANG Jin,et al.Structure,properties and preparation of layered double hydroxides and its application in field catalysis[J].Silicate Bulletin,2013,32(3):429-433.(in Chinese).

    • [22] 黄蝶,尹仕豪,李明,等.层状双金属氢氧化物制备及其吸附性能研究综述[J].化学工程与装备,2016(1):165-166.HUANG Die,YIN Shihao,LI Ming,et al.Review on preparation and adsorption properties of layered double-metal hydroxides[J].Chemical Engineering & Equipment,2016(1):165-166.(in Chinese).

    • [23] ILLAIL A,TAVIOT-GUEHO C,LAVIS J,et al.Unusual polystyrene nanocomposite structure using emulsifiermodified layered double hydroxide as nanofiller[J].Chemistry of Materials,2008,20(15):4854-4860.

    • [24] BAI Z M,WANG Z Y,ZHANG T G,et al.Synthesis and characterization of Co-Al-CO3 layered double-metal hydroxides and assessment of their friction performances[J].Applied Clay Science,2012,59-60:36-41.

    • [25] IGLESIAS A H,FERREIRA O P,GOUVEIA D X,et al.Structural and thermal properties of Co-Cu-Fe hydrotalcite-like compounds[J].Journal of Solid State Chemistry,2005,178(1):142-152.

    • [26] 杨志广,闫海彦,张璐瑶,等.层状双金属氢氧化物的制备及其应用研究[J].化学教育,2017,38(20):6-8.YANG Zhiguang,YAN Haiyan,ZHANG Luyao,et al.Preparation and application of layered double-metal hydroxides[J].Chemical Education,2017,38(20):6-8.(in Chinese).

    • [27] 李文涛,周升国,赵文杰.层状双金属氢氧化物耐蚀材料的研究进展[J].表面技术,2019,48(1):241-248.LI Wentao,ZHOU Shengguo,ZHAO Wenjie.Research progress of layered double hydroxide corrosion resistant materials[J].Surface Technology,2019,48(1):241-248.(in Chinese).

    • [28] 聂宏骞,侯万国.层状双金属氢氧化物的剥离方法及其应用[J].物理化学学报,2011,27(8):1783-1796.NIE Hongqian,HOU Wanguo.Methods and application for delamination of layered double hydroxides[J].Journal of Physical Chemistry,2011,27(8):1783-1796.(in Chinese).

    • [29] 瞿保钧,陈伟,邱龙臻,等.聚合物/层状双氢氧化物纳米复合材料的研究与展望[J].自然科学进展,2005(3):18-27.QU Baojun,CHEN Wei,QIU Longzhen,et al.Research and prospect of polymer/layered double hydroxide nanocomposites[J].Progress in Natural Science,2005(3):18-27.(in Chinese).

    • [30] 何璐红,李娜.层状双氢氧化物的制备及应用述评[J].盐业与化工,2015,44(11):1-5.HE Luhong,LI Na.Preparation and application review of layered double hydroxides[J].Salt Industry and Chemical Industry,2015,44(11):1-5.(in Chinese).

    • [31] 印露,雷国元,王德民,等.ZnAlFe 类水滑石的制备及其吸磷性能的研究[J].工业安全与环保,2013,39(3):1-4.YIN Lu,LEI Guoyuan,WANG Demin,et al.Study on preparation of ZnAlFe and its performance in phosphate adsorption[J].Industrial Safety and EnvironmentalProtection,2013,39(3):1-4.(in Chinese).

    • [32] SENAPATI S,THAKUR R,VERMA S P,et al.Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions[J].Journal of Controlled Release,2016,224:186-198.

    • [33] 谢博尧,张纪梅,郝帅帅,等.层状双氢氧化物析氧催化剂的研究进展[J].材料工程,2020,48(1):1-9.XIE Boyao,ZHAGN Jimei,HAO Shuaishuai,et al.Research progress in layered double hydroxides catalysts for oxygen evolution reaction[J].Journal of Materials Engineering,2020,48(1):1-9.(in Chinese).

    • [34] BUSSI J,LÓPEZ A,PEÑA F,et al.Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites[J].Applied Catalysis A:General,2003,253(1):177-189.

    • [35] KUZAWA K,JUNG Y J,KISO Y,et al.Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent[J].Chemosphere,2006,62(1):45-52.

    • [36] 杨杰,谢光银.聚合物-层状双氢氧化物纳米复合材料的研究进展[J].合成纤维,2014,43(6):41-47.YANG Jie,XIE Guangyin.Progress in polymer-layered double hydroxides nanocomposites[J].Synthetic Fibre,2014,43(6):41-47.(in Chinese).

    • [37] 卜祥星,谷晓昱,张胜,等.牛磺酸插层水滑石的制备及其阻燃 EVA[J].塑料,2016,45(4):43-45,49.BU Xiangxing,GU Xiaoyu,ZHANG Sheng,et al.Intercalation of layered double hydroxides by taurine and influences on flame retardancy of ethylene-vinyl acetate copolymer [J].Plastic,2016,45(4):43-45,49.(in Chinese).

    • [38] ZHAO W,DU Y C,SUN Y B,et al.Study on preparation of layered double hydroxides(LDHs)and properties of EPDM/LDHs composites[J].Plastics,Rubber and Composites,2014,43(6):192-201.

    • [39] SORRENTINO A,GORRASI G,VITTORIA V,et al.Potential perspectives of bio-nanocomposites for food packaging applications[J].Trends in Food Science & Technology 2007,18(2):84-95.

    • [40] 彭霞辉,黄可龙,焦飞鹏,等.水滑石作为药物载体― 萘普生的插层和缓释[J].功能材料,2006(3):415-417.PENG Huixia,HUANG Kelong,JIAO Feipeng,et al.Layered double hydroxides as a drug delivery system― intercalation and controlled release of naproxen[J].Function Materials,2006(3):415-417.(in Chinese).

    • [41] BAI Z M,WANG Z Y,ZHANG T G,et al.Characterization and friction performances of Co-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate[J].Applied Clay Science,2013,75-76:22-27.

    • [42] LI S,QIN H J,ZUO R F,et al.Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives[J].Applied Surface Science,2015,353:643-650.

    • [43] LI S,QIN H J,ZUO R F,et al.Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives[J].Tribology International,2015,91:60-66.

    • [44] LI S,REN L I,BAI Z M.Friction performance and mechanisms of calcined products of Mg/Al layered double hydroxides as lubricant additives[J].Applied Surface Science,2019,470:979-990.

    • [45] LONKAR S P,THERIAS S,LEROUX F,et al.Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites[J].Polymer International,2011,60(12):1688-1696.

    • [46] LV L,YANG Z X,CHEN K,et al.2D layered double hydroxides for oxygen evolution reaction:from fundamental design to application[J].Advanced Energy Materials,2019,9(17):1803358.

    • [47] TAEI M,HAVAKESHIAN E,ABEDI F,et al.The effect of Cu-Mg-Fe layered double hydroxide on the electrocatalytic activity of gold nanoparticles towards ethanol electrooxidation[J].International Journal of Hydrogen Energy,2016,41(31):13575-13582.

    • [48] MA R Z,LIU Z P,LI L,et al.Exfoliating layered double hydroxides in formamide:A method to obtain positively charged nanosheets[J].Journal of Materials Chemistry,2006,16(39):3809-3813.

    • [49] 谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001(1):70-72.XIE Hui,JIAO Qingze,DUAN Xue.Synthesis of hydrotalcite by hydrothermal method[J].Applied Chemistry,2001(1):70-72.(in Chinese).

    • [50] 赵仁波,苏荣军,梁爽,等.层状双氢氧化物的制备性质及应用[J].黑龙江科技信息,2017(12):67.ZHAO Renbo,SU Rongjun,LIANG Shuang,et al.Preparation and application of layered double hydroxides[J].Heilongjiang Science and Technology Information,2017(12):67.(in Chinese).

    • [51] 敖燕辉,王丹丹,王沛芳,等.层状双金属氢氧化物的制备方法及光催化应用[J].四川环境,2016,35(1):136-143.AO Yanhui,WANG Dandan,WANG Peifang,et al.Preparation method and photocatalytic application of layered double hydroxides[J].Sichuan Environment,2016,35(1):136-143.(in Chinese).

    • [52] 曹光群,陈健,方云,等.水滑石及其纳米插层材料的制备和应用[J].日用化学工业,2008(1):50-53,68.CAO Guangqun,CHEN Jian,FANG Yun,et al.Preparation and application of hydrotalcite and its intercalated nanocomposites[J].China Surfactant Detergent & Cosmetics,2008(1):50-53,68.(in Chinese).

    • [53] 杨正芳,张悦,蔡金霄,等.层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J].材料导报,2021,35(19):19062-19069.YANG Zhengfang,ZHANG Yue,CAI Jinxiao,et al.Recent advances in the preparation and application of layered double hydroxides and their composites[J] Materials Reports,2021,35(19):19062-19069.(in Chinese).

    • [54] 郭科,段巍卓,王晓东,等.微波法合成乙二醇插层镍铝层状双金属氢氧化物[J].应用化学,2016,33(1):84-91.GUO Ke,DUAN Weizhuo,WANG Xiaodong,et al.Microwave assisted synthesis of ethylene glycol intercalated nickel-aluminum layered double hydroxides [J].Applied Chemistry,2016,33(1):84-91.(in Chinese).

    • [55] ZHAO D,KASRAI M,SHAM T K,et al.Preparation of platy Co/Al hydrotalcites using aluminum hydroxide and investigation of their tribological properties in base oil[J].Canadian Journal of Chemistry,2015,93(2):151-159.

    • [56] WANG H D,WANG Y,LIU Y H,et al.Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives[J].Friction,2021,9(5):11.

    • [57] ZHAO D,SHAM T K,KASRAI M,et al.Tribological properties of Mg/Al-CO3 layered double hydroxide as additive in base oil[J].Tribology-materials,Surfaces & Interfaces,2014,8(4):222-234.

    • [58] ZHAO D,BAI Z M,ZHAO F Y.Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability[J].Materials Research Bulletin,2012,47(11):3670-3675.

    • [59] WANG X B,BAI Z M,ZHAO D,et al.Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite[J].Applied Surface Science,2013,277(15):134-138.

  • 参考文献

    • [1] WANG H D,LIU Y H,WANG W R,et al.Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives[J].Applied Materials & Interfaces,2017,9(36):30891-30899.

    • [2] WANG H D,LIU Y H,GUO F M,et al.Catalytically active oil-based lubricant additives enabled by calcining Ni-Al layered double hydroxides[J].Journal of Physical Chemistry Letters,2020,11(1):113-120.

    • [3] HOD O,MEYER E,ZHENG Q S,et al.Structural superlubricity and ultralow friction across the length scales[J].Nature,2018,563(7732):485-492.

    • [4] WANG H D,LIU Y H,LIU W R,et al.Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets[J].ACS Applied Materials and Interfaces,2019,11(22):20249-20256.

    • [5] HOLMBERG K,ANDERSSON P,ERDEMIR A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-234.

    • [6] NEALE M J,FULLER D D.Theory and practice oflubrication for engineers[J].Tribology International,1984,17(6):349-349.

    • [7] BA Z W,HAN Y Y,QIAO D,et al.Composite nanoparticles based on hydrotalcite as high performance lubricant additives[J].Industrial & Engineering Chemistry Research,2018,57(45):15225-15233.

    • [8] WANG H D,LIU Y H,CHEN Z,et al.Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives[J].Scientific Reports,2016,6:22748.

    • [9] LI S,BHUSHAN B.Lubrication performance and mechanisms of Mg/Al-,Zn/Al-,and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives[J].Applied Surface Science,2016,378:308-319.

    • [10] 郑泉水,欧阳稳根,马明,等.超润滑:“零”摩擦的世界[J].科技导报,2016,34(9):12-26.ZHENG Quanshui,OUYANG Wengen,MA Ming,et al.Superlubricity:A world of “zero” friction[J].Science & Technology Review,2016,34(9):12-26.(in Chinese).

    • [11] COSTA F R,ABDEL-GOAD M,WAGENKNECHT U,et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide.I.Synthesis and characterization[J].Polymer,2005,46(12):4447-4453.

    • [12] 鞠晓丹,田惠文,刘昂,等.ZnTi 层状双氢氧化物的制备及其缓蚀和抑菌性能研究[J].表面技术,2020,49(11):245-251.JU Xiaodan,TIAN Huiwen,LIU Ang,et al.Synthesis of Zn Ti-layered double hydroxide and its corrosion inhibition property and antimicrobial activities[J].Surface Technology,2020,49(11):245-251.(in Chinese).

    • [13] 杨炳元,王忠维,麻彦龙.层状双金属氢氧化物在金属腐蚀防护领域的研究进展[J].表面技术,2020,49(12):127-137.YANG Bingyuan,WANG Zhongwei,MA Yanlong.Research progress of layered double hydroxides in corrosion protection of metallic materials[J].Surface Technology,2020,49(12):127-137.(in Chinese).

    • [14] LI S,BAI Z M,ZHAO D.Characterization and friction performance of Zn/Mg/Al-CO3 layered double hydroxides[J].Applied Surface Science,2013,284:7-12.

    • [15] 贾潞,马建中,高党鸽,等.层状双氢氧化物/聚合物纳米复合材料[J].化学进展,2018,30(Z1):295-303.JIA Lu,MA Jianzhong,GAO Dangge,et al.Layered double hydroxides/polymer nanocomposites materials[J].Progress in Chemistry,2018,30(Z1):295-303.(in Chinese).

    • [16] COSTA F R,WAGEBKNECHT U,JEHNICHEN D.et al.Nanocomposites based on polyethylene and Mg-Al layered double hydroxide:Characterisation of modified clay,morphological and rheological analysis of nanocomposites[J].Plastics,Rubber and Composites,2013,35(4):139-148.

    • [17] 华幼卿,秦倩.层状双羟基氢氧化物的结构表征及对PVC的热稳定作用[J].高分子材料科学与工程,2003,19(3):172-174,178.HUA Youqing,QIN Qian.Structural characterization of layered double hydroxides and its effect on thermal stabilization of PVC[J].Polymer Materials Science and Engineering,2003,19(3):172-174,178.(in Chinse).

    • [18] 孙金陆,甄卫军,李进.LDHs 材料的结构、性质及其应用研究进展[J].化工进展,2013,32(3):610-616.SUN Jinlu,ZHEN Weijun,LI Jin.Structure,properties and applications of LDHs[J].Chemical Industry and Engineering Progress,2013,32(3):610-616.(in Chinese).

    • [19] 赵宁,廖立兵.水滑石类化合物及其制备、应用的研究进展[J].材料导报,2011(1):543-548,528.ZHAO Ning,LIAO Libing.Research and application progress of hydrotalcite-like compounds[J].Materials Review,2011(1):543-548,528.(in Chinese).

    • [20] 陆军,刘晓磊,史文颖,等.水滑石类插层组装功能材料[J].石油化工,2008(6):539-547.LU Jun,LIU Xiaolei,SHI Wenyin,et al.Functional materials of intercalated assembling layered double hydroxides[J].Petrochemical Engineering,2008(6):539-547.(in Chinese).

    • [21] 霍彦杉,祝琳华,杨劲,等.水滑石类阴离子型插层材料的结构、性质、制备及其在催化领域的应用[J].硅酸盐通报,2013,32(3):429-433.HUO Yanbin,ZHU Linhua,YANG Jin,et al.Structure,properties and preparation of layered double hydroxides and its application in field catalysis[J].Silicate Bulletin,2013,32(3):429-433.(in Chinese).

    • [22] 黄蝶,尹仕豪,李明,等.层状双金属氢氧化物制备及其吸附性能研究综述[J].化学工程与装备,2016(1):165-166.HUANG Die,YIN Shihao,LI Ming,et al.Review on preparation and adsorption properties of layered double-metal hydroxides[J].Chemical Engineering & Equipment,2016(1):165-166.(in Chinese).

    • [23] ILLAIL A,TAVIOT-GUEHO C,LAVIS J,et al.Unusual polystyrene nanocomposite structure using emulsifiermodified layered double hydroxide as nanofiller[J].Chemistry of Materials,2008,20(15):4854-4860.

    • [24] BAI Z M,WANG Z Y,ZHANG T G,et al.Synthesis and characterization of Co-Al-CO3 layered double-metal hydroxides and assessment of their friction performances[J].Applied Clay Science,2012,59-60:36-41.

    • [25] IGLESIAS A H,FERREIRA O P,GOUVEIA D X,et al.Structural and thermal properties of Co-Cu-Fe hydrotalcite-like compounds[J].Journal of Solid State Chemistry,2005,178(1):142-152.

    • [26] 杨志广,闫海彦,张璐瑶,等.层状双金属氢氧化物的制备及其应用研究[J].化学教育,2017,38(20):6-8.YANG Zhiguang,YAN Haiyan,ZHANG Luyao,et al.Preparation and application of layered double-metal hydroxides[J].Chemical Education,2017,38(20):6-8.(in Chinese).

    • [27] 李文涛,周升国,赵文杰.层状双金属氢氧化物耐蚀材料的研究进展[J].表面技术,2019,48(1):241-248.LI Wentao,ZHOU Shengguo,ZHAO Wenjie.Research progress of layered double hydroxide corrosion resistant materials[J].Surface Technology,2019,48(1):241-248.(in Chinese).

    • [28] 聂宏骞,侯万国.层状双金属氢氧化物的剥离方法及其应用[J].物理化学学报,2011,27(8):1783-1796.NIE Hongqian,HOU Wanguo.Methods and application for delamination of layered double hydroxides[J].Journal of Physical Chemistry,2011,27(8):1783-1796.(in Chinese).

    • [29] 瞿保钧,陈伟,邱龙臻,等.聚合物/层状双氢氧化物纳米复合材料的研究与展望[J].自然科学进展,2005(3):18-27.QU Baojun,CHEN Wei,QIU Longzhen,et al.Research and prospect of polymer/layered double hydroxide nanocomposites[J].Progress in Natural Science,2005(3):18-27.(in Chinese).

    • [30] 何璐红,李娜.层状双氢氧化物的制备及应用述评[J].盐业与化工,2015,44(11):1-5.HE Luhong,LI Na.Preparation and application review of layered double hydroxides[J].Salt Industry and Chemical Industry,2015,44(11):1-5.(in Chinese).

    • [31] 印露,雷国元,王德民,等.ZnAlFe 类水滑石的制备及其吸磷性能的研究[J].工业安全与环保,2013,39(3):1-4.YIN Lu,LEI Guoyuan,WANG Demin,et al.Study on preparation of ZnAlFe and its performance in phosphate adsorption[J].Industrial Safety and EnvironmentalProtection,2013,39(3):1-4.(in Chinese).

    • [32] SENAPATI S,THAKUR R,VERMA S P,et al.Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions[J].Journal of Controlled Release,2016,224:186-198.

    • [33] 谢博尧,张纪梅,郝帅帅,等.层状双氢氧化物析氧催化剂的研究进展[J].材料工程,2020,48(1):1-9.XIE Boyao,ZHAGN Jimei,HAO Shuaishuai,et al.Research progress in layered double hydroxides catalysts for oxygen evolution reaction[J].Journal of Materials Engineering,2020,48(1):1-9.(in Chinese).

    • [34] BUSSI J,LÓPEZ A,PEÑA F,et al.Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites[J].Applied Catalysis A:General,2003,253(1):177-189.

    • [35] KUZAWA K,JUNG Y J,KISO Y,et al.Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent[J].Chemosphere,2006,62(1):45-52.

    • [36] 杨杰,谢光银.聚合物-层状双氢氧化物纳米复合材料的研究进展[J].合成纤维,2014,43(6):41-47.YANG Jie,XIE Guangyin.Progress in polymer-layered double hydroxides nanocomposites[J].Synthetic Fibre,2014,43(6):41-47.(in Chinese).

    • [37] 卜祥星,谷晓昱,张胜,等.牛磺酸插层水滑石的制备及其阻燃 EVA[J].塑料,2016,45(4):43-45,49.BU Xiangxing,GU Xiaoyu,ZHANG Sheng,et al.Intercalation of layered double hydroxides by taurine and influences on flame retardancy of ethylene-vinyl acetate copolymer [J].Plastic,2016,45(4):43-45,49.(in Chinese).

    • [38] ZHAO W,DU Y C,SUN Y B,et al.Study on preparation of layered double hydroxides(LDHs)and properties of EPDM/LDHs composites[J].Plastics,Rubber and Composites,2014,43(6):192-201.

    • [39] SORRENTINO A,GORRASI G,VITTORIA V,et al.Potential perspectives of bio-nanocomposites for food packaging applications[J].Trends in Food Science & Technology 2007,18(2):84-95.

    • [40] 彭霞辉,黄可龙,焦飞鹏,等.水滑石作为药物载体― 萘普生的插层和缓释[J].功能材料,2006(3):415-417.PENG Huixia,HUANG Kelong,JIAO Feipeng,et al.Layered double hydroxides as a drug delivery system― intercalation and controlled release of naproxen[J].Function Materials,2006(3):415-417.(in Chinese).

    • [41] BAI Z M,WANG Z Y,ZHANG T G,et al.Characterization and friction performances of Co-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate[J].Applied Clay Science,2013,75-76:22-27.

    • [42] LI S,QIN H J,ZUO R F,et al.Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives[J].Applied Surface Science,2015,353:643-650.

    • [43] LI S,QIN H J,ZUO R F,et al.Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives[J].Tribology International,2015,91:60-66.

    • [44] LI S,REN L I,BAI Z M.Friction performance and mechanisms of calcined products of Mg/Al layered double hydroxides as lubricant additives[J].Applied Surface Science,2019,470:979-990.

    • [45] LONKAR S P,THERIAS S,LEROUX F,et al.Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites[J].Polymer International,2011,60(12):1688-1696.

    • [46] LV L,YANG Z X,CHEN K,et al.2D layered double hydroxides for oxygen evolution reaction:from fundamental design to application[J].Advanced Energy Materials,2019,9(17):1803358.

    • [47] TAEI M,HAVAKESHIAN E,ABEDI F,et al.The effect of Cu-Mg-Fe layered double hydroxide on the electrocatalytic activity of gold nanoparticles towards ethanol electrooxidation[J].International Journal of Hydrogen Energy,2016,41(31):13575-13582.

    • [48] MA R Z,LIU Z P,LI L,et al.Exfoliating layered double hydroxides in formamide:A method to obtain positively charged nanosheets[J].Journal of Materials Chemistry,2006,16(39):3809-3813.

    • [49] 谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001(1):70-72.XIE Hui,JIAO Qingze,DUAN Xue.Synthesis of hydrotalcite by hydrothermal method[J].Applied Chemistry,2001(1):70-72.(in Chinese).

    • [50] 赵仁波,苏荣军,梁爽,等.层状双氢氧化物的制备性质及应用[J].黑龙江科技信息,2017(12):67.ZHAO Renbo,SU Rongjun,LIANG Shuang,et al.Preparation and application of layered double hydroxides[J].Heilongjiang Science and Technology Information,2017(12):67.(in Chinese).

    • [51] 敖燕辉,王丹丹,王沛芳,等.层状双金属氢氧化物的制备方法及光催化应用[J].四川环境,2016,35(1):136-143.AO Yanhui,WANG Dandan,WANG Peifang,et al.Preparation method and photocatalytic application of layered double hydroxides[J].Sichuan Environment,2016,35(1):136-143.(in Chinese).

    • [52] 曹光群,陈健,方云,等.水滑石及其纳米插层材料的制备和应用[J].日用化学工业,2008(1):50-53,68.CAO Guangqun,CHEN Jian,FANG Yun,et al.Preparation and application of hydrotalcite and its intercalated nanocomposites[J].China Surfactant Detergent & Cosmetics,2008(1):50-53,68.(in Chinese).

    • [53] 杨正芳,张悦,蔡金霄,等.层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J].材料导报,2021,35(19):19062-19069.YANG Zhengfang,ZHANG Yue,CAI Jinxiao,et al.Recent advances in the preparation and application of layered double hydroxides and their composites[J] Materials Reports,2021,35(19):19062-19069.(in Chinese).

    • [54] 郭科,段巍卓,王晓东,等.微波法合成乙二醇插层镍铝层状双金属氢氧化物[J].应用化学,2016,33(1):84-91.GUO Ke,DUAN Weizhuo,WANG Xiaodong,et al.Microwave assisted synthesis of ethylene glycol intercalated nickel-aluminum layered double hydroxides [J].Applied Chemistry,2016,33(1):84-91.(in Chinese).

    • [55] ZHAO D,KASRAI M,SHAM T K,et al.Preparation of platy Co/Al hydrotalcites using aluminum hydroxide and investigation of their tribological properties in base oil[J].Canadian Journal of Chemistry,2015,93(2):151-159.

    • [56] WANG H D,WANG Y,LIU Y H,et al.Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives[J].Friction,2021,9(5):11.

    • [57] ZHAO D,SHAM T K,KASRAI M,et al.Tribological properties of Mg/Al-CO3 layered double hydroxide as additive in base oil[J].Tribology-materials,Surfaces & Interfaces,2014,8(4):222-234.

    • [58] ZHAO D,BAI Z M,ZHAO F Y.Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability[J].Materials Research Bulletin,2012,47(11):3670-3675.

    • [59] WANG X B,BAI Z M,ZHAO D,et al.Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite[J].Applied Surface Science,2013,277(15):134-138.

  • 手机扫一扫看