en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵静,女,1995年出生,硕士研究生。主要研究方向为电化学和合金材料。E-mail:zz62881014@163.com;

陈必清(通信作者),男,1963年出生,教授,硕士研究生导师。主要研究方向为电化学和合金材料。E-mail:chenbq2332@163.com

中图分类号:TQ153

DOI:10.11933/j.issn.1007−9289.20210610001

参考文献 1
CHAUDHARI A K,SINGH V B.Mechanical and physical properties of electrodeposited Ni-Fe,WO3 doped nanocomposite[J].Surface and Coatings Technology,2016,307:683-692.
参考文献 2
TRIPATHI M K,SINGH V B,SINGH H K.Structure and properties of electrodeposited functional Ni-Fe/TiN nanocomposite coatings[J].Surface and Coatings Technology,2015,278:146-156.
参考文献 3
ZHANG Z,WU Y,WANG A,et al.A study on laser enhanced electrodeposition for preparation Fe-Ni alloy[J].Materials,2020,13(16):3560-3569.
参考文献 4
SU C,ZHAO L,TIAN L,et al.Rapid Electrodeposition of Fe-Ni alloy foils from chloride baths containing trivalent iron ions[J].Coatings,2019,9(1):56-68.
参考文献 5
FARSHBAF P A,BOSTANI B,YAGHOOBI M.Evaluation of corrosion resistance of electrodeposited nanocrystalline Ni-Fe alloy coatings[J].China Surface Engineering,2017,95(5):269-275.
参考文献 6
ULLAL Y,HEGDE A C.Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy[J].International Journal of Hydrogen Energy,2014,39(20):10485-10492.
参考文献 7
HE X,ZHU Q,HOU B,et al.Electrodeposition of nanocrystalline Ni-Fe alloy coatings based on 1-butyl-3-methylimidazolium-hydrogen sulfate ionic liquid[J].Journal of Nanoscience & Nanotechnology,2015,262:148-153.
参考文献 8
WANG S,XIONG X,ZOU X,et al.Unraveling the dissolution mechanism of platinum and silver electrodes during composite electrodeposition in a deep eutectic solvent[J].Journal of Materials Chemistry A,2020,8:4354-4361.
参考文献 9
李苗,陈必清,何敏.氯化胆碱-尿素低共熔离子液体的粘度和电导率[J].湖北大学学报(自然科学版),2018,40(1):96-102.LI Miao,CHEN Biqing,HE Min.The viscosity and conductivity of choline chloride-urea ionic liquids[J].Journal of Hubei University(Natural Science Edition),2018,40(1):96-102.(in Chinese)
参考文献 10
ZHU Y L,KATAYAMA Y,MIURA T.Electrochemical co-deposition of iron and nickel from a hydrophobic ionic liquid[J].Journal of The Electrochemical Society,2015,162(8):D371-D375.
参考文献 11
张士民,陈必清,高利霞,等.基于 Eu-Ni-B 稀土-复合电极电催化偏硼酸钠制备硼氢化钠的探索[J].功能材料,2020,51(4):4207-4214.ZHANG Shimin,CHEN Biqing,GAO Lixia,et al.Preparation of sodium borohydride by electrocatalysis of sodium metborate with Eu-Ni-B rare earth composite electrode[J].Functional Materials,2020,51(4):4207-4214.(in Chinese)
参考文献 12
LI M,CHEN B Q,HE M,et al.Electrodeposition of Pr-Mg-Ni ternary alloy films from the choline chloride-urea ionic liquid and their corrosion properties[J].Anti-Corrosion Methods and Materials,2018,65(5):437-443.
参考文献 13
DOMÍNGUEZ-CRESPO M A,TORRES-HUERTA A M,BRACHETTI-SIBAJA B,et al.Electrochemical performance of Ni–RE(RE=rare earth)as electrode material for hydrogen evolution reaction in alkaline medium[J].International Journal of Hydrogen Energy,2011,36(1):135-151.
参考文献 14
LI M,CHEN B Q,XIONG T T,et al.Electrodeposition of Pr-Mg-Co ternary alloy films from the choline chloride-Urea ionic liquids and their corrosion properties[J].Journal of Dispersion Science and Technology,2019,41(6):1-7.
参考文献 15
杜婵,陈必清,高利霞,等.氯化胆碱-尿素中三元合金膜的制备及耐腐蚀性表征[J].功能材料,2019,50(10):10178-10185.DU Chan,CHEN Biqing,GAO Lixia,et al.Preparation and corrosion resistance characterization of ternary alloy films in choline chloride and urea[J].Journal of Functional Materials,2019,50(10):10178-10185.(in Chinese)
参考文献 16
李苗,何敏,陈必清.Reline 低温熔盐体系中 Gd-Mg-Co 合金膜的制备及表征[J].材料保护,2018,51(3):50-55.LI Miao,HE Min,CHEN Biqing.Preparation of Gd-Mg-Co alloy film in reline low-temperature fused salt electrolytes and characterization of its performance[J].Materials Protection,2018,51(3):50-55.(in Chinese)
参考文献 17
LI W,HAO J,MU S,et al.Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent[J].Applied Surface Science,2020,507:144889-144896.
参考文献 18
李文若,郝建军,牟世辉.镍钴合金在低共熔溶剂中的共沉积行为[J].中国表面工程,2020,33(2):57-64.LI Wenruo,HAO Jianjun,MU Shihui.Codeposition behavior of Ni-Co alloy in low eutectic solvent[J].China Surface Engineering,2020,33(2):57-64.(in Chinese)
参考文献 19
ABBOTT A P,TTAIB K E,RYDER K S,et al.Electrodeposition of nickel using eutectic based ionic liquids[J].Transactions of the Imf,2008,86(4):234-240.
参考文献 20
MCYA B,TTDA B,HAO Z,et al.Nucleation and growth mechanism of electrodeposited NiW alloy[J].Transactionsof Nonferrous Metals Society of China,2021,31(6):1842-1852.
参考文献 21
李苗,陈必清,熊彤彤,等.La-Mg-Co 合金膜的电化学制备及机理研究[J].稀土,2020,41(1):46-55.LI Miao,CHEN Biqing,XIONG Tongtong,et al.Electrochemical preparation and mechanism of La-Mg-Co alloy films[J].Rare Earth,2020,41(1):46-55.(in Chinese)
参考文献 22
邱圆,颜世宏,苗睿瑛,等.EMIMBF4-EG 离子液体体系电沉积制备金属镧镀层[J].稀有金属,2016,40(11):1126-1131.QIU Yuan,YAN Shihong,MIAO Ruiying,et al.Electrodeposition of Lanthanum coating in EMIMBF4-EG ionic liquid system[J].Rare Metals,2016,40(11):1126-1131.(in Chinese)
参考文献 23
朱云娜,高利霞,熊彤彤,等.化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合膜[J].材料导报,2021,35(4):4159-4164.ZHU Yunna,GAO Lixia,XIONG Tongtong,et al.Preparation of Ni-Co-B-Pr composite coatings with high corrosion resistance by electroless plating process[J].Materials Review,2021,35(4):4159-4164.(in Chinese)
参考文献 24
张雪辉,陈颢,李晓闲,等.稀土对电沉积 Ni-W 合金组织和性能的影响[J].稀有金属材料与工程,2016,45(10):2605-2608.ZHANG Xuehui,CHEN Hao,LI Xiaoxian,et al.Effect of rare earth on the microstructure and performance of electrodeposited Ni-W coatings[J].Rare Metal Materials and Engineering,2016,45(10):2605-2608.(in Chinese)
目录contents

    摘要

    针对在传统水溶液电解质中制备的 Ni-Fe 合金存在表面粗糙且耐腐蚀性能差的问题,在氯化胆碱-尿素离子液体体系 (Reline)中,加入稀土元素 Sm 对 Ni-Fe 合金进行改性,制备 Ni-Fe-Sm 三元合金膜。采用循环伏安测试、塔菲尔测试、扫描电镜、X 射线能谱仪研究金属离子在 Reline 离子液体中的电化学行为、合金膜表面形貌及其耐腐蚀性能。结果表明,Ni(Ⅱ)、 Fe(Ⅱ)为一步不可逆还原过程,Ni-Fe-Sm 合金在 Reline 体系中成核机制为三维瞬时成核。合金膜表面各金属元素分布均匀, 微观结构呈瘤状球形颗粒,合金膜表面细致,裂纹少,排布整齐。在 3.5 wt.%NaCl 和 10 wt.%HCl 溶液中,加入稀土元素 Sm, 合金膜的耐腐蚀性能显著提高,当沉积电位为−1.22 V,沉积时间为 20 min 时,自腐蚀电流密度最小,腐蚀速度最低,自腐蚀电位最正,耐腐蚀性能最高。进一步丰富了在 Reline 体系中添加稀土元素提高合金耐腐蚀性能的认识,使其在防护、存储等领域有较好的应用前景。

    Abstract

    In order to solve the problem of rough surface and poor corrosion resistance of Ni-Fe alloys prepared in traditional aqueous electrolytes, the Ni-Fe-Sm ternary alloy membranes are prepared by adding rare earth element Sm to modify Ni-Fe alloy from choline chlorine-urea ionic liquid system (Reline). Through cyclic voltammetry, Tafel test, scanning electron microscope and X-ray energy spectrometer, respectively, the electrochemical behavior of metal ions in Reline ionic liquid, the surface morphology of alloy film and resistance corrosion performance are studied. The results show that Ni(Ⅱ) and Fe(Ⅱ) are one-step irreversible reduction processes, and the nucleation mechanism of Ni-Fe-Sm alloy in Reline system is three-dimensional instantaneous nucleation. The metal elements on the surface of the Ni-Fe-Sm alloy film are evenly distributed, and the microstructure is nodular spherical particles. The surface of the alloy film is fine, with few cracks and neat arrangement. In 3.5 wt.%NaCl and 10 wt.%HCl solutions, adding rare earth element Sm, the corrosion resistance of the alloy film is significantly improved. When the deposition potential is −1.22 V and the deposition time is 20 min, the self-corrosion current density is the lowest, the corrosion rate is the lowest, the self-corrosion potential is the most positive, and the corrosion resistance is the highest. This paper further enriches the understanding of adding rare earth elements to the Reline system to improve the corrosion resistance of alloys, making it have better application prospects in the fields of protection and storage.

  • 0 前言

  • Ni-Fe合金作为铁系过镀金属合金,因其特殊的d电子结构,具有优良的磁性性能和化学稳定性,在计算机、存储、电子器件和防腐等方面有着广泛的应用[1-2]。基于Ni-Fe合金膜的制备已有很多报道,如ZHANG等[3]采用激光增强电沉积法制备Ni-Fe合金,结果表明该方法制备的Ni-Fe合金具有较好的表面形貌和力学性能。SU等[4]在低pH下,从含三价铁离子的氯离子浴中快速电沉积Fe-Ni合金箔,在该条件下成功制备了光滑柔韧的Fe-Ni合金箔,并且显著增强了电流密度,提高了合金膜的沉积速率。FARSHBAF等[5]在硫酸盐基浴中电沉积制备Ni-Fe合金膜,表明随着合金含铁量的增加,合金的耐蚀性提高,当金属离子比为0.5、外加电流密度为2.5A·dm−2 时,合金的耐蚀性最佳。由已有研究结果可知,制备Ni-Fe合金工艺中主要选择无机盐水溶液体系作为电镀液,在深共晶溶剂中电沉积制备合金膜的研究较少[6-8]。氯化胆碱-尿素深共晶溶剂 (Reline)作为一种绿色低毒性的新型离子液体,在电化学中有着广泛的应用,不同于传统的无机盐水溶液体系,Reline体系具有更宽的电化学窗口、成本低、重复利用、导电性能好、低化学污染的优点,并且能够有效解决水溶液体系中存在的合金化难和电沉积氢脆等问题[9-10]。近年来,稀土元素因其特殊的结构 [11-12],加入合金进行改性成为研究热点。 DOMÍNGUEZ-CRESPO等 [13] 通过固相反应制备Ni-RE(RE=rare earth, La, Ce)合金,结果表明,稀土的加入,显著提高了析氢电流密度,并且制得的Ni-RE具有较低析氢过电位。LI等[14]通过加入稀土Pr制备Pr-Mg-Co合金,研究结果表明,Pr-Mg-Co三元合金具备较好的耐腐蚀性能。因此,本文采用恒电位电沉积技术在Reline体系中制备三元合金膜,研究其在Reline离子液体中沉积行为,以及不同沉积条件对三元合金膜的微观形貌、元素组成及耐腐蚀性能的影响。

  • 1 试验准备

  • 1.1 电解液配制

  • 本试验电解液采用摩尔比为2∶1的氯化胆碱 (C5H14NOCl)和尿素((NH2)2CO)的Reline离子体系作为本体电解液,根据试验条件分别在Reline离子体系中加入无水氯化镍(NiCl2)、无水氯化铁(FeCl2) 及氯化钐(SmCl3),并置于恒温加热磁力搅拌器 (DF-101s)中,进行353K的油浴,通入氩气,加热至固体盐溶解,配得电解液[15]。以上试剂采购于上海萨恩化学技术有限公司,均为分析纯。

  • 基体选择铜片,尺寸为1mm×2mm×0.1mm,预处理基本流程为:1000和5000目砂纸进行打磨 →去离子水洗净→3.8wt.%稀盐酸浸泡10min→去离子水洗净→丙酮浸泡5min→冷风吹干。

  • 在自制电解池中,采用三电极体系,工作电极为自制铜片电极,参比电极为Ag/Ag+ (氯化胆碱-尿素)电极,辅助电极为铂片电极,348K恒温油浴下,采用电化学工作站进行恒电位电沉积制备三元合金膜。

  • 1.2 分析与表征

  • 1.2.1 电化学分析

  • 采用上海辰华CHI660E电化学工作站进行电化学分析,采用循环伏安测试(CV)对金属离子在Reline体系中的电化学行为进行研究,通过改变不同的扫描速度研究电沉积过程,扫描速度范围为20、50、80、110、140mV·s −1。采用计时电流法 (CA)研究不同阶跃电位下三元合金膜的电沉积机理。采用塔菲尔测试(Tafel)研究开路电位下在3.5wt.%NaCl中不同沉积条件制备的合金膜的耐腐蚀性能,采用浸泡法研究合金膜在10wt.%HCl中合金膜耐腐蚀性能。

  • 1.2.2 合金膜表征

  • 采用扫描电子显微镜(SEM,日立公司SU8010型)研究不同沉积条件下制备的合金膜的微观形貌, X射线能谱仪(EDS,牛津公司X-MAXN型)研究不同沉积条件制备的合金膜的元素分布以及含量。

  • 2 结果与讨论

  • 2.1 循环伏安测试分析

  • 为了研究不同金属离子在Reline离子体系中的电沉积行为,在Reline体系中分别加入0.04mol·L−1 SmCl3、0.04mol·L−1 NiCl2、0.04mol·L−1 FeCl2,并在铜电极上进行循环伏安测试,结果如图1所示。图1中曲线a为本体电解液Reline离子液体的循环伏安曲线,由曲线a可知,氯化胆碱-尿素离子液体具有一定的热稳定性,在−0.5V附近处的还原峰a1可能来自于溶剂中的水发生了还原反应[16],此外,无其他还原峰。

  • 图1 Reline体系中不同金属离子的循环伏安曲线

  • Fig.1 Cyclic voltammetry curves of different metal ions in Reline system

  • 图1 中曲线b为在Reline离子体系中加入0.04mol·L−1 SmCl3 的循环伏安曲线,可见除了b1 的氢还原峰外,无其他还原峰,说明Sm3+在Reline离子液体中不能单独沉积还原为金属单质。

  • 图1 中曲线c、d分别为含有Ni2+、Fe2+的电解液的CV曲线,通过观察发现,Ni2+和Fe2+在Reline离子体系中都有明显的还原峰,Fe2+的还原峰d2 主要在−1.08~−1.28V附近,正向扫描无明显的氧化峰,说明Fe2+在Cu电极上为一步不可逆还原反应。由曲线c可知,Ni2+在−0.65~−0.85V和 −1.13~−1.25V附近有两个还原峰c1 和c2,根据文献[17]可知,两个峰都是Ni2+的还原峰,出现两个还原峰的原因,是不同阴极电位下沉积的Ni单质结构不同[17-19]

  • 曲线e为浓度比1∶1∶1的三元合金膜的循环伏安曲线,CV曲线负向扫描时,在−1.04V出现初始还原电位,在−1.22V附近出现还原峰e2,正向扫描无明显氧化峰,说明Ni-Fe-Sm在Cu电极上沉积具有一定稳定性,能够一步沉积得到三元合金膜。

  • 为进一步研究Ni2+在Reline体系中出现两个还原峰的原因,分别选择在−0.86V和−1.24V沉积电位在铜电极上制备纯镍层,通过SEM和EDS对合金膜进行表征和分析,结果如图2所示。

  • 由图2a和2c可以发现−0.86V电位下的合金膜呈银白色,微观结构呈细小孔状结构,−1.24V沉积电位下镍层为黑色,微观形貌呈现片状针叶结构。图2b、2d为两个沉积电位下的EDS图,对比发现, −1.24V电位下Ni含量较高。其主要是在Reline体系中,沉积电位负移,使得阴极极化增加,过电位增加,沉积速率增加,从而使得Ni含量增加。由此进一步证明,Ni2+存在两个还原峰的原因是不同还原电位下产生了不同结构的Ni。

  • 图2 Reline体系中不同还原电位下纯Ni镀层的SEM和EDS图

  • Fig.2 SEM and EDS images of pure Ni coatings at different reduction potentials in Reline system

  • 2.2 电化学行为分析

  • 图3 为不同扫描速度下的Ni2+和Fe2+的循环伏安曲线,可以看出,Ni2+和Fe2+的还原峰Ep随着扫速的增大逐渐负移,还原峰电流 I p逐渐增大,选择Ni2+较负的还原峰和Fe2+的还原峰做ln(v/(mV·s −1))-E p关系曲线,如图4所示,两离子的 E p和lnv 均呈良好的线性关系,相关系数分别为0.996 7和0.988 62,说明Ni2+、Fe2+在Reline体系中为一步不可逆还原反应。根据公式

  • Ep/2-Ep=1.857RT/αnαF
    (1)
  • 式中,E p/2 为半峰电位,E p 为峰电位,n 为转移电子数,F 为法拉第常数,计算得到Ni2+、Fe2+传递系数分别为0.113和0.306。

  • 图3 Ni2+、Fe2+在Reline体系中不同扫速下循环伏安曲线

  • Fig.3 Cyclic voltammetry curves of Ni2+ and Fe2+ in Reline system under different sweep velocities

  • 图4 Ni2+、Fe2+lnv-E p曲线

  • Fig.4 Ni2+,Fe2+ lnv-E p curves

  • 图5 为Ni2+和Fe2+v 1/2/(mV·s −1) 1/2-I p 相关曲线,由图5可知,Ni2+、Fe2+的阴极峰电流 I pv 1/2 呈线性关系,根据下式

  • Ip=0.496nFαnαFD0vRTAc
    (2)
  • 求得Ni2+、Fe2+的扩散系数为4.3×10−9、6.34× 10−9 cm 2 ·s −1 。由此证明,Ni和Fe在Reline体系中一步不可逆还原反应是受扩散过程控制。

  • 图5 Ni2+、Fe2+ v1/2-I p曲线

  • Fig.5 Ni2+,Fe2+ v1/2-I p curves

  • 通过循环伏安曲线研究可以发现,稀土Sm在铁系元素Ni、Fe的诱导下,在Reline体系中与Ni、 Fe发生共沉积行为,为了进一步研究Ni-Fe-Sm的电沉积机理,作Ni-Fe-Sm在不同阶跃电位下的计时电流曲线,如图6所示。由图6可知,所有曲线的电流先上升至最大值后缓慢下降至稳定状态,这与双电层充电产生了非法拉第电流有关。并且可以看出,最大电流随着阶跃电位增大而增大,达到最大电流所需时间随着阶跃电位增大而减小,表明Ni-Fe-Sm合金膜的成核速率逐渐增大[18, 20]

  • 根据图6做Ni-Fe-Sm三元合金膜的 I 2/I m 2t/t m 无因次曲线,并与三维瞬时成核 [式(3)] 和连续成核 [式(4)] 模型相比,如图7所示。

  • 图6 Ni-Fe-Sm合金膜在Reline体系中不同阶跃电位计时电流曲线

  • Fig.6 Timing current curves of different step potential of Ni-Fe-Sm alloy film in ReLine system

  • 图7 不同阶跃电位下Ni-Fe-Sm无因次 I 2/I m 2t/t m 曲线

  • Fig.7 Nondimensional I 2/I m 2t/t m curves of Ni-Fe-Sm at different step potentials

  • 瞬时成核:

  • IIm2=1.9542t/tm1-exp-1.2564ttm2
    (3)
  • 连续成核:

  • IIm2=1.2254t/tm1-exp-2.3367ttm22
    (4)
  • 由图7可以看出,所有阶跃电位的无因次曲线,与模型数据相比,接近三维瞬时成核规律,因此Ni-Fe-Sm在铜电极上成核机制为三维瞬时成核机理[21]

  • 2.3 不同沉积条件对Ni-Fe-Sm合金膜的影响

  • 2.3.1 沉积电位对合金膜成分及形貌的影响

  • 根据循环伏安测试可知,Ni-Fe-Sm的还原峰约在−1.22V处,故选择在−1.20、−1.22、−1.24、−1.26、 −1.28V的电位下,在0.04mol·L−1 SmCl3-0.04mol·L−1 NiCl2-0.04mol·L−1 FeCl2-氯化胆碱-尿素离子液体中进行恒电位电沉积,制得的三元合金膜通过EDS和SEM进行表征,得到的各金属的含量列于表1,不同沉积电位对合金膜各金属成分影响如图8所示,微观形貌图见图9。由表1和图8可知,当电位达到−1.22V时,Fe和Sm含量达到最大值。随着沉积电位继续负移,Fe和Sm含量开始下降,这是由于从−1.24V沉积电位起,还原过程中存在Ni2+的还原增强发生,使得Ni元素在Ni-Fe-Sm合金膜中含量上升,Fe和Sm含量降低[18]

  • 表1 Ni-Fe-Sm合金膜中不同金属在不同沉积电位下的含量

  • Table1 Content of different metals in the Ni-Fe-Sm alloy film at different deposition potential

  • 图8 Ni-Fe-Sm合金膜成分与沉积电位的关系

  • Fig.8 Relationship between Ni-Fe-Sm alloy film composition and deposition potential

  • 图9a~9e为不同沉积电位下所制备的Ni-Fe-Sm三元合金膜SEM图,可见,当沉积电位为−1.20V时,合金膜表面粗糙,有明显颗粒凸起,裂纹明显,颗粒粗大。但当电位为−1.22V时,合金膜表面排列致密,颗粒尺寸明显减小。表面平整光滑,裂痕较少,表面形貌更加细致均匀。随着沉积电位进一步的负移,合金膜裂痕增多,瘤状颗粒变大,并出现孔状结构,致密性明显降低。这是因为随着电位负移,稀土含量降低,使得成核速率变小,颗粒生长速率增加,导致合金膜形貌变差。因此,当沉积电位为−1.22V时,合金膜表面形貌最好,镀层颗粒更加致密均匀。图9f为Ni-Fe-Sm合金膜的横截面SEM图,可以看出,Ni-Fe-Sm镀层完全覆盖在铜基体表面,说明与基体结合较好,侧面形貌进一步说明合金膜致密性好。图10为−1.22V沉积电位下Ni-Fe-Sm合金膜的Mapping图,可以发现各金属元素分布均匀,其中O、C来自于氯化胆碱-尿素离子溶剂。

  • 图9 Reline体系中不同沉积电位下得到的Ni-Fe-Sm合金膜SEM图

  • Fig.9 SEM images of Ni-Fe-Sm alloy films obtained at different deposition potentials in Reline system

  • 图10 沉积电位−1.22V时Ni-Fe-Sm合金膜金属元素Mapping图

  • Fig.10 Metal element Mapping of Ni-Fe-Sm alloy film at deposition potential −1.22V

  • 2.3.2 沉积时间对合金膜成分及形貌的影响

  • 保持沉积电位不变,分别在10、15、20、25、 30min沉积时间下,制备得到合金膜中各金属元素的含量列于表2,各元素成分和沉积时间的关系如图11所示。从表2和图11可见,当沉积时间在30min时,稀土和Ni含量最高,但Fe含量开始降低。这可能是随着沉积时间的延长,阴极表面面积增大,使得电流密度开始下降,Fe2+沉积速率减小,成核速率降低[22]

  • 表2 不同沉积时间对Ni-Fe-Sm合金膜中不同金属含量的影响

  • Table2 Influence of different deposition time on different metal content in the Ni-Fe-Sm alloy film

  • 图11 不同沉积时间与Ni-Fe-Sm合金膜金属含量关系曲线

  • Fig.11 Relationelation curve between different deposition time and metal content of Ni-Fe-Sm alloy film

  • 为了进一步研究沉积时间对合金膜的影响,对不同沉积时间得到的合金膜进行SEM表征分析,如图12所示。从SEM图中可以看出,不同沉积时间下,合金膜表面均为瘤状颗粒结构。沉积时间为30min时,合金膜中稀土含量较高,但是合金膜颗粒直径较大,达到0.7 μm,而20min时合金膜表面颗粒较小,仅0.1 μm,这可能是因为随着沉积时间的延长,阴极表面金属离子浓度减少,沉积速率下降,形核速率小于成长速率,从而导致合金膜表面颗粒粗大,排布疏松。

  • 图12 Reline体系中不同沉积时间下Ni-Fe-Sm合金膜SEM图

  • Fig.12 SEM images of Ni-Fe-Sm alloy films with different deposition time in Reline system

  • 2.4 耐腐蚀性分析

  • 2.4.1 稀土对Ni-Fe合金膜耐腐蚀能力影响

  • 图13 为添加稀土的Ni-Fe-Sm三元合金膜和未添加稀土的Ni-Fe二元合金膜在3.5wt.%NaCl溶液的Tafel曲线,通过拟合计算的Tafel数据列于表3。可知,添加稀土后,三元合金膜比Ni-Fe合金膜的自腐蚀电位正移0.345V,极化电阻增大,自腐蚀电流明显降低,说明添加稀土后,腐蚀电流密度降低,腐蚀速率降低,耐腐蚀性能增加。这是由于稀土元素具有较强的吸附作用,易吸附在晶体生长的活性位点上,能有效抑制镀层中颗粒生长,增加晶核数目,使得合金膜表面颗粒细化致密,从而提升其耐腐蚀性[23-24]

  • 图13 Ni-Fe-Sm和Ni-Fe在3.5wt.%NaCl中的Tafel曲线

  • Fig.13 Tafel curves of Ni-Fe-Sm and Ni-Fe in 3.5wt.%NaCl

  • 表3 不同组成合金膜的耐腐蚀性能参数

  • Table3 Corrosion resistance parameters of different composition alloy films

  • 2.4.2 沉积条件对合金膜耐腐蚀性的影响

  • 为了进一步研究沉积条件对Ni-Fe-Sm三元合金膜耐腐蚀性的影响,分别将不同沉积电位和不同沉积时间下制备的合金膜样品在3.5wt.%NaCl溶液中进行Tafel测试以及采用浸泡法在10wt.%HCl中测试。测得Tafel曲线和失重曲线如图14所示,Tafel曲线及失重曲线相关数据列于表4和表5 [23]

  • 图14 不同沉积电位与不同沉积时间下Ni-Fe-Sm合金膜在3.5wt.%NaCl中的Tafel曲线及在10wt.%HCl中的失重曲线

  • Fig.14 Tafel curve of Ni-Fe-Sm alloy film at 3.5wt.%NaCl and weight loss curve at 10wt.%HCl under different deposition potential and deposition time

  • 表4 不同沉积电位下得到的Ni-Fe-Sm合金膜的耐腐蚀性能参数

  • Table4 Corrosion resistance parameters of Ni-Fe-Sm alloy films obtained at different deposition potentials

  • 表5 不同沉积时间的Ni-Fe-Sm合金膜的耐腐蚀性参数

  • Table5 Corrosion resistance parameters of Ni-Fe-Sm alloy film with different deposition time

  • 由表4可见,当沉积电位达到−1.22V时,自腐蚀电位达到最大,为−4.20V,腐蚀电流密度达到最小,为24.6 μA·cm−2,说明在此沉积电位下的合金膜耐腐蚀性能最强。当电位为−1.24V时,合金膜自腐蚀电位开始负移,自腐蚀电流密度增加,这可能是随着沉积电位负移,合金膜中稀土含量的降低,合金膜表面疏松多孔,颗粒不够致密均匀,使得耐腐蚀性能下降。图14b为不同沉积电位制备的Ni-Fe-Sm合金膜在10wt.%HCl溶液中的失重曲线,根据浸泡腐蚀前后膜的质量差,按照公式(5)计算膜的腐蚀速率:

  • V=W0-Wt/(St)
    (5)
  • 式中,W 0 为初始质量(g),W t 为腐蚀后质量(g),S 为试样面积(m2),t 为浸泡时间(h)。由结果可知,当沉积电位为−1.22V时,合金膜腐蚀速率最小,与所测得Tafel曲线结果一致,说明该沉积电位下三元合金膜耐腐蚀性能最强。

  • 图14c为不同沉积时间制备的三元合金膜的极化曲线,拟合得到的自腐蚀电位,自腐蚀电流密度,极化电阻、腐蚀速率等相关数据列于表5。

  • 由表5可以看出,20min时自腐蚀电位最正,极化电阻最大,自腐蚀电流密度小,耐腐蚀性能最高,说明适当的沉积时间能够提高合金膜的耐腐蚀性能,这是由于在20min下制备的合金膜表面形貌更加细致平滑,排列紧密。并且合金膜中适当的稀土元素也有效的提高了合金膜耐腐蚀性能。虽然30min中稀土含量较高,但是并不是稀土含量越高,合金膜耐腐蚀性就越好,稀土元素含量高反而会使合金膜腐蚀加重[23]

  • 图14d为不同沉积时间合金膜在10wt.%HCl溶液中的失重曲线,根据腐蚀前后质量差,由公式 (5)计算得到表5的腐蚀速率,相对于其他沉积时间,20min制得的三元合金膜腐蚀速率小,耐腐蚀性最好。

  • 3 结论

  • 采用恒电位电沉积技术,在绿色环保的氯化胆碱尿素离子体系中成功制备了Ni-Fe-Sm三元合金膜。通过对Ni-Fe-Sm合金膜的表面形貌、合金元素、耐腐蚀性等分析研究,可以发现稀土元素的加入,提高了阴极电流效率,细化了合金表面颗粒。在Reline体系中制备的Ni-Fe-Sm合金元素分布均匀,解决了传统水溶液因氢脆、电流效率低造成的表面疏松和耐腐蚀性差等问题。同时制备的Ni-Fe-Sm合金膜耐腐蚀性能明显优于Ni-Fe合金,通过调控沉积时间、沉积电位,优化制备工艺,制备的Ni-Fe-Sm合金成本低廉、稳定性好且耐腐蚀能力强,具有较好的社会效益和经济效益,在工业防护中具有一定的应用价值。

  • 参考文献

    • [1] CHAUDHARI A K,SINGH V B.Mechanical and physical properties of electrodeposited Ni-Fe,WO3 doped nanocomposite[J].Surface and Coatings Technology,2016,307:683-692.

    • [2] TRIPATHI M K,SINGH V B,SINGH H K.Structure and properties of electrodeposited functional Ni-Fe/TiN nanocomposite coatings[J].Surface and Coatings Technology,2015,278:146-156.

    • [3] ZHANG Z,WU Y,WANG A,et al.A study on laser enhanced electrodeposition for preparation Fe-Ni alloy[J].Materials,2020,13(16):3560-3569.

    • [4] SU C,ZHAO L,TIAN L,et al.Rapid Electrodeposition of Fe-Ni alloy foils from chloride baths containing trivalent iron ions[J].Coatings,2019,9(1):56-68.

    • [5] FARSHBAF P A,BOSTANI B,YAGHOOBI M.Evaluation of corrosion resistance of electrodeposited nanocrystalline Ni-Fe alloy coatings[J].China Surface Engineering,2017,95(5):269-275.

    • [6] ULLAL Y,HEGDE A C.Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy[J].International Journal of Hydrogen Energy,2014,39(20):10485-10492.

    • [7] HE X,ZHU Q,HOU B,et al.Electrodeposition of nanocrystalline Ni-Fe alloy coatings based on 1-butyl-3-methylimidazolium-hydrogen sulfate ionic liquid[J].Journal of Nanoscience & Nanotechnology,2015,262:148-153.

    • [8] WANG S,XIONG X,ZOU X,et al.Unraveling the dissolution mechanism of platinum and silver electrodes during composite electrodeposition in a deep eutectic solvent[J].Journal of Materials Chemistry A,2020,8:4354-4361.

    • [9] 李苗,陈必清,何敏.氯化胆碱-尿素低共熔离子液体的粘度和电导率[J].湖北大学学报(自然科学版),2018,40(1):96-102.LI Miao,CHEN Biqing,HE Min.The viscosity and conductivity of choline chloride-urea ionic liquids[J].Journal of Hubei University(Natural Science Edition),2018,40(1):96-102.(in Chinese)

    • [10] ZHU Y L,KATAYAMA Y,MIURA T.Electrochemical co-deposition of iron and nickel from a hydrophobic ionic liquid[J].Journal of The Electrochemical Society,2015,162(8):D371-D375.

    • [11] 张士民,陈必清,高利霞,等.基于 Eu-Ni-B 稀土-复合电极电催化偏硼酸钠制备硼氢化钠的探索[J].功能材料,2020,51(4):4207-4214.ZHANG Shimin,CHEN Biqing,GAO Lixia,et al.Preparation of sodium borohydride by electrocatalysis of sodium metborate with Eu-Ni-B rare earth composite electrode[J].Functional Materials,2020,51(4):4207-4214.(in Chinese)

    • [12] LI M,CHEN B Q,HE M,et al.Electrodeposition of Pr-Mg-Ni ternary alloy films from the choline chloride-urea ionic liquid and their corrosion properties[J].Anti-Corrosion Methods and Materials,2018,65(5):437-443.

    • [13] DOMÍNGUEZ-CRESPO M A,TORRES-HUERTA A M,BRACHETTI-SIBAJA B,et al.Electrochemical performance of Ni–RE(RE=rare earth)as electrode material for hydrogen evolution reaction in alkaline medium[J].International Journal of Hydrogen Energy,2011,36(1):135-151.

    • [14] LI M,CHEN B Q,XIONG T T,et al.Electrodeposition of Pr-Mg-Co ternary alloy films from the choline chloride-Urea ionic liquids and their corrosion properties[J].Journal of Dispersion Science and Technology,2019,41(6):1-7.

    • [15] 杜婵,陈必清,高利霞,等.氯化胆碱-尿素中三元合金膜的制备及耐腐蚀性表征[J].功能材料,2019,50(10):10178-10185.DU Chan,CHEN Biqing,GAO Lixia,et al.Preparation and corrosion resistance characterization of ternary alloy films in choline chloride and urea[J].Journal of Functional Materials,2019,50(10):10178-10185.(in Chinese)

    • [16] 李苗,何敏,陈必清.Reline 低温熔盐体系中 Gd-Mg-Co 合金膜的制备及表征[J].材料保护,2018,51(3):50-55.LI Miao,HE Min,CHEN Biqing.Preparation of Gd-Mg-Co alloy film in reline low-temperature fused salt electrolytes and characterization of its performance[J].Materials Protection,2018,51(3):50-55.(in Chinese)

    • [17] LI W,HAO J,MU S,et al.Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent[J].Applied Surface Science,2020,507:144889-144896.

    • [18] 李文若,郝建军,牟世辉.镍钴合金在低共熔溶剂中的共沉积行为[J].中国表面工程,2020,33(2):57-64.LI Wenruo,HAO Jianjun,MU Shihui.Codeposition behavior of Ni-Co alloy in low eutectic solvent[J].China Surface Engineering,2020,33(2):57-64.(in Chinese)

    • [19] ABBOTT A P,TTAIB K E,RYDER K S,et al.Electrodeposition of nickel using eutectic based ionic liquids[J].Transactions of the Imf,2008,86(4):234-240.

    • [20] MCYA B,TTDA B,HAO Z,et al.Nucleation and growth mechanism of electrodeposited NiW alloy[J].Transactionsof Nonferrous Metals Society of China,2021,31(6):1842-1852.

    • [21] 李苗,陈必清,熊彤彤,等.La-Mg-Co 合金膜的电化学制备及机理研究[J].稀土,2020,41(1):46-55.LI Miao,CHEN Biqing,XIONG Tongtong,et al.Electrochemical preparation and mechanism of La-Mg-Co alloy films[J].Rare Earth,2020,41(1):46-55.(in Chinese)

    • [22] 邱圆,颜世宏,苗睿瑛,等.EMIMBF4-EG 离子液体体系电沉积制备金属镧镀层[J].稀有金属,2016,40(11):1126-1131.QIU Yuan,YAN Shihong,MIAO Ruiying,et al.Electrodeposition of Lanthanum coating in EMIMBF4-EG ionic liquid system[J].Rare Metals,2016,40(11):1126-1131.(in Chinese)

    • [23] 朱云娜,高利霞,熊彤彤,等.化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合膜[J].材料导报,2021,35(4):4159-4164.ZHU Yunna,GAO Lixia,XIONG Tongtong,et al.Preparation of Ni-Co-B-Pr composite coatings with high corrosion resistance by electroless plating process[J].Materials Review,2021,35(4):4159-4164.(in Chinese)

    • [24] 张雪辉,陈颢,李晓闲,等.稀土对电沉积 Ni-W 合金组织和性能的影响[J].稀有金属材料与工程,2016,45(10):2605-2608.ZHANG Xuehui,CHEN Hao,LI Xiaoxian,et al.Effect of rare earth on the microstructure and performance of electrodeposited Ni-W coatings[J].Rare Metal Materials and Engineering,2016,45(10):2605-2608.(in Chinese)

  • 参考文献

    • [1] CHAUDHARI A K,SINGH V B.Mechanical and physical properties of electrodeposited Ni-Fe,WO3 doped nanocomposite[J].Surface and Coatings Technology,2016,307:683-692.

    • [2] TRIPATHI M K,SINGH V B,SINGH H K.Structure and properties of electrodeposited functional Ni-Fe/TiN nanocomposite coatings[J].Surface and Coatings Technology,2015,278:146-156.

    • [3] ZHANG Z,WU Y,WANG A,et al.A study on laser enhanced electrodeposition for preparation Fe-Ni alloy[J].Materials,2020,13(16):3560-3569.

    • [4] SU C,ZHAO L,TIAN L,et al.Rapid Electrodeposition of Fe-Ni alloy foils from chloride baths containing trivalent iron ions[J].Coatings,2019,9(1):56-68.

    • [5] FARSHBAF P A,BOSTANI B,YAGHOOBI M.Evaluation of corrosion resistance of electrodeposited nanocrystalline Ni-Fe alloy coatings[J].China Surface Engineering,2017,95(5):269-275.

    • [6] ULLAL Y,HEGDE A C.Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy[J].International Journal of Hydrogen Energy,2014,39(20):10485-10492.

    • [7] HE X,ZHU Q,HOU B,et al.Electrodeposition of nanocrystalline Ni-Fe alloy coatings based on 1-butyl-3-methylimidazolium-hydrogen sulfate ionic liquid[J].Journal of Nanoscience & Nanotechnology,2015,262:148-153.

    • [8] WANG S,XIONG X,ZOU X,et al.Unraveling the dissolution mechanism of platinum and silver electrodes during composite electrodeposition in a deep eutectic solvent[J].Journal of Materials Chemistry A,2020,8:4354-4361.

    • [9] 李苗,陈必清,何敏.氯化胆碱-尿素低共熔离子液体的粘度和电导率[J].湖北大学学报(自然科学版),2018,40(1):96-102.LI Miao,CHEN Biqing,HE Min.The viscosity and conductivity of choline chloride-urea ionic liquids[J].Journal of Hubei University(Natural Science Edition),2018,40(1):96-102.(in Chinese)

    • [10] ZHU Y L,KATAYAMA Y,MIURA T.Electrochemical co-deposition of iron and nickel from a hydrophobic ionic liquid[J].Journal of The Electrochemical Society,2015,162(8):D371-D375.

    • [11] 张士民,陈必清,高利霞,等.基于 Eu-Ni-B 稀土-复合电极电催化偏硼酸钠制备硼氢化钠的探索[J].功能材料,2020,51(4):4207-4214.ZHANG Shimin,CHEN Biqing,GAO Lixia,et al.Preparation of sodium borohydride by electrocatalysis of sodium metborate with Eu-Ni-B rare earth composite electrode[J].Functional Materials,2020,51(4):4207-4214.(in Chinese)

    • [12] LI M,CHEN B Q,HE M,et al.Electrodeposition of Pr-Mg-Ni ternary alloy films from the choline chloride-urea ionic liquid and their corrosion properties[J].Anti-Corrosion Methods and Materials,2018,65(5):437-443.

    • [13] DOMÍNGUEZ-CRESPO M A,TORRES-HUERTA A M,BRACHETTI-SIBAJA B,et al.Electrochemical performance of Ni–RE(RE=rare earth)as electrode material for hydrogen evolution reaction in alkaline medium[J].International Journal of Hydrogen Energy,2011,36(1):135-151.

    • [14] LI M,CHEN B Q,XIONG T T,et al.Electrodeposition of Pr-Mg-Co ternary alloy films from the choline chloride-Urea ionic liquids and their corrosion properties[J].Journal of Dispersion Science and Technology,2019,41(6):1-7.

    • [15] 杜婵,陈必清,高利霞,等.氯化胆碱-尿素中三元合金膜的制备及耐腐蚀性表征[J].功能材料,2019,50(10):10178-10185.DU Chan,CHEN Biqing,GAO Lixia,et al.Preparation and corrosion resistance characterization of ternary alloy films in choline chloride and urea[J].Journal of Functional Materials,2019,50(10):10178-10185.(in Chinese)

    • [16] 李苗,何敏,陈必清.Reline 低温熔盐体系中 Gd-Mg-Co 合金膜的制备及表征[J].材料保护,2018,51(3):50-55.LI Miao,HE Min,CHEN Biqing.Preparation of Gd-Mg-Co alloy film in reline low-temperature fused salt electrolytes and characterization of its performance[J].Materials Protection,2018,51(3):50-55.(in Chinese)

    • [17] LI W,HAO J,MU S,et al.Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent[J].Applied Surface Science,2020,507:144889-144896.

    • [18] 李文若,郝建军,牟世辉.镍钴合金在低共熔溶剂中的共沉积行为[J].中国表面工程,2020,33(2):57-64.LI Wenruo,HAO Jianjun,MU Shihui.Codeposition behavior of Ni-Co alloy in low eutectic solvent[J].China Surface Engineering,2020,33(2):57-64.(in Chinese)

    • [19] ABBOTT A P,TTAIB K E,RYDER K S,et al.Electrodeposition of nickel using eutectic based ionic liquids[J].Transactions of the Imf,2008,86(4):234-240.

    • [20] MCYA B,TTDA B,HAO Z,et al.Nucleation and growth mechanism of electrodeposited NiW alloy[J].Transactionsof Nonferrous Metals Society of China,2021,31(6):1842-1852.

    • [21] 李苗,陈必清,熊彤彤,等.La-Mg-Co 合金膜的电化学制备及机理研究[J].稀土,2020,41(1):46-55.LI Miao,CHEN Biqing,XIONG Tongtong,et al.Electrochemical preparation and mechanism of La-Mg-Co alloy films[J].Rare Earth,2020,41(1):46-55.(in Chinese)

    • [22] 邱圆,颜世宏,苗睿瑛,等.EMIMBF4-EG 离子液体体系电沉积制备金属镧镀层[J].稀有金属,2016,40(11):1126-1131.QIU Yuan,YAN Shihong,MIAO Ruiying,et al.Electrodeposition of Lanthanum coating in EMIMBF4-EG ionic liquid system[J].Rare Metals,2016,40(11):1126-1131.(in Chinese)

    • [23] 朱云娜,高利霞,熊彤彤,等.化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合膜[J].材料导报,2021,35(4):4159-4164.ZHU Yunna,GAO Lixia,XIONG Tongtong,et al.Preparation of Ni-Co-B-Pr composite coatings with high corrosion resistance by electroless plating process[J].Materials Review,2021,35(4):4159-4164.(in Chinese)

    • [24] 张雪辉,陈颢,李晓闲,等.稀土对电沉积 Ni-W 合金组织和性能的影响[J].稀有金属材料与工程,2016,45(10):2605-2608.ZHANG Xuehui,CHEN Hao,LI Xiaoxian,et al.Effect of rare earth on the microstructure and performance of electrodeposited Ni-W coatings[J].Rare Metal Materials and Engineering,2016,45(10):2605-2608.(in Chinese)

  • 手机扫一扫看