en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李好,女,1989年出生,博士,副教授,硕士研究生导师,中国机械工程学会(CMES)高级会员。主要研究方向为仿生特殊润湿性表界面。E-mail:lihao89fly@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210615002

参考文献 1
肖金涛,鞠鹏飞,臧旭升,等.铝合金表面润滑耐蚀复合镀层的制备及性能分析[J].中国表面工程,2021,34(4):38-45.XIAO Jintao,JU Pengfei,ZANG Xusheng,et al.Preparation and performance analysis of lubricating and corrosion-resistant composite coating on aluminum alloysurface[J].China Surface Engineering,2021,34(4):38-45.(in Chinese)
参考文献 2
ZHANG P F,CHEN H W,ZHANG D Y.Investigation of the anisotropic morphology-induced effects of theslippery zone inpitchers of nepenthes alata[J].Journal of Bionic Engineering,2015,12(1):79-87.
参考文献 3
ZHU Y,HE Y,YANG D Q,et al.A facile method to prepare mechanically durable super slippery polytetrafluoroethylene coatings[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:99-105.
参考文献 4
XING K,LI Z X,WANG Z R,et al.Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys [J].Chemical Enginering Journal,2021,418:129079.
参考文献 5
HAN X M,DOU W W,CHEN S G,et al.Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater[J].Surface and Coatings Technology,2020,388:125596.
参考文献 6
ANNASO B.G,SHI H X,DUAN M,et al.Highly transparent,hot water and scratch resistant,lubricantinfused slippery surfaces developed from a mechanicallyweak superhydrophobic coating[J].Chemical Enginering Journal,2021,416:127809.
参考文献 7
孙士美,王鹏,张盾.仿生超滑表面对Al基体微生物腐蚀防护性能与机制研究[J].腐蚀科学与防护技术,2016,28(1):5-12.SUN Shimei,WANG Peng,ZHANG Dun.Research on the protection performance and mechanism of bionic super-slip surface against microbial corrosion of Al matrix[J].Corrosion Science and Protection Technology,2016,28(1):5-12.(in Chinese)
参考文献 8
ZHANG Y M,LIU Z B,CHEN A F,et al.Fabrication ofmicro-/submicro-/nanostructured polypropylene/grapheme superhydrophobic surfaces with extreme dynamic pressure resistance assisted by single hierarchically porous anodic aluminum oxide template[J].Journal of Physical Chemistry C,2020,124(11):6197-6205.
参考文献 9
严继康,杨钢,唐婉霞,等.阳极氧化电压对钛合金TC4阳极氧化 TiO2膜层表面的影响[J].材料研究学报,2015,29(12):895-903.YAN Jikang,YANG Gang,TANG Wanxia,et al.Effect of applied voltage on performance of anodic oxidationfilms of TiO2 on TC4 alloy[J].Chinese Journal of Materials Research,2015,29(12):895-903.(in Chinese)
参考文献 10
莫春燕,郑燕升,王发龙,等.TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J].中国表面工程,2015,28(2):132-137.MO Chunyan,ZHENG Yansheng,WANG Falong,et al.Preparation and properties of TiO2/fluoridepolymethylhydrosiloxane superhydrophobic and anticorrosive Coating[J].China Surface Engineering,2015,28(2):132-137.(in Chinese)
参考文献 11
LIU G,YUAN Y,LIAO R,et al.Fabrication of aporous slippery icephobic surface and effect of lubricant viscosity on anti-icing properties and durability[J].Coatings,2020,10(9):896.
参考文献 12
LEE J,SHIN S,JIANG Y,et al.Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing[J].Advanced Functional Materials,2017,27(15):1606040.
参考文献 13
WANG P,LU Z,ZHANG D,Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J].Corrosion Science,2015,93:159-166.
参考文献 14
XU Z Y,HE X Y,LI R S,et al.Triangular pyramidal nano-Ag:Fabrication and properties of superamphiphobic surface on 1060 aluminum alloy mesh[J].Surface and Coatings Technology,2020,404:126448.
参考文献 15
刘莉,张鲲,熊辉辉,等.阳极氧化工艺对6061铝合金草酸氧化膜耐磨耐蚀性的影响[J].材料热处理学报,2015,36(11):225-232.LIU Li,ZHANG Kun,XIONG Huihui,et al.Effect of anodizing process on corrosion and wear resistance of 6061 alloy anodic oxide films formed in oxalic acid[J].Transactions of Materials and Heat Treatment,2015,36(11):225-232.(in Chinese)
参考文献 16
KO C L,KUO Y L,CHEN S H,et al.Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes[J].Thin Solid Films,2020,709:138151.
参考文献 17
YAO M W,CHEN J W,SU Z,et al.Anodic oxidation in aluminum electrode by using hydrated amorphous aluminum oxide film as solid electrolyte under high electric field[J].ACS Applied.Materials & Interfaces.2016,8(17):11100-11107.
参考文献 18
ZHENG H,PAN M W,WEN J,et al.Robust,transparent,and superhydrophobic coating fabricated with waterborne polyurethane and inorganic nanoparticle composites[J].Industrial & Engineering Chemistry Research,2019,58(19):8050-8060.
参考文献 19
WEI C Q,ZHANG G F,ZHANG Q H,et al.Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:A facile approach to highly stable bioinspired surface for biofouling resistance[J].ACS Applied.Materials & Interfaces,2016,8(50):34810-34819.
参考文献 20
XIAO L J,DENG M,ZENG W G,et al.Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J].Industrial & Engineering Chemistry Research,2017,56(43):12354-12361.
参考文献 21
LI Y S,ZANG C G,ZHANG Y L.Effect of the structure of hydrogen-containing silicone oil on the properties of silicone rubber[J].Materials Chemistry and Physics,2020,48:122734.
参考文献 22
JEONG H K,JONATHAN P R.Droplet impact dynamics on lubricant-infused superhydrophobic surfaces:The role of viscosity ratio[J].Langmuir,2016,32(40):10166-10176.
参考文献 23
WANG P,LI T,ZHANG D.Fabrication of non-wetting surfaces on zinc surface as corrosion barrier[J].Corrosion Science,2017,128:110-119.
参考文献 24
LI H,YU S R,HU J H,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.
参考文献 25
DIAO Y,MYERSON A S,HATTON T A,et al.Surface design for controlled crystallization:The role of surface chemistry and nanoscale pores in heterogeneous nucleation[J].Langmuir,2011,27:324-5334.
参考文献 26
CHARPENTIER T V,NEVILLE A,BAUDIN S,et al.Liquid infused porous surfaces for mineral fouling mitigation[J].Journal of Colloid and Interface Science,2015,444:81-86.
参考文献 27
WANG Z,SCHERES L,XIA H,et al.Developments and challenges in self-healing antifouling materials[J].Advanced Functional Materials,2020,30(26):1908098.
参考文献 28
JIN B,LIU M Z,ZHAN Q H,et al.Silicone oil swelling slippery surfaces based on mussel-inspiredmagnetic nanoparticles with multiple self-healing mechanism[J].Langmuir,2017,33(39):10340-10350.
参考文献 29
WANG J,KATO K K,BLOIS A P,et al.Bioinspiredomniphobic coatings with a thermal self-repair function on industrial materials[J].ACS Applied Materials & Interfaces,2016,8:8265-8271.
参考文献 30
LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate withantibiofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12(14):7700-7711.
参考文献 31
CUI J,DANIEL D,GRINTHAL A,et al.Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J].Nature Materials,2015,14(8):790-795.
目录contents

    摘要

    仿猪笼草超滑表面具有疏液性和防污性等优异性能。然而仿生超滑表面的润滑油膜受损后,其超滑性能会被破坏, 因此制备具有自修复性能的仿生超滑表面对于解决其耐久性差的问题至关重要。首先采用阳极氧化法在铝合金基体表面制备锥形微结构,然后经过全氟硅烷进行低能修饰,最后往微结构间隙中注入全氟聚醚、低黏度硅油和高黏度硅油三种不同的润滑油,得到三种仿生超滑表面。水滴在三种仿生超滑表面的接触角分别为~116°、~105°、~103°,滑动角分别为~10°、~10°、~9°。试验结果表明,全氟聚醚和低黏度硅油的仿生超滑表面比高黏度硅油的仿生超滑表面具有更优的自清洁性和防污性,可以有效地预防污染物堆积造成的疏液性失效。此外,全氟聚醚与低黏度硅油的仿生超滑表面呈现较好的热辅助自修复性,修复后的疏水性与新制备样品基本一致;高黏度硅油仿生超滑表面只表现出一定的自修复能力,修复后与新制备样品的疏水性存在差异。所制备出的具有热辅助自修复功能的铝合金基底仿生超滑涂层,在海洋生物污损防护方面具有潜在的应用前景,并为克服传统仿生超滑表面使用耐久性差的问题提供了解决思路。

    Abstract

    The super slippery surface inspired by Nepenthes shows excellent properties such as liquid repellency and antifouling. However, when the lubrications film on the bionic super slippery surface is damaged, its super slippery property will be destroyed. Therefore, preparation of bionic super slippery surfaces with self-healing properties is crucial to solve the problem of poor durability. This paper first uses anode oxidation method to prepare a tapered microstructure on the surface of the aluminum alloy substrate, then uses perfluorosilane for low-energy modification, and finally injects three different lubrications of perfluoropolyether, low-viscosity silicone oil and high-viscosity silicone oil into the microstructure gap. Three bionic super slippery surfaces are obtained. The contact angles of water droplets on these three bionic super slippery surfaces are ~116°, ~105° and ~103°, respectively, and the sliding angles are ~10°, ~10°, and ~ 9°, respectively. The experimental results indicate that the bionic super slippery surfaces with perfluoropolyether and low-viscosity silicone oil show better self-cleaning and antifouling properties than the bionic super slippery surface with high-viscosity silicone oil, which can effectively prevent the failure of liquid repellency caused by the accumulation of pollutants. In addition, the bionic super slippery surface with perfluoropolyether and low-viscosity silicone oil show excellent thermal-assisted self-healing property, and the hydrophobicity after heal is basically the same as that of newly prepared samples. However, the bionic super slippery surface with high-viscosity silicone oil only shows a certain degree of self-healing, and the hydrophobicity of the healed sample is different from that of the newly prepared sample. Therefore, the prepared bionic super slippery surfaces on aluminum alloy substrate with thermally assisted self-healing property would show potential application prospect in marine anti-biofouling. A solution is providef for overcoming the poor durability of the traditional bionic super slippery surface.

  • 0 前言

  • 铝合金因热膨胀系数低、比强度高等优点在船舶、海洋平台等领域得到了广泛应用[1]。铝合金表面虽在自然环境中易形成一层氧化膜,但是氧化膜很薄,在应用时极易发生破损从而造成基材的损伤。同时,海洋环境中的污染物也会对铝合金基材造成污损。近年来,受猪笼草启发的仿生超滑表面呈现出较好的防污性[2],因此本文拟在铝合金基底上制备仿生超滑表面来提升基体的防污性。

  • 通常制备仿生超滑表面分为三个步骤:一是制备带有孔隙的微结构,二是采用低能物质修饰降低微结构的表面能以使润滑油更容易浸入到微结构间隙中,三是微结构间隙中注入润滑油[3-5]。但是,仿生超滑表面的微结构一般存在耐磨性低等弊端[6]。此外,全氟聚醚作为一种航空用润滑油,因化学性能稳定,被研究人员广泛用来制备仿生超滑表面[7]。但是,全氟聚醚价格较贵,且作为含氟物质会造成污染和生物富集。因此,选择一种适当的润滑油替换全氟聚醚变得十分重要。

  • 铝合金表面阳极氧化法得到的多孔阳极氧化铝膜具有良好的耐磨性,同时形成的锥状多孔阵列可以牢牢锁住润滑油[8],并且阳极氧化法工艺简单。阳极氧化膜的形成包括氧化膜的形成和溶解两个过程,草酸酸性相对较弱,生成的氧化膜溶解慢且在一定程度上可以降低膜层的孔隙率[9]。硅油作为一种常见的润滑剂,成本低,不含氟,化学性质稳定,且表面能与全氟聚醚几乎接近,都属于低表面能润滑油[10]。因此,本文选用与全氟聚醚黏度相近的硅油作为润滑油,且选择低黏度(20mPa·s)和高黏度(100mPa·s)两种硅油探究润滑油黏度对仿生超滑表面性能的影响[11]

  • 因此,本文用草酸直流阳极氧化法在铝合金基体上制备锥形微结构,随后使用全氟硅烷来降低微结构的表面能,最后注入全氟聚醚、低黏度硅油、高黏度硅油三种润滑油来制备三种不同仿生超滑表面。研究所制备三种仿生超滑表面的润湿行为,评估三种仿生超滑表面的稳定性、防污性和自修复性。

  • 1 试验准备

  • 1.1 样品制备

  • 本文采用1060铝合金(20mm×20mm× 5mm)为基体材料,依次使用400 #、800 #、1500 # 和2000 #的砂纸打磨,然后依次用蒸馏水与无水乙醇冲洗,吹风机冷风吹干后密封备用。采用的化学药品氯化钠、无水乙醇、草酸(二水)、全氟癸基三乙氧基硅烷、聚全氟甲基异丙基醚(简称全氟聚醚)、低黏度二甲基硅油(聚二甲基硅氧烷,黏度~20mPa·s)、高黏度二甲基硅油(聚二甲基硅氧烷,黏度~100mPa·s)等均为AR,水为去离子水。处理好的铝合金试样为阳极,钛棒为阴极,草酸水溶液(0.3mol/L)为电解液,直流恒流电流密度为325mA/cm2、阳极氧化时间为15min。反应结束后使用去离子水冲洗并在60℃下干燥。接下来,为了使润滑油更好地灌注到微结构间隙中,将铝合金试样浸泡在质量分数为1%的全氟癸基三乙氧基硅烷乙醇溶液中24h进行表面低能修饰,结束后将试样取出放置在120℃烘箱中烘干60min。最后,在试样表面滴涂~0.1mL润滑油,通过倾斜试样使润滑油在表面均匀摊开,在室温环境中静置24h使润滑油逐渐均匀地注入到微结构间隙中得到仿生超滑表面。图1为铝合金基体上仿生超滑表面的制备过程示意图。

  • 图1 铝合金基体上仿生超滑表面的制备过程示意图

  • Fig.1 Schematic diagram of the preparation process of bionic super slippery surface on the aluminum alloy substrate

  • 1.2 测试与表征

  • 使用场发射扫描电子显微镜(FE-SEM,FEI, Nova Nano 450)观察试样的表面微观形貌,X射线衍射仪(XRD,D/Max 2500PC,日本)检测试样表面的晶体结构,X射线光电子能谱仪(XPS, Escalab250Xi,美国)表征试样表面的元素和价态,傅里叶红外光谱仪(FT-IR,Nicolet 380,中国)检测试样表面所含物质的官能团,接触角仪(JC2000C1型)测量水滴(~5 μL)在试样表面的接触角。

  • 1.3 稳定性测试

  • 胶带剥离测试:将胶带(3M610)牢固粘在样品表面,然后剥离并测试水滴(~4 μL)在样品表面的接触角。连续剥离七次,记录样品表面接触角的变化。

  • 氯化钠浸泡测试:将样品垂直放置在含有质量分数为3.5%NaCl的烧杯中浸泡,每隔30min测试样品表面的接触角。连续测试直至120min时停止。

  • 1.4 自清洁测试

  • 采用直径250 μm的粉煤灰对试样进行自清洁测试。首先在倾斜的样品表面分布粉煤灰,然后将水滴(~6 μL)轻轻地放在污染表面,水滴滚动离开试样表面,并带走表面的污染物。

  • 1.5 防污测试

  • 将样品放置在海水(青岛黄海海域)中浸泡7d,取出后直接烘干;分别测试0~7d样品表面的接触角,分析接触角的变化;通过扫描电镜(SEM)观察样品表面附着物。

  • 1.6 自修复行为测试

  • 将样品放置在400#的SiC砂纸上并加上200g砝码,然后推动样品前进3cm。划伤后,测量三种超滑样品的接触角和滚动角。将划伤后的三种超滑样品放置在烘箱中,120℃下加热1h,观察其自修复性能。加热后,再次测量超疏水样品与超滑样品的接触角和滚动角。

  • 2 试验结果

  • 2.1 表面形貌分析

  • 铝合金试样表面经过不同条件处理后的扫描照片如图2所示。图2a阳极氧化处理后的表面形貌,呈现锥状结构,阳极氧化法得到微结构包括两个过程:阳极氧化膜的形成和溶解,因此初期主要形成通孔状的结构,孔径上部的微结构接触到草酸溶液,氧化膜溶解较快[12],随着氧化时间延长,孔径增大,底部结构远离草酸溶液,溶解较慢[13],最后形成锥状结构。全氟硅烷低能修饰对阳极氧化形成的微结构形貌特征没有产生影响(见图2b)。如图2c所示,全氟聚醚润滑油浸入到微结构间隙中以后,从表面形貌看出润滑油完全覆盖并填充到锥状微结构间隙中。此外,不同条件下试样表面粗糙度由三维形貌仪测得,其中基体的表面粗糙度为1.278 μm,低能修饰后超疏水涂层的表面粗糙度为2.240 μm,滴涂润滑油后,仿生超滑涂层的表面粗糙度为1.091 μm; 可以看出滴涂润滑油后明显降低了表面粗糙度,进一步说明润滑油可以成功地填充到微结构间隙中。

  • 图2 不同条件下试样表面的SEM图

  • Fig.2 SEM images of the sample surface under different conditions

  • 图3 为不同条件下试样表面的晶体结构。图3a为1060铝合金基体,38.3°、44.6°、64.9°和78.1° 衍射峰分别对应铝的(111)、(200)、(220)和(311)衍射峰[14];图3b为阳极氧化后的试样,没有发现氧化物,主要因为阳极氧化膜较薄,X射线可以穿透直接打在铝合金基体上[15]。为了进一步确定阳极氧化膜的存在及组成,图4给出阳极氧化后试样表面的XPS相关谱图。从图4a可以看出,阳极氧化后表面富含O;图4b中Al2p在74.20eV左右位置处是Al2O3中Al3+的结合能[16];图4c中O1s在531.40eV左右对应Al2O3 中O2− 的结合能[17];因此可以证明阳极氧化后铝合金试样表面生成Al2O3氧化膜;此外,图4c为C1s的峰,284.48eV、285.89eV和288.57eV分别对应C-C、C-O和–COOH,主要来源于试样表面草酸的残留。图3c为全氟硅烷低能修饰后试样表面的晶体结构,经改性后无新的衍射峰产生,说明低能修饰不影响表面的晶体结构。

  • 图3 不同条件下试样表面的XRD图

  • Fig.3 XRD patterns of the sample surface under different conditions

  • 图4 阳极氧化后的XPS谱图

  • Fig.4 XPS spectra after anodic oxidation

  • 2.2 化学成分分析

  • 注入润滑油是制备仿生超滑表面的关键步骤,所以采用全氟聚醚、低黏度硅油和高黏度硅油三种不同润滑油制备三种仿生超滑表面。为了进一步观察试样表面的成分变化,图5给出不同条件下试样的FTIR图。其中,图5a为阳极氧化后的样品, 3 474cm−1 位置的吸收峰为-OH官能团,来源于草酸的残留;图5b为低能修饰的试样,1 209cm−1 和1 120cm−1 处的吸收峰分别对应-CF3 和-CF2 [18],来源于全氟硅烷;图5c为全氟聚醚仿生超滑表面,1 241cm−1 和987cm−1 处的强吸收峰对应全氟聚醚中的C-F基团[19],并且全氟聚醚的注入未产生新的吸收峰,说明只是简单的物理填充;图5d为低黏度硅油仿生超滑表面,图5e为高黏度硅油仿生超滑表面,可以发现不同黏度硅油的吸收峰基本一致,说明低黏度硅油和高黏度硅油的成分相同,2 965cm−1 为C-H的不对称伸缩振动峰,2 908cm−1 为C-H的对称伸缩振动峰[20],1 263cm−1 为Si-CH3,1 025cm−1 处为Si-O,802cm−1 处为Si-C键[21],并且硅油的注入未产生新的吸收峰,同样说明只是简单的物理填充,因此两种不同黏度硅油并不是通过改变官能团来影响仿生超滑表面性能的。两种不同黏度硅油的组成成分相同,皆为二甲基硅氧烷;因为缩合后链的长度不同,所以黏度不同[22]

  • 图5 不同条件下试样表面的FTIR图

  • Fig.5 FTIR images of the sample surface under different conditions

  • 3 分析讨论

  • 3.1 仿生超滑涂层表面润湿行为

  • 将水滴甲基蓝染色后滴在样品表面检测其润湿行为。图6给出三种仿生超滑表面的接触和滑动过程图。水滴在全氟聚醚、低黏度硅油、高黏度硅油仿生超滑表面的接触角分别为116°、105°、103°,滑动角分别为~10°、~10°、~9°。然而,水滴只需~6s便可在全氟聚醚和低黏度硅油仿生超滑表面的顶部滑至底部,而在高黏度硅油仿生超滑表面需要~39s。结果表明润滑油的黏度过大会影响水滴滑动的速度,主要因为高黏度硅油增加了水滴与超滑表面的界面剪切力,进而增大了水滴的滑动阻力。

  • 图6 三种仿生超滑表面的润湿行为

  • Fig.6 Wetting behavior of three super slippery surfaces

  • 3.2 仿生超滑涂层稳定性

  • 仿生超滑表面的稳定性将直接影响其使用寿命,是其实际应用所须考虑的。为了检测三种仿生超滑表面的稳定性,对其进行了氯化钠浸泡和胶带剥离测试。将试样垂直浸入到质量分数为3.5%NaCl中,每隔30min取出试样后用吹风机吹干,测量其表面的接触角。如图7a所示,经过120min的连续浸泡后,三种超滑试样表面的接触角均没有发生明显的变化,初步验证了三种仿生超滑表面均具有一定的耐蚀性。Wang等通过研究也发现仿生超滑表面在腐蚀溶液中具有较好的稳定性,且稳定性优于超疏水表面[23],得到超疏水和仿生超滑表面在水下的稳定性可用以下两个经验公式进行分析:

  • ΔESHS=EC-ESHS=0.0350rA-0.0706A
    (1)
  • ΔESLIPS =EC-ESLIPS =0.0517rrA-0.0557A
    (2)
  • 式中,E C 是铝合金基体表面的总界面能。E SHSE SLIPS 分别是超疏水和仿生超滑表面浸入腐蚀溶液中的总界面能。ΔE SLIPS为超滑表面在水下稳定时的表面能,ΔE SHS 为超疏水表面在水下稳定时的表面能。Ar 是超疏水和仿生超滑表面的表面积和粗糙度。从方程(1)和(2)可以观察到,当超疏水和仿生超滑表面的 r 相同时,ΔE SLIPS大于 ΔE SHS。实际上,仿生超滑表面是光滑的润滑油膜层,r 比超疏水表面要小的多,所以 ΔE SLIPS要远小于 ΔE SHS。因此,理论上证实了当浸入质量分数为3.5%的NaCl溶液时,仿生超滑表面具有更好的稳定性。

  • 为了验证注入到微结构间隙的润滑油与基体的结合力,将胶带(3M610)牢固粘在样品表面,然后剥离,连续进行7次,并测试水滴在试样表面的接触角。如图7b所示,三种仿生超滑表面经过7次胶带粘合与脱离之后,接触角并没发生明显变化, 证明了样品具有较好的稳定性,这是因为润滑油被牢固锁在微结构间隙中。

  • 图7 三种仿生超滑表面的接触角变化

  • Fig.7 Contact angle changes of three bionic super slippery surfaces

  • 3.3 仿生超滑涂层自清洁行为

  • 自清洁是仿生超滑表面的一个重要特性。本文采用直径250 μm的粉煤灰对三种仿生超滑表面进行自清洁性测试[24]。如图8所示,首先在倾斜的三种超滑试样表面撒上粉煤灰,然后将水滴轻轻地放在试样表面顶部,可以发现水滴在全氟聚醚和低黏度硅油仿生超滑表面滑动并带走表面的污染物,形成明显的清洁轨迹,实现自清洁。然而,水滴在高黏度硅油仿生超滑表面被粉煤灰颗粒阻挡,无法实现自清洁,主要是由于高黏度硅油对粉煤灰的粘附力较大,阻碍了水滴的运动,进一步妨碍了自清洁。

  • 图8 三种仿生超滑表面水滴清洁250 μm粉煤灰的过程

  • Fig.8 Water droplets on three kinds of bionic super slippery surfaces for cleaning250 μm fly ash

  • 3.4 仿生超滑涂层防污行为

  • 为了进一步检验三种仿生超滑表面的长时间耐蚀性和防污性,将样品放置在水藻等污染物明显的海水中浸泡7d,取出后烘干并观察样品表面的附着物,且定期测量样品表面的接触角。图9为不同样品浸泡在海水中7d后表面的SEM图。铝合金基体表面存在明显的附着物和腐蚀坑(图9a)。全氟聚醚仿生超滑表面有极少的附着物,并且润滑油薄膜仍然均匀且连续分布(图9b),可以保持较好的疏水效果,且接触角大小基本保持不变 (图9f),因为全氟聚醚润滑油减轻了附着物的黏附并阻隔了腐蚀离子与试样的接触。低黏度硅油表面含有少量的附着物(图9c),同时油膜仍均匀地覆盖在表面,这是因为硅油被牢固锁在微结构间隙中,即使经过7d的海水浸泡仍然能够稳定存在,所以接触角基本维持稳定。附着物的形成也遵循成核-生长机制,基于经典成核理论,异质成核的自由能垒如下[25]

  • ΔGhet=134πσNLr*22-cosθ+cos3θ
    (3)
  • cosθ=σSL-σNSσNL
    (4)
  • 式中,r*是附着物晶核的临界半径,θ 是附着物晶核在表面的接触角。σNLσSLσNS 分别是核-液、表面-液体和核-表面的界面能。根据方程(3)和(4)可以发现较大的接触角会降低附着物晶核与表面之间的黏附力,导致异相成核的自由能垒较大。此外,润滑油的存在降低了表面能且减小了形核中心,从而增加了异相成核的势垒能[26]。然而,高黏度硅油仿生超滑表面近乎形成附着物层(图9d),且附着物数量远高于低密度硅油仿生超滑表面,甚至高于基体表面的附着物数量(图9e),接触角也明显降低(图9f),这主要是因为高黏度使硅油很难完全注入到微结构间隙中,长时间浸泡出现润滑油的遗失,微结构出现裸露直接与海水接触,为附着物提供了附着点,并且较高的黏度也容易增加附着物的附着,并提供结晶产物的形核位点。因此,全氟聚醚和低黏度硅油的注入使得仿生超滑表面能够提供长期稳定的疏水能力与防污性能;高黏度硅油仿生超滑表面虽能够提供短时间的疏水防污性能,但是长期的防污能力较差。

  • 图9 海水浸泡7d后铝合金基体和三种仿生超滑表面的SEM图、附着物数量统计以及接触角变化

  • Fig.9 SEM images of aluminum alloy substrate and three bionic super slippery surfaces after seawater immersion for 7d, statistics of the number of attachments, and change of contact angles

  • 3.5 仿生超滑涂层热辅助自修复行为

  • 自修复行为是仿生超滑表面在实际应用中所希望实现的又一重要性能[27]。为了研究三种仿生超滑表面的自修复性,如图10a所示,将样品放在400 # 的砂纸上并加200g砝码,然后推动试样前进3cm进行划损,并观察划损后试样的表面形貌和水滴在试样表面的滚动状态。可以看出,全氟聚醚仿生超滑表面在砂纸上基本没有留下任何痕迹,且SEM图显示少量划痕;低黏度硅油仿生超滑表面在砂纸上留下了少量的痕迹,SEM图显示划痕较浅;高黏度硅油仿生超滑表面在砂纸上留下了明显的轨迹,同时SEM图显示划痕较深;高黏度硅油无法完全浸入微结构间隙中,同时在受力时又容易与砂纸产生黏附,因此会留下明显的滑动轨迹[28]。三种仿生超滑表面的滑动角均增大到18°~20°,且滑动速度较慢。有研究表明温度越高,分子热运动越剧烈,润滑油的流动性越强,自修复所需时间越短[29]。因此,将划伤的三种超滑试样在120℃下加热1h,观察其自修复性能[30]。如图10b所示,全氟聚醚与低黏度硅油仿生超滑表面的滑动角均减小至~10°,且水滴可以从顶部顺利滑至底部,滑动角与新制备无明显差别,呈现较好的自修复性,由于润滑油的流动特性,当仿生超滑表面受到损伤时,润滑油可以流向表面划损区域完成自修复[31];高黏度硅油仿生超滑表面的滑动角也出现降低,但是减小到~13°且水滴滑动缓慢,没有恢复到新制备的状态。因此,全氟聚醚与低黏度硅油仿生超滑表面展现出较好的热辅助自修复性,自修复后与新制备表面性能基本一致;高黏度硅油仿生超滑表面也表现出一定的自修复能力,但是自修复能力有限,与新制备表面存在差异。

  • 图10 三种仿生超滑表面的润湿行为自修复性能测试

  • Fig.10 Self-healing performance test of the wetting behavior of three bionic super slippery surfaces

  • 4 结论

  • (1)采用简单且低成本的阳极氧化法在铝合金基底上制备锥状微结构,采用全氟硅烷乙醇溶液降低其表面能,并通过滴涂全氟聚醚、低黏度硅油和高黏度硅油制备三种仿生超滑表面。

  • (2)三种仿生超滑表面都呈现良好的海水浸泡和胶带玻璃稳定性,且全氟聚醚、低黏度硅油仿生超滑表面比高黏度硅油仿生超滑表面具有更好的自清洁性和防污性。此外,三种仿生超滑表面均呈现热辅助自修复性,且全氟聚醚、低黏度硅油仿生超滑表面自修复能力更优。

  • (3)低黏度硅油的超滑表面从自清洁性、防污性和热辅助自修复性三个方面与全氟聚醚超滑表面几乎没有差异。因此,低成本且无氟的低黏度硅油可以代替经常使用的高成本的全氟聚醚来制备仿生超滑表面。然而,仿生超滑表面的实际工程应用将来还需解决润滑油的耗损问题。

  • 参考文献

    • [1] 肖金涛,鞠鹏飞,臧旭升,等.铝合金表面润滑耐蚀复合镀层的制备及性能分析[J].中国表面工程,2021,34(4):38-45.XIAO Jintao,JU Pengfei,ZANG Xusheng,et al.Preparation and performance analysis of lubricating and corrosion-resistant composite coating on aluminum alloysurface[J].China Surface Engineering,2021,34(4):38-45.(in Chinese)

    • [2] ZHANG P F,CHEN H W,ZHANG D Y.Investigation of the anisotropic morphology-induced effects of theslippery zone inpitchers of nepenthes alata[J].Journal of Bionic Engineering,2015,12(1):79-87.

    • [3] ZHU Y,HE Y,YANG D Q,et al.A facile method to prepare mechanically durable super slippery polytetrafluoroethylene coatings[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:99-105.

    • [4] XING K,LI Z X,WANG Z R,et al.Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys [J].Chemical Enginering Journal,2021,418:129079.

    • [5] HAN X M,DOU W W,CHEN S G,et al.Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater[J].Surface and Coatings Technology,2020,388:125596.

    • [6] ANNASO B.G,SHI H X,DUAN M,et al.Highly transparent,hot water and scratch resistant,lubricantinfused slippery surfaces developed from a mechanicallyweak superhydrophobic coating[J].Chemical Enginering Journal,2021,416:127809.

    • [7] 孙士美,王鹏,张盾.仿生超滑表面对Al基体微生物腐蚀防护性能与机制研究[J].腐蚀科学与防护技术,2016,28(1):5-12.SUN Shimei,WANG Peng,ZHANG Dun.Research on the protection performance and mechanism of bionic super-slip surface against microbial corrosion of Al matrix[J].Corrosion Science and Protection Technology,2016,28(1):5-12.(in Chinese)

    • [8] ZHANG Y M,LIU Z B,CHEN A F,et al.Fabrication ofmicro-/submicro-/nanostructured polypropylene/grapheme superhydrophobic surfaces with extreme dynamic pressure resistance assisted by single hierarchically porous anodic aluminum oxide template[J].Journal of Physical Chemistry C,2020,124(11):6197-6205.

    • [9] 严继康,杨钢,唐婉霞,等.阳极氧化电压对钛合金TC4阳极氧化 TiO2膜层表面的影响[J].材料研究学报,2015,29(12):895-903.YAN Jikang,YANG Gang,TANG Wanxia,et al.Effect of applied voltage on performance of anodic oxidationfilms of TiO2 on TC4 alloy[J].Chinese Journal of Materials Research,2015,29(12):895-903.(in Chinese)

    • [10] 莫春燕,郑燕升,王发龙,等.TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J].中国表面工程,2015,28(2):132-137.MO Chunyan,ZHENG Yansheng,WANG Falong,et al.Preparation and properties of TiO2/fluoridepolymethylhydrosiloxane superhydrophobic and anticorrosive Coating[J].China Surface Engineering,2015,28(2):132-137.(in Chinese)

    • [11] LIU G,YUAN Y,LIAO R,et al.Fabrication of aporous slippery icephobic surface and effect of lubricant viscosity on anti-icing properties and durability[J].Coatings,2020,10(9):896.

    • [12] LEE J,SHIN S,JIANG Y,et al.Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing[J].Advanced Functional Materials,2017,27(15):1606040.

    • [13] WANG P,LU Z,ZHANG D,Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J].Corrosion Science,2015,93:159-166.

    • [14] XU Z Y,HE X Y,LI R S,et al.Triangular pyramidal nano-Ag:Fabrication and properties of superamphiphobic surface on 1060 aluminum alloy mesh[J].Surface and Coatings Technology,2020,404:126448.

    • [15] 刘莉,张鲲,熊辉辉,等.阳极氧化工艺对6061铝合金草酸氧化膜耐磨耐蚀性的影响[J].材料热处理学报,2015,36(11):225-232.LIU Li,ZHANG Kun,XIONG Huihui,et al.Effect of anodizing process on corrosion and wear resistance of 6061 alloy anodic oxide films formed in oxalic acid[J].Transactions of Materials and Heat Treatment,2015,36(11):225-232.(in Chinese)

    • [16] KO C L,KUO Y L,CHEN S H,et al.Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes[J].Thin Solid Films,2020,709:138151.

    • [17] YAO M W,CHEN J W,SU Z,et al.Anodic oxidation in aluminum electrode by using hydrated amorphous aluminum oxide film as solid electrolyte under high electric field[J].ACS Applied.Materials & Interfaces.2016,8(17):11100-11107.

    • [18] ZHENG H,PAN M W,WEN J,et al.Robust,transparent,and superhydrophobic coating fabricated with waterborne polyurethane and inorganic nanoparticle composites[J].Industrial & Engineering Chemistry Research,2019,58(19):8050-8060.

    • [19] WEI C Q,ZHANG G F,ZHANG Q H,et al.Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:A facile approach to highly stable bioinspired surface for biofouling resistance[J].ACS Applied.Materials & Interfaces,2016,8(50):34810-34819.

    • [20] XIAO L J,DENG M,ZENG W G,et al.Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J].Industrial & Engineering Chemistry Research,2017,56(43):12354-12361.

    • [21] LI Y S,ZANG C G,ZHANG Y L.Effect of the structure of hydrogen-containing silicone oil on the properties of silicone rubber[J].Materials Chemistry and Physics,2020,48:122734.

    • [22] JEONG H K,JONATHAN P R.Droplet impact dynamics on lubricant-infused superhydrophobic surfaces:The role of viscosity ratio[J].Langmuir,2016,32(40):10166-10176.

    • [23] WANG P,LI T,ZHANG D.Fabrication of non-wetting surfaces on zinc surface as corrosion barrier[J].Corrosion Science,2017,128:110-119.

    • [24] LI H,YU S R,HU J H,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.

    • [25] DIAO Y,MYERSON A S,HATTON T A,et al.Surface design for controlled crystallization:The role of surface chemistry and nanoscale pores in heterogeneous nucleation[J].Langmuir,2011,27:324-5334.

    • [26] CHARPENTIER T V,NEVILLE A,BAUDIN S,et al.Liquid infused porous surfaces for mineral fouling mitigation[J].Journal of Colloid and Interface Science,2015,444:81-86.

    • [27] WANG Z,SCHERES L,XIA H,et al.Developments and challenges in self-healing antifouling materials[J].Advanced Functional Materials,2020,30(26):1908098.

    • [28] JIN B,LIU M Z,ZHAN Q H,et al.Silicone oil swelling slippery surfaces based on mussel-inspiredmagnetic nanoparticles with multiple self-healing mechanism[J].Langmuir,2017,33(39):10340-10350.

    • [29] WANG J,KATO K K,BLOIS A P,et al.Bioinspiredomniphobic coatings with a thermal self-repair function on industrial materials[J].ACS Applied Materials & Interfaces,2016,8:8265-8271.

    • [30] LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate withantibiofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12(14):7700-7711.

    • [31] CUI J,DANIEL D,GRINTHAL A,et al.Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J].Nature Materials,2015,14(8):790-795.

  • 参考文献

    • [1] 肖金涛,鞠鹏飞,臧旭升,等.铝合金表面润滑耐蚀复合镀层的制备及性能分析[J].中国表面工程,2021,34(4):38-45.XIAO Jintao,JU Pengfei,ZANG Xusheng,et al.Preparation and performance analysis of lubricating and corrosion-resistant composite coating on aluminum alloysurface[J].China Surface Engineering,2021,34(4):38-45.(in Chinese)

    • [2] ZHANG P F,CHEN H W,ZHANG D Y.Investigation of the anisotropic morphology-induced effects of theslippery zone inpitchers of nepenthes alata[J].Journal of Bionic Engineering,2015,12(1):79-87.

    • [3] ZHU Y,HE Y,YANG D Q,et al.A facile method to prepare mechanically durable super slippery polytetrafluoroethylene coatings[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,556:99-105.

    • [4] XING K,LI Z X,WANG Z R,et al.Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys [J].Chemical Enginering Journal,2021,418:129079.

    • [5] HAN X M,DOU W W,CHEN S G,et al.Stable slippery coating with structure of tubes and pyramids for inhibition of corrosion induced by microbes and seawater[J].Surface and Coatings Technology,2020,388:125596.

    • [6] ANNASO B.G,SHI H X,DUAN M,et al.Highly transparent,hot water and scratch resistant,lubricantinfused slippery surfaces developed from a mechanicallyweak superhydrophobic coating[J].Chemical Enginering Journal,2021,416:127809.

    • [7] 孙士美,王鹏,张盾.仿生超滑表面对Al基体微生物腐蚀防护性能与机制研究[J].腐蚀科学与防护技术,2016,28(1):5-12.SUN Shimei,WANG Peng,ZHANG Dun.Research on the protection performance and mechanism of bionic super-slip surface against microbial corrosion of Al matrix[J].Corrosion Science and Protection Technology,2016,28(1):5-12.(in Chinese)

    • [8] ZHANG Y M,LIU Z B,CHEN A F,et al.Fabrication ofmicro-/submicro-/nanostructured polypropylene/grapheme superhydrophobic surfaces with extreme dynamic pressure resistance assisted by single hierarchically porous anodic aluminum oxide template[J].Journal of Physical Chemistry C,2020,124(11):6197-6205.

    • [9] 严继康,杨钢,唐婉霞,等.阳极氧化电压对钛合金TC4阳极氧化 TiO2膜层表面的影响[J].材料研究学报,2015,29(12):895-903.YAN Jikang,YANG Gang,TANG Wanxia,et al.Effect of applied voltage on performance of anodic oxidationfilms of TiO2 on TC4 alloy[J].Chinese Journal of Materials Research,2015,29(12):895-903.(in Chinese)

    • [10] 莫春燕,郑燕升,王发龙,等.TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J].中国表面工程,2015,28(2):132-137.MO Chunyan,ZHENG Yansheng,WANG Falong,et al.Preparation and properties of TiO2/fluoridepolymethylhydrosiloxane superhydrophobic and anticorrosive Coating[J].China Surface Engineering,2015,28(2):132-137.(in Chinese)

    • [11] LIU G,YUAN Y,LIAO R,et al.Fabrication of aporous slippery icephobic surface and effect of lubricant viscosity on anti-icing properties and durability[J].Coatings,2020,10(9):896.

    • [12] LEE J,SHIN S,JIANG Y,et al.Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing[J].Advanced Functional Materials,2017,27(15):1606040.

    • [13] WANG P,LU Z,ZHANG D,Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria[J].Corrosion Science,2015,93:159-166.

    • [14] XU Z Y,HE X Y,LI R S,et al.Triangular pyramidal nano-Ag:Fabrication and properties of superamphiphobic surface on 1060 aluminum alloy mesh[J].Surface and Coatings Technology,2020,404:126448.

    • [15] 刘莉,张鲲,熊辉辉,等.阳极氧化工艺对6061铝合金草酸氧化膜耐磨耐蚀性的影响[J].材料热处理学报,2015,36(11):225-232.LIU Li,ZHANG Kun,XIONG Huihui,et al.Effect of anodizing process on corrosion and wear resistance of 6061 alloy anodic oxide films formed in oxalic acid[J].Transactions of Materials and Heat Treatment,2015,36(11):225-232.(in Chinese)

    • [16] KO C L,KUO Y L,CHEN S H,et al.Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes[J].Thin Solid Films,2020,709:138151.

    • [17] YAO M W,CHEN J W,SU Z,et al.Anodic oxidation in aluminum electrode by using hydrated amorphous aluminum oxide film as solid electrolyte under high electric field[J].ACS Applied.Materials & Interfaces.2016,8(17):11100-11107.

    • [18] ZHENG H,PAN M W,WEN J,et al.Robust,transparent,and superhydrophobic coating fabricated with waterborne polyurethane and inorganic nanoparticle composites[J].Industrial & Engineering Chemistry Research,2019,58(19):8050-8060.

    • [19] WEI C Q,ZHANG G F,ZHANG Q H,et al.Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:A facile approach to highly stable bioinspired surface for biofouling resistance[J].ACS Applied.Materials & Interfaces,2016,8(50):34810-34819.

    • [20] XIAO L J,DENG M,ZENG W G,et al.Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J].Industrial & Engineering Chemistry Research,2017,56(43):12354-12361.

    • [21] LI Y S,ZANG C G,ZHANG Y L.Effect of the structure of hydrogen-containing silicone oil on the properties of silicone rubber[J].Materials Chemistry and Physics,2020,48:122734.

    • [22] JEONG H K,JONATHAN P R.Droplet impact dynamics on lubricant-infused superhydrophobic surfaces:The role of viscosity ratio[J].Langmuir,2016,32(40):10166-10176.

    • [23] WANG P,LI T,ZHANG D.Fabrication of non-wetting surfaces on zinc surface as corrosion barrier[J].Corrosion Science,2017,128:110-119.

    • [24] LI H,YU S R,HU J H,et al.Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning,anti-corrosion and anti-scaling properties[J].Applied Surface Science,2019,481:872-882.

    • [25] DIAO Y,MYERSON A S,HATTON T A,et al.Surface design for controlled crystallization:The role of surface chemistry and nanoscale pores in heterogeneous nucleation[J].Langmuir,2011,27:324-5334.

    • [26] CHARPENTIER T V,NEVILLE A,BAUDIN S,et al.Liquid infused porous surfaces for mineral fouling mitigation[J].Journal of Colloid and Interface Science,2015,444:81-86.

    • [27] WANG Z,SCHERES L,XIA H,et al.Developments and challenges in self-healing antifouling materials[J].Advanced Functional Materials,2020,30(26):1908098.

    • [28] JIN B,LIU M Z,ZHAN Q H,et al.Silicone oil swelling slippery surfaces based on mussel-inspiredmagnetic nanoparticles with multiple self-healing mechanism[J].Langmuir,2017,33(39):10340-10350.

    • [29] WANG J,KATO K K,BLOIS A P,et al.Bioinspiredomniphobic coatings with a thermal self-repair function on industrial materials[J].ACS Applied Materials & Interfaces,2016,8:8265-8271.

    • [30] LI H,FENG X,PENG Y,et al.Durable lubricant-infused coating on a magnesium alloy substrate withantibiofouling and anti-corrosion properties and excellent thermally assisted healing ability[J].Nanoscale,2020,12(14):7700-7711.

    • [31] CUI J,DANIEL D,GRINTHAL A,et al.Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J].Nature Materials,2015,14(8):790-795.

  • 手机扫一扫看