en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王建梅,女,1972年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学与界面科学、重大装备基础件。E-mail:wjmhdb@163.com

中图分类号:TH131

DOI:10.11933/j.issn.1007−9289.20210331003

参考文献 1
朱有利,侯帅,杜晓坤,等.某无人机螺旋桨联接螺栓断裂失效的多学科分析与改进[J].中国表面工程,2018,31(4):55-63.ZHU Youli,HOU Shuai,DU Xiaokun,et al.Multi-disciplinary analysis and improvement on fracture failure of propeller’ s connection bolts of a pilotless aircraft[J].China Surface Engineering,2018,31(4):55-63.(in Chinese)
参考文献 2
张朝前,李涛,杨夏明,等.剪切激励下盲孔螺栓连接结构的松动行为研究[J].润滑与密封,2020,45(7):8-15.ZHANG Chaoqian,LI Tao,YANG Xiaming,et al.Self-loosening of threaded fasteners under harmonic shear displacement[J].Lubrication Engineering,2020,45(7):8-15.(in Chinese)
参考文献 3
梁涛,杨笑宇,王延东,等.钢桁架桥梁杆件摩擦面防腐涂层抗滑移性能研究[J].表面技术,2010,39(5):42-44.LIANG Tao,YANG Xiaoyu,WANG Yandong,et al.Anti-slipping property research on anti-corrosion coating of friction surface of steel truss bridge bars[J].Surface Technology,2010,39(5):42-44.(in Chinese)
参考文献 4
史文博,杜静,龚国伟.风电机组轮毂螺栓连接建模与接触强度分析[J].机械设计与制造,2019,12:169-172.SHI Wenbo,DU Jing,GONG Guowei.Modeling and contact strength analysis of bolts connection on wind turbine hub[J].Machinery Design & Manufacture,2019(12):169-172.(in Chinese)
参考文献 5
DENAVIT M D,BORELLO D J,HAJJAR J F.Bolted steel slip-critical connections with fillers:Ⅱ.Behavior[J].Journal of Constructional Steel Research,2011,67(3):398-406.
参考文献 6
ANNAN C D,CHIZA A.Characterization of slip resistance of high strength bolted connections with zinc-based metallized faying surfaces[J].Engineering Structures,2013,56:2187-2196.
参考文献 7
WANG Y B,WANG Y Z,CHEN K,et al.Slip factors of high strength steels with shot blasted surface[J].Journal of Constructional Steel Research,2019,157:10-18.
参考文献 8
GEOFFREY W R,ROBIN H,GREGORY A M,et al.Dynamic friction coefficient and performance of asymmetric friction connections[J].Structures,2018,14:416-423.
参考文献 9
MANDI H,GREGORY A,MACRAE,et al.Numerical study of asymmetric friction connections(AFC)with large grip length bolts[J].Key Engineering Materials,2018,4651:600-608.
参考文献 10
MAHMOUDI M,KOSARI M,LORESTANI M,et al.Effect of contact surface type on the slip resistance in bolted connections[J].Journal of Constructional Steel Research,2020,166:105943.
参考文献 11
SHI G,SHI Y,WANG Y,et al.Numerical simulation of steel pretensioned bolted end-plate connections of different types and details[J].Engineering Structures,2008,30(10):2677-2686.
参考文献 12
李振东,詹华,柯庆航,等.激光织构和碳基薄膜复合处理提高钛合金摩擦学性能研究[J].润滑与密封,2020,45(12):135-140.LI Zhendong,ZHAN Hua,KE Qinghang,et al.Research on laser texture and carbon-based film composite treatment to improve the tribological properties of titanium alloy[J].Lubrication Engineering,2020,45(12):135-140.(in Chinese)
参考文献 13
王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.(in Chinese)
参考文献 14
ZHANG Z,XIAO Y,XIE Y H,et al.Effects of contact between rough surfaces on the dynamic responses of bolted composite joints:Multiscale modeling and numerical simulation[J].Composite Structures,2019,211:13-23.
参考文献 15
XIE Y H,XIAO Y,LÜ J X,et al.Influence of creep on preload relaxation of bolted composite joints:Modeling and numerical simulation[J].Composite Structures,2020,245:112332.
参考文献 16
王翔宇,卢剑伟,张洁.考虑粗糙结合面的摩擦连接建模与动力学研究[J].合肥工业大学学报(自然科学版),2019,42(8):1034-1040.WANG Xiangyu,LU Jianwei,ZHANG Jie.Modeling and dynamic research of frictional joints considering rough interface[J].Journal of Hefei University of Technology(Natural Science Edition),2019,42(8):1034-1040.(in Chinese)
参考文献 17
刘刚,李启才,胡安吉.接触面喷砂处理的高强螺栓连接性能的试验研究[J].苏州科技学院学报(工程技术版),2009,22(3):38-41.LIU Gang,LI Qicai,HU Anji.Test and modeling of the behavior of high-strength bolted connection with sand blasted faying surface[J].Journal of Suzhou University of Science and Technology(Engineering and Technology Edition),2009,22(3):38-41.(in Chinese)
参考文献 18
张萌.腐蚀钢结构高强螺栓摩型连接性能退化试验研究[D].西安:西安建筑科技大学,2011.ZHANG Meng.Corrosion of high strength steel bolt friction type connection test of performance degradation[D].Xi’ an:Xi’ an University of Architecture and Technology,2011.(in Chinese)
参考文献 19
段雅丽.超精密车床控制系统及相关加工参数的研究 [D].哈尔滨:哈尔滨工业大学,2011.DUAN Yali.Research of the ultra-precision lathe control system and relevant processing parameters[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)
参考文献 20
王川亮,陈光军,张珂.Cr12MoV 塑料模具钢铣削加工表面三维偏斜度和陡峭度[J].表面技术,2019,48(10):72-79.WANG Chuanliang,CHEN Guangjun,ZHANG Ke.Three dimensional skewness and kurtosis of milling surface of Cr12MoV plastic die steel[J].Surface Technology,2019,48(10):72-79.(in Chinese)
参考文献 21
赵中伟,樊雄涛,吴刚.高强螺栓抗剪连接滑移数值模型[J].同济大学学报(自然科学版),2020,48(12):1707-1716.ZHAO Zhongwei,FAN Xiongtao,WU Gang.Investigations on simplified high-strength bolt-slip numerical model for shear connection[J].Journal of Tongji University(Natural Science Edition),2020,48(12):1707-1716.(in Chinese)
参考文献 22
LEI C Y,BI Y B,LI J X.Experiment and numerical simulations of a slug rivet installation process based on different modeling methods[J].The International Journal of Advanced Manufacturing Technology,2018,97:1481–1496.
参考文献 23
闫平,邹存健,张伟,等.不平行接触下的螺栓连接刚度及其转子动态特性[J].动力学与控制学报,2018,16(6):561-567.YAN Ping,ZOU Cunjian,ZHANG Wei,et al.Stiffness of bolted joint and dynamic characteristics of rotors under non-parallel contact[J].Journal of Dynamics and Control,2018,16(6):561-567.(in Chinese)
参考文献 24
李相权,李梦雨.自乳化水性环氧富锌底漆的制备及性能研究[J].中国涂料,2018,33(12):42-44,53.LI Xiangquan,LI Mengyu.Preparation and properties of self-emulsifying waterborne epoxy zinc-rich primer[J].China Coatings,2018,33(12):42-44,53.(in Chinese)
目录contents

    摘要

    重载条件下机械装备螺栓联结界面摩擦性能不足极易导致失效行为。为探究表面处理对螺栓联结界面摩擦与抗滑移性能的作用效果,提高界面摩擦性能,首先观测分析喷砂、喷砂喷漆、不同尺寸波浪纹织构的表面参数,然后采用摩擦磨损试验分析不同表面的摩擦磨损规律,并对其滑移过程进行仿真分析。结果表明:喷砂表面的摩擦因数最大,抗滑移性能最好, 但耐磨性不如波浪纹织构表面;喷砂喷漆表面主要由固化剂与锌粉颗粒组成,硬度极低,且表面存在大量微裂纹,导致耐磨性较差;波浪纹织构表面的耐磨性较好,且其摩擦因数可达到与喷砂喷漆表面相近的水平。因此,在存在重载、循环载荷的应用场合,可考虑用波浪纹织构对联结界面进行处理,在保证其摩擦因数的同时增加耐磨性。提出一种耐磨、摩擦因数大的波浪纹织构表面,对增强螺栓联结界面摩擦性能具有指导意义。

    Abstract

    Under heavy load conditions, insufficient friction performance of mechanical equipment bolt connection interface can easily lead to failure behavior. Therefore, this paper is to explore the influence of different surface treatments on the friction performance of the bolt connection interface, and improve the friction performence. First, the surface parameters of sandblasting, sandblasting and paint spraying, different sizes of wave texture are observed and analyzed. Then the tests are used to analyze the different friction behaviors of different interfaces. Finally, the slip process of different surfaces is simitated and analyzed. The facts proved the followings: the sandblasted surface has the largest friction factor and the best anti-slip performance, but the wear resistance is not as good as the wave texture surface. The painted surface is mainly composed of curing agent and zinc powder particles. The hardness is extremely low, and there are a large number of micro-cracks on the surface, resulting in poor wear resistance. The wave-textured surface has good wear resistance, and its friction factor can reach a level similar to that of painted surface. Therefore, when there are heavy loads and cyclic loads, using wave texture to treat the connection interface can be considered. It will increase the wear resistance while ensuring its friction factor. This paper proposes a wavy textured surface with wear resistance and high friction factor, which has certain guiding and reference significance for improving the friction performance of the bolt connection interface.

  • 0 前言

  • 螺栓联结结构可靠性高、易安装和拆卸,是建筑业、制造业及新能源领域常用的联结方式[1-4]。该结构依靠螺栓夹紧力在联结界面间产生摩擦来对抗外载荷,使两部件紧密结合并具备一定的抗滑移能力。因此,增大联结界面间的摩擦因数并减少微动磨损对提高螺栓联结的强度至关重要[5-7]

  • 为提高金属表面摩擦因数和降低磨损,国内外学者进行了各种理论与试验研究。GEOFFREY等[8-9] 通过螺栓提供的摩擦力和由此产生的能量耗散,计算得到有效动态摩擦因数。MAHMOUDI等[10-11]对ASTM A36美标碳素结构钢表面进行了开槽处理,滑移试验表明开槽处理可以有效提高螺栓联结的强度。李振东等[12-13]在钛合金激光织构表面再制备一层碳基薄膜,发现织构密度5.95%时的摩擦因数略微降低,但织构化碳基薄膜的磨损率比钛合金降低了99.31%。ZHANG等[14-16]通过数值分析发现螺栓连接粗糙表面的存在增加了界面摩擦阻尼。

  • Q345E作为一种低合金结构钢,常用于螺栓被联结件,但鲜有文献对其摩擦性能作深入分析,尤其是各种表面处理技术对Q345E摩擦和抗滑移性能的影响方面。喷砂、喷砂喷漆是螺栓联结常用的两种表面处理方式,但在工程实际中不断出现不耐磨、易掉漆等问题,在一定程度上降低了螺栓联结的强度[17-18]。本文运用机加工手段制备新型波浪纹织构样品,与喷砂和喷漆样品同时进行表面特性分析和摩擦磨损试验,对比不同表面处理方式的摩擦因数和磨损规律。然后运用试验得到的关键参数,建立螺栓联结结构数值模型,分析不同表面处理方式对螺栓联结抗滑移性能的影响,以期提高螺栓联结的强度。

  • 1 样品准备和试验方法

  • 1.1 样品制备

  • 试验主要目的是研究不同表面处理方法对摩擦性能的影响,从而探究降低磨损和增加抗滑移性能的方法。采用螺栓联结件常用材料Q345E,通过线切割机床将方形坯料加工成如图1所示样品,将样品清洗干净后进行表面处理。表面处理方法有三种,分别为喷砂、喷砂喷漆、波浪纹织构处理。喷砂组:0.42MPa压强下,在距离Q345E样品端面45mm处,用硅砂喷砂处理1min;喷砂喷漆组:经上述喷砂处理后,在样品喷砂表面再刷涂一层环氧富锌底漆,薄膜厚度为75μm;波浪纹织构组:用车床车削Q345E样品端面,调整主轴转速、进给量和背吃刀量来控制波浪纹的单峰尺寸[19],分别加工出四种不同尺寸的波浪纹织构,织构尺寸见图1和表1。为了保证试验数据的可信度,每组样品数量为3个。

  • 图1 Q345E样品尺寸

  • Fig.1 Size of Q345E sample

  • 表1 波浪纹织构尺寸

  • Table1 Size of wavy texture

  • Q345E对应国际标准ISO 630—3:2012中的S355NE,化学成分(质量分数)如表2所示。环氧富锌底漆由锌粉混合固化剂制备而成,具有较好的导电性和防腐防锈效果,在螺栓联结件上得到广泛应用,选用其作为试验的涂料。

  • 表2 Q345E化学成分(质量分数)

  • Table2 Chemical composition of Q345E

  • 1.2 试验方法

  • 1.2.1 磨损前表面特性与形貌分析

  • 通过维氏硬度计测量所有样品表面的硬度值,运用EDS能谱分析喷漆涂层的表面形态与元素分布。选取喷漆均匀的区域,放大2 000倍进行观察,框选范围为45 μm 45 × μm。在喷漆不均匀区域绘制线扫描能谱曲线,分析各组分的含量。通过超景深显微镜拍摄样品表面3D形貌,利用表面粗糙度测量仪测试表面形貌参数,分析不同表面的形貌特征。超景深显微镜放大倍数为500倍,采样范围为671 μm 500 × μm。表面形貌参数包括轮廓算数平均偏差 Ra、轮廓最大高度 Rz、轮廓偏斜度 Rsk、轮廓单元平均宽度 Rsm,采样长度为3.2mm。其中 Rsk 值反映了不对称轮廓在上下方向相对平均线的偏离程度,Rsk 值越小,其耐磨性越好[20]

  • 1.2.2 摩擦磨损试验

  • 如图2所示,摩擦磨损设备为CFT-I型摩擦磨损仪,其摩擦因数测试精度为0.2%FS,测试条件见表3。其中,通过参数校正试验,选定运行时间为20min,可以得到相对稳定充分的摩擦因数数据。环境温度20℃,相对湿度21%,运动方式为圆周运动。摩擦对偶球选用φ4mm Si3N4 陶瓷球,洛氏硬度为75~80HRC,表面粗糙度Ra=0.025 μm。

  • 图2 摩擦磨损试验装置

  • Fig.2 Friction and wear test device

  • 摩擦磨损试验过程:用无水乙醇超声清洗样品,烘干后逐一编号;安装摩擦球,然后把样品固定在载物台上,并检查样品水平度;按表3设置软件参数,开始试验并采集摩擦因数数据。

  • 表3 摩擦磨损试验参数条件

  • Table3 Friction and wear test parameter conditions

  • 摩擦磨损试验后用无水乙醇超声清洗样品,烘干后用超景深显微镜测量磨损区域的横截面面积,记录4个不同区域的平均面积。利用式(1)可计算磨损区域的体积:

  • ΔV=2πrA
    (1)
  • 式中,r 为运行半径,A 为磨损区的横截面积。另外,取表面处理方式相同的样品,在相同条件下进行三次平行试验。

  • 1.2.3 螺栓联结抗滑移性能数值分析

  • 如图3所示,以风力发电机轮毂与主轴的螺栓联结为例,针对其中包含两个螺栓的局部结构,利用三维建模软件UG和有限元仿真软件Abaqus,建立螺栓联结结构的数值模型[21]。将1.2.2节摩擦磨损试验得到的不同表面的摩擦因数作为有限元模型中螺栓联结界面的关键接触参数,建立6种螺栓联结结构数值模型,分别对应6种不同的表面。设置相同的界面接触应力,对搭接板施加拉力,进行动态滑移仿真,分析不同表面处理方式对螺栓联结抗滑移性能的影响。

  • (1) 载荷与边界条件

  • 分两个载荷步施加外载,见图3。第一个载荷步只施加螺栓预紧力,大小为100N。第二个载荷步施加拉力,从0逐渐均匀增加到100N,加载时间为1s。在下板远离螺栓的后端面施加约束,限制 xyz 方向的平动及绕这三个方向的转动。

  • 图3 螺栓联结模型示意图

  • Fig.3 Schematic diagram of bolt connection model

  • (2) 网格与接触条件

  • 所有部件的网格类型均为C3D8R六面体单元,采用最小化网格过渡的中性轴算法划分,网格总数量为33 322。如图3所示,下板的上表面为目标面,上板的下表面为接触面。考虑到工程应用场景的复杂环境因素,引入防滑系数对实际摩擦因数进行校正如下,得到界面间实际摩擦因数如表4所示:

  • f2=f1K
    (2)
  • 式中,f1为1.2.2中摩擦磨损试验测得的摩擦因数,f2为数值模型采用的实际摩擦因数, K 为防滑系数, K=2。

  • 表4 螺栓联结数值模型关键参数

  • Table4 Key parameters of numerical model of bolt connection

  • 2 结果分析

  • 2.1 磨损前表面特性与形貌分析

  • 如图4所示,喷漆样品表面存在直径不同的圆形颗粒,呈片状不均匀分布。由元素分布图颜色标记可知橙色颗粒为锌粉,锌粉直径为3 10~μm。在2 000倍下可观察到经过刷涂工艺处理的喷漆表面锌粉分布极不均匀,出现大量锌粉聚集现象,且不同直径的锌粉颗粒分布在不同的区域。在锌粉分布较少的区域伴随有微米级别的裂纹产生,且该区域Si和O的含量相对较高。故推测锌粉较少的区域主要成分为含氧富锌漆干结后的固化剂,且其中含有一定量的SiO2。微裂纹的存在使固化剂强度下降,螺栓联结所受的交变载荷易造成涂层剥落和磨损。

  • 如图5所示,波浪纹织构处理和喷砂处理均导致样品表面硬度增大。这是由于车削加工和喷砂处理在金属材料表面产生较大内应力和塑性变形,使晶格扭曲、畸变,晶粒产生剪切、滑移,晶粒被拉长。金属材料的这种冷作硬化效应导致表面硬度增大,从而使耐磨性提高。采用车削加工的波浪纹织构表面硬度较未处理表面提升35.6%,喷砂表面的硬度较波浪纹织构又提高32.2%,可见喷砂处理的冷作硬化效应比车削加工更加显著。由于环氧富锌底漆采用有机固化剂,喷漆样品表面硬度极小,测得的维氏硬度值低于50,导致喷漆样品表面易磨损。

  • 图4 喷漆样品表面EDS能谱

  • Fig.4 EDS energy spectrum of painted sample surface

  • 图5 表面处理对硬度的影响

  • Fig.5 Effect of surface treatment on hardness

  • 表5 为不同表面处理样品磨损前的表面三维形貌与表面粗糙度参数。随波浪纹织构单峰尺寸增大, RaRzRsm 值逐渐增加,说明样品表面粗糙度逐渐增大,从而使表面摩擦因数增大。对比Rsk 值发现,其随波浪纹单峰尺寸增大而增大,说明波浪纹织构单峰尺寸的增大对耐磨性产生一定程度不利影响。从 RaRzRsm 值可以看出,喷砂样品的表面粗糙度最大,但 Rsk 值处于较低水平,对喷砂表面继续进行喷漆处理可以大幅降低表面粗糙度。虽然喷漆表面的 Rsk 值在三种表面处理方式中最小,但由于环氧富锌底漆涂层硬度极小,导致该涂层耐磨性较差。

  • 表5 磨损前样品表面形貌与粗糙度数据

  • Table5 Surface morphology and roughness data of the sample before wear

  • 2.2 摩擦因数与磨损量分析

  • 图6 为不同表面在相同条件下测得的摩擦因数曲线。图6a为不同尺寸波浪纹织构的摩擦因数曲线,可以看出由于样品表面不平整和安装误差等因素,在运转初期(0~5min)摩擦因数曲线出现较大波动。在运转中后期(6~20min),经过初步磨合,取6~20min时间段内采样点的平均值作为各表面的平均摩擦因数。可以看出,不同织构的摩擦因数随波浪纹尺寸的增大而增大,织构4的摩擦因数最大,比织构1提高了40%。由图6b可知,在波浪纹织构4、喷砂及喷砂喷漆三种表面处理方式中,波浪纹织构4的摩擦因数与喷砂喷漆表面基本相等。喷砂表面的摩擦因数最高,较波浪纹织构4和喷砂喷漆表面分别提高了16.3%和18.8%。但由于喷砂表面粗糙度过大,且喷砂表面凹坑和凸起的大小分布具有随机性,导致摩擦因数曲线波动幅度较另两种表面处理方式显著增大。

  • 图7 为相同摩擦条件下不同表面的材料磨损体积。如图7a所示,磨损体积随波浪纹织构尺寸的增大先增大后减小。织构1的波浪纹尺寸 (L=51.6μm,H=10.6μm) 最小,磨损体积也最小。当波浪纹尺寸增大到 L=167.8μm,H=22.6μm (织构3)时,磨损体积达到最大,织构1的磨损体积较织构3降低了45.3%。此时,若继续增加波浪纹尺寸到 L=335.7μm,H=28.8μm (织构4),其磨损体积较织构3将降低18.1%。如图7b,喷砂、喷砂喷漆表面的磨损体积明显高于织构3。喷砂表面的耐磨性比织构3表面低24.7%,织构3表面的耐磨性最好,较喷砂喷漆表面提高了29.9%。喷漆后涂层硬度较低,且存在微裂纹,导致其耐磨性差。

  • 图6 表面处理对摩擦因数的影响

  • Fig.6 Effect of surface treatment on friction coefficient

  • 图7 表面处理对磨损量的影响

  • Fig.7 Effect of surface treatment on wear

  • 采集不同表面磨损区域横截面的2D曲线,如图8所示。从图8a可以看出,由于织构1~3的波浪纹尺寸相对较小,波峰较快磨平,磨损后沟槽的横截面为深度依次增大的V形凹坑。当波浪纹尺寸增大到 L=335.7μm,H=28.8μm (织构4)时,磨损区域中部存在一个明显凸起。这是由于波浪纹单峰尺寸较大,磨损时间较短,导致磨损部位原有的数个波峰未完全磨平。

  • 图8b揭示了3种表面处理的磨损区域截面形状,分析可知,织构3的磨损截面深度比其他尺寸的织构都大,但与喷砂、喷砂喷漆相比仍处于较低水平,再次印证波浪纹织构具有较好的耐磨性。

  • 图8 不同表面磨损后的横截面

  • Fig.8 Cross-sections of different surfaces after wear

  • 2.3 磨损后表面形貌

  • 图9 分别给出三种不同表面摩擦磨损后在200和2 000倍率下的显微形貌和EDS面扫描结果。三种磨损形貌中,Si和O元素含量均较丰富,证明陶瓷摩擦球中的Si元素在高温下与空气中的氧气发生化合反应生成SiO2,通过摩擦球的相对运动在磨损区域形成了不同的分布特征。

  • 图9a为波浪纹织构磨损区域的显微形貌。一方面,Si和O元素呈现完全一致的积聚性分布,在接触区域形成多条致密的SiO2 转移膜,在一定程度上对Q345E材料本身起到了保护作用,降低了磨损。图9b、9c中,喷砂和喷漆表面的磨损区域虽然也存在Si、O元素,但未形成明显的SiO2 转移膜,因此其耐磨性不如波浪纹织构。这也证明波浪纹织构只有波峰与摩擦球发生接触,作用面积小,压力大,更容易形成转移膜。另一方面,未形成转移膜的波谷区域能够较好地容纳摩擦产生的部分磨屑,减缓了磨粒磨损的作用,也在一定程度上降低了磨损。

  • 图9b为喷砂表面磨损区域的显微形貌。可见其磨损区域表面粗糙度较低,只在较高倍率下可以观察到细长状犁沟和少量片状剥落形成的凹坑,因此其磨损形式主要为轻微的磨粒磨损,耐磨性略差于波浪纹织构。图9c为喷砂表面磨损区域的显微形貌。可见其表面粗糙度与喷砂表面相近,粗糙度较低,因此主要磨损形式也为轻微的磨粒磨损。与喷砂表面不同的是,喷漆表面磨损区域分布着若干米粒状黑点。EDS面扫描显示该黑点为含C物质,可能是摩擦时涂层碎裂掉落的有机物成分进入对磨区域,在高温作用下发生化学反应而形成含C化合物。在该黑点附近并未发现特殊的凹坑和磨痕,证明该物质对磨损过程影响较小。

  • 图9 不同表面磨损后的显微形貌和EDS彩图

  • Fig.9 Microstructure and EDS color picture on different surfaces after wear

  • 2.4 螺栓联结抗滑移性能数值分析

  • 文献[22]为了验证数值模拟结果准确性引用了一种模型验证准则。该准则计算了数值模型计算过程中的伪应变能与总内能之比,一般认为该比值小于10%时模拟结果较准确。图10给出上述6种不同表面对应的模型在计算过程中该比例的动态变化情况。可以看出,在整个计算过程中该比例始终低于1.8%,说明计算精度较高。

  • 图10 不同模型能量比值的变化曲线

  • Fig.10 Change curve of energy ratio of different models

  • 图11 为滑移前后螺栓联结结构的应力云图。从图中可以看出,滑移开始前,受螺栓预紧力作用,即使螺栓联结界面完全接触,界面上的应力大小也出现较大波动,越远离螺栓的部位应力越小。在工程实际中,螺栓联结界面很难完全接触,导致界面应力分布不均匀性更加显著[23]。一方面,局部压应力过小削弱了界面间的摩擦力,对螺栓联结结构的抗滑移性能产生不利影响。另一方面,局部压应力过大导致磨损加剧,使表面特性发生改变,摩擦因数减小。从滑移开始直到结束,螺栓、垫片的相对位置基本保持不变,上板沿垂直于两螺栓连线的方向产生一段微小滑移,滑移距离见图11。

  • 图11 织构1模型滑移前后应力云图

  • Fig.11 Stress nephogram of texture1model before and after slip

  • 分别采集每个数值模型上板的滑移距离和滑移速度,绘制滑移曲线如图12所示,图中的表格记录了不同表面滑移开始发生时的滑移临界载荷和最大滑移速度。由图12a可知,在6种表面类型中,喷砂表面的滑移临界载荷最大,织构4所对应表面的滑移临界载荷与喷砂喷漆表面相近。对波浪纹织构而言,波浪纹尺寸的增大提高了表面摩擦因数,增大了螺栓联结界面发生滑移所需的临界载荷,使抗滑移性能得到提升。虽然工程实际中喷漆是一种常用的防腐防锈手段,但喷砂后继续喷漆表面的滑移临界载荷将比只喷砂表面降低约7.7%,因此喷漆对螺栓联结结构抗滑移性能的削弱效果应当被考虑[24]

  • 由图12b可知,不同表面的上板滑移速度曲线与滑移距离曲线具有相似的规律。其中,喷砂表面的最大滑移速度最小,织构4对应表面的最大滑移速度与喷砂喷漆表面相近。喷砂表面的最大滑移速度相较织构1降低约54.4%,说明其抗滑移性能较好。

  • 图12 不同表面的滑移曲线

  • Fig.12 Slip curve of different surfaces

  • 3 结论

  • (1) 加工硬化效应导致波浪纹织构的耐磨性达到较高水平,且波谷可容纳摩擦运动产生的磨粒,进一步提高这种表面的耐磨性。

  • (2) 当波浪纹周期从51.6 μm增加至335.7 μm,高度从10.6 μm增加至28.8 μm,织构表面摩擦因数随波浪纹单峰尺寸的增大而升高,使其抗滑移性能可达到与喷砂喷漆表面相近的水平,是一种综合摩擦性能较好的表面处理方式。

  • (3) 波浪纹织构表面可通过机加工大批量生产,成本可控,易实现大规模应用。但该表面处理方式会增加产品界面的表面粗糙度,不适用于对产品表面光洁度要求较高的应用场合。

  • 参考文献

    • [1] 朱有利,侯帅,杜晓坤,等.某无人机螺旋桨联接螺栓断裂失效的多学科分析与改进[J].中国表面工程,2018,31(4):55-63.ZHU Youli,HOU Shuai,DU Xiaokun,et al.Multi-disciplinary analysis and improvement on fracture failure of propeller’ s connection bolts of a pilotless aircraft[J].China Surface Engineering,2018,31(4):55-63.(in Chinese)

    • [2] 张朝前,李涛,杨夏明,等.剪切激励下盲孔螺栓连接结构的松动行为研究[J].润滑与密封,2020,45(7):8-15.ZHANG Chaoqian,LI Tao,YANG Xiaming,et al.Self-loosening of threaded fasteners under harmonic shear displacement[J].Lubrication Engineering,2020,45(7):8-15.(in Chinese)

    • [3] 梁涛,杨笑宇,王延东,等.钢桁架桥梁杆件摩擦面防腐涂层抗滑移性能研究[J].表面技术,2010,39(5):42-44.LIANG Tao,YANG Xiaoyu,WANG Yandong,et al.Anti-slipping property research on anti-corrosion coating of friction surface of steel truss bridge bars[J].Surface Technology,2010,39(5):42-44.(in Chinese)

    • [4] 史文博,杜静,龚国伟.风电机组轮毂螺栓连接建模与接触强度分析[J].机械设计与制造,2019,12:169-172.SHI Wenbo,DU Jing,GONG Guowei.Modeling and contact strength analysis of bolts connection on wind turbine hub[J].Machinery Design & Manufacture,2019(12):169-172.(in Chinese)

    • [5] DENAVIT M D,BORELLO D J,HAJJAR J F.Bolted steel slip-critical connections with fillers:Ⅱ.Behavior[J].Journal of Constructional Steel Research,2011,67(3):398-406.

    • [6] ANNAN C D,CHIZA A.Characterization of slip resistance of high strength bolted connections with zinc-based metallized faying surfaces[J].Engineering Structures,2013,56:2187-2196.

    • [7] WANG Y B,WANG Y Z,CHEN K,et al.Slip factors of high strength steels with shot blasted surface[J].Journal of Constructional Steel Research,2019,157:10-18.

    • [8] GEOFFREY W R,ROBIN H,GREGORY A M,et al.Dynamic friction coefficient and performance of asymmetric friction connections[J].Structures,2018,14:416-423.

    • [9] MANDI H,GREGORY A,MACRAE,et al.Numerical study of asymmetric friction connections(AFC)with large grip length bolts[J].Key Engineering Materials,2018,4651:600-608.

    • [10] MAHMOUDI M,KOSARI M,LORESTANI M,et al.Effect of contact surface type on the slip resistance in bolted connections[J].Journal of Constructional Steel Research,2020,166:105943.

    • [11] SHI G,SHI Y,WANG Y,et al.Numerical simulation of steel pretensioned bolted end-plate connections of different types and details[J].Engineering Structures,2008,30(10):2677-2686.

    • [12] 李振东,詹华,柯庆航,等.激光织构和碳基薄膜复合处理提高钛合金摩擦学性能研究[J].润滑与密封,2020,45(12):135-140.LI Zhendong,ZHAN Hua,KE Qinghang,et al.Research on laser texture and carbon-based film composite treatment to improve the tribological properties of titanium alloy[J].Lubrication Engineering,2020,45(12):135-140.(in Chinese)

    • [13] 王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.(in Chinese)

    • [14] ZHANG Z,XIAO Y,XIE Y H,et al.Effects of contact between rough surfaces on the dynamic responses of bolted composite joints:Multiscale modeling and numerical simulation[J].Composite Structures,2019,211:13-23.

    • [15] XIE Y H,XIAO Y,LÜ J X,et al.Influence of creep on preload relaxation of bolted composite joints:Modeling and numerical simulation[J].Composite Structures,2020,245:112332.

    • [16] 王翔宇,卢剑伟,张洁.考虑粗糙结合面的摩擦连接建模与动力学研究[J].合肥工业大学学报(自然科学版),2019,42(8):1034-1040.WANG Xiangyu,LU Jianwei,ZHANG Jie.Modeling and dynamic research of frictional joints considering rough interface[J].Journal of Hefei University of Technology(Natural Science Edition),2019,42(8):1034-1040.(in Chinese)

    • [17] 刘刚,李启才,胡安吉.接触面喷砂处理的高强螺栓连接性能的试验研究[J].苏州科技学院学报(工程技术版),2009,22(3):38-41.LIU Gang,LI Qicai,HU Anji.Test and modeling of the behavior of high-strength bolted connection with sand blasted faying surface[J].Journal of Suzhou University of Science and Technology(Engineering and Technology Edition),2009,22(3):38-41.(in Chinese)

    • [18] 张萌.腐蚀钢结构高强螺栓摩型连接性能退化试验研究[D].西安:西安建筑科技大学,2011.ZHANG Meng.Corrosion of high strength steel bolt friction type connection test of performance degradation[D].Xi’ an:Xi’ an University of Architecture and Technology,2011.(in Chinese)

    • [19] 段雅丽.超精密车床控制系统及相关加工参数的研究 [D].哈尔滨:哈尔滨工业大学,2011.DUAN Yali.Research of the ultra-precision lathe control system and relevant processing parameters[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [20] 王川亮,陈光军,张珂.Cr12MoV 塑料模具钢铣削加工表面三维偏斜度和陡峭度[J].表面技术,2019,48(10):72-79.WANG Chuanliang,CHEN Guangjun,ZHANG Ke.Three dimensional skewness and kurtosis of milling surface of Cr12MoV plastic die steel[J].Surface Technology,2019,48(10):72-79.(in Chinese)

    • [21] 赵中伟,樊雄涛,吴刚.高强螺栓抗剪连接滑移数值模型[J].同济大学学报(自然科学版),2020,48(12):1707-1716.ZHAO Zhongwei,FAN Xiongtao,WU Gang.Investigations on simplified high-strength bolt-slip numerical model for shear connection[J].Journal of Tongji University(Natural Science Edition),2020,48(12):1707-1716.(in Chinese)

    • [22] LEI C Y,BI Y B,LI J X.Experiment and numerical simulations of a slug rivet installation process based on different modeling methods[J].The International Journal of Advanced Manufacturing Technology,2018,97:1481–1496.

    • [23] 闫平,邹存健,张伟,等.不平行接触下的螺栓连接刚度及其转子动态特性[J].动力学与控制学报,2018,16(6):561-567.YAN Ping,ZOU Cunjian,ZHANG Wei,et al.Stiffness of bolted joint and dynamic characteristics of rotors under non-parallel contact[J].Journal of Dynamics and Control,2018,16(6):561-567.(in Chinese)

    • [24] 李相权,李梦雨.自乳化水性环氧富锌底漆的制备及性能研究[J].中国涂料,2018,33(12):42-44,53.LI Xiangquan,LI Mengyu.Preparation and properties of self-emulsifying waterborne epoxy zinc-rich primer[J].China Coatings,2018,33(12):42-44,53.(in Chinese)

  • 参考文献

    • [1] 朱有利,侯帅,杜晓坤,等.某无人机螺旋桨联接螺栓断裂失效的多学科分析与改进[J].中国表面工程,2018,31(4):55-63.ZHU Youli,HOU Shuai,DU Xiaokun,et al.Multi-disciplinary analysis and improvement on fracture failure of propeller’ s connection bolts of a pilotless aircraft[J].China Surface Engineering,2018,31(4):55-63.(in Chinese)

    • [2] 张朝前,李涛,杨夏明,等.剪切激励下盲孔螺栓连接结构的松动行为研究[J].润滑与密封,2020,45(7):8-15.ZHANG Chaoqian,LI Tao,YANG Xiaming,et al.Self-loosening of threaded fasteners under harmonic shear displacement[J].Lubrication Engineering,2020,45(7):8-15.(in Chinese)

    • [3] 梁涛,杨笑宇,王延东,等.钢桁架桥梁杆件摩擦面防腐涂层抗滑移性能研究[J].表面技术,2010,39(5):42-44.LIANG Tao,YANG Xiaoyu,WANG Yandong,et al.Anti-slipping property research on anti-corrosion coating of friction surface of steel truss bridge bars[J].Surface Technology,2010,39(5):42-44.(in Chinese)

    • [4] 史文博,杜静,龚国伟.风电机组轮毂螺栓连接建模与接触强度分析[J].机械设计与制造,2019,12:169-172.SHI Wenbo,DU Jing,GONG Guowei.Modeling and contact strength analysis of bolts connection on wind turbine hub[J].Machinery Design & Manufacture,2019(12):169-172.(in Chinese)

    • [5] DENAVIT M D,BORELLO D J,HAJJAR J F.Bolted steel slip-critical connections with fillers:Ⅱ.Behavior[J].Journal of Constructional Steel Research,2011,67(3):398-406.

    • [6] ANNAN C D,CHIZA A.Characterization of slip resistance of high strength bolted connections with zinc-based metallized faying surfaces[J].Engineering Structures,2013,56:2187-2196.

    • [7] WANG Y B,WANG Y Z,CHEN K,et al.Slip factors of high strength steels with shot blasted surface[J].Journal of Constructional Steel Research,2019,157:10-18.

    • [8] GEOFFREY W R,ROBIN H,GREGORY A M,et al.Dynamic friction coefficient and performance of asymmetric friction connections[J].Structures,2018,14:416-423.

    • [9] MANDI H,GREGORY A,MACRAE,et al.Numerical study of asymmetric friction connections(AFC)with large grip length bolts[J].Key Engineering Materials,2018,4651:600-608.

    • [10] MAHMOUDI M,KOSARI M,LORESTANI M,et al.Effect of contact surface type on the slip resistance in bolted connections[J].Journal of Constructional Steel Research,2020,166:105943.

    • [11] SHI G,SHI Y,WANG Y,et al.Numerical simulation of steel pretensioned bolted end-plate connections of different types and details[J].Engineering Structures,2008,30(10):2677-2686.

    • [12] 李振东,詹华,柯庆航,等.激光织构和碳基薄膜复合处理提高钛合金摩擦学性能研究[J].润滑与密封,2020,45(12):135-140.LI Zhendong,ZHAN Hua,KE Qinghang,et al.Research on laser texture and carbon-based film composite treatment to improve the tribological properties of titanium alloy[J].Lubrication Engineering,2020,45(12):135-140.(in Chinese)

    • [13] 王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.(in Chinese)

    • [14] ZHANG Z,XIAO Y,XIE Y H,et al.Effects of contact between rough surfaces on the dynamic responses of bolted composite joints:Multiscale modeling and numerical simulation[J].Composite Structures,2019,211:13-23.

    • [15] XIE Y H,XIAO Y,LÜ J X,et al.Influence of creep on preload relaxation of bolted composite joints:Modeling and numerical simulation[J].Composite Structures,2020,245:112332.

    • [16] 王翔宇,卢剑伟,张洁.考虑粗糙结合面的摩擦连接建模与动力学研究[J].合肥工业大学学报(自然科学版),2019,42(8):1034-1040.WANG Xiangyu,LU Jianwei,ZHANG Jie.Modeling and dynamic research of frictional joints considering rough interface[J].Journal of Hefei University of Technology(Natural Science Edition),2019,42(8):1034-1040.(in Chinese)

    • [17] 刘刚,李启才,胡安吉.接触面喷砂处理的高强螺栓连接性能的试验研究[J].苏州科技学院学报(工程技术版),2009,22(3):38-41.LIU Gang,LI Qicai,HU Anji.Test and modeling of the behavior of high-strength bolted connection with sand blasted faying surface[J].Journal of Suzhou University of Science and Technology(Engineering and Technology Edition),2009,22(3):38-41.(in Chinese)

    • [18] 张萌.腐蚀钢结构高强螺栓摩型连接性能退化试验研究[D].西安:西安建筑科技大学,2011.ZHANG Meng.Corrosion of high strength steel bolt friction type connection test of performance degradation[D].Xi’ an:Xi’ an University of Architecture and Technology,2011.(in Chinese)

    • [19] 段雅丽.超精密车床控制系统及相关加工参数的研究 [D].哈尔滨:哈尔滨工业大学,2011.DUAN Yali.Research of the ultra-precision lathe control system and relevant processing parameters[D].Harbin:Harbin Institute of Technology,2011.(in Chinese)

    • [20] 王川亮,陈光军,张珂.Cr12MoV 塑料模具钢铣削加工表面三维偏斜度和陡峭度[J].表面技术,2019,48(10):72-79.WANG Chuanliang,CHEN Guangjun,ZHANG Ke.Three dimensional skewness and kurtosis of milling surface of Cr12MoV plastic die steel[J].Surface Technology,2019,48(10):72-79.(in Chinese)

    • [21] 赵中伟,樊雄涛,吴刚.高强螺栓抗剪连接滑移数值模型[J].同济大学学报(自然科学版),2020,48(12):1707-1716.ZHAO Zhongwei,FAN Xiongtao,WU Gang.Investigations on simplified high-strength bolt-slip numerical model for shear connection[J].Journal of Tongji University(Natural Science Edition),2020,48(12):1707-1716.(in Chinese)

    • [22] LEI C Y,BI Y B,LI J X.Experiment and numerical simulations of a slug rivet installation process based on different modeling methods[J].The International Journal of Advanced Manufacturing Technology,2018,97:1481–1496.

    • [23] 闫平,邹存健,张伟,等.不平行接触下的螺栓连接刚度及其转子动态特性[J].动力学与控制学报,2018,16(6):561-567.YAN Ping,ZOU Cunjian,ZHANG Wei,et al.Stiffness of bolted joint and dynamic characteristics of rotors under non-parallel contact[J].Journal of Dynamics and Control,2018,16(6):561-567.(in Chinese)

    • [24] 李相权,李梦雨.自乳化水性环氧富锌底漆的制备及性能研究[J].中国涂料,2018,33(12):42-44,53.LI Xiangquan,LI Mengyu.Preparation and properties of self-emulsifying waterborne epoxy zinc-rich primer[J].China Coatings,2018,33(12):42-44,53.(in Chinese)

  • 手机扫一扫看