en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

史相如,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为表面改性、防护涂层材料和微纳米力学等。E-mail:sxr12009210@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20210907002

参考文献 1
杨茂盛,刘秀波,何祥明,等.固体自润滑涂层的研究进展[J].材料导报,2011,25(增刊 1):536-538.YANG Maosheng,LIU Xiubo,HE Xiangming,et al.Research development of solid self-lubricant coatings[J].Materials Review,2011,25(Suppl.1):536-538.(in Chinese)
参考文献 2
马国政,徐滨士,王海斗,等.空间固体润滑材料的研究现状[J].材料导报,2010,24(1):68-71.MA Guozheng,XU Binshi,WANG Haidou,et al.State of research on space solid lubrication materials[J].Materials Review,2010,24(1):68-71.(in Chinese)
参考文献 3
杨威锋.固体自润滑材料及其研究趋势[J].润滑与密封,2007(12):118-120.YANG Weifeng.Solid self lubricating materials and their research trends[J].Lubrication Engineering,2007(12):118-120.(in Chinese)
参考文献 4
ERDEMIR A,MARTIN J M.Superior wear resistance of diamond and DLC coatings[J].Current Opinion in Solid State and Materials Science,2018,22(6):243-254.
参考文献 5
关晓艳,王永欣,王立平,等.非晶碳基薄膜材料水环境摩擦学研究进展[J].摩擦学学报,2017,37(2):270-282.GUAN Xiaoyan,WANG Yongxin,WANG Liping,et al.Progress in tribological performances of carbon-based films in liquid lubrication environments[J].Tribology,2017,37(2):270-282.(in Chinese)
参考文献 6
雍青松,王海斗,徐滨士,等.类金刚石薄膜摩擦机理及其摩擦学性能影响因素的研究现状[J].机械工程学报,2016,52(11):95-107.YONG Qinsong,WANG Haidou,XU Binshi,et al.Research status of the tribological property of diamond-like carbon films[J].Journal of Mechanical Engineering,2016,52(11):95-107.(in Chinese)
参考文献 7
AL MAHMUD K A H,KALAM M A,MASJUKI H H,et al.An updated overview of diamond-like carbon coating in tribology[J].Critical Reviews in Solid State and Materials Sciences,2015,40(2):90-118.
参考文献 8
BEWILOGUA K,HOFMANN D.History of diamond-like carbon films—From first experiments to sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.
参考文献 9
YAN M M,WANG X Y,ZHANG S W,et al.Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication[J].Tribology International,2020,143:106067.
参考文献 10
DONG D,JIANG B L,LI H T,et al.Effect of graphite target power density on tribological properties of graphite-like carbon films[J].Applied Surface Science,2018,439:900-909.
参考文献 11
WANG Y J,LI H X,JI L,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.
参考文献 12
CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.
参考文献 13
WEI X B,ZHANG M L,SHANG L L,et al.Enhancement in the corrosive and tribological properties of the inner wall of 6063Al and CI pipes by thick multilayer Si-DLC coatings[J].Materials Research Express,2019,6(8):85634.
参考文献 14
DELFANI-ABBARIKI S,ABDOLLAH-ZADEH A,HADAVI S M M,et al.Enhancing the adhesion of diamond-like carbon films to steel substrates using silicon-containing interlayers[J].Surface & Coatings Technology,2018,350:74-83.
参考文献 15
崔明君,任思明,樊小强,等.调制比对多层DLC涂层摩擦及电化学行为的影响[J].机械工程学报,2018,54(6):25-31.CUI Mingjun,REN Siming,FAN Xiaoqiang,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J].Journal of Mechanical Engineering,2018,54(6):25-31.(in Chinese)
参考文献 16
WANG Q Z,ZHOU F,ZHOU Z F,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication[J].Diamond and Related Materials,2012,25:163-175.
参考文献 17
CAO H S,QI F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminu alloys[J].Materials,2018,11(9):1742.
参考文献 18
CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy[J].Applied Surface Science,2013,279:450-457.
参考文献 19
汪科良,周晖,张凯锋,等.掺杂类金刚石薄膜微观结构和摩擦学性能的研究进展[J].表面技术,2021,50(2):148-159.WANG Keliang,ZHOU Hui,ZHANG Kaifeng,et al.Research progress on microstructure and tribological properties of doped diamond-like carbon films[J].Surface Technology,2021,50(2):148-159.(in Chinese)
参考文献 20
高宋,周飞,苏恒,等.Ti-DLC 薄膜在水介质中的摩擦学特性[J].润滑与密封,2015,40(10):23-29.GAO Song,ZHOU Fei,SU Heng,et al.Tribological properties of Ti-DLC coatings in water[J].Lubrication Engineering,2015,40(10):23-29.(in Chinese)
参考文献 21
KIM D,KIM K.Effects of sliding velocity and ambient temperature on the friction and wear of a boundary-lubricated,multi-layered DLC coating[J].Wear,2014,315(1-2):95-102.
参考文献 22
KIM D,KIM K.Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon(DLC)coating prepared by reactive sputtering[J].Wear,2013,297(1-2):722-730.
参考文献 23
WANG Y X,LI J L,WANG L P,et al.Tribological performances of graphite-like carbon films coupled to different ceramics in ambient air and water[J].Tribology Transactions,2013,56(3):333-341.
参考文献 24
ZHANG T F,JIANG F,LIAO T T,et al.Tribological behavior of diamond like carbon film sliding against CoCrMo or Al2O3 in air and water environment[J].Tribology International,2016,95:456-461.
参考文献 25
王佳凡,陈克选,王永欣,等.Cr/WC/DLC 薄膜的多环境摩擦学性能[J].中国表面工程,2015,28(3):49-55.WANG Jiafan,CHEN Kexuan,WANG Yongxin,et al.Tribological properties of Cr/WC/DLC film in multiple enviroments[J].China Surface Engineering,2015,28(3):49-55.(in Chinese)
参考文献 26
SHI X R,SHI Y J,CHEN J,et al.Influence of gradient interlayer thickness on corrosion and tribological behavior of Ti-containing multilayer graphite-like carbon films[J].Wear,2022,488-489:204177.
参考文献 27
FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.
参考文献 28
CHEN J M,LI J,WU Y X,et al.Microstructure,morphology and properties of titanium containing graphite-like carbon films deposited by unbalanced magnetron sputtering[J].Tribology Letters,2013,49(1):47-59.
参考文献 29
FIELD S K,JARRATT M,TEER D G.Tribological properties of graphite-like and diamond-like carbon coatings[J].Tribology International,2004,37(11-12):949-956.
参考文献 30
孙建芳,唐邕涛,苏峰华,等.钛合金表面DLC薄膜的制备及其与不同材料配副的摩擦学性能研究[J].摩擦学学报,2021,41(6):953-963.SUN Jianfang,TANG Yitao,SU Fenghua,et al.Synthesis of DLC film on titanium alloy and its tribological property sliding against different mating materials[J].Tribology,2021,41(6):953-963.(in Chinese)
参考文献 31
WANG Y X,WANG L P,LI J L,et al.Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water[J].Tribology International,2013,60:147-155.
目录contents

    摘要

    针对非晶碳基薄膜高内应力和低膜基结合强度的问题,采用闭合场非平衡磁控溅射系统在 316L 不锈钢基体上制备多层结构掺杂类石墨薄膜(GLC),探究载荷、摩擦副和介质环境对薄膜摩擦学行为的影响。结果表明,制备得到的多层结构 GLC 薄膜结构致密均匀,膜基之间没有明显缺陷,且力学性能良好。薄膜在干摩擦条件下的摩擦因数曲线呈明显的三阶段特征, 分别对应于轻微的磨粒磨损、薄膜的剥离以及对磨球上碳质转移膜的形成。薄膜的平均摩擦因数随载荷的增加而显著提高, 磨损率呈先减小后增大的趋势。相对于 ZrO2 陶瓷球,Si3N4 陶瓷球因其较高的黏着倾向和较大的赫兹接触半径导致其较高的摩擦因数和磨损率。GCr15 金属球因其较低的硬度,导致碳质转移膜随金属磨削的剥离而脱落,造成相对较高的摩擦因数和磨损率。相对于室温空气环境下,GLC 薄膜在 NaCl 溶液中由于受到水溶液的冲洗和腐蚀介质Cl-的侵蚀,导致薄膜从基体的快速剥离,造成更高的摩擦因数和磨损率。研究成果可为提高非晶碳基薄膜在不同工作环境下的服役寿命和使用效率提供理论指导。

    Abstract

    In order to solve the problem of high internal stress and low adhesion strength of amorphous carbon films, multilayer doped graphite-like carbon (GLC) films are prepared on 316L stainless steel substrate by closed field unbalanced magnetron sputtering system. The effect of load, friction pair and medium environment on the tribological behavior of GLC film are investigated by ball-on-disc rotary friction tester. The results show that the multilayer GLC film has compact and uniform structure without obvious defects between the film and substrate, and shows excellent mechanical properties. The friction factor curves of the film under dry friction condition show obvious three-stage characteristics, corresponding to slight abrasive wear, film peeling and the formation of carbon transfer film on the mating balls. The average friction factor of the film increases significantly with the increase of normal load, while the wear rate decreases first and then increases. Compared with ZrO2 ceramic ball, Si3N4 / GLC friction pair has higher friction factor and wear rate due to its higher adhesion tendency and larger Hertz contact radius. Due to its low hardness, GCr15 metal ball causes the carbon transfer film to fall off with the stripping of metal grinding, resulting in relatively high friction factor and wear rate. Compared with the ambient air environment, GLC film is washed by aqueous solution and eroded by corrosive medium Cl- in NaCl solution, resulting in rapid stripping of the film from the substrate, resulting in higher friction factor and wear rate. The results provide a theoretical guidance for improving the service life and working efficiency of amorphous carbon films in different environments.

  • 0 前言

  • 现代工业技术的快速发展,要求机械装备在大载荷、高速、真空、超低温、高温、强辐射和强腐蚀等条件下仍保持有效的润滑,而传统的流体润滑和润滑脂润滑使用的范围比较狭窄,难以胜任其在恶劣工况下的应用,还会造成环境污染等问题。近年来,固体润滑材料以其较低的摩擦因数和良好的自润滑性能突破了油膜润滑的极限,在高温、高速及贫油等条件下显示了巨大的优越性,已成为摩擦学研究的热点之一[1-3]

  • 非晶碳基薄膜(Amorphous carbon film, a-C) 作为一种性能优异的固体自润滑材料,因其高硬度、低摩擦因数、高耐磨性以及化学稳定性等独特的物理化学性能,在生物医学、声电光学、航天航空以及工程机械等领域展示了巨大的应用前景[4-8]。近年来学者们采用不同的表面技术制备了结构、性能差异巨大的a-C薄膜,并探究其对阀门、轴承、管道和齿轮等不同机械部件服役寿命和工作效率的影响。其中最常见的两种薄膜分别为sp 3 杂化碳原子占优的类金刚石薄膜 (Diamond-like carbon films, DLC)和sp 2 杂化碳原子占优的类石墨薄膜(Graphite-like carbon films, GLC)[9-11]。尽管如此,a-C薄膜的高内应力和低的膜基结合强度仍是限制其应用的最大挑战。研究表明,元素掺杂、添加过渡层以及多层膜结构设计是最有效的三种改善薄膜结构和性能的方法[12-15]。例如,在基体与薄膜之间沉积过渡元素Ti结合层可以减缓膜基之间因热膨胀系数差异导致的低结合强度现象;通过沉积Ti-C梯度层则可以避免因薄膜成分突变造成的膜基力学性能差异;而作为掺杂元素,金属Ti可以和C发生反应生成TiC纳米颗粒从而降低薄膜的内应力[16-18]。 WANG等[16]研究发现适量的Ti元素掺杂可以使DLC薄膜获取更高的硬度以及更优异的耐磨性能。CAO等[17]指出Ti过渡层的添加可以有效降低DLC薄膜残余应力,且随Ti过渡层厚度的增加,薄膜硬度逐渐降低,弹性模量和结合强度呈先降低后提高的趋势。尽管如此,目前针对a-C薄膜的改性研究主要集中于提高DLC薄膜的性能,而对GLC薄膜的研究报道较少,尤其涉及三种改性方法的结合应用。

  • 此外,a-C薄膜应用前景广泛,针对不同的机械零部件其服役条件差别巨大,展现的摩擦学性能也各不相同。研究表明,a-C薄膜的摩擦学特性不仅与其结构成分相关,试验条件和测试环境的影响也不容忽视[4-5, 19-20]。KIM等[21-22]发现多层DLC薄膜的摩擦因数随滑动速度和载荷的增加而提高,但磨损率随载荷的增加而降低,随滑动速度的增加呈先提高后降低的趋势。WANG等[23]对比了不同的陶瓷摩擦副对GLC薄膜的摩擦学行为影响,结果表明当GLC薄膜与Si3N4 摩擦副配对时在室温空气和去离子水中均表现出最优的摩擦学性能。ZHANG等[24]发现DLC薄膜在水环境中服役时有更多的石墨化转移材料黏附在CoCrMo对偶件上,导致其比在空气中呈现更低的磨损率。因此,研究a-C涂层在不同服役条件(载荷、摩擦副、介质环境等)下的摩擦学特性非常重要,这将为预测a-C涂层在特定机械零部件上的摩擦学行为和服役寿命提供理论依据。

  • 本文采用闭合场非平衡磁控溅射技术在316L不锈钢上制备了含有结合层/梯度层/掺杂层的多层结构GLC薄膜,研究了载荷、摩擦副和介质环境对其摩擦学行为的影响规律,并对其摩擦磨损机理进行分析,为GLC薄膜在实际服役过程中的性能评价提供依据。

  • 1 试验准备

  • 1.1 GLC薄膜制备及表征

  • 采用Teer涂层公司的UDP-650/4型闭合场非平衡磁控溅射系统制备GLC薄膜。基体材料选择为316L不锈钢片(SS),试样尺寸为20mm× 20mm× 0.5mm,形状为方形块状。基体材料打磨抛光后,先使用无水乙醇和丙酮各超声清洗20min后再烘干装置在旋转样品台上备用。试验所用靶材为纯度99.99%的石墨靶和钛靶,两者相互对立放置。沉积开始前,先将腔室气压抽至105 Pa,再通入氩气调节腔室气压至0.3Pa,随后通过调节沉积参数先对靶材和基体进行溅射清洗后,再在基体上制备Ti/Ti-C/Ti-GLC多层结构GLC薄膜。其中Ti层为结合层,Ti-C层为成分梯度变化的过渡层,Ti-GLC层为Ti掺杂GLC功能层。具体沉积参数如表1所示。

  • 表1 多层掺杂GLC薄膜的沉积参数[26]

  • Table1 Deposition parameters of multilayer doping-GLC film[26]

  • 采用FEI XL-30场发射扫描电子显微镜(SEM) 对GLC薄膜的表面和截面形貌进行表征,采用Bruker公司的Dimension Icon型原子力显微镜 (AFM)对薄膜的表面粗糙度进行测量,试验采用智能模式,扫描范围为1 μm×1 μm。采用Renishaw inVia-reflex型拉曼光谱仪(Raman)对薄膜的结构成分进行分析,扫描波长范围为1 000~2 000cm1。采用Micro Materials公司的NanoTest Vantage型纳米压痕仪对薄膜的硬度(H)和弹性模量(E)进行测试,测试压头选择为Berkovich金刚石压头,压入深度不超过薄膜厚度1/10,测试结果为10次不同测试位置的平均值。

  • 1.2 GLC薄膜摩擦磨损试验

  • 采用中科院兰化所MS-T3000摩擦磨损试验仪开展球-盘式旋转摩擦试验。所有测试均处于室温环境下开展(20±2℃)。摩擦测试条件:载荷分别为3、5和10N,摩擦转速固定为180r/min,旋转直径为4mm,时间为2 100s。试验选取对偶球为工程中比较常见的ZrO2 和Si3N4 陶瓷球以及GCr15金属球,直径为5mm。试验分别在室温空气环境中和3.5%NaCl溶液中开展。为保证试验数据的准确性,每组测试分别重复进行3次。试验结束后,采用Hitachi SN3400扫描电镜和光学显微镜分别对薄膜和对偶球的磨痕进行多处观察;采用Dektak 150型表面轮廓测量仪对薄膜表面的磨痕宽度和深度进行测量,由此计算磨损体积,并根据公式W=V/(S×P)求出磨损率,其中 V 为磨损体积(mm3),S 为滑动行程(m),P 为加载载荷(N)[25]

  • 2 结果与讨论

  • 2.1 GLC薄膜的微观结构与力学性能

  • 图1a、1b分别展示了多层结构GLC薄膜的截面和表面形貌SEM图。由截面形貌可知Ti/Ti-C/Ti-GLC薄膜的总厚度约为1.1 μm,其中基体上方的Ti结合层与上两层结构有着明显的分界面,厚度约为200nm,呈柱状形貌成长。因其结构成分的梯度变化,Ti-C过渡层与GLC功能层没有明显的区分,但先前研究中的EDX截面线性扫描能谱证实了薄膜的成分变化[26]

  • 此外可以看出,薄膜结构整体致密均匀且与基体之间没有明显的缺陷。由图1b可知,薄膜表面由细小颗粒组成的岛状形貌构成,整体相对光滑平坦。图1c AFM表面形貌证实了这一现象,且测得的表面粗糙度 Ra 约为7.0nm。Raman光谱是对碳材料结构成分和团簇尺寸最常用且无损的检测方法之一。研究表明,a-C薄膜在位于1 380cm1 和1 570cm1 波长附近会呈现两个典型的特征峰D峰和G峰,通过D峰和G峰面积的比值(I D/I G)、G峰的位置以及G峰的半宽高可以判断薄膜结构中sp 2 杂化碳原子的相对含量[9, 27]。图1d展示了通过高斯拟合以后得到的GLC薄膜Raman光谱图,拟合结果表明薄膜结构中的I D/I G约等于3.46,表明薄膜结构中的高sp 2 杂化碳原子含量,即高石墨化程度。

  • GLC薄膜与316L不锈钢基体的硬度和弹性模量如图2所示。为避免基体对薄膜力学性能的影响,本试验设定的最大压入载荷为2mN,对应的最大压入深度D max 约为100nm,小于薄膜总厚度的1/10。由图2可知,相同压入载荷作用下,GLC薄膜的压入深度低于不锈钢基体的压入深度,表明薄膜对基体抵抗塑性变形能力的大幅提高。尽管GLC薄膜的硬度约为8.35GPa,低于一般DLC薄膜的硬度,但符合文献报道的GLC薄膜硬度范围值7.2~11.7GPa[28]

  • 图1 GLC薄膜的微观结构和形貌表征

  • Fig.1 Microstructure and morphology characterization of GLC films

  • 图2 GLC薄膜和316L不锈钢基体的载荷-位移曲线

  • Fig.2 Load-displacement curves of GLC film and 316L stainless steel substrate

  • 2.2 GLC薄膜的摩擦磨损性能分析

  • 2.2.1 载荷对GLC薄膜摩擦学行为影响

  • 在室温空气环境中开展研究载荷对GLC薄膜摩擦学行为的影响,以ZrO2 为对磨球且载荷分别设置为3、5和10N。图3a给出了GLC薄膜在不同载荷作用下的摩擦因数曲线对比图。由图可以看出,薄膜的摩擦过程可以分为三个阶段。在第一阶段,摩擦因数经过短暂的跑合过程以后迅速降到较低的稳定值。图3b总结了该阶段薄膜在不同载荷作用下的摩擦因数和持续时间,可以看出随法向载荷的增大,薄膜在第一阶段的摩擦因数提高且持续时间缩短。在第二阶段,薄膜的摩擦因数随滑动时间呈上升趋势,且随载荷的增加该阶段的持续时间大幅缩减,尤其是在3N载荷作用的结尾仍处于该阶段。第三阶段薄膜的摩擦因数相较于第二阶段又重新呈现相对稳定的发展趋势,且在三种不同载荷作用下近似相等。图3c给出了整个滑动过程的平均摩擦因数对比数据,法向载荷为3、5和10N的平均摩擦因数分别为~0.044、~0.115和~0.143,对应于图3d GLC薄膜的磨损率分别为9.39×10-6、7.34×10-6 和9.43×10-6 mm 3/(N·m)。

  • 先前的研究表明[26],在第一阶段薄膜表面整体保持完好,磨痕呈明显的犁沟效应,其磨损机理表现为磨粒磨损,对应于图3a第一阶段平稳的摩擦因数曲线。该阶段摩擦因数随载荷的变化可能与对偶球接触半径有关。由图4可知,随载荷的增加磨痕宽度从~185nm提高到~320nm,导致薄膜在第一阶段摩擦因数的大幅提升。此外,第一阶段从薄膜表面逸出的磨粒在载荷作用下导致局部的应力集中,引起薄膜的剥离失效 (图4b),导致薄膜在第二阶段摩擦因数的逐步提高。而高载荷作用下磨粒导致的应力集中愈加明显,因此第一阶段的持续寿命大幅缩减。随着薄膜在第二阶段的剥离,一部分逸出材料将黏附在ZrO2陶瓷球上,形成石墨化转移层如图4d所示,阻碍对偶球与薄膜的直接接触,形成薄膜与薄膜的对偶件,因此第三阶段的摩擦因数又重归稳定,且受载荷影响较小。相较于3N的载荷作用,5N载荷作用较低的磨损率可能与转移材料的石墨化程度有关。FIELD等[29]表明GLC薄膜在载荷作用下会在接触界面发生再结晶过程形成具有润滑作用的石墨状薄膜,且该转变随载荷的增加愈发明显。KIM等[22] 通过Raman光谱证实了DLC薄膜在载荷作用下的石墨化转变,并通过公式推导出载荷与石墨化程度的正相关关系。尽管如此,图3d表明当载荷提高到10N时,薄膜的磨损率又呈大幅的提高趋势,这可能与高载荷作用下薄膜的大面积剥离导致的基体裸露有关。图4c裸露基体的黏着磨损现象证实了这一假设。

  • 图3 不同载荷作用下ZrO2/GLC摩擦副的摩擦因数和磨损率

  • Fig.3 Friction factor and wear rate of GLC films under different loads with ZrO2 friction pair

  • 图4 不同载荷作用下GLC薄膜磨损形貌SEM图和5N载荷作用对应的ZrO2磨球形貌光镜图

  • Fig.4 SEM images of GLC wear scars under different normal load and OM image of ZrO2 mating ball under 5N load

  • 2.2.2 摩擦副对GLC薄膜摩擦学行为影响

  • 图5a展示了GLC薄膜在5N载荷作用下分别与陶瓷球ZrO2、Si3N4以及金属球GCr15在室温空气环境中的摩擦因数曲线。如图5a所示,Si3N4/GLC摩擦副的摩擦因数曲线变化与ZrO2/GLC摩擦副相似,呈典型的三阶段特征,但摩擦因数明显高于ZrO2/GLC摩擦副。相较于陶瓷球摩擦副摩擦因数在第三阶段的平稳发展, GCr15/GLC摩擦副的摩擦因数呈明显的波动式上升。图5b展示了GLC薄膜与不同摩擦副在整个滑动过程中的平均摩擦因数以及磨损率。由图可知,ZrO2/GLC、 Si3N4/GLC和GCr15/GLC的平均摩擦因数分别为~0.115、~0.176和~0.264,对应GLC薄膜的磨损率分别为7.34×106、12.48×106 和11.38×106 mm 3/(N·m)。

  • 图5 5N载荷作用下GLC薄膜与不同摩擦副作用的摩擦因数曲线和磨损率

  • Fig.5 Friction factor curves and wear rate of GLC film under different friction pairs at normal load of 5N

  • 图6 分别展示了GLC薄膜与Si3N4 和GCr15对磨后薄膜表面的磨损形貌SEM图以及对磨球表面光镜图。有图6a可知,相较于ZrO2/GLC摩擦副的磨损形貌(图4d),与Si3N4 对偶球摩擦后的GLC薄膜磨痕宽度明显增大,且磨痕表面犁沟数量减少但薄膜剥离加剧并伴有少量黏着斑坑出现,磨损机理表现为轻微的磨粒磨损和黏着磨损。图6b显示的Si3N4 对偶球形貌表明大量的碳质转移材料黏附在磨痕四周,但磨痕中心黏附材料相对较少,陶瓷球磨损轻微。研究表明[23-30],Si元素与C元素有着很强的亲和作用,当Si3N4陶瓷球与GLC薄膜作用时,在摩擦界面很可能形成具有较强黏着作用的Si-C键,导致薄膜摩擦因数和磨损率的大幅提高。而ZrO2 对偶球与C元素的黏着倾向较小,摩擦过程中在接触界面可能产生剪切强度较弱的C-O键,容易产生分离,因此拥有更低的摩擦因数和磨损率。此外,ZrO2/GLC摩擦副低的摩擦因数也可能与其较小的接触面积有关。表2展示了根据赫兹接触公式计算得到的不同对偶球与GLC薄膜的最大接触应力。由表可知,相较于ZrO2/GLC摩擦副, Si3N4/GLC摩擦副具有更大的赫兹接触应力,即更大的接触半径,导致更高的摩擦因数和磨损率。图6c呈现的与GCr15对偶球作用的GLC薄膜表面磨痕也呈明显的犁沟和剥落现象,磨痕宽度约为240 μm。但图6d呈现的GCr15对偶球表面形貌表现出完全不同的状态。由图可知,GCr15对偶球磨痕四周仅有少量的碳质转移材料,且磨痕中心磨损比较严重。这可能是由于GCr15金属球比GLC薄膜和陶瓷球具有更低的硬度[30-31]。当金属球与GLC薄膜作用时,更高的薄膜硬度使GCr15对磨球表面产生剪切破坏,金属磨粒不断向接触界面转移,导致碳质转移材料很难黏附在对磨球表面,因此其摩擦因数在第三阶段呈波动式上升。此外,GCr15对磨球产生的金属磨粒还可能与空气中的水和氧气发生反应,促使磨痕表面氧化物的产生,加剧GLC薄膜的磨损。但同时GCr15/GLC摩擦副的最大接触应力相对Si3N4/GLC摩擦副较小,造成其磨损率相对较低。

  • 图6 5N载荷作用下GLC薄膜与不同摩擦副作用下薄膜磨痕SEM图和磨球的磨损形貌光镜图

  • Fig.6 SEM image of wear morphology and the corresponding optical image of mating ball for GLC film with different mating balls under 5N load (a) (b) Si3N4/GLC friction pair, (c) (d) GCr15/GLC friction pai

  • 表2 不同对偶球的力学性能以及最大赫兹接触应力

  • Table2 Mechanical properties and maximum Hertz contact stress of different mating balls

  • 2.2.3 介质环境对GLC薄膜摩擦学行为影响

  • 图7a对比了5N载荷作用下ZrO2/GLC摩擦副在室温空气和3.5%NaCl溶液中的摩擦因数曲线。由图可知,与室温空气相比,GLC薄膜在NaCl溶液中的摩擦因数曲线初始跑合时间大幅缩短,随后呈相似的稳定趋势发展,直到第二阶段摩擦因数曲线表现为剧烈的波动上升。图7b展示的GLC在NaCl溶液中的平均摩擦因数和磨损率分别为~0.158和15.56 × 106 mm 3/(N.m),明显地高于室温空气中的摩擦磨损。

  • 图7 5N载荷作用下ZrO2/GLC摩擦副在室温空气和NaCl溶液中摩擦因数曲线和磨损率

  • Fig.7 Comparison of friction factor curves and the corresponding average friction factor and wear rate of ZrO2/GLC friction pair in ambient air and NaCl solution under 5N load

  • 图8a展示了ZrO2/GLC摩擦副在NaCl溶液中的磨痕形貌图。由图可以看出,磨痕表面除明显的犁沟外,GLC薄膜几乎被完全移除。图8b的EDX能谱图证实了这一现象,磨痕表面C元素和Ti元素近乎消失,Fe元素占据主导地位,且有少量的O元素被检测,表明薄膜表面基体材料的暴露且有氧化的发生。WANG等[23]研究表明,DLC薄膜在水环境中摩擦时,因水具有较低的黏度且流动性能好,不易在对偶球上形成转移膜。当GLC薄膜在NaCl溶液中发生摩擦时,由于水溶液的流动性能,使磨损颗粒从接触界面逸出聚集在磨痕四周,而磨痕中心很难形成有效的固体润滑膜,因此造成了较高的摩擦因数和磨损率。此外,在摩擦过程中腐蚀性介质Cl将通过薄膜结构中的缺陷通道逐渐向薄膜与基体的界面侵袭,对不锈钢基体进行腐蚀,造成薄膜从基体的大面积快速剥离,导致薄膜摩擦因数在第二阶段的剧烈波动上升,直到磨痕表面薄膜被完全剥离,对偶球与不锈钢基体直接接触摩擦因数又趋于平稳。

  • 图8 5N载荷作用下ZrO2/GLC摩擦副在NaCl溶液中的薄膜磨损形貌和对应的磨痕EDX面扫图谱

  • Fig.8 Wear morphology and the corresponding EDX surface scanning spectrum of wear scar of ZrO2/GLC friction pair in NaCl solution under 5N load

  • 3 结论

  • (1) Ti/Ti-C/Ti-GLC多层掺杂GLC薄膜结构整体致密均匀且与基体之间没有明显缺陷,力学性能良好。

  • (2) 提高载荷导致的接触面积和应力集中增加造成了GLC薄膜摩擦因数的增大,而薄膜结构的石墨化转变和基体材料的黏着磨损又导致了磨损率呈先减小后增大的趋势。

  • (3) ZrO2/GLC摩擦副呈现最低的平均摩擦因数和磨损率,而Si3N4/GLC摩擦副因其较强的Si-C亲和作用和较大的赫兹接触半径导致了其相对更高的摩擦因数和磨损率。GCr15对磨球因其较低的硬度,导致对偶球的切削磨损以及金属磨粒的氧化黏着,造成更高的摩擦因数和较高的磨损率。

  • (4) 水的高流动性和低黏度阻碍了对磨球表面碳质转移膜的形成,腐蚀性介质Cl-加速了GLC薄膜从基体表面的剥离,导致了GLC在NaCl溶液中更高的摩擦因数和磨损率。

  • 参考文献

    • [1] 杨茂盛,刘秀波,何祥明,等.固体自润滑涂层的研究进展[J].材料导报,2011,25(增刊 1):536-538.YANG Maosheng,LIU Xiubo,HE Xiangming,et al.Research development of solid self-lubricant coatings[J].Materials Review,2011,25(Suppl.1):536-538.(in Chinese)

    • [2] 马国政,徐滨士,王海斗,等.空间固体润滑材料的研究现状[J].材料导报,2010,24(1):68-71.MA Guozheng,XU Binshi,WANG Haidou,et al.State of research on space solid lubrication materials[J].Materials Review,2010,24(1):68-71.(in Chinese)

    • [3] 杨威锋.固体自润滑材料及其研究趋势[J].润滑与密封,2007(12):118-120.YANG Weifeng.Solid self lubricating materials and their research trends[J].Lubrication Engineering,2007(12):118-120.(in Chinese)

    • [4] ERDEMIR A,MARTIN J M.Superior wear resistance of diamond and DLC coatings[J].Current Opinion in Solid State and Materials Science,2018,22(6):243-254.

    • [5] 关晓艳,王永欣,王立平,等.非晶碳基薄膜材料水环境摩擦学研究进展[J].摩擦学学报,2017,37(2):270-282.GUAN Xiaoyan,WANG Yongxin,WANG Liping,et al.Progress in tribological performances of carbon-based films in liquid lubrication environments[J].Tribology,2017,37(2):270-282.(in Chinese)

    • [6] 雍青松,王海斗,徐滨士,等.类金刚石薄膜摩擦机理及其摩擦学性能影响因素的研究现状[J].机械工程学报,2016,52(11):95-107.YONG Qinsong,WANG Haidou,XU Binshi,et al.Research status of the tribological property of diamond-like carbon films[J].Journal of Mechanical Engineering,2016,52(11):95-107.(in Chinese)

    • [7] AL MAHMUD K A H,KALAM M A,MASJUKI H H,et al.An updated overview of diamond-like carbon coating in tribology[J].Critical Reviews in Solid State and Materials Sciences,2015,40(2):90-118.

    • [8] BEWILOGUA K,HOFMANN D.History of diamond-like carbon films—From first experiments to sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.

    • [9] YAN M M,WANG X Y,ZHANG S W,et al.Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication[J].Tribology International,2020,143:106067.

    • [10] DONG D,JIANG B L,LI H T,et al.Effect of graphite target power density on tribological properties of graphite-like carbon films[J].Applied Surface Science,2018,439:900-909.

    • [11] WANG Y J,LI H X,JI L,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.

    • [12] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.

    • [13] WEI X B,ZHANG M L,SHANG L L,et al.Enhancement in the corrosive and tribological properties of the inner wall of 6063Al and CI pipes by thick multilayer Si-DLC coatings[J].Materials Research Express,2019,6(8):85634.

    • [14] DELFANI-ABBARIKI S,ABDOLLAH-ZADEH A,HADAVI S M M,et al.Enhancing the adhesion of diamond-like carbon films to steel substrates using silicon-containing interlayers[J].Surface & Coatings Technology,2018,350:74-83.

    • [15] 崔明君,任思明,樊小强,等.调制比对多层DLC涂层摩擦及电化学行为的影响[J].机械工程学报,2018,54(6):25-31.CUI Mingjun,REN Siming,FAN Xiaoqiang,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J].Journal of Mechanical Engineering,2018,54(6):25-31.(in Chinese)

    • [16] WANG Q Z,ZHOU F,ZHOU Z F,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication[J].Diamond and Related Materials,2012,25:163-175.

    • [17] CAO H S,QI F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminu alloys[J].Materials,2018,11(9):1742.

    • [18] CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy[J].Applied Surface Science,2013,279:450-457.

    • [19] 汪科良,周晖,张凯锋,等.掺杂类金刚石薄膜微观结构和摩擦学性能的研究进展[J].表面技术,2021,50(2):148-159.WANG Keliang,ZHOU Hui,ZHANG Kaifeng,et al.Research progress on microstructure and tribological properties of doped diamond-like carbon films[J].Surface Technology,2021,50(2):148-159.(in Chinese)

    • [20] 高宋,周飞,苏恒,等.Ti-DLC 薄膜在水介质中的摩擦学特性[J].润滑与密封,2015,40(10):23-29.GAO Song,ZHOU Fei,SU Heng,et al.Tribological properties of Ti-DLC coatings in water[J].Lubrication Engineering,2015,40(10):23-29.(in Chinese)

    • [21] KIM D,KIM K.Effects of sliding velocity and ambient temperature on the friction and wear of a boundary-lubricated,multi-layered DLC coating[J].Wear,2014,315(1-2):95-102.

    • [22] KIM D,KIM K.Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon(DLC)coating prepared by reactive sputtering[J].Wear,2013,297(1-2):722-730.

    • [23] WANG Y X,LI J L,WANG L P,et al.Tribological performances of graphite-like carbon films coupled to different ceramics in ambient air and water[J].Tribology Transactions,2013,56(3):333-341.

    • [24] ZHANG T F,JIANG F,LIAO T T,et al.Tribological behavior of diamond like carbon film sliding against CoCrMo or Al2O3 in air and water environment[J].Tribology International,2016,95:456-461.

    • [25] 王佳凡,陈克选,王永欣,等.Cr/WC/DLC 薄膜的多环境摩擦学性能[J].中国表面工程,2015,28(3):49-55.WANG Jiafan,CHEN Kexuan,WANG Yongxin,et al.Tribological properties of Cr/WC/DLC film in multiple enviroments[J].China Surface Engineering,2015,28(3):49-55.(in Chinese)

    • [26] SHI X R,SHI Y J,CHEN J,et al.Influence of gradient interlayer thickness on corrosion and tribological behavior of Ti-containing multilayer graphite-like carbon films[J].Wear,2022,488-489:204177.

    • [27] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.

    • [28] CHEN J M,LI J,WU Y X,et al.Microstructure,morphology and properties of titanium containing graphite-like carbon films deposited by unbalanced magnetron sputtering[J].Tribology Letters,2013,49(1):47-59.

    • [29] FIELD S K,JARRATT M,TEER D G.Tribological properties of graphite-like and diamond-like carbon coatings[J].Tribology International,2004,37(11-12):949-956.

    • [30] 孙建芳,唐邕涛,苏峰华,等.钛合金表面DLC薄膜的制备及其与不同材料配副的摩擦学性能研究[J].摩擦学学报,2021,41(6):953-963.SUN Jianfang,TANG Yitao,SU Fenghua,et al.Synthesis of DLC film on titanium alloy and its tribological property sliding against different mating materials[J].Tribology,2021,41(6):953-963.(in Chinese)

    • [31] WANG Y X,WANG L P,LI J L,et al.Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water[J].Tribology International,2013,60:147-155.

  • 参考文献

    • [1] 杨茂盛,刘秀波,何祥明,等.固体自润滑涂层的研究进展[J].材料导报,2011,25(增刊 1):536-538.YANG Maosheng,LIU Xiubo,HE Xiangming,et al.Research development of solid self-lubricant coatings[J].Materials Review,2011,25(Suppl.1):536-538.(in Chinese)

    • [2] 马国政,徐滨士,王海斗,等.空间固体润滑材料的研究现状[J].材料导报,2010,24(1):68-71.MA Guozheng,XU Binshi,WANG Haidou,et al.State of research on space solid lubrication materials[J].Materials Review,2010,24(1):68-71.(in Chinese)

    • [3] 杨威锋.固体自润滑材料及其研究趋势[J].润滑与密封,2007(12):118-120.YANG Weifeng.Solid self lubricating materials and their research trends[J].Lubrication Engineering,2007(12):118-120.(in Chinese)

    • [4] ERDEMIR A,MARTIN J M.Superior wear resistance of diamond and DLC coatings[J].Current Opinion in Solid State and Materials Science,2018,22(6):243-254.

    • [5] 关晓艳,王永欣,王立平,等.非晶碳基薄膜材料水环境摩擦学研究进展[J].摩擦学学报,2017,37(2):270-282.GUAN Xiaoyan,WANG Yongxin,WANG Liping,et al.Progress in tribological performances of carbon-based films in liquid lubrication environments[J].Tribology,2017,37(2):270-282.(in Chinese)

    • [6] 雍青松,王海斗,徐滨士,等.类金刚石薄膜摩擦机理及其摩擦学性能影响因素的研究现状[J].机械工程学报,2016,52(11):95-107.YONG Qinsong,WANG Haidou,XU Binshi,et al.Research status of the tribological property of diamond-like carbon films[J].Journal of Mechanical Engineering,2016,52(11):95-107.(in Chinese)

    • [7] AL MAHMUD K A H,KALAM M A,MASJUKI H H,et al.An updated overview of diamond-like carbon coating in tribology[J].Critical Reviews in Solid State and Materials Sciences,2015,40(2):90-118.

    • [8] BEWILOGUA K,HOFMANN D.History of diamond-like carbon films—From first experiments to sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.

    • [9] YAN M M,WANG X Y,ZHANG S W,et al.Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication[J].Tribology International,2020,143:106067.

    • [10] DONG D,JIANG B L,LI H T,et al.Effect of graphite target power density on tribological properties of graphite-like carbon films[J].Applied Surface Science,2018,439:900-909.

    • [11] WANG Y J,LI H X,JI L,et al.Microstructure,mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J].Surface and Coatings Technology,2011,205(8-9):3058-3065.

    • [12] CAO L,LIU J,WAN Y,et al.Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater[J].Diamond and Related Materials,2020,109:108019.

    • [13] WEI X B,ZHANG M L,SHANG L L,et al.Enhancement in the corrosive and tribological properties of the inner wall of 6063Al and CI pipes by thick multilayer Si-DLC coatings[J].Materials Research Express,2019,6(8):85634.

    • [14] DELFANI-ABBARIKI S,ABDOLLAH-ZADEH A,HADAVI S M M,et al.Enhancing the adhesion of diamond-like carbon films to steel substrates using silicon-containing interlayers[J].Surface & Coatings Technology,2018,350:74-83.

    • [15] 崔明君,任思明,樊小强,等.调制比对多层DLC涂层摩擦及电化学行为的影响[J].机械工程学报,2018,54(6):25-31.CUI Mingjun,REN Siming,FAN Xiaoqiang,et al.Influence of modulation ratio on the tribological and electrochemical behaviors of multilayer DLC coatings[J].Journal of Mechanical Engineering,2018,54(6):25-31.(in Chinese)

    • [16] WANG Q Z,ZHOU F,ZHOU Z F,et al.Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication[J].Diamond and Related Materials,2012,25:163-175.

    • [17] CAO H S,QI F G,OUYANG X P,et al.Effect of Ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminu alloys[J].Materials,2018,11(9):1742.

    • [18] CAI J B,WANG X L,BAI W Q,et al.Bias-graded deposition and tribological properties of Ti-contained a-C gradient composite film on Ti6Al4V alloy[J].Applied Surface Science,2013,279:450-457.

    • [19] 汪科良,周晖,张凯锋,等.掺杂类金刚石薄膜微观结构和摩擦学性能的研究进展[J].表面技术,2021,50(2):148-159.WANG Keliang,ZHOU Hui,ZHANG Kaifeng,et al.Research progress on microstructure and tribological properties of doped diamond-like carbon films[J].Surface Technology,2021,50(2):148-159.(in Chinese)

    • [20] 高宋,周飞,苏恒,等.Ti-DLC 薄膜在水介质中的摩擦学特性[J].润滑与密封,2015,40(10):23-29.GAO Song,ZHOU Fei,SU Heng,et al.Tribological properties of Ti-DLC coatings in water[J].Lubrication Engineering,2015,40(10):23-29.(in Chinese)

    • [21] KIM D,KIM K.Effects of sliding velocity and ambient temperature on the friction and wear of a boundary-lubricated,multi-layered DLC coating[J].Wear,2014,315(1-2):95-102.

    • [22] KIM D,KIM K.Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon(DLC)coating prepared by reactive sputtering[J].Wear,2013,297(1-2):722-730.

    • [23] WANG Y X,LI J L,WANG L P,et al.Tribological performances of graphite-like carbon films coupled to different ceramics in ambient air and water[J].Tribology Transactions,2013,56(3):333-341.

    • [24] ZHANG T F,JIANG F,LIAO T T,et al.Tribological behavior of diamond like carbon film sliding against CoCrMo or Al2O3 in air and water environment[J].Tribology International,2016,95:456-461.

    • [25] 王佳凡,陈克选,王永欣,等.Cr/WC/DLC 薄膜的多环境摩擦学性能[J].中国表面工程,2015,28(3):49-55.WANG Jiafan,CHEN Kexuan,WANG Yongxin,et al.Tribological properties of Cr/WC/DLC film in multiple enviroments[J].China Surface Engineering,2015,28(3):49-55.(in Chinese)

    • [26] SHI X R,SHI Y J,CHEN J,et al.Influence of gradient interlayer thickness on corrosion and tribological behavior of Ti-containing multilayer graphite-like carbon films[J].Wear,2022,488-489:204177.

    • [27] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B,2000,61(20):14095-14107.

    • [28] CHEN J M,LI J,WU Y X,et al.Microstructure,morphology and properties of titanium containing graphite-like carbon films deposited by unbalanced magnetron sputtering[J].Tribology Letters,2013,49(1):47-59.

    • [29] FIELD S K,JARRATT M,TEER D G.Tribological properties of graphite-like and diamond-like carbon coatings[J].Tribology International,2004,37(11-12):949-956.

    • [30] 孙建芳,唐邕涛,苏峰华,等.钛合金表面DLC薄膜的制备及其与不同材料配副的摩擦学性能研究[J].摩擦学学报,2021,41(6):953-963.SUN Jianfang,TANG Yitao,SU Fenghua,et al.Synthesis of DLC film on titanium alloy and its tribological property sliding against different mating materials[J].Tribology,2021,41(6):953-963.(in Chinese)

    • [31] WANG Y X,WANG L P,LI J L,et al.Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water[J].Tribology International,2013,60:147-155.

  • 手机扫一扫看